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Abstract

Spiral waves are striking self-organized coherent structures that organize spatio-temporal dynamics

in dissipative, spatially extended systems. In this paper, we provide a conceptual approach to various

properties of spiral waves. Rather than studying existence in a specific equation, we study properties

of spiral waves in general reaction-diffusion systems. We show that many features of spiral waves are

robust and to some extent independent of the specific model analyzed. To accomplish this, we present

a suitable analytic framework, spatial radial dynamics, that allows us to rigorously characterize features

such as the shape of spiral waves and their eigenfunctions, properties of the linearization, and finite-size

effects. We believe that our framework can also be used to study spiral waves further and help analyze

bifurcations, as well as provide guidance and predictions for experiments and numerical simulations.

From a technical point of view, we introduce non-standard function spaces for the well-posedness of

the existence problem which allow us to understand properties of spiral waves using dynamical systems

techniques, in particular exponential dichotomies. Using these pointwise methods, we are able to bring

tools from the analysis of one-dimensional coherent structures such as fronts and pulses to bear on these

inherently two-dimensional defects.
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1 Introduction

Spiral waves have been observed in numerous experiments, for instance in the Belousov–Zhabotinsky reaction,

during the oxidation of carbon-monoxide on platinum surfaces, during arrhythmias in cardiac tissue, and

as transient states during the aggregation of the slime mold Dictyostelium discoideum. Archimedean spiral

waves, which are illustrated in Figure 1, have also been found in numerical simulations of many different

reaction-diffusion systems. Their importance is owed to their prominent role in organizing the collective

spatio-temporal dynamics, but possibly also to their aesthetic appeal. Observing spiral wave dynamics, one

immediately notices both the topological nature of these defects, where a constant phase line terminates at

the center, as well as the active nature of the center which emits waves that propagate away from the spiral

center.

Excitable media. Excitable media are characterized by the presence of a stable homogeneous rest state

so that small perturbations return to this rest state, while large perturbations above a certain threshold

lead to excitation waves. Early interest in spiral waves was motivated by self-organized excitation waves in

muscle tissue; see [108] for an early reference and [109] for a comprehensive exposition and review of this

earlier literature. Early works focused on the organization of excitation waves into spiral structures, ignoring

or postulating dynamics in the center of the spiral. However, in the context of excitable media, the core of

the spiral is thought of as the key organizing element, creating sequences of excitation waves that emanate

from the center in a medium that might otherwise simply return to a uniform rest state. More mathematical

approaches, many in the context of the FitzHugh–Nagumo equation and mean-curvature description of

excitation waves, resolved the core structure in spiral waves to a much more refined degree; see, for instance,

[17, 58, 106] and [16, 32, 48, 69] for more recent perspectives. Among the outcomes are accurate predictions

of the frequencies of spiral waves in the singular fast-reaction limit.

Oscillatory media. Spiral waves were studied also in oscillatory media, which are characterized by the

presence of stable time-periodic oscillations. In this scenario, one would try to describe a spatially extended

system that exhibits temporal oscillations at every point in physical space through a scalar variable that

monitors the phase of the oscillation. One thereby obtains a map from the two-dimensional spatial domain

into the circle. Spiral waves now correspond to the states where this phase variable has a non-trivial

winding number away from the center of rotation. The core can then be thought of as merely a necessary

Figure 1: Shown is a contour plot of an Archimedean planar spiral wave for a fixed value of time. The

spiral wave rotates rigidly with temporal frequency ω∗ around its center or core, and consecutive spiral arms

are approximately equidistant in the radial direction with period 2π/k∗, where k∗ is the spatial wavenumber.

Each spiral arm moves with speed approximately equal to ω∗/k∗ in the radial direction.
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phase singularity. Similar to the difficulty in excitable media, the core region is not easily resolved within

the context of simple approximations. The first consistent results on existence of spiral waves focused

on reaction-diffusion systems that coupled phase and amplitude of oscillations. In the simplest form, the

kinetics possess a gauge symmetry, and the resulting equations are referred to as λ-ω-systems or complex

Ginzburg–Landau equations in the literature. In a peculiar limit where dispersion of oscillations can be

eliminated, these systems reduce to the classical Ginzburg–Landau model of superconductivity, where spiral

waves correspond to stationary vortices. Existence of spiral waves in these systems with gauge symmetry

was established in a series of papers [44–46, 60, 61] and later extended to systems without gauge symmetry,

but near Hopf bifurcation [102]. We refer to [3] for an overview of dynamics in oscillatory media as captured

by the complex Ginzburg–Landau equation and to [83] for a broader discussion including both oscillatory

and excitable media.

Both these perspectives can be explored in the FitzHugh–Nagumo system, which, depending on reaction

rates and levels of input currents, can be excitable or oscillatory. In the excitable regime, without further

stimulus, the kinetics return to a stable rest state. Changing the input current as a homotopy parameter,

stable periodic oscillations arise through a Hopf bifurcation and develop quickly into relaxation oscillations.

Clearly, properties of the medium change quite dramatically during this homotopy. Nevertheless, spirals

typically exist throughout and appear almost oblivious to these changes in the medium. Only in the regime

of weak excitability, when a short temporal stimulus of small size is not sufficient to trigger an excitation in

the kinetics, does one see spiral waves disappear.

Instabilities of spiral waves. Much of more recent theoretical and experimental work has focused on the

phenomenology of instabilities of spiral waves. The interest was stimulated to a large extent by observations

of spiral instabilities leading to breakup and spatio-temporal turbulence in reaction-diffusion systems, but

also in cardiac tissue, where spiral waves and their instabilities are thought to be responsible for cardiac

arrhythmias, tachycardia, and ventricular fibrillation (see [18] for a collection of more recent contributions

to the role of spiral waves in cardiac tissue). We refer to Figure 17 for simulations that illustrate some of

the instabilities we will describe in the next paragraphs.

The meander instability is an apparent instability of the spiral tip motion. It is often supercritical and

leads to two-frequency dynamics, where the spiral tip evolves on epicycloids. At parameter values when

the relative direction in which the two super-imposed circular motions occur changes sign one observes a

drifting trajectory of the spiral tip. Frequency locking is not observed. The effect of the meandering motion

of the tip are waves of compression and expansion in the far-field, which organize along super-spirals that

rotate in the same or in the opposite direction of the primary spiral, with the transition happening at the

drifting transition; see [65, 105] for examples of experimental analysis of transitions, and [9, 37, 42, 100, 101]

for theoretical explanations based on effective tip motion on the Euclidean group. More complicated tip

dynamics have also been observed; see [87, 110] for (numerical) experiments and [4, 38] for theory.

More dramatic instabilities cause spiral breakup, where the compression and expansion of the waves emitted

by the spiral wave grow in time and space, leading to filamentation and complex dynamics; see for instance

[74] for experiments and [2, 6, 7, 47] for analysis. The compression and expansion can be modulated in the

lateral direction of wave trains, leading to different fragmentation phenomenologies; see [39, 68]. Spatio-

temporal growth of perturbations has been described in terms of properties of dispersion relations at wave

trains [91] and the resulting subcritical instabilities are often very sensitive to noise and domain size.

A related instability results in alternans, which are characterized by the property that the spiral arms are

elongated and shortened periodically in time. Alternans have approximately twice the temporal period of
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the spiral waves from which they bifurcate. They have been implicated in the transition from tachycardia

to fibrillation [79, 86], and we refer to the review article [1] and the special issue [27] for analysis, modeling,

and computations of alternans, and to [33] for recent spectral computations.

A different type of period-doubling instabilities can be associated with a period-doubling instability of the

oscillations in the medium, which leads to line defects and slow drifting of the spiral core; see [78, 111] for

experimental observations, [43] for numerical explorations and analysis, [97] for analysis, and [33] for recent

spectral computations.

During the creation of spirals from initial conditions and in the evolution of disturbances near instability

thresholds, characteristic transport of disturbances can be observed. Spirals are formed when the core sends

out waves so that the part of the domain occupied by the rigidly-rotating Archimedean structure grows

in time. This outward transport is crucial even when the spiral is apparently rotating inwards and the

apparent phase of wave trains propagates towards the center of rotation [43]. Spirals are notably insensitive

to perturbations far away from the core and easily regenerate even after large perturbations in the far field.

The super-spiral patterns that appear at meandering instabilities grow temporally outward from the core, yet

with a weakly decaying amplitude; disturbances that lead to far-field breakup grow outward both temporally

and spatially; disturbances in core breakup appear to grow at first in the core region only; spirals near the

period-doubling regime rotate inwards, yet disturbances are transported away from the core.

It is this phenomenology of robustness and instabilities that motivates the analysis presented here, hopefully

putting both analysis and numerical simulations on a more precise footing. Before delving into our setup, we

caution the reader that the transport properties described and exploited here may be different for spiral waves

observed in other circumstances, such as the often multi-armed slowly rotating waves in Bénard convection

[20] or the spiral arms of galaxies [19].

