Math 8602: REAL ANALYSIS. Spring 2016
Homework \#2 (due on Wednesday, February 17).
40 points are divided between 4 problems, 10 points each.
\#1. Let a functions $f \in B V([a, b])$ for every subinterval $[a, b] \subset(0,1)$, and its variation on $[a, b]$ does not exceed a constant $C_{0}<\infty$ which does not depend on a, b. Show that there exists

$$
\lim _{a \searrow 0} f(a) .
$$

\#2. Show that for all $\alpha>1$ the functions

$$
f_{\alpha}(x):=\sum_{k=1}^{\infty} \frac{\sin \left(2^{k} x\right)}{2^{k \alpha}} \in B V([0, \pi]),
$$

i.e. they have bounded variation on $[0, \pi]$.
\#3. Let constants $\alpha, \beta \in(0,1)$ with $\alpha+\beta>1$, and let functions f, g satisfy

$$
[f]_{\alpha}:=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty, \quad[g]_{\beta}:=\sup _{x \neq y} \frac{|g(x)-g(y)|}{|x-y|^{\beta}}<\infty, \quad \text { and } \quad f, g \equiv 0 \quad \text { on } \quad \mathbb{R}^{n} \backslash(0,1) .
$$

Show that there exists

$$
\lim _{n \rightarrow \infty} S_{n}, \quad \text { where } \quad S_{n}:=\sum_{j=1}^{2^{n}} f\left(2^{-n} j\right)\left[g\left(2^{-n} j\right)-g\left(2^{-n}(j-1)\right)\right] .
$$

Hint. Consider $S_{n+1}-S_{n}$.
\#4 (Jensen's Inequality, \#42d, p.109). Let (X, \mathcal{M}, μ) be a measure space with $\mu(X)=1$, and let g be a function in $L^{1}(\mu)$. Show that for any convex function F on \mathbb{R}^{1}, we have

$$
F\left(\int_{X} g d \mu\right) \leq \int_{X} F(g) d \mu
$$

Hint. You can use without prove the fact that any convex function can be represented as an upper bound of linear functions:

$$
F(u)=\sup _{\alpha \in A}\left(k_{\alpha} u+b_{\alpha}\right) .
$$

