## Math 8602: REAL ANALYSIS. Spring 2016

## Homework \#4. Problems and Solutions

\#1. Let $\mathcal{K}$ be a family of all nonempty closed subsets of $[0,1] \times[0,1]$ with respect to the Euclidean distance. Show that $\mathcal{K}$ is a metric space with the Hausdorff distance

$$
\rho(A, B):=\max \left\{\max _{x \in A} \operatorname{dist}(x, B), \max _{y \in B} \operatorname{dist}(y, A)\right\}, \quad \operatorname{dist}(x, B):=\min _{y \in B}|x-y|, \quad \text { etc. }
$$

Proof. We have to verify the axioms of a metric space:

$$
\text { (i) } \rho(A, B)=0 \Rightarrow A=B, \quad \text { (ii) } \rho(A, B)=\rho(B, A), \quad \text { and } \quad \text { (iii) } \rho(A, C) \leq \rho(A, B)+\rho(B, C) \text {. }
$$

The equality $\rho(A, B)=0$ for nonempty closed subsets $A$ and $B$ simply means that $A \subseteq B \subseteq A$, i.e. $A=B$, so that we have (i). The property (ii) is obvious. For the proof of (iii), note that

$$
r \geq \max _{x \in A} \operatorname{dist}(x, B) \quad \Longleftrightarrow \quad A \subseteq B^{r}:=\{x: \operatorname{dist}(x, B) \leq r\}
$$

Therefore,

$$
\begin{equation*}
\rho(A, B)=\min \left\{r \geq 0: \quad A \subseteq B^{r}, \quad B \subseteq A^{r}\right\} \tag{1}
\end{equation*}
$$

Set $r_{1}:=\rho(A, B), r_{2}:=\rho(B, C)$. Then

$$
B \subseteq C^{r_{2}}, \quad A \subseteq B^{r_{1}} \subseteq\left(C^{r_{2}}\right)^{r_{1}}=C^{r_{1}+r_{2}}
$$

By symmetry, we also have $C \subseteq A^{r_{1}+r_{2}}$. This implies (iii): $\rho(A, C) \leq r_{1}+r_{2}=\rho(A, B)+\rho(B, C)$.
\#2. Show that in the previous problem, the metric space ( $\mathcal{K}, \rho$ ) is compact.
Proof. It suffices to verify that the metric space $(\mathcal{K}, \rho)$ is (i) totally bounded and (ii) complete.
(i). Fix $\varepsilon>0$ and take an arbitrary finite family of closed sets $F_{1}, \ldots, F_{m}$, such that

$$
[0,1] \times[0,1] \subseteq \bigcup_{j=1}^{m} F_{j}, \quad \text { and } \quad \max _{j} \operatorname{diam} F_{j} \leq \varepsilon
$$

Then the family $S:=\sigma\left(\left\{F_{j}\right\}\right)$ consists of all possible unions of subfamilies of $\left\{F_{j}\right\}$, including the empty set. The family $S$ consists of at most $2^{m}$ elements. For an arbitrary $A \in \mathcal{K}$, take

$$
B:=\bigcup\left\{F_{j}: \quad F_{j} \cap A \quad \text { is nonempty }\right\} \in \mathcal{K}
$$

Then $A \subseteq B \subseteq A^{\varepsilon}:=\{x: \operatorname{dist}(x, A) \leq \varepsilon\}$. By (1), this means that $\rho(A, B) \leq \varepsilon$. In other words, $\mathcal{K}$ is totally bounded:

$$
\min _{B \in S} \rho(A, B) \leq \varepsilon, \quad \forall A \in \mathcal{K} .
$$

(ii) Let $\left\{A_{j}\right\}$ be a Cauchy sequence in $(\mathcal{K}, \rho)$. We can assume that $\rho\left(A_{j}, A_{j+1}\right) \leq \varepsilon_{j}:=2^{-j}$ for all $j=1,2, \ldots, n$, because otherwise we can take a subsequence $\left\{A_{k_{j}}\right\}$ instead of $\left\{A_{j}\right\}$. Introduce

$$
B_{j}:=A_{j}^{2 \varepsilon_{j}}:=\left\{x: \operatorname{dist}\left(x, A_{j}\right) \leq 2 \varepsilon_{j}\right\} \in \mathcal{K} .
$$

Then by (1),

$$
A_{j+1} \subseteq A_{j}^{\varepsilon_{j}}, \quad \text { and } \quad B_{j+1} \subseteq A_{j+1}^{2 \varepsilon_{j+1}}=A_{j+1}^{\varepsilon_{j}} \subseteq\left(A_{j}^{\varepsilon_{j}}\right)^{\varepsilon_{j}}=A_{j}^{2 \varepsilon_{j}}=B_{j}
$$

Hence

$$
B_{j} \searrow B:=\bigcap_{j=1}^{\infty} B_{j} \in \mathcal{K} \quad \text { as } \quad j \rightarrow \infty .
$$

