
Math 8602: REAL ANALYSIS. Spring 2016

Homework #1. Problems and Solutions.

#1. Let C be a collection of open balls in Rn. Show that there exists a finite or countable
subset C1 ⊆ C such that ∪

B∈C1

B =
∪
B∈C

B.

Proof. We can write

G :=
∪
B∈C

B =
∞∪
j=1

Kj, where Kj :=

{
x ∈ G : |x| ≤ j, dist(x, ∂G) ≥ 1

j

}
.

For each j, Kj is a compact, so that it can be covered by a finite subset of open balls C1,k ⊆ C.
Finally, the desired equality holds true with C1 :=

∪
k

C1,k.

#2. By definition on p. 95, a measurable function f : Rn → R is locally integrable
(f ∈ L1

loc) if ∫
K

|f(x)| dx < ∞ ∀ bounded measurable K ⊂ Rn.

Show that this definition is equivalent to the following:

∀x ∈ Rn, ∃r > 0 such that

∫
Br(x)

|f(y)| dy < ∞.

Proof. It suffices to show that from the second definition it follows the first one. Replacing
K by its closure, we can assume that it is a compact. Then one can choose a finite set of balls
Brj(xj), j = 1, 2, . . . , N , from the second definition, which covers K. Then∫

K

|f(x)| dx ≤
∞∑
j=1

∫
Brj (xj)

|f(x)| dx < ∞.

#3. Let dν = dλ+ f dm be the Lebesgue-Radon-Nikodym decomposition of a finite real signed
measure on Rn. Show that for the total variations (defined on p. 87) we also have

d|ν| = d|λ|+ |f | dm.

Proof. Since λ ⊥ µ, where dµ = f dm, there are sets E,F ∈ B = B(Rn) such that

E ∩ F = ∅, E ∪ F = Rn, E is null for λ, and F is null for µ.

Let Rn = P1 ∪N1 = P2 ∪N2 be Hahn decompositions for λ and µ respectively. Then

Rn = P ∪N, where P := (P1F ) ∪ (P2E), N := (N1F ) ∪ (N2E)
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is a Hahn decompositions for λ, µ, and ν = λ + µ. As in the proof on the Jordan Decomposition
Theorem 3.4 and definition of total variation |ν| on p.87, we have for all E ∈ B:

|ν(E)| = ν+(E) + ν−(E) = ν(EP )− ν(EN),

|λ(E)| = λ+(E) + λ−(E) = λ(EP )− λ(EN),

|µ(E)| = µ+(E) + µ−(E) = µ(EP )− µ(EN),

which implies |ν| = |λ| + |µ|. Finally, since dµ = f dm, we must have f ≥ 0 a.e. on P , and f ≤ 0
a.e. on N , which gives d|µ| = |f | dm.

#4. For each x ∈ [0, 1], let

x =
∞∑
k=1

xk

2k
,

where xk = 0 or 1, so that xk are functions of x with values 0 and 1. Show that

Sn(x) =
x1 + x2 + · · ·+ xn

n
→ 1

2
as n → ∞ in measure on [0, 1].

Proof. Denote

Ij,m :=
(
2−m(j − 1), 2−mj

)
for m = 1, 2, . . . ; j = 1, 2, . . . , 2m.

We have

xm(x) =

{
0 if x ∈ Ij,m with an odd j;

1 if x ∈ Ij,m with an even j.

For natural n > m, each interval Ij,m is represented as a union of 2n−m subintervals Ik,n, plus a
finite number of their endpoints. On the interval Ij,m, the function fn(x) = xn(x) − 1

2
alternates

between −1
2
and 1

2
and has zero integral, while fm(x) = const (which is either 0 or 1). Hence for

n > m,
1∫

0

fmfn dx =
2m∑
j=1

∫
∆j,m

fmfn dx = 0.

By symmetry, the functions fk(x) are orthogonal in L2([0, 1]). Further, note that

Sn(x)−
1

2
=

1

n

n∑
m=1

fm(x).

Applying Chebyshev’s inequality, we how have for any α > 0:

m
(
{x : |Sn(x)− 1/2| > α}

)
= m

(
{x : |Sn(x)− 1/2|2 > α2}

)
≤ 1

α2

1∫
0

|Sn(x)− 1/2|2dx =
1

n2α2

1∫
0

( n∑
m=1

fm

)2

dx =
1

n2α2

1∫
0

n∑
k,m=1

fkfm dx

=
1

n2α2

1∫
0

n∑
m=1

f 2
m dx =

1

n2α2
· n
2
=

1

4nα2
→ 0 as n → ∞.

This means that Sn(x) → 1
2
in measure.
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