Setup and conceptual assumptions. Our approach to the analysis of spiral waves is largely model-

independent and provides a framework in which the phenomena mentioned above can be analyzed system-

atically. Rather than making assumptions directly on the system that guarantee, for instance, excitability,

gauge invariants, or closeness to a Hopf bifurcation, we make conceptual assumptions that require the exis-

tence of particular solutions.

We consider general reaction-diffusion systems

ut = D∆u+ f(u), u ∈ RN , x ∈ Ω, t ≥ 0, (1.1)

where either Ω = R2 or Ω = {|x| < R} with R � 1 supplemented with appropriate boundary conditions at

|x| = R. We assume that D > 0 is a diagonal diffusion matrix with strictly positive entries on the diagonal

and that the nonlinearity f : RN → RN describing the kinetics is of class Cp with p sufficiently large.

We are interested in spiral waves that exhibit an asymptotic spatially-periodic structure as indicated in

Figure 1 and formalize this characterization through the following assumptions. First, we consider (1.1) with

x ∈ R in one space dimension and assume that the resulting system admits a spatio-temporally periodic

wave-train solution of the form u(x, t) = u∞(kx − ωt), where the profile u∞(ξ) is 2π-periodic (so that

u∞(ξ) = u∞(ξ + 2π) for all ξ ∈ R) for an appropriate temporal frequency ω 6= 0 and spatial wavenumber

k 6= 0. The wavelength or spatial period of the wave train is therefore 2π/k. Next, we consider (1.1) on the

unbounded plane Ω = R2, since this allows us to characterize the shape of spiral waves in an asymptotic sense

far away from the center of rotation. In polar coordinates (r, ϕ), which are related via x = r(cosϕ, sinϕ)

to the Cartesian coordinate x ∈ R2, this characterization (which we will make more precise in §3.1) roughly
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reads

u(x, t) = u∗(r, ϕ− ωt) ∼ u∞(kr + ϕ− ωt+ θ(r)), with θ′(r)→ 0 as r →∞, (1.2)

where u(x, t) is the solution written in Cartesian coordinates, and u∗(r, ϕ) is the spiral-wave profile written

in polar coordinates. Note that the spiral wave rotates around the origin with constant angular velocity and

resembles a periodic wave train along any fixed ray emanating from the origin. Some of our results study

the effect of finite domain size by truncation to large bounded disks Ω = {|x| < R}. A key message of

these results is that the effect of this restriction is very weak, and in fact exponentially small in R. Besides

this characterization of spiral waves through their limiting shape far away from the center of rotation, we

note that the choice of an unbounded domain also introduces spatial translation in addition to rotation as

a symmetry of the equation, a property that has been recognized as crucial to understanding the behavior

of spiral waves especially near meandering transitions [9].

We note that our results all require D > 0, thus excluding some prominent prototypical models. We do not

claim that our results readily extend to the case of vanishing diffusivities in one or more species. It appears

that most phenomena observed for systems where diffusivity vanishes in one or more components are quite

robust in regards to introducing small diffusion into these components. On the other hand, the vanishing of

diffusivities appears to introduce structure that might be helpful in understanding some of the instabilities

listed above and an adaptation and extension of the results presented here could well shed light on these

phenomena.

Scope of results. Our main results can be roughly grouped into three categories.

The first set of results is concerned with the characterization of spiral waves as special equilibria of (1.1) in

a corotating frame:

1. Conceptual characterization: we give a precise far-field description of spiral waves refining (1.2);

2. Asymptotics: we derive universal expansions of θ(r) in terms of properties of the wave train u∞;

3. Group velocity and multiplicity: we clarify the role of the group velocity of the asymptotic wave trains

for properties of spiral waves, especially local multiplicity and uniqueness;

4. Robustness: we show that spiral waves exist for open classes of reaction diffusion systems, that is, they

persist and vary continuously in an appropriate sense upon variations of system parameters.

The second set of results is concerned with properties of the linearization L∗ about a spiral wave. In a

corotating frame ψ = ϕ−ωt, spiral waves are equilibria, and the goal is then to relate the phenomenology of

instabilities described above to properties of the linearization. Our results characterize the spectral properties

of this linear operator:

1. Essential spectra: we characterize the essential spectrum of L∗ and Fredholm indices of L∗−λ in terms

of spectra and (generalized) group velocities of the asymptotic wave train;

2. Exponential weights: we describe the change of essential spectra when L∗ is considered in spaces of

exponentially weighted functions in terms of group velocities of the asymptotic wave train; we show

in particular that, in a typical stable scenario, the essential spectrum has strictly negative real part in

spaces of functions with small exponential radial growth, reflecting outward transport of the oscillatory

phase;

3. Point spectra: we describe the shape of eigenfunctions and resonance poles in the far field, giving

predictions for the phenomenology of instabilities caused by point spectrum;

4. Adjoints and response to perturbations: we characterize properties of adjoint eigenfunctions and prove

in particular that adjoint eigenfunctions associated with translation and rotation modes are typically
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Figure 2: Spectra of spiral waves in L2(R2) (left), L2
η(R2) (center), and L2(|x| ≤ R) (right). The essential

spectrum is periodic with vertical period iω∗, and the borders of regions with constant Fredholm index are

given by the Floquet spectra of wave trains. For positive group velocities, the Fredholm index to the left of the

Fredholm border is i = −1. Exponential weights push spectral borders associated with positive group velocities

to the left, and the resulting spectra generically move smoothly with the weight η. Eigenvalues do not depend

on the exponential weight but may emerge from essential spectra; examples for the latter are translation and

rotation eigenvalues at ±iω∗ and 0, respectively, and the green eigenvalue near 2iω∗. On large bounded disks

of radius R� 1, eigenvalues cluster along curves given by the absolute spectrum of wave trains that do not

depend on the radius R. We refer to Figures 13 and 14 for numerically computed examples.

exponentially localized, thus explaining on a linear level the robustness of tip motion of spiral waves

with respect to perturbations in the far field.

Figure 2 illustrates spectra of the linearization, Fredholm indices, group velocities, and point spectra schemat-

ically.

The last set of results is concerned with finite-size effects. We add a conceptual assumption on the interaction

of the wave trains with boundary conditions: typically, wave trains are not compatible with a boundary

condition, that is, u∞(kx − ωt) is not a solution to the reaction-diffusion system in x < 0 when, say,

Neumann boundary conditions are imposed at x = 0. Since wave trains are time periodic, we therefore

assume the existence of a time-periodic solution ubs(x, ωt) on x < 0 that satisfies the boundary condition

at x = 0 and converges to the wave train ubs(x, ωt) ∼ u∞(kx − ωt) as x → −∞. For these boundary

layers, the wave trains transport small disturbances from x = −∞ towards the boundary at x = 0, and we

therefore refer to these solutions as boundary sinks. We can now envision patching the spiral wave with such

a boundary sink to obtain a solution on a large but finite disk as illustrated in Figure 3. Our results show

the existence of truncated spiral waves and characterize their spectra:

1. Truncation by gluing: we prove the existence of rotating waves on disks of radius R for sufficiently

large R whose profiles consist of the spiral wave glued together with a boundary sink;

2. Spectra of truncated spirals: we show that spectra of the linearizations around truncated spiral waves

converge as R→∞; the limit consists of a continuous part and a discrete part;

3. Extended point spectrum: the discrete part of the limiting spectrum consists of the union of the

spectra of L∗ considered on the plane in suitable exponentially weighted spaces and the boundary sink

considered on R−;

4. Absolute spectra: the continuous part of the limiting spectrum is not given by the essential spectrum

but by semi-algebraic curves, which we refer to as the absolute spectrum, belonging to the wave trains.

See again Figure 2 for a schematic representation of the results on spectra.
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Figure 3: From left to right, we show contour plots of a planar spiral wave u∗(r, ϕ) in polar coordinates

(r, ϕ) connecting its core at r = 0 with a wave train in the far field at r = ∞, a one-dimensional boundary

sink ubs(x, ωt) in (x, ωt) coordinates for x < 0 connecting the same wave train at x = −∞ to Neumann

boundary conditions at x = 0, and a truncated spiral wave in polar coordinates (r, ϕ) on a disk of radius

R � 1 with Neumann boundary conditions at r = R that consists of the planar spiral wave glued together

with the boundary sink (shifted by R to the right) to accommodate the boundary conditions at r = R.