On the other hand, we have the following

Exercise. $\forall \varepsilon>0, \exists N$ such that $B_{j} \subseteq B^{\varepsilon}, \forall j \geq N$.
In combination with $B \subseteq B_{j}:=A_{j}^{2 \varepsilon_{j}}$, this implies

$$
\rho\left(A_{j}, B\right) \leq \max \left\{\varepsilon, 2 \varepsilon_{j}\right\}, \quad \forall j \geq N ; \quad \text { and } \quad \limsup _{j \rightarrow \infty} \rho\left(A_{j}, B\right) \leq \varepsilon
$$

Since $\varepsilon>0$ is arbitrary, we get the desired convergence in $(\mathcal{K}, \rho): \rho\left(A_{j}, B\right) \rightarrow 0$ as $j \rightarrow \infty$.
$\# 3$. Let $K(x, y)$ be a continuous function on $[0,1] \times[0,1]$. Consider the metric space $(C([0,1]), \rho)$, where

$$
\rho(f, g):=\max _{[0,1]}|f-g| .
$$

Show that the family of functions

$$
A:=\left\{F(x):=\int_{0}^{1} K(x, y) f(y) d y: \quad f \in C([0,1]), \quad \max _{[0,1]}|f| \leq 1\right\}
$$

is a precompact subset of $(C([0,1]), \rho)$. Verify whether or not it is compact.
Proof. It is known that $K$ is bounded and uniformly continuous on $Q:=[0,1] \times[0,1]$, i.e.

$$
\sup _{Q}|K| \leq M=\mathrm{const}<\infty, \quad \text { and } \quad \omega(\rho):=\sup _{\left|z_{1}-z_{2}\right| \leq \rho}\left|K\left(z_{1}\right)-K\left(z_{2}\right)\right| \rightarrow 0 \quad \text { as } \quad \rho \searrow 0 .
$$

These properties are obviously preserved for functions $F \in A$ :

$$
\sup _{[0,1]}|F| \leq M, \quad \text { and } \quad \sup _{\left|x_{1}-x_{2}\right| \leq \rho}\left|F\left(x_{1}\right)-F\left(x_{2}\right)\right| \leq \omega(\rho)
$$

This means that the family $A$ is uniformly bounded and equicontinuous. By Theorem 4.4.3, it is precompact, i.e. its closure in $(C([0,1]), \rho)$ is compact.

The family $A$ is not necessarily compact. Indeed, consider $K(x, y):=(x-y)^{+}=\max (x-y, 0) \in C$. Then for every $f \in C$, the corresponding function

$$
F(x)=\int_{0}^{x}(x-y) f(y) d y, \quad F^{\prime}(x)=\int_{0}^{x} f(y) d y, \quad F^{\prime \prime}(x)=f(x) \in C
$$

In other words, $F \in C^{2}$. Now let $g_{n}$ be a sequence of functions in $C$ which converges in $L^{1}$ to a discontinuous function $g \equiv 0$ on $[0,1 / 2], g \equiv 1$ on $(1 / 2,1]$. The corresponding functions $G_{n}$ converge to $G$ in $C$ (even in $C^{1}$ ), but $G^{\prime \prime}=g \notin C, G \notin C^{2}$. Then, $G$ cannot belong to $A$, and $A$ is not complete and therefore not compact.
\#4 (§4.3, p. 147.) Let $(\mathcal{F}, \lesssim)$ be a filter directed under reverse inclusion, i.e.

$$
F_{1} \lesssim F_{2} \quad \Longleftrightarrow \quad F_{2} \subseteq F_{1}
$$

A net $\left\langle x_{F}\right\rangle_{F \in \mathcal{F}}$ is associated to $\mathcal{F}$ if $x_{F} \in F$ for every $F \in \mathcal{F}$. Show that

$$
\mathcal{F} \rightarrow x \quad \Longleftrightarrow \quad \text { every associated net } \quad<x_{F}>_{F \in \mathcal{F}} \rightarrow x
$$

Proof. First suppose $\mathcal{F} \rightarrow x$. This means that if $x$ belongs to an open set $G$, then $G \in \mathcal{F}$. If a net $<x_{F}>_{F \in \mathcal{F}}$ is associated to $\mathcal{F}$, then $\forall F \gtrsim G$, we have $x_{F} \in F \subseteq G$. By definition, $\left\langle x_{F}\right\rangle_{F \in \mathcal{F}} \rightarrow x$.

Now suppose $\mathcal{F}$ does not converge to $x$. Then $\exists$ an open set $G \notin \mathcal{F}$ such that $x \in G$. Note that $\forall F \in \mathcal{F}$, the inclusion $F \subseteq G$ is impossible (by definition of a filter, this would imply $G \in \mathcal{F}$ ). Therefore, $\forall F \in \mathcal{F}, \exists x_{F} \in F \backslash G$, which means that $x_{F}$ does not converge to $x$.

