Math 8602: REAL ANALYSIS. Spring 2016

Homework #4. Problems and Solutions.

#1. Let \mathcal{K} be a family of all nonempty closed subsets of $[0,1] \times [0,1]$ with respect to the Euclidean distance. Show that \mathcal{K} is a metric space with the Hausdorff distance

$$\rho(A,B) := \max\Big\{\max_{x \in A} \operatorname{dist}(x,B), \max_{y \in B} \operatorname{dist}(y,A)\Big\}, \quad \operatorname{dist}(x,B) := \min_{y \in B} |x-y|, \quad \text{etc.}$$

Proof. We have to verify the axioms of a metric space:

(i)
$$\rho(A,B) = 0 \Rightarrow A = B$$
, (ii) $\rho(A,B) = \rho(B,A)$, and (iii) $\rho(A,C) \le \rho(A,B) + \rho(B,C)$.

The equality $\rho(A, B) = 0$ for nonempty closed subsets A and B simply means that $A \subseteq B \subseteq A$, i.e. A = B, so that we have (i). The property (ii) is obvious. For the proof of (iii), note that

$$r \geq \max_{x \in A} \operatorname{dist}(x, B) \quad \Longleftrightarrow \quad A \subseteq B^r := \{x : \operatorname{dist}(x, B) \leq r\}.$$

Therefore,

$$\rho(A,B) = \min\left\{r \ge 0: \quad A \subseteq B^r, \quad B \subseteq A^r\right\}.$$
(1)

Set $r_1 := \rho(A, B), r_2 := \rho(B, C)$. Then

$$B \subseteq C^{r_2}, \quad A \subseteq B^{r_1} \subseteq (C^{r_2})^{r_1} = C^{r_1 + r_2}$$

By symmetry, we also have $C \subseteq A^{r_1+r_2}$. This implies (iii): $\rho(A, C) \leq r_1 + r_2 = \rho(A, B) + \rho(B, C)$.

#2. Show that in the previous problem, the metric space (\mathcal{K}, ρ) is compact.

Proof. It suffices to verify that the metric space (\mathcal{K}, ρ) is (i) totally bounded and (ii) complete.

(i). Fix $\varepsilon > 0$ and take an arbitrary finite family of closed sets F_1, \ldots, F_m , such that

$$[0,1] \times [0,1] \subseteq \bigcup_{j=1}^{m} F_j$$
, and $\max_j \operatorname{diam} F_j \le \varepsilon$.

Then the family $S := \sigma(\{F_j\})$ consists of all possible unions of subfamilies of $\{F_j\}$, including the empty set. The family S consists of at most 2^m elements. For an arbitrary $A \in \mathcal{K}$, take

$$B := \bigcup \{F_j : F_j \cap A \text{ is nonempty}\} \in \mathcal{K}.$$

Then $A \subseteq B \subseteq A^{\varepsilon} := \{x : \text{dist}(x, A) \leq \varepsilon\}$. By (1), this means that $\rho(A, B) \leq \varepsilon$. In other words, \mathcal{K} is totally bounded:

$$\min_{B \in S} \rho(A, B) \le \varepsilon, \quad \forall A \in \mathcal{K}.$$

(ii) Let $\{A_j\}$ be a Cauchy sequence in (\mathcal{K}, ρ) . We can assume that $\rho(A_j, A_{j+1}) \leq \varepsilon_j := 2^{-j}$ for all j = 1, 2, ..., n, because otherwise we can take a subsequence $\{A_{k_j}\}$ instead of $\{A_j\}$. Introduce

$$B_j := A_j^{2\varepsilon_j} := \{x : \operatorname{dist}(x, A_j) \le 2\varepsilon_j\} \in \mathcal{K}$$

Then by (1),

$$A_{j+1} \subseteq A_j^{\varepsilon_j}$$
, and $B_{j+1} \subseteq A_{j+1}^{2\varepsilon_{j+1}} = A_{j+1}^{\varepsilon_j} \subseteq (A_j^{\varepsilon_j})^{\varepsilon_j} = A_j^{2\varepsilon_j} = B_j$.