Techniques. Our approach to the analysis of spiral waves is based on the method of spatial dynamics,

casting existence and eigenvalue problems as evolution problems in the radial direction and using pointwise

matching and gluing constructions in determining existence, bifurcation, and spectral properties. This

method has been used extensively in the study of existence and bifurcation problems for elliptic equations

starting with the pioneering work of Kirchgässner [59] and continued later for instance in [53, 70, 71] to

capture small-amplitude solutions. Most relevant for our perspective here are the adaptation to radial

dynamics [103] and to bifurcation to spiral waves [102]. While in all of those examples, solutions are

constructed as small perturbations of a spatially constant trivial solution, our approach is global in nature

and can be compared with [95] where properties of time-periodic solutions asymptotic to wave trains in the

far field are classified based on conceptual assumptions, not necessarily assuming that solutions are close

to a trivial state. In such a global context, spatial dynamics are based on a pointwise description of the

linear operator as an evolution problem via exponential dichotomies. In the context of elliptic equations on

multi-dimensional domains, exponential dichotomies were first constructed in [82] and later used in [93] to

clarify the relation to Fredholm properties of the related elliptic operator, building on earlier work [29, 76, 77]

for ordinary differential equations. Later work on exponential dichotomies for multi-dimensional domains

includes, for instance, [12, 13, 30, 63, 64].

The approach via spatial dynamics allows us to utilize dynamical systems methods which provide powerful

tools to study fine asymptotics of solutions to differential equations, in particular characterizing exponential

asymptotics and the analysis of neutral, non-exponential modes via center-manifold reduction and geometric

blowup. These fine asymptotics are essential here in many places, in particular when characterizing the

asymptotic behavior of the phase function θ(r) of spiral waves in (1.2) in the far field, the shape of eigen-

functions in the point spectrum representing super spirals of compression and expansion, or the clustering

of eigenfunctions near the absolute spectrum in large bounded disks.

Many of the constructions here have been used in related but simpler situations [92, 95]. A major complication

for spiral waves stems from the fact that there is no simple way to compactify at infinity: treating the

Laplacian in radial coordinates ∂rr + 1
r∂r + 1

r2 ∂ϕϕ as a non-autonomous dynamical system in r, we notice

that the derivative operator in ϕ disappears at r = ∞ due to the factor 1
r2 . On the other hand, we see

that the derivative ω∂ϕ, introduced by passing to a corotating frame, is unbounded relative to the Laplacian

so that the operator ∆ + ω∂ϕ is not sectorial. We overcome these difficulties by choosing appropriate

anisotropic function spaces with norms based on r−1|∂ϕu| + |∂
1
2
ϕu| and using compactifications at infinity
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only on finite-dimensional reduced center manifolds.

The challenges arising here are somewhat unique and not readily comparable to other work on defects in

the literature. We remark however that a similar question of truncation of defects has been analyzed in

[75] for Ginzburg–Landau vortices. The problem there is quite different as the relevant linear operators are

mostly self-adjoint, and much more information is accessible explicitly. On the other hand, the absence of

convective transport necessitates the use of algebraically weighted spaces, and the techniques are generally

quite different from our approach here.

Outline. We present background material on wave trains in §2 before stating our main results in §3.

Section 4 presents proofs of the main properties of wave trains collected in §2. In §5, we develop the

framework of exponential dichotomies in the context of spiral waves, laying the basis for all later technical

analyses. Using these exponential dichotomies, we study Fredholm properties of the linearization in §6.

We establish robustness of spiral waves and derive far-field expansions in §7 and analyze point spectra in

§8. The next three sections are concerned with the truncation of spiral waves to large disks: we cover the

gluing construction with boundary sinks in §9, analyze the accumulation points of spectra for operators in

large disks in §10, and finally describe the limits of spectra including the effect of boundary sinks in §11.

We conclude with a discussion, focusing in particular on the implications of our results to observations in

experiments and simulations, in §12.

2 Background material on wave trains

We consider the reaction-diffusion system

ut = Duxx + f(u), x ∈ R, u ∈ RN , (2.1)

where we may think of u ∈ RN as a vector of chemical concentrations. Furthermore, D = diag(dj) > 0 is a

positive, diagonal diffusion matrix and f is a smooth nonlinearity. We refer to the coordinate system (x, t)

as the laboratory frame to distinguish it from coordinate frames that move with a travelling wave. Note that

velocities of movement and transport depend on the underlying reference system.

We assume that (2.1) has a wave-train solution u(x, t) = u∞(kx − ωt) for a certain non-zero wavenumber

k, non-zero temporal frequency ω, and wave speed c = ω/k, where the function u∞ is 2π-periodic in its

argument ξ = kx − ωt. Note that any such wave train u∞(ξ) is a 2π-periodic solution of the ordinary

differential equation (ODE)

− ωu′ = k2Du′′ + f(u). (2.2)

We are interested in the linearization of (2.1) at the wave train and specifically in spectral information in

the laboratory wave as this is the frame in which we will later view spiral waves. It is easier to compute the

spectrum of the relevant linear operator in the frame that moves with the wave train, and we will therefore

do this first in §2.1, before we transfer these results in §2.3 to the laboratory frame in which we will need

the spectral information. In §2.2, we will show that wave trains typically come in families where the profile

u∞ and the temporal frequency ω are parametrized by the spatial wavenumber k. In §2.4, we will explore a

spatial-dynamics formulation of the linear eigenvalue problem associated with a wave train, introduce and

calculate relative Morse indices that can be thought of as the difference of the dimensions of generalized

unstable and stable eigenspaces of a spatial-dynamics operator, and link the relative Morse index to group
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velocities – these concepts and calculations will be used throughout the remainder of the paper. Finally, in

§2.5, we consider instabilities of plane waves that are transverse to the direction of propagation.

In passing, we remark that much of the discussion in this section can be presented in a simpler way by

exploiting Floquet theory for parabolic equations (as developed, for instance, in [62]). We prefer the slightly

more complicated approach below since it naturally generalizes to travelling waves which are not necessarily

spatially periodic [93] and, in particular, provides us with a framework that we will encounter again when

we study spiral waves.

2.1 Spectra of wave trains in the co-moving frame

In the scaled co-moving coordinates ξ = kx− ωt, the reaction-diffusion system (2.1) becomes

ut = k2Duξξ + ωuξ + f(u), ξ ∈ R, u ∈ RN , (2.3)

where u(ξ, t) = u∞(ξ) is an equilibrium solution. Linearizing (2.3) at this equilibrium u∞, we obtain the

differential operator

Lco := k2D∂ξξ + ω∂ξ + f ′(u∞(ξ)), (2.4)

which we consider as an unbounded operator on L2(R,CN ) with domain H2(R,CN ). The spectrum of Lco

on L2(R,CN ), given by the set of λ ∈ C for which Lco−λ does not have a bounded inverse, can be computed

using the Bloch-wave ansatz

u(ξ) = eνξ/kup(ξ),

where ν ∈ iR and up is 2π-periodic in ξ. Denoting by c = ω/k the phase velocity of the wave train in the

laboratory frame, we arrive at the family of operators L̂co(ν) defined by

L̂co(ν)up = D(k∂ξ + ν)2up + c(k∂ξ + ν)up + f ′(u∞(ξ))up, (2.5)

which we consider as unbounded operators on L2(S1,CN ) with domain H2(S1,CN ), where S1 := R/2πZ.

For each ν ∈ iR, the spectrum of L̂co(ν) on L2(S1,CN ) is a discrete set in C, and the union over ν ∈ iR of

the spectra of L̂co(ν) on L2(S1,CN ) gives the spectrum of Lco on L2(R,CN ); see, for instance, [40]. Thus,

the spectrum of Lco is given by curves of the form λ = λco(ν) where ν ∈ iR. These curves are referred to as

the (linear) dispersion curves. Alternatively, we can rewrite the eigenvalue problem

Lcou = λu

as the ordinary differential equation

kuξ =v (2.6)

kvξ =−D−1[cv + f ′(u∞(ξ))u− λu]

with 2π-periodic coefficients. We denote by Φ(λ) the associated period map which maps an initial value

to the solution of (2.6) evaluated at ξ = 2π. In particular, the ODE (2.6) has a solution that is bounded

uniformly in ξ ∈ R if and only if the Evans function1 [40]

E(λ, ν) := det
[
Φ(λ)− e2πν/k

]
= 0 (2.7)

vanishes for some ν ∈ iR. The set of all λ for which E(λ, ν) = 0 has a purely imaginary solution ν is the

spectrum of Lco on L2(R,CN ); see again [40]. Since (2.7) defines an analytic function of λ and ν, we can

1Notation: we will never include a symbol for the identity operator when writing down scalar multiples of the identity.
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solve (2.7) for λ as functions of ν and find again an at most countable set of solution curves of the form

λ = λco(ν) with ν ∈ iR. For any element λ in the spectrum with ∂λE(λ, ν) 6= 0 for some ν ∈ iR, we can

solve E(λ, ν) = 0 locally for λ = λco(ν) as a function of ν. For such elements, the linear group velocity

cg,l := −dλco

dν
+
ω

k
= −dλco

dν
+ c

in the original laboratory frame is well defined. If λ ∈ iR, then the first term −dλco/dν is the derivative

of the temporal frequency λ of solutions of the linearized PDE with respect to the spatial wavenumber ν:

this term gives the group velocity in the co-moving frame, i.e. the velocity with which wave packets with

wavenumbers close to ν would propagate. The second term ω/k compensates for the moving frame in which

we computed the group velocity. Note that a dispersion curve λco(ν) has a vertical tangent precisely at

points where cg,l is real. Note also that E(0, 0) = 0 since (u′∞(ξ), ku′′∞(ξ)) is a bounded solution of (2.6)

with λ = 0 and ν = 0.

