Math 8602: REAL ANALYSIS. Spring 2016

Homework \#5. Problems and Solutions.

\#1. Let f be a function in $L^{1}\left(\mathbb{R}^{1}\right)$. Show that

$$
\int_{\mathbb{R}^{1}} f(x) \sin (\omega x) d x \rightarrow 0 \quad \text { as } \quad \omega \rightarrow \infty
$$

Proof. This problem is very similar to Problem 3 on Final Exam in the previous semester. By Theorem 2.26, every function $f \in L^{1}\left(\mathbb{R}^{1}\right)$ can be approximated in $L^{1}\left(\mathbb{R}^{1}\right)$ by functions $g \in C_{0}\left(\mathbb{R}^{1}\right)$ - continuous functions with compact support. In turn, by the Dominated Convergence Theorem, every function $g \in C_{0}\left(\mathbb{R}^{1}\right)$ can be approximated in $L^{1}\left(\mathbb{R}^{1}\right)$ by functions

$$
g_{h}(x):=\frac{1}{h} \int_{x}^{x+h} g(y) d y \in\left(C^{1} \cap C_{0}\right)\left(\mathbb{R}^{1}\right),
$$

i.e. the L^{1}-norms $\left\|g_{h}-g\right\|_{1} \rightarrow 0$ as $h \searrow 0$. Therefore, $\forall f \in L^{1}\left(\mathbb{R}^{1}\right)$ and $\forall \varepsilon>0, \exists g_{h} \in\left(C^{1} \cap C_{0}\right)\left(\mathbb{R}^{1}\right)$ with $\left\|g_{h}-f\right\|_{1} \leq \varepsilon$. We can write

$$
I(\omega):=\int_{\mathbb{R}^{1}} f(x) \sin (\omega x) d x=I_{1}(\omega)+I_{2}(\omega)
$$

where

$$
\begin{aligned}
& I_{1}(\omega):=\int_{\mathbb{R}^{1}}\left[f(x)-g_{h}(x)\right] \sin (\omega x) d x, \quad\left|I_{1}(\omega)\right| \leq\left\|g_{h}-f\right\|_{1} \leq \varepsilon, \\
& I_{2}(\omega):=\int_{\mathbb{R}^{1}} g_{h}(x) \sin (\omega x) d x, \quad\left|I_{2}(\omega)\right|^{(\text {by }} \stackrel{\text { parts }}{=} \frac{1}{\omega} \cdot\left|\int_{\mathbb{R}^{1}} g_{h}^{\prime}(x) \cos (\omega x) d x\right| \leq \frac{1}{\omega} \cdot\left\|g_{h}^{\prime}\right\|_{1} \rightarrow 0 \quad \text { as } \quad \omega \rightarrow \infty .
\end{aligned}
$$

Then $\limsup _{\omega \rightarrow \infty}|I(\omega)| \leq \varepsilon$, and since $\varepsilon>0$ can be taken arbitrarily small, we get $I(\omega) \rightarrow 0$ as $\omega \rightarrow \infty$.
\#2. Let $f(x) \in L_{l o c}^{1}(\mathbb{R})$ and

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} \quad \text { for all } \quad x, y \in \mathbb{R}
$$

Show that f is convex on \mathbb{R}.
Proof. This statement is true under a more general assumption that $|f|<\infty$ a.e. The convexity of f means that a portion of the graph of $y=f(x)$ between two arbitrary point x_{1} and x_{2} in \mathbb{R} lies below the segment connecting the point $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right.$ in \mathbb{R}^{2}. By a linear transform, the proof of this fact is reduced to the case $x_{1}=-1, x_{2}=1$, and $f(-1)=f(1)=0$; in this case we must have $f(x) \leq 0$ on $[-1,1]$.

Suppose otherwise, i.e. $f\left(x_{0}\right) \geq a=$ const >0 for some $x_{0} \in(-1,1)$. Take a small $h_{0}>0$, such that $\left[x_{0}-h_{0}, x_{0}+h_{0}\right] \subseteq[-1,1]$. By our assumptions,

$$
0<a \leq f\left(x_{0}\right) \leq \frac{f\left(x_{0}+h\right)+f\left(x_{0}-h\right)}{2}, \quad \forall h \in\left[-h_{0}, h_{0}\right]
$$

For such h, either $f\left(x_{0}+h\right) \geq a$ or $f\left(x_{0}-h\right) \geq a$. In other words,

$$
\left[-h_{0}, h_{0}\right]=A \cup(-A), \quad \text { where } \quad A:=\left\{h \in\left[-h_{0}, h_{0}\right]: \quad f\left(x_{0}+h\right) \geq a\right\} .
$$

