
Math 8602: REAL ANALYSIS. Spring 2016

Homework #4. Problems and Solutions.

#1. Let K be a family of all nonempty closed subsets of [0, 1] × [0, 1] with respect to the Euclidean distance.
Show that K is a metric space with the Hausdorff distance

ρ(A,B) := max
{
max
x∈A

dist(x,B), max
y∈B

dist(y,A)
}
, dist(x,B) := min

y∈B
|x− y|, etc.

Proof. We have to verify the axioms of a metric space:

(i) ρ(A,B) = 0 ⇒ A = B, (ii) ρ(A,B) = ρ(B,A), and (iii) ρ(A,C) ≤ ρ(A,B) + ρ(B,C).

The equality ρ(A,B) = 0 for nonempty closed subsets A and B simply means that A ⊆ B ⊆ A, i.e. A = B,
so that we have (i). The property (ii) is obvious. For the proof of (iii), note that

r ≥ max
x∈A

dist(x,B) ⇐⇒ A ⊆ Br := {x : dist(x,B) ≤ r}.

Therefore,

ρ(A,B) = min
{
r ≥ 0 : A ⊆ Br, B ⊆ Ar

}
. (1)

Set r1 := ρ(A,B), r2 := ρ(B,C). Then

B ⊆ Cr2 , A ⊆ Br1 ⊆ (Cr2)r1 = Cr1+r2 .

By symmetry, we also have C ⊆ Ar1+r2 . This implies (iii): ρ(A,C) ≤ r1 + r2 = ρ(A,B) + ρ(B,C).

#2. Show that in the previous problem, the metric space (K, ρ) is compact.

Proof. It suffices to verify that the metric space (K, ρ) is (i) totally bounded and (ii) complete.

(i). Fix ε > 0 and take an arbitrary finite family of closed sets F1, . . . , Fm, such that

[0, 1]× [0, 1] ⊆
m∪
j=1

Fj , and max
j

diamFj ≤ ε.

Then the family S := σ({Fj}) consists of all possible unions of subfamilies of {Fj}, including the empty set. The
family S consists of at most 2m elements. For an arbitrary A ∈ K, take

B :=
∪

{Fj : Fj ∩A is nonempty} ∈ K.

Then A ⊆ B ⊆ Aε := {x : dist(x,A) ≤ ε}. By (1), this means that ρ(A,B) ≤ ε. In other words, K is totally
bounded:

min
B∈S

ρ(A,B) ≤ ε, ∀A ∈ K.

(ii) Let {Aj} be a Cauchy sequence in (K, ρ). We can assume that ρ(Aj , Aj+1) ≤ εj := 2−j for all j = 1, 2, . . . , n,
because otherwise we can take a subsequence {Akj} instead of {Aj}. Introduce

Bj := A
2εj
j := {x : dist(x,Aj) ≤ 2εj} ∈ K.

Then by (1),

Aj+1 ⊆ A
εj
j , and Bj+1 ⊆ A

2εj+1

j+1 = A
εj
j+1 ⊆ (A

εj
j )εj = A

2εj
j = Bj .

Hence

Bj ↘ B :=
∞∩
j=1

Bj ∈ K as j → ∞.

On the other hand, we have the following
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Exercise. ∀ε > 0, ∃N such that Bj ⊆ Bε, ∀j ≥ N .

In combination with B ⊆ Bj := A
2εj
j , this implies

ρ(Aj , B) ≤ max{ε, 2εj}, ∀j ≥ N ; and lim sup
j→∞

ρ(Aj , B) ≤ ε.

Since ε > 0 is arbitrary, we get the desired convergence in (K, ρ) : ρ(Aj , B) → 0 as j → ∞.

#3. Let K(x, y) be a continuous function on [0, 1]× [0, 1]. Consider the metric space
(
C([0, 1]), ρ

)
, where

ρ(f, g) := max
[0,1]

|f − g|.

Show that the family of functions

A :=

{
F (x) :=

1∫
0

K(x, y) f(y) dy : f ∈ C([0, 1]), max
[0,1]

|f | ≤ 1

}

is a precompact subset of
(
C([0, 1]), ρ

)
. Verify whether or not it is compact.

Proof. It is known that K is bounded and uniformly continuous on Q := [0, 1]× [0, 1], i.e.

sup
Q

|K| ≤ M = const < ∞, and ω(ρ) := sup
|z1−z2|≤ρ

|K(z1)−K(z2)| → 0 as ρ ↘ 0.

These properties are obviously preserved for functions F ∈ A:

sup
[0,1]

|F | ≤ M, and sup
|x1−x2|≤ρ

|F (x1)− F (x2)| ≤ ω(ρ).

This means that the family A is uniformly bounded and equicontinuous. By Theorem 4.4.3, it is precompact,
i.e. its closure in

(
C([0, 1]), ρ

)
is compact.

The family A is not necessarily compact. Indeed, consider K(x, y) := (x− y)+ = max(x− y, 0) ∈ C.
Then for every f ∈ C, the corresponding function

F (x) =

x∫
0

(x− y)f(y) dy, F ′(x) =

x∫
0

f(y) dy, F ′′(x) = f(x) ∈ C.

In other words, F ∈ C2. Now let gn be a sequence of functions in C which converges in L1 to a discontinuous
function g ≡ 0 on [0, 1/2], g ≡ 1 on (1/2, 1]. The corresponding functions Gn converge to G in C (even in C1),
but G′′ = g /∈ C, G /∈ C2. Then, G cannot belong to A, and A is not complete and therefore not compact.

#4 (§4.3, p. 147.) Let (F ,.) be a filter directed under reverse inclusion, i.e.

F1 . F2 ⇐⇒ F2 ⊆ F1.

A net < xF >F∈F is associated to F if xF ∈ F for every F ∈ F . Show that

F → x ⇐⇒ every associated net < xF >F∈F → x.

Proof. First suppose F → x. This means that if x belongs to an open set G, then G ∈ F . If a net < xF >F∈F
is associated to F , then ∀F & G, we have xF ∈ F ⊆ G. By definition, < xF >F∈F → x.

Now suppose F does not converge to x. Then ∃ an open set G /∈ F such that x ∈ G. Note that ∀F ∈ F ,
the inclusion F ⊆ G is impossible (by definition of a filter, this would imply G ∈ F). Therefore, ∀F ∈ F , ∃xF ∈ F \G,
which means that xF does not converge to x.
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