2.2 The nonlinear dispersion relation

The next result shows that, under an appropriate nondegeneracy assumption, wave trains come in one-

parameter families, where the profile and the temporal frequency ω = ω(k) depend smoothly on the wavenum-

ber k.

Proposition 2.1 (Families of wave trains and nonlinear group velocities) Assume that u∞(ξ) is a

2π-periodic solution of (2.2) for (k, ω) = (k∗, ω∗) with k∗, ω∗ 6= 0. We also assume that the associated Evans

function satisfies ∂λE(0, 0) 6= 0.

(i) There are then smooth functions u∞(ξ; k) that are 2π-periodic in ξ and a smooth function ω(k) both

defined for each k near k∗ with u∞(ξ; k∗) = u∞(ξ) and ω(k∗) = ω∗ so that (u∞(·; k), ω(k), k) satisfies

(2.2) for each k near k∗. We refer to the function ω(k) as the nonlinear dispersion relation and call

its derivative cg,nl(k) := ω′(k) the nonlinear group velocity.

(ii) The linear group velocity at λ = ν = 0 and the nonlinear group velocity coincide so that

cg := cg,l

∣∣∣
λ=0,ν=0

= cg,nl(k∗), (2.8)

and we refer to the common value cg as “the” group velocity of the wave train in the laboratory frame.

(iii) Moreover, ∂λE(0, 0) 6= 0 implies that the kernel of L̂co(0) on L2(S1,CN ) is one-dimensional and the

kernel of the L2-adjoint L̂co(0)∗ on L2(S1,CN ) is spanned by a single function uad(ξ). We find

cg,nl(k∗) = ω′(k∗) = −2k∗〈uad, Du
′′
∞〉

〈uad, u′∞〉
,

where 〈·, ·〉 denotes the standard inner product in L2(S1,CN ).

Proposition 2.1 is proved in §4.1.

2.3 Floquet spectra of wave trains in the laboratory frame

In §2.1, we computed the spectra of wave trains in the co-moving frame. Here, we will demonstrate how we

can compute the spectrum of the linearization in the laboratory frame x. The linearization in the laboratory

frame is the linear, non-autonomous parabolic equation

ut = Duxx + f ′(u∞(kx− ωt))u. (2.9)
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Stability information is encoded in the associated linear period map Ψst : L2(R,CN ) → L2(R,CN ) that

maps an initial function u(·, 0) at t = 0 to the solution u(·, 2π/ω) of (2.9) evaluated at t = 2π/ω.

Definition 2.2 (Floquet spectrum) We define the Floquet spectrum of the wave train as the set Σst of

those λ ∈ C for which [Ψst − e2πλ/ω] does not have a bounded inverse on L2(R,CN ).

The following Lemma 2.3 is proved in §4.2.

Lemma 2.3 (Floquet spectrum vs spectrum in the co-moving frame) The Floquet spectrum Σst of

the linearization Ψst in the laboratory frame can be computed from the dispersion curves λco(ν) with ν ∈ iR of

the linearization Lco posed in the co-moving frame (2.4) on L2(R,CN ) by adding the speed of the co-moving

frame to the group velocity:

λ ∈ specLco ⇐⇒ λ = λco(ν) for some ν ∈ iR,

λ ∈ spec Ψst ⇐⇒ λ = λst(ν) := λco(ν)− cν + iω` for some ν ∈ iR, ` ∈ Z. (2.10)

The relation (2.10) implies in particular that the group velocity transforms according to simple Galilean

addition of velocities: −dλst/dν in the laboratory frame is obtained from the group velocity −dλco/dν in

the co-moving frame by adding the speed of the coordinate frame c = ω/k. We refer to the curves λst(ν)

as the dispersion curves in the laboratory frame. Typically, an element λ of the Floquet spectrum lies on

precisely one dispersion curve.

Remark 2.4 (Floquet periodicity) Note that the eigenvalue problem in the laboratory frame is invariant

under the transformation u 7→ ei`ωtu, ν 7→ ν − i`k and λ 7→ λ + iω` for any ` ∈ Z, where we satisfy the

requirement that u needs to be 2π-periodic. Hence, the Floquet spectrum is invariant under translations by

integer multiples of iω. This periodicity represents precisely the ambiguity in the definition of the temporal

Floquet exponent λst as the logarithm of the Floquet multiplier.

Definition 2.5 (Spectrally stable wave trains) We say that a wave train is spectrally stable if its Flo-

quet spectrum is contained in Reλ < 0 with the exception of a simple dispersion curve at λ = 0 (and, by

Floquet periodicity, at λ ∈ ωiZ). Here, we say that a dispersion curve at λ is simple if E(λ + cν, ν) has

precisely one purely imaginary root ν and ∂λE(λ + cν, ν) 6= 0 where c = ω/k. Simple dispersion curves are

given as analytic curves λ(ν) parametrized by ν ∈ iR that we shall orient with decreasing(!) Im ν so that

curves point upward in the complex plane at points of positive group velocity.

Remark 2.6 (Bloch waves) To each spectral value λco(ν) for a given ν ∈ iR, there corresponds an almost-

eigenfunction u(ξ) = eνξ/kup(ξ;λ, ν) of Lco, where the Bloch-wave function up(·;λ, ν) is 2π-periodic. An

almost eigenfunction of λst(ν) in the laboratory frame is obtained by substituting ξ = kx− ωt such that

u(x, t) = eλcoteν(kx−ωt)/kup(kx− ωt;λco, ν) = eλstteνxup(kx− ωt;λco, ν).

Remark 2.7 (Exponential weights) If we consider (2.3) or (2.9) in L2-spaces with exponential weights

L2
η(R,CN ) := {u ∈ L2

loc; |u|L2
η
<∞}, |u|2L2

η
:=

∫
R
|u(x)eηx|2 dx,
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all the above results apply if we fix Re ν = −η. In particular, consider a point λst(ν) on a dispersion curve

with real group velocity cg,l. The real part of the dispersion curve λst(ν; η) in the exponentially weighted space

moves according to
∂λst(ν; η)

∂η
=
∂λst(ν − η; 0)

∂η
= −∂λst(ν)

∂ν
= cg,l.

In particular, exponential weights with negative exponents stabilize elements in the spectrum with positive

group velocities. This is in accordance with the intuition that transport towards x → ∞ is stabilized by a

weight function eηx with η < 0.

Note that we used the Cauchy–Riemann equation in the above remark, since the (real) exponential weight

shifts the real part of the eigenvalue λ with −d Reλ/d Re ν, whereas the group velocity is traditionally defined

via the imaginary parts d Imλ/d Im ν. Since the eigenvalue problems are analytic in λ, both derivatives

coincide.

2.4 Relative Morse indices and spatial eigenvalues

If we substitute the Floquet ansatz u(x, t) = eλtũ(x, ωt) into (2.9), change coordinates2 by replacing the

temporal time-variable t by σ = kx− ωt, and write u for ũ, we obtain the autonomous equation

ux =− k∂σu+ v

vx =− k∂σv −D−1[ω∂σu+ f ′(u∞(σ))u− λu],

which we also write as ux = A∞(λ)u.

Lemma 2.8 (Spectra from spatial dynamics in the steady frame) A complex number λ is in the

Floquet spectrum if and only if the spectrum of A∞(λ), considered as a closed operator on H
1
2 (S1,CN ) ×

L2(S1,CN ) with domain H
3
2 (S1,CN ) ×H1(S1,CN ), intersects the imaginary axis. Furthermore, the spec-

trum of A∞(λ) is a countable set {νj(λ)}j∈Z of isolated eigenvalues νj(λ) with finite multiplicity. If ordered

by increasing real part, the spatial eigenvalues νj satisfy Re νj → ±∞ as j → ±∞.