Then the set $E(a):=[-1,1] \cap\{f \geq a>0\}$ contains $x_{0}+A$, and its Lebesgue measure

$$
m(E(a)) \geq m(A)=\frac{1}{2} \cdot(m(A)+m(-A)) \geq \frac{1}{2} \cdot m(A \cup(-A))=\frac{1}{2} \cdot m\left(\left[-h_{0}, h_{0}\right]\right)=h_{0}>0 .
$$

On the other hand,

$$
E(a)=E^{-}(a) \cup E^{+}(a), \quad \text { where } \quad E^{-}(a):=E(a) \cap[-1,0], \quad E^{+}(a):=E(a) \cap[0,1],
$$

so that $m\left(E^{-}(a)\right)+m\left(E^{+}(a)\right)=m(E(a)) \geq h_{0}>0$. We can assume that $m\left(E^{-}(a)\right) \geq h_{0} / 2$ (replacing $f(x)$ by $f(-x)$ if necessary). By our condition, we always have

$$
2 f(x) \leq f(-1)+f(1+2 x)=f(1+2 x)
$$

Introducing a linear map $T(x):=1+2 x$, we see that

$$
T\left(E^{-}(a)\right) \subseteq E(2 a), \quad \text { and } \quad m(E(2 a)) \geq m\left(T\left(E^{-}(a)\right)\right)=2 \cdot m\left(E^{-}(a)\right) \geq h_{0}>0
$$

Here the key observation is that from $m(E(a)) \geq h_{0}>0$ it follows $m(E(2 a)) \geq h_{0}>0$. By iteration,

$$
m\left(E\left(2^{k} a\right)\right):=m\left([-1,1] \cap\left\{f \geq 2^{k} a\right\}\right) \geq h_{0}>0, \quad \forall k=1,2, \ldots
$$

Since $2^{k} a \nearrow+\infty$ as $k \rightarrow \infty$, and $|f|<\infty$ a.e., we get a desired contradiction.
$\# 3$. Show that

$$
H_{n}(x):=(-1)^{n} e^{x^{2}}\left(e^{-x^{2}}\right)^{(n)}
$$

are polynomials of degree n (the Hermite polynomials) satisfying

$$
\int_{-\infty}^{\infty} e^{-x^{2}} H_{k} H_{n} d x=0 \quad \text { for } \quad k \neq n .
$$

Derive the equality

$$
F(t, x):=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \cdot H_{n}(x)=e^{2 t x-t^{2}}
$$

Proof. It is easy to see that $H_{n}^{\prime}=2 x H_{n}-H_{n+1}$, and by induction, H_{n} is a polynomial of degree n for every n. Since $H_{k}^{(n)}=0$ for $n>k$, integrating by parts implies

$$
\int_{-\infty}^{\infty} e^{-x^{2}} H_{k} H_{n} d x=\int_{-\infty}^{\infty} H_{k} \cdot(-1)^{n}\left(e^{-x^{2}}\right)^{(n)} d x=\int_{-\infty}^{\infty} H_{k}^{(n)} e^{-x^{2}} d x=0
$$

By symmetry, this equality also holds true for $n<k$. Finally, using the Taylor expansion

$$
f(x+h)=\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} \cdot h^{n} \quad \text { with } \quad f(x):=e^{-x^{2}}, \quad h:=-t
$$

we get

$$
F(t, x)=e^{x^{2}} e^{-(x-t)^{2}}=e^{2 t x-t^{2}}
$$

\#4. Let $\left\{x_{n}\right\}$ be a sequence in a Hilbert space \mathcal{H} such that $\left\|x_{n}\right\| \leq 1$ for all n, and for each $y \in \mathcal{H}$, we have $\left(x_{n}, y\right) \rightarrow 0$ as $n \rightarrow \infty$. Show that there is a subsequence $\left\{x_{n_{j}}\right\}$ such that

$$
\frac{1}{k} \cdot\left(x_{n_{1}}+\cdots+x_{n_{k}}\right) \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

Proof. Take $n_{1}=1$, and then for $j=2,3, \ldots$, choose n_{j} such that

$$
\left|\left(x_{n_{i}}, x_{n_{j}}\right)\right| \leq \frac{1}{j^{2}} \quad \text { for all } \quad i<j
$$

Then $y_{k}:=\frac{1}{k} \cdot\left(x_{n_{1}}+\cdots+x_{n_{k}}\right)$ satisfy

$$
\left\|y_{k}\right\|^{2}=\left(y_{k}, y_{k}\right)=\frac{1}{k^{2}} \sum_{i=1}^{k}\left\|x_{n_{j}}\right\|^{2}+\frac{2}{k^{2}} \sum_{1 \leq i<j \leq k}\left(x_{n_{i}}, x_{n_{j}}\right) \leq \frac{1}{k}+\frac{2}{k^{2}} \sum_{j=1}^{k} \frac{1}{j} \leq \frac{3}{k} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty .
$$