Hence

$$B_j \searrow B := \bigcap_{j=1}^{\infty} B_j \in \mathcal{K} \text{ as } j \to \infty.$$

On the other hand, we have the following

Exercise. $\forall \varepsilon > 0, \exists N \text{ such that } B_j \subseteq B^{\varepsilon}, \forall j \geq N.$ In combination with $B \subseteq B_j := A_j^{2\varepsilon_j}$, this implies

$$\rho(A_j, B) \le \max\{\varepsilon, 2\varepsilon_j\}, \quad \forall j \ge N; \text{ and } \limsup_{j \to \infty} \rho(A_j, B) \le \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we get the desired convergence in (\mathcal{K}, ρ) : $\rho(A_j, B) \to 0$ as $j \to \infty$.

#3. Let K(x,y) be a continuous function on $[0,1] \times [0,1]$. Consider the metric space $(C([0,1]),\rho)$, where

$$\rho(f,g):=\max_{[0,1]}|f-g|$$

Show that the family of functions

$$A := \left\{ F(x) := \int_{0}^{1} K(x, y) f(y) \, dy : \quad f \in C([0, 1]), \quad \max_{[0, 1]} |f| \le 1 \right\}$$

is a precompact subset of $(C([0,1]), \rho)$. Verify whether or not it is compact.

Proof. It is known that K is bounded and uniformly continuous on $Q := [0, 1] \times [0, 1]$, i.e.

$$\sup_{Q} |K| \le M = \text{const} < \infty, \text{ and } \omega(\rho) := \sup_{|z_1 - z_2| \le \rho} |K(z_1) - K(z_2)| \to 0 \text{ as } \rho \searrow 0.$$

These properties are obviously preserved for functions $F \in A$:

$$\sup_{[0,1]} |F| \le M, \text{ and } \sup_{|x_1 - x_2| \le \rho} |F(x_1) - F(x_2)| \le \omega(\rho).$$

This means that the family A is uniformly bounded and equicontinuous. By Theorem 4.4.3, it is precompact, i.e. its closure in $(C([0,1]), \rho)$ is compact.

The family A is not necessarily compact. Indeed, consider $K(x, y) := (x - y)^+ = \max(x - y, 0) \in C$. Then for every $f \in C$, the corresponding function

$$F(x) = \int_{0}^{x} (x - y)f(y) \, dy, \quad F'(x) = \int_{0}^{x} f(y) \, dy, \quad F''(x) = f(x) \in C.$$

In other words, $F \in C^2$. Now let g_n be a sequence of functions in C which converges in L^1 to a discontinuous function $g \equiv 0$ on [0, 1/2], $g \equiv 1$ on (1/2, 1]. The corresponding functions G_n converge to G in C (even in C^1), but $G'' = g \notin C$, $G \notin C^2$. Then, G cannot belong to A, and A is not complete and therefore not compact.

#4 (§4.3, p. 147.) Let (\mathcal{F}, \leq) be a filter directed under reverse inclusion, i.e.

$$F_1 \lesssim F_2 \quad \Longleftrightarrow \quad F_2 \subseteq F_1$$

A net $\langle x_F \rangle_{F \in \mathcal{F}}$ is associated to \mathcal{F} if $x_F \in F$ for every $F \in \mathcal{F}$. Show that

$$\mathcal{F} \to x \iff$$
 every associated net $\langle x_F \rangle_{F \in \mathcal{F}} \to x$.

Proof. First suppose $\mathcal{F} \to x$. This means that if x belongs to an open set G, then $G \in \mathcal{F}$. If a net $\langle x_F \rangle_{F \in \mathcal{F}}$ is associated to \mathcal{F} , then $\forall F \gtrsim G$, we have $x_F \in F \subseteq G$. By definition, $\langle x_F \rangle_{F \in \mathcal{F}} \to x$.

Now suppose \mathcal{F} does not converge to x. Then \exists an open set $G \notin \mathcal{F}$ such that $x \in G$. Note that $\forall F \in \mathcal{F}$, the inclusion $F \subseteq G$ is impossible (by definition of a filter, this would imply $G \in \mathcal{F}$). Therefore, $\forall F \in \mathcal{F}, \exists x_F \in F \setminus G$, which means that x_F does not converge to x.