Lemma 2.8, which is proved in §4.2, therefore leads us to consider the spatial eigenvalue problem

νu =− k∂σu+ v (2.11)

νv =− k∂σv −D−1[ω∂σu+ f ′(u∞(σ))u− λu]

with 2π-periodic boundary conditions for (u, v). As in the preceding lemma, we denote the eigenvalues of

A∞(λ) by νj(λ), repeat them by multiplicity, and order them by increasing real part so that

. . . ≤ Re ν−(j+1) ≤ Re ν−j ≤ . . . ≤ Re ν−1 ≤ Re ν0 ≤ Re ν1 ≤ . . . ≤ Re νj−1 ≤ Re νj ≤ . . . .

The spatial eigenvalues νj(λ) are precisely the solutions of E(λ+ cν, ν) = 0 for fixed λ. Since the νj = νj(λ)

are eigenvalues of an analytic family of operators, we can follow each individual eigenvalue in the parameter

λ although the labelling might jump for certain values of λ.

We will next normalize the labeling with respect to the relabeling transformation νj 7→ νj+1, j ∈ Z. We

therefore start with a value λ = λinv � 1 such that Lco − λinv has a bounded inverse. We fix the labelling

of the spatial eigenvalues belonging to λinv by requiring that Re ν−1 < 0 < Re ν0, where we use that none of

the νj is purely imaginary since we are in the resolvent set.

2Notation: The variables ξ and σ are both equal to kx − ωt. We will use ξ for the reaction-diffusion operators and σ for

spatial-dynamics formulations.
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Figure 4: Schematic representation of spatial Floquet exponents νj ordered by real part for a fixed λ ∈ C,

with corresponding (negative!) spectral gap intervals −Jj. Eigenvalues move left (or right) as λ is varied

depending on the sign of the group velocity. The relative Morse index iM changes from iM = 1 in the picture

shown to iM = 0 as Reλ↗ increases through zero and ν−1(λ) follows the green arrow.

Following the spatial eigenvalues νj(λ) from this region in the complex λ-plane defines a unique labelling of

the eigenvalues except at points where some of the spatial eigenvalues have equal real part. In each of those

cases, however, only a finite number of spatial eigenvalues share the same fixed real part since Re νj → ±∞
as j → ±∞ by Lemma 2.8. In other words, if two spatial eigenvalues have the same real part for some value

of λ, then there are j ∈ Z and m ≥ 1 so that Re νj−1 < Re νj = Re νj+` < Re νj+m+1 for ` = 1, . . . ,m (we

note that there could be many possible real-part resonances occurring simultaneously for different real parts:

each of these real-part resonances involves only finitely many spatial eigenvalues though). We can therefore

continue labelling the spatial eigenvalues in a consistent fashion through any such real-part resonance by

changing the indices of only those finitely many eigenvalues that are involved in a real-part resonance at a

specific real part, within the set of indices associated with these same finitely many eigenvalues.

Definition 2.9 (Relative Morse index) For each λ that does not belong to the Floquet spectrum of the

wave trains, we define the relative Morse index iM(λ) as the negative index of the first spatial eigenvalue

with positive real part. In other words, iM(λ) is the unique index for which

. . . ≤ Re ν−iM(λ)−1(λ) < 0 < Re ν−iM(λ)(λ) ≤ . . .

The following definition will allow us to relate spatial eigenvalues and exponential weights.

Definition 2.10 (Spatial spectral gaps) For each ` ∈ Z, we define J`(λ) := (−Re ν`(λ),−Re ν`−1(λ)),

assuming the ordering in Definition 2.9. Note that J`(λ) will be empty if Re ν`(λ) = Re ν`+1(λ). Also note

that the intervals are defined with the negative signs of the Re νj such that for all ` ∈ Z and all η ∈ J` we have

Re νj+η > 0 for j ≥ ` and Re νj+η < 0 for j ≤ `−1. See Figure 4 for a schematic representation of Floquet

exponents and spectral gap intervals and Figure 14 for numerically computed spatial Floquet exponents νj.

The next remark, which follows directly from our definitions, relates the relative Morse index at λ = 0 and

the nonlinear group velocity.

Remark 2.11 (Relative Morse indices and group velocities) Assume the wave train is spectrally sta-

ble (see Definition 2.5), then we have iM(λ) = 0 for all λ > 0. If, in addition, its nonlinear group velocity

cg is positive, then a single spatial eigenvalue ν of A∞(λ) crosses through the origin from left to right when

λ decreases through zero, and this spatial eigenvalue is therefore given by ν−1(λ). In particular, the unstable

12



dimension increases by one as λ decreases through zero, and we therefore have iM(λ) = +1 for λ to the left

of the critical dispersion curve and J0(0) = (−Re ν0(0), 0) ⊂ R−. Similarly, the relative Morse index to the

left of the critical spectral curve is −1 if the group velocity is negative.

2.5 Transverse stability of wave trains

We conclude this section by collecting some properties of wave trains in two space dimensions. We consider

(2.1) on R2,

ut = D(∂xx + ∂yy)u+ f(u), (x, y) ∈ R2,

and notice that wave trains appear as plane waves u(x, y, t) = u∞(kx−ωt) that are independent of y. We say

that the plane wave admits a transverse instability if it is stable with respect to perturbations that depend

only on x but becomes unstable when we allow perturbations to depend on x and y. The stability of a plane

wave with respect to two-dimensional perturbations in the co-moving frame ξ = kx − ωt is determined by

the linearized eigenvalue problem

D(k2∂ξξ + ∂yy)u+ ω∂ξu+ f ′(u∞(ξ))u = λu,

and the Fourier–Bloch ansatz u(ξ, y) = eν⊥yv(ξ) with ν⊥ ∈ iR then leads to the spectral problem

L⊥(ν⊥)v := D(k2∂ξξ + ν2
⊥)v + ω∂ξv + f ′(u∞(ξ))v = λv (2.12)

with v ∈ L2(S1,CN ). We focus on the long-wavelength stability ν⊥ ∼ 0 of the translational eigenfunction

v = u′∞ with ν⊥ = 0 and denote by uad the generator of the kernel of the L2-adjoint of L⊥(0) = L̂co(0)

posed on L2(S1,CN ).

Lemma 2.12 (Transverse long-wavelength stability) Assume that u∞ is a wave train whose eigen-

value at λ = 0 is algebraically simple in the co-moving frame so that ∂λE(0, 0) 6= 0, then for each ν⊥ ∼ 0

the operator L⊥(ν⊥) has a unique eigenvalue λ⊥(ν⊥) close to zero, and we have the expansion λ⊥(ν⊥) =

d⊥ν
2
⊥ + O(ν4

⊥) where

d⊥ =
〈uad, Du

′
∞〉L2(S1)

〈uad, u′∞〉L2(S1)
. (2.13)

In particular, the wave trains are spectrally unstable with respect to long-wavelength transverse perturbations

if d⊥ < 0 (note ν⊥ ∈ iR).

Lemma 2.12 is proved in §4.1. For later use, we remark that the eigenfunctions u(ξ; ν⊥) to

L⊥(ν⊥)u = λ⊥(ν⊥)u

can be chosen to be differentiable with respect to ν⊥ after a suitable normalization and that the second

derivative uν⊥ν⊥(ξ; 0) satisfies the equation

L⊥(0)uν⊥ν⊥ = L̂co(0)uν⊥ν⊥ = 2(Du′∞ − d⊥u′∞) (2.14)

independent of the normalization.
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3 Main results

We present our main definitions and results. We define planar Archimedean spiral waves formally in §3.1,

characterize the spectra of their PDE linearization in §3.2, provide asymptotic expansions and robustness

results of planar spiral waves in §3.3, establish far-field expansions of eigenfunctions in §3.4, discuss persis-

tence results for planar spiral waves to large bounded disks in §3.5, characterize the spectra of spiral waves

under restriction and truncation to bounded disks in §3.6 and §3.7, respectively, and describe scenarios in

§3.8 for which the spectral mapping theorem fails for planar spiral waves. The proofs of these results are

provided in subsequent sections.

3.1 Archimedean spiral waves

We are interested in Archimedean spiral waves of planar reaction-diffusion systems,

ut = D∆u+ f(u), x ∈ R2, u ∈ RN , (3.1)

that we shall characterize as solutions with particular spatio-temporal behavior. To do so, we view (3.1) in

polar coordinates (r, ϕ) ∈ R+ × (R/2πZ) with x = r(cosϕ, sinϕ) ∈ R2 for which (3.1) becomes

ut = D∆r,ϕu+ f(u), u(r, ϕ, t) ∈ RN , (3.2)

where

∆r,ϕ := ∂rr +
1

r
∂r +

1

r2
∂ϕϕ

is the Laplacian expressed in polar coordinates.

