Math 8602: REAL ANALYSIS. Spring 2016

Homework \#1. Problems and Solutions.

\#1. Let C be a collection of open balls in \mathbb{R}^{n}. Show that there exists a finite or countable subset $C_{1} \subseteq C$ such that

$$
\bigcup_{B \in C_{1}} B=\bigcup_{B \in C} B
$$

Proof. We can write

$$
G:=\bigcup_{B \in C} B=\bigcup_{j=1}^{\infty} K_{j}, \quad \text { where } \quad K_{j}:=\left\{x \in G: \quad|x| \leq j, \quad \operatorname{dist}(x, \partial G) \geq \frac{1}{j}\right\} .
$$

For each j, K_{j} is a compact, so that it can be covered by a finite subset of open balls $C_{1, k} \subseteq C$. Finally, the desired equality holds true with $C_{1}:=\bigcup_{k} C_{1, k}$.
\#2. By definition on p . 95, a measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is locally integrable $\left(f \in L_{l o c}^{1}\right)$ if

$$
\int_{K}|f(x)| d x<\infty \quad \forall \text { bounded measurable } \quad K \subset \mathbb{R}^{n} \text {. }
$$

Show that this definition is equivalent to the following:

$$
\forall x \in \mathbb{R}^{n}, \quad \exists r>0 \quad \text { such that } \int_{B_{r}(x)}|f(y)| d y<\infty
$$

Proof. It suffices to show that from the second definition it follows the first one. Replacing K by its closure, we can assume that it is a compact. Then one can choose a finite set of balls $B_{r_{j}}\left(x_{j}\right), j=1,2, \ldots, N$, from the second definition, which covers K. Then

$$
\int_{K}|f(x)| d x \leq \sum_{j=1}^{\infty} \int_{B_{r_{j}}\left(x_{j}\right)}|f(x)| d x<\infty
$$

\#3. Let $d \nu=d \lambda+f d m$ be the Lebesgue-Radon-Nikodym decomposition of a finite real signed measure on \mathbb{R}^{n}. Show that for the total variations (defined on p . 87) we also have

$$
d|\nu|=d|\lambda|+|f| d m
$$

Proof. Since $\lambda \perp \mu$, where $d \mu=f d m$, there are sets $E, F \in \mathcal{B}=\mathcal{B}\left(\mathbb{R}^{n}\right)$ such that

$$
E \cap F=\emptyset, \quad E \cup F=\mathbb{R}^{n}, \quad E \quad \text { is null for } \quad \lambda, \quad \text { and } \quad F \quad \text { is null for } \mu .
$$

Let $\mathbb{R}^{n}=P_{1} \cup N_{1}=P_{2} \cup N_{2}$ be Hahn decompositions for λ and μ respectively. Then

$$
\mathbb{R}^{n}=P \cup N, \quad \text { where } \quad P:=\left(P_{1} F\right) \cup\left(P_{2} E\right), \quad N:=\left(N_{1} F\right) \cup\left(N_{2} E\right)
$$

is a Hahn decompositions for λ, μ, and $\nu=\lambda+\mu$. As in the proof on the Jordan Decomposition Theorem 3.4 and definition of total variation $|\nu|$ on p.87, we have for all $E \in \mathcal{B}$:

$$
\begin{aligned}
|\nu(E)| & =\nu^{+}(E)+\nu^{-}(E)=\nu(E P)-\nu(E N) \\
|\lambda(E)| & =\lambda^{+}(E)+\lambda^{-}(E)=\lambda(E P)-\lambda(E N), \\
|\mu(E)| & =\mu^{+}(E)+\mu^{-}(E)=\mu(E P)-\mu(E N),
\end{aligned}
$$

which implies $|\nu|=|\lambda|+|\mu|$. Finally, since $d \mu=f d m$, we must have $f \geq 0$ a.e. on P, and $f \leq 0$ a.e. on N, which gives $d|\mu|=|f| d m$.
$\# 4$. For each $x \in[0,1]$, let

$$
x=\sum_{k=1}^{\infty} \frac{x_{k}}{2^{k}},
$$

where $x_{k}=0$ or 1 , so that x_{k} are functions of x with values 0 and 1 . Show that

$$
S_{n}(x)=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \rightarrow \frac{1}{2} \quad \text { as } \quad n \rightarrow \infty \quad \text { in measure on }[0,1] .
$$

Proof. Denote

$$
I_{j, m}:=\left(2^{-m}(j-1), 2^{-m} j\right) \quad \text { for } \quad m=1,2, \ldots ; j=1,2, \ldots, 2^{m} .
$$

We have

$$
x_{m}(x)=\left\{\begin{array}{llll}
0 & \text { if } & x \in I_{j, m} & \text { with an odd } \quad j \\
1 & \text { if } & x \in I_{j, m} & \text { with an even } \\
j
\end{array}\right.
$$

For natural $n>m$, each interval $I_{j, m}$ is represented as a union of 2^{n-m} subintervals $I_{k, n}$, plus a finite number of their endpoints. On the interval $I_{j, m}$, the function $f_{n}(x)=x_{n}(x)-\frac{1}{2}$ alternates between $-\frac{1}{2}$ and $\frac{1}{2}$ and has zero integral, while $f_{m}(x)=$ const (which is either 0 or 1). Hence for $n>m$,

$$
\int_{0}^{1} f_{m} f_{n} d x=\sum_{j=1}^{2^{m}} \int_{\Delta_{j, m}} f_{m} f_{n} d x=0
$$

By symmetry, the functions $f_{k}(x)$ are orthogonal in $L^{2}([0,1])$. Further, note that

$$
S_{n}(x)-\frac{1}{2}=\frac{1}{n} \sum_{m=1}^{n} f_{m}(x) .
$$

Applying Chebyshev's inequality, we how have for any $\alpha>0$:

$$
\begin{gathered}
m\left(\left\{x:\left|S_{n}(x)-1 / 2\right|>\alpha\right\}\right)=m\left(\left\{x:\left|S_{n}(x)-1 / 2\right|^{2}>\alpha^{2}\right\}\right) \\
\leq \frac{1}{\alpha^{2}} \int_{0}^{1}\left|S_{n}(x)-1 / 2\right|^{2} d x=\frac{1}{n^{2} \alpha^{2}} \int_{0}^{1}\left(\sum_{m=1}^{n} f_{m}\right)^{2} d x=\frac{1}{n^{2} \alpha^{2}} \int_{0}^{1} \sum_{k, m=1}^{n} f_{k} f_{m} d x \\
=\frac{1}{n^{2} \alpha^{2}} \int_{0}^{1} \sum_{m=1}^{n} f_{m}^{2} d x=\frac{1}{n^{2} \alpha^{2}} \cdot \frac{n}{2}=\frac{1}{4 n \alpha^{2}} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
\end{gathered}
$$

This means that $S_{n}(x) \rightarrow \frac{1}{2}$ in measure.

