Math 8602: REAL ANALYSIS. Spring 2016
Homework \#3 (due on Wednesday, March 9).
40 points are divided between 4 problems, 10 points each.
\#1. Show that the function

$$
f(x)=\sum_{k=1}^{\infty} \frac{\sin \left(4^{k} x\right)}{2^{k}}
$$

is continuous on \mathbb{R}^{1}, but its variation $V[f ; a, b]=\infty$ for any $a<b$.
Hint. For any interval I,

$$
V\left[f_{n}, I\right] \geq \int_{I} \cos \left(4^{m} x\right) d f_{n}(x), \quad \text { where } \quad f_{n}(x):=\sum_{k=n}^{\infty} \frac{\sin \left(4^{k} x\right)}{2^{k}}
$$

\#2. (Problem 36 on p. 127). Let X be the set of all real-valued Lebesgue measurable functions f on $[0,1]$ satisfying the inequality $|f| \leq 1$. Show that there is NO topology \mathcal{T} on X such that $f_{n} \rightarrow 0$ a.e. as $n \rightarrow \infty$ if and only if it converges with respect to \mathcal{T}.
$\# 3$. Let f be a real valued continuous function on \mathbb{R}^{1} such that $f(x) \equiv 0$ for $|x| \geq 2$.
Show that

$$
f^{(\varepsilon)}(x):=\int_{\mathbb{R}^{1}} f(x-\varepsilon y) \varphi(y) d y \rightarrow f(x) \quad \text { as } \quad \varepsilon \searrow 0
$$

uniformly on \mathbb{R}^{1}, where

$$
\varphi(y):=\frac{1}{\sqrt{\pi}} \cdot e^{-y^{2}}
$$

\#4. Use the previous problem for the proof of the Weierstrass theorem: every continuous function on $[-1,1]$ can be uniformly approximated by polynomials.