Definition 3.1 (Spiral waves) We say that a rigidly rotating solution u(r, ϕ, t) = u∗(r, ϕ − ω∗t) of (3.2)

with ω∗ > 0 is an (Archimedean) spiral wave if there exists a smooth 2π-periodic non-constant function

u∞(ϑ), a smooth function θ(r) with θ′(r)→ 0 as r →∞, and a non-zero constant k∗ such that

|u∗(r, · − ω∗t)− u∞(k∗r + θ(r) + · − ω∗t)|C1(R/2πZ) → 0 as r →∞,

where the profile u∞(·) is a wave-train solution of the one-dimensional reaction-diffusion system (2.1). In

other words, Archimedean spiral waves are asymptotic to wave trains u∞ far from the center of rotation and

therefore approximately constant along arcs k∗r + ϕ ≡ ω∗t, that rotate rigidly in time around the origin.

In the corotating frame ψ = ϕ− ω∗t, rotating waves are equilibria and satisfy

0 = D∆r,ψu+ ω∗∂ψu+ f(u), u = u(r, ϕ) ∈ RN . (3.3)

Note that the condition θ′(r)→ 0 as r →∞ implies that θ(r)/r → 0 as r →∞.

3.2 Fredholm properties of the linearization at spiral waves

Upon linearizing the reaction-diffusion system (3.3) in the corotating frame at the spiral wave u∗, we obtain

a system of the form ut = L∗u. We will always consider the resulting linear operator L∗ in Cartesian

coordinates so that it is given by

L∗ = D∆ + ω∗∂ψ + f ′(u∗(r, ψ)), (3.4)
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where ∆ is the Laplacian in Cartesian coordinates, ∂ψ is given in Cartesian coordinates x = (x1, x2) by ∂ψ =

x1∂x2−x2∂x1 , and we consider the profile u∗(r, ψ) = u∗(r(x), ψ(x)) also in Cartesian coordinates x ∈ R2. We

are interested in spectral properties of the operator L∗ on L2(R2,CN ). Note that L∗ is closed and densely

defined on L2(R2,CN ) as a bounded perturbation of the commuting operators ∆ and ∂ψ = x1∂x2
−x2∂x1

, and

its domain contains the intersection of the domains H2(R2,RN ) and {u ∈ L2(R2,RN ) : ∂ψu ∈ L2(R2,RN )}
of these two operators. Furthermore, L∗ generates a strongly continuous semigroup on L2 since D∆ and

ω∗∂ψ generate commuting contraction semigroups on L2(R2,CN ).

We say that a closed, densely defined, linear operator T defined on a Hilbert space H is Fredholm if its

range Rg(T ) is closed in H and both its null space ker(T ) and the complement of its range Rg(T ) are

finite-dimensional. The index of a Fredholm operator is ind(T ) := dim ker(T )− codim Rg(T ).

Definition 3.2 (Spectrum) We call the set

Σ∗ := {λ ∈ C : L∗ − λ does not have a bounded inverse on L2(R2,CN )}

the spectrum of L∗. We write Σ∗ = Σpt

·
∪ Σfb

·
∪ Σi 6=0 where

• Point spectrum: Σpt = {λ ∈ C : L∗−λ is Fredholm with index 0 and the kernel of L∗−λ is nontrivial},
• Fredholm boundary: Σfb = {λ ∈ C : L∗ − λ is not Fredholm},
• Fredholm spectrum: Σi 6=0 = {λ ∈ C : L∗ − λ is Fredholm with nonzero index},

and call the set Σess := Σfb ∪ Σi6=0 the essential spectrum.

The following result characterizes the essential and Fredholm spectra of spiral waves in terms of the spectra

of their asymptotic wave trains.

Theorem 3.3 (Fredholm properties of linearization) The linear operator L∗−λ posed on L2(R2,CN )

is Fredholm if and only if λ does not belong to the Floquet spectrum Σst (see Definition 2.2) of the asymptotic

wave train: in other words, we have Σfb = Σst. Furthermore, if λ does not belong to the Floquet spectrum of

the asymptotic wave train, then the Fredholm index of L∗ − λ is given by

ind(L∗ − λ) = −iM(λ), (3.5)

where iM(λ) is the relative Morse index associated with the linearization at the asymptotic wave train from

Definition 2.9.

Theorem 3.3 is proved in §6. We illustrate this and the following results in the schematic representation of

spiral spectra in Figure 5. Note that Remark 2.4 implies the following result.

Corollary 3.4 (Floquet periodicity of Fredholm properties) The operator L∗ − λ is Fredholm of in-

dex i if and only if L∗− (λ+ iω∗) is Fredholm of index i. In other words, the property of being Fredholm and

the Fredholm index are periodic with period iω∗ in the complex plane.

Note that this periodicity demonstrates quite graphically that the linearization at a spiral wave is not a

sectorial operator: vertical periodicity precludes the possibility that the spectrum is contained in a sector

{λ; | Imλ| ≤ C1 − C2 Reλ} for some C1, C2 > 0. From a different perspective, although the Laplacian ∆ is

sectorial, ∂ψ is neither sectorial nor bounded relative to ∆ on L2(R2,CN ), and L∗ therefore need not be and

is in fact not sectorial.
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Recall that we oriented the dispersion curves λst(ν) of a wave train in the laboratory frame so that curves

point upward at points of positive group velocity and downward at points of negative group velocity; see

Definition 2.5.

Corollary 3.5 If λ is a simple element of the Floquet spectrum of the asymptotic wave train (see Defini-

tion 2.5) that lies on the dispersion curve λst(ν), then the Fredholm index of L∗ − λ increases by one upon

crossing the dispersion curve λst(ν) from left to right (left and right are, of course, relative to the curve’s

orientation).

Definition 3.6 (Spiral waves as wave sources) We say that the spiral wave u∗(r, ϕ) emits a spectrally

stable wave train if the asymptotic wave train u∞ (i) is spectrally stable according to Definition 2.5 and (ii)

has positive group velocity, that is, the group velocity is directed away from the origin in polar coordinates.

We discuss properties of spiral sinks, whose asymptotic wave trains have negative group velocity, briefly in

Remark 7.3.

Corollary 3.7 Assume that a spiral wave emits a spectrally stable wave train, then the linearization L∗−λ
has Fredholm index −1 in the connected component of the Fredholm region to the left of the dispersion curve

that contains λ = 0.

Corollaries 3.5 and 3.7 follow from Remark 2.11 and Theorem 3.3.

We may also consider the linearization L∗ on a space of functions equipped with an exponential weight

L2
η(R2,CN ) := {u ∈ L2

loc; |u|L2
η
<∞}, |u|2L2

η
:=

∫
x∈R2

|u(x)eη|x||2 dx.

For any η ∈ R and i ∈ Z, we define

Fηi (L∗) := {λ ∈ C; L∗ − λ is Fredholm in L2
η(R2,CN ) with index i}. (3.6)

Recall the definition of the spatial eigenvalues νj(λ) from §2.4.

Proposition 3.8 For each fixed λ ∈ C, the operator L∗ − λ is Fredholm with index zero in the space

L2
η(R2,CN ) for all η ∈ J0(λ) = (−Re ν0(λ),−Re ν−1(λ)). Fix any such rate η and consider the connected

component S of Fη0 (L∗) that contains λ, then either the entire connected component S lies in the spectrum of

L∗ posed on L2
η or else S contains only isolated eigenvalues with finite algebraic multiplicity of L∗ on L2

η. In

either case, the spectrum, and in the latter case also the geometric and algebraic multiplicities of eigenvalues,

do not depend on the choice of the rate η ∈ J0(λ).

Proposition 3.8 is proved in §6. As we shall see later, if λ is an eigenvalue of L∗ on the space L2
η for some

η ∈ J0(λ), then λ is close to an eigenvalue of the spiral wave considered on a large but finite disk. Thus,

we are led to the following two definitions which adapt the terminology from [90] to the infinite-dimensional

setup.

Definition 3.9 (Absolute spectrum) We call the set of λ ∈ C for which J0(λ) is empty, that is, where

Re ν0(λ) = Re ν−1(λ), the absolute spectrum Σabs of L∗.

Definition 3.10 (Extended point spectrum) We say that λ ∈ C is in the extended point spectrum of

L∗ if (i) λ /∈ Σabs and (ii) the kernel of L∗ − λ is nontrivial in L2
η for some η ∈ J0(λ).
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Figure 5: Left panel: schematic diagram of essential spectra of spiral waves showing periodicity of essential

and absolute spectra with period iω∗. Branch points and triple junctions are the generic singularities of

absolute spectra [85]. Right panel: zoom into spectra, showing shaded regions that correspond, from left to

right, to the Fredholm indices i = ind(L∗ − λ) = −2,−1, 0. Blue curves indicate the Floquet spectra of wave

trains (corresponding to the Fredholm boundaries of spiral waves), green curves are the Floquet spectra of

wave trains in exponentially weighted spaces with weight η < 0, and the red curve corresponds to part of

the absolute spectrum. Oval green insets show the spatial Floquet exponents of wave trains at the indicated

locations λ ∈ C, illustrating in particular the crossing of Floquet exponents on the imaginary axis at Floquet

spectra, the direction of crossing relating to the Fredholm index, and the roots with equal real part at the

absolute spectrum. We refer to Figure 14 for numerically computed spatial and temporal spectra.

The next corollary provides estimates for eigenfunctions and adjoint eigenfunctions associated with elements

in the extended point spectrum. The result for eigenfunctions follows directly from the definition of the

extended point spectrum, while the estimates for the adjoint eigenfunctions follow from the fact that the

dual of L2
η, computed with respect to the usual L2 scalar product, is given by L2

−η.

Corollary 3.11 (Localization of eigenfunctions and adjoint eigenfunctions) Suppose that λ belongs

to the extended point spectrum and let u be an associated eigenfunction or generalized eigenfunction of L∗,
and uad be the associated eigenfunction, or generalized eigenfunction, of the adjoint operator L∗∗, then for

each η ∈ J0(λ) there exists C(η) > 0 such that

‖u(r, ·)‖H1(S1) + ‖(∇xu)(r, ·)‖H1(S1) ≤ C(η) eηr

‖uad(r, ·)‖H1(S1) + ‖(∇xuad)(r, ·)‖H1(S1) ≤ C(η) e−ηr

for r ≥ 1, where ∇xu is the gradient of u in Cartesian coordinates so that |(∇xu)(r, ·)|2 = |∂ru(r, ·)|2 +

| 1r∂ψu(r, ·)|2.

An application of Remark 2.11, Proposition 3.8, and Corollary 3.11 to λ = 0,±iω∗ gives the following result.

Corollary 3.12 (Stabilization of spectrum and symmetries) Assume that a spiral wave emits a spec-

trally stable wave train; then there is an η∗ < 0 such that the essential spectrum of the linearization L∗
considered as a closed operator on L2

η is strictly contained in the open left half-plane for all η∗ < η < 0.

For these values of η, the spectrum contains the eigenvalues {0,±iω∗} with associated eigenfunctions ∂ψu∗

and (∂x ± i∂y)u∗, respectively. The adjoint eigenfunctions associated with the eigenvalues {0,±iω∗} are

exponentially localized with rate η.
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In other words, λ = 0,±iω∗ belong to the extended point spectrum, and the adjoint eigenfunctions belonging

to the elements λ = 0,±iω∗ of the extended point spectrum are exponentially localized. We will give refined

asymptotics rather than upper bounds for eigenfunctions in §3.4 below.

In the next section, we shall consider robustness of spiral waves. We therefore introduce the following

characterization of spiral waves with “minimal kernel”.

Definition 3.13 (Transverse spirals) We say that a spiral is transverse if (i) it emits a spectrally stable

wave train and (ii) for all η < 0 sufficiently small the eigenvalue λ = 0 of L∗ considered as a closed operator

on L2
η is algebraically simple.

For the sake of simplicity, we shall state most of our results for transverse spiral waves, although we can

significantly relax the assumption of spectral stability of wave trains.

3.3 Asymptotics and robustness of spiral waves

We have the following far-field expansion of Archimedean spiral waves that emit stable wave trains.

Proposition 3.14 (Far-field expansion) Assume that the reaction-diffusion system (3.2) admits a trans-

verse spiral wave as characterized in Definition 3.13. For each K <∞, we then have the following expansion:

u∗(r, ψ) =u∞(k∗r + θ∗(r) + ψ) +

K∑
j=1

uj(k∗r + θ∗(r) + ψ)
1

rj
+ O

(
1

rK+1

)
,

θ∗(r) =
k∗d⊥
cg

log r +

K∑
j=1

θj
1

rj
+ O

(
1

rK+1

)
, (3.7)

for r � 1, with coefficients θj and smooth 2π-periodic functions uj that can be calculated recursively, and

with error terms that are bounded uniformly in ψ. In the expansions for θ, the factor cg denotes the group

velocity (2.8) of the asymptotic wave trains, and d⊥ is the transverse diffusion coefficient of the wave trains

defined in (2.13). The first term in the expansion for the spiral wave is given explicitly through

u1(ϑ) = k∗

(
d⊥
cg
∂ku∞(ϑ)− 1

2
uν⊥ν⊥(ϑ; 0)

)
,

where ∂ku∞ denotes the derivative of the family of wave trains with respect to the wavenumber k, and the

transverse correction uν⊥ν⊥ is defined in (2.14).

When d⊥ > 0, we have 0 < θ′∗ ∼ 1
r for large r, and the wavenumber therefore decreases towards the asymp-

totic value at the wave train. This corresponds to waves emitted by the spiral appearing to “decompress” as

waves travel away from the center; see Figure 12 for a numerical illustration of this phenomenon. For spirals

that emit spectrally stable wave trains that are transversely unstable in two dimensions, so that d⊥ < 0, we

have θ′∗ < 0; see Figure 19 for a numerical example.

Note that Proposition 3.14 justifies the use of the term Archimedean for spiral waves despite the logarithmic

phase correction given by θ∗(r). Indeed, the local wavelength L(r), i.e. the distance between consecutive

spiral arms, converges to a constant as r →∞ since (3.7) implies that

u∞(k∗r + θ∗(r)) = u∞(k∗(r + L(r)) + θ∗(r + L(r))) gives L(r) =
2π

k∗

(
1− k∗d⊥

cgr
+ O(1/r2)

)
.
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Transverse spiral waves are robust in that they persist upon changing parameters in the nonlinearity. To

make this more precise, we consider a reaction-diffusion system

ut = D∆u+ f(u;µ) (3.8)

whose kinetics f(u;µ) depends smoothly on a parameter µ and look for rotating waves u(r, ψ) as solutions

to

D∆r,ψu+ ω∂ψu+ f(u;µ) = 0, (3.9)

for a certain frequency ω(µ).

Theorem 3.15 (Robustness of transverse spirals) If the steady-state equation (3.9) with µ = 0 admits

a transverse spiral wave u∗(r, ψ), then the spiral is robust. More precisely, there exists a family of spiral

waves u(r, ψ;µ) with frequencies ω = ω∗(µ) and asymptotic phases θ∗(r;µ) so that u(r, ψ; 0) = u∗(r, ψ),

ω(0) = ω∗, and

|u(r, ·;µ)− u∞(k∗(µ)r + θ∗(r;µ) + ·;µ)|C1 → 0 as r →∞.

Here, u∞(ξ;µ) is the (unique) wave train for the problem (3.8) in one space dimension with frequency ω∗(µ)

and wavenumber k∗(µ). The frequency ω∗(µ), the wavenumber k∗(µ), and the phase θ∗(r;µ) depend smoothly

on the parameter µ, and the derivative of the phase θ′(r;µ) converges to zero uniformly in µ. The asymptotic

wavenumber is selected according to the µ-dependent nonlinear dispersion relation ω∗(k) of the wave trains

via ω∗(k∗(µ);µ) = ω∗(µ). For each µ, the far-field expansion of Proposition 3.14 holds.

Proposition 3.14 and Theorem 3.15 are proved in §7.

3.4 Far-field expansions of eigenfunctions

When spiral waves undergo bifurcations that involve isolated eigenvalues, the shape of the associated eigen-

functions gives useful clues as to the spatial structure of patterns that bifurcate from the spiral wave.

Proposition 3.16 (Lower bounds on eigenfunction decay) Take an element λ of the extended point

spectrum: by definition, there is then an η0 ∈ J0(λ) such that the kernel of L∗ − λ in L2
η0 is nontrivial. Let

u 6= 0 be a nontrivial element of this kernel in L2
η0 and assume that there is η1 ∈ J−1(λ) (which is defined in

Definition 2.10) so that the kernel of L∗− λ in L2
η1 is trivial. For each η ∈ J−1(λ), there is then a C(η) > 0

such that

|u(r, ·)|H1(S1) ≥ C(η)e−ηr.

The next proposition gives an expansion of eigenfunctions in the far field.

Proposition 3.17 (Far-field expansions of eigenfunctions) Assume that λ lies on a simple dispersion

curve λst(ν) with ν ∈ iR that separates the set F0
0 (L∗) defined in (3.6) from F0

−1(L∗). In addition, assume

that λ lies in the extended point spectrum and has geometric multiplicity one. Lastly, we assume that the

kernel of L∗ − λ in L2
η with η ∈ J−1(λ) is trivial. Denote by u(r, ψ;λ) the eigenfunction. We then have the

expansion

u(r, ψ;λ) =a(r)

[
uwt(k∗r + θ′∗(r) + ψ) + O

(
1

r

)]
,

a(r) =rαeνr
[
1 + O

(
1

r

)]
,

α =
〈uad, [(2k∗d⊥/cg)∂ϑ + 1]Dvwt + f ′′(uwt)[u1, uwt]〉

cg,l 〈uad, uwt〉
,
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where the scalar products are taken in L2(S1,CN ), uwt and uad are the eigenfunctions of L̂co(ν) and L̂ad
co (ν),

respectively, corresponding to the eigenvalue λco = λst(ν) + c∗ν, and vwt = (k∗∂ϑ + ν)uwt. The terms u1 and

θ∗(r) appear in Proposition 3.14, and cg,l is the linear group velocity of λst(ν) given by

cg,l = −2〈uad, Dvwt〉
〈uad, uwt〉

.

We will prove Propositions 3.16 and 3.17 in §8. We refer to Proposition 10.5 for a generalization of Proposi-

tion 3.17 and remark that results analogous to Propositions 3.16 and 3.17 hold for the adjoint linearization.

3.5 Persistence of spiral waves on large disks

Assume that the reaction-diffusion system (3.2) admits a transverse planar Archimedean spiral wave u∗(r, ψ)

with temporal frequency ω∗. The issue discussed here is whether this spiral wave persists on large disks. In

other words, is there a spiral wave to the equation

ut =D∆u+ f(u), |x| < R,

0 =au+ b
∂u

∂~n
, |x| = R,

for all large R � 1, where ~n denotes the outer unit normal of the disk of radius R centered at zero, and

where a2 + b2 = 1. We show that this is indeed true under the following natural hypothesis. It will be clear

from our analysis that the results carry over to much more general types of boundary conditions, for instance

nonlinear Robin boundary conditions ∂u
∂~n = g(u).

Hypothesis 3.18 (Boundary sink) Given a spectrally stable wave train u∞ with fixed wavenumber k∗,

frequency ω∗ > 0, and positive group velocity cg > 0, we say that the one-dimensional equation

ut = Duxx + f(u), x ∈ (−∞, 0) (3.10)

0 = au(0, t) + bux(0, t)

has a boundary sink if (3.10) admits a time-periodic solution u(x, t) = ubs(x, ω∗t) with ubs(x, τ) = ubs(x, τ +

2π) for all (x, τ) such that

|ubs(x, ·)− u∞(k∗x− ·)|C1(S1) → 0 as x→ −∞.

We say that the boundary sink is non-degenerate if the linearized equation

ut =Duxx + f ′(ubs(x, ω∗t))u, x ∈ (−∞, 0) (3.11)

0 =au(0, t) + bux(0, t),

does not possess an exponentially localized, time-periodic solution, that is, for any smooth solution u to (3.11)

with u(x, t+ 2π
ω∗

) = u(x, t), we have∫ 2π/ω∗

0

∫ 0

−∞
e−ηx(|u(x, t)2 + |ux(x, t)|2) dxdt =∞

for any η > 0.
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Similar to our assumptions on the existence of wave trains or spiral waves, Hypothesis 3.18 is, in general,

difficult to verify. However, we will prove in Lemma 9.1 that boundary sinks arise typically as one-parameter

families that are parametrized by the wavenumber k of the asymptotic wave train. Furthermore, their

existence near homogeneous oscillations with wavenumbers k close to zero was shown in [95, §6.8 on p46].

The term boundary sink is intuitive as the group velocity of the wave train at x = −∞ is positive so that

perturbations near x = −∞ are transported towards the boundary at x = 0, where they are annihilated

by the boundary. Non-degeneracy can be interpreted as absence of the Floquet exponent λ = 0 in the

extended point spectrum. In fact, the discussion in §2.4 shows that J0(λ) ⊃ (−δ, 0) for some δ > 0 since

cg > 0. Choosing the exponential weight η > 0, we then conclude that the linearization at the wave trains

is hyperbolic with relative Morse index zero, which implies that the linearization is Fredholm of index zero

when the operator is equipped with boundary conditions at x = 0 [98]. The absence of a periodic solution

to the linearization then implies that the linearized operator does not have a Floquet exponent λ = 0. We

emphasize that non-degeneracy is a meaningful assumption since the “trivial” time-periodic solution ∂tubs

to the linearization is not exponentially localized as ω∗ 6= 0.

We emphasize that the boundary sink connects the wave train at x = −∞ with the Neumann boundary

conditions at x = 0. This feature will allow us to glue together the spiral wave u∗(r, ψ) and the shifted

boundary sink ubs(r−R,ψ) at r = R− logR, where both patterns are close to the asymptotic wave train, to

obtain a truncated spiral wave on the disk 0 ≤ r ≤ R that satisfies Neumann boundary conditions at r = R;

see Figure 3 for an illustration. The next theorem formalizes this expectation.

Theorem 3.19 (Gluing spirals with boundary sinks) Assume the existence of (i) a transverse spiral

wave u∗ (see Definition 3.13) and (ii) a non-degenerate boundary sink (see Definition 3.18) with the same

asymptotic wave train u∞, frequency ω∗, and wavenumber k∗. Then there are positive numbers δ, C, κ and

R∗ with 0 < δ < 1 so that the following is true. For each R > R∗, there are a unique frequency ω = ω(R)

with |ω − ω∗| < δ and a unique smooth function uR(r, ψ) with

|ω(R)− ω∗|+ sup
0≤r≤R−κ−1 logR

|uR(r, ψ)− u∗(r, ψ)|+ sup
R−κ−1 logR≤r≤R

|uR(r, ψ)− ubs(r −R,ψ)| ≤ δ

such that the pair (u, ω) = (uR(r, ψ), ω(R)) satisfies the system

0 =D∆r,ψu+ ωuψ + f(u), 0 ≤ r < R

0 =au+ bur, r = R.

Furthermore, we have the estimates

|ω(R)− ω∗| ≤ Ce−κR

|uR(r, ψ)− u∗(r, ψ)| ≤ C

R1−δ e−κ(R−κ−1 logR−r), 0 ≤ r ≤ R− κ−1 logR (3.12)

|uR(r, ψ)− ubs(r −R,ψ)| ≤ C

R1−δ , R− κ−1 logR ≤ r ≤ R

uniformly in R > R∗.

Theorem 3.19 is proved in §9.

3.6 Spectra of spiral waves restricted to large disks

In the previous section, we provided conceptual assumptions guaranteeing that the existence of a spiral

wave on x ∈ R2 implies the existence of spiral waves in large disks. The results establish in particular the
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convergence of profiles as the size of the disk increases. We now pair these results with analogous convergence

results for properties of the linearization.

It turns out that in addition to contributions from the spectrum of the spiral wave, there is a contribution

from the boundary condition that we shall specify first. Consider therefore the linearization at the asymptotic

wave train in the steady frame, restricted to x < 0 and equipped with boundary conditions,

ut − λu = Duxx + f ′(u∞(kx− ωt))u, x < 0, (3.13)

au+ bux = 0, x = 0.

Definition 3.20 (Boundary spectrum) We define the boundary spectrum Σbdy of wave trains as the set

of λ 6∈ Σabs for which there exists a 2π/ω-periodic solution to (3.13) with u(x, 0) ∈ L2
η for some η ∈ J0(λ).

We shall need some mild non-degeneracy assumptions on the absolute spectrum, which we defined in Def-

inition 3.9. The first non-degeneracy condition is concerned with the dispersion relation, asserting roughly

that the absolute spectrum consists of algebraically simple curves; compare for instance [85].

Definition 3.21 (Simple absolute spectrum) We say that the absolute spectrum is simple at a point

λ∗ ∈ C if (i) J±1(λ) are non-trivial and (ii) the two critical spatial eigenvalues with equal real part split

non-trivially upon varying λ, that is,

Re ν−2(λ∗) < Re ν−1(λ∗) = Re ν0(λ∗) < Re ν1(λ∗), ν−1(λ∗) 6= ν0(λ∗), and
dν0

dλ
6= dν−1

dλ
,

at λ = λ∗.

Many results on the absolute spectrum can be extended without this simplicity assumption [80] but we shall

not attempt such a generalization in this context.

Definition 3.22 (Resonances in the absolute spectrum — informal) We say that a point λ∗ in the

simple part of the absolute spectrum is resonant if each nontrivial element u(r, ψ) of the kernel of L∗−λ∗ in

L2
η with η ∈ J1(λ∗) converges to u0(ψ)eν0(λ∗)r or u−1(ψ)eν−1(λ∗)r (but not to a linear combination of both)

as r → ∞, where the functions u0 or u−1 may vanish. We refer to Definitions 10.6 and 11.1 for a precise

definition of resonance.

We define the linear operator

L∗,Ru = D∆u+ ω∗∂ψu+ f ′(u∗(r, ψ))u for |x| < R (3.14)

au+ b
∂u

∂n
= 0 at |x| = R

in Cartesian coordinates on L2({|x| < R}) with dense domain {u ∈ H2({|x| < R}) : (au+ b ∂u∂n )||x|=R = 0},
where the domain is well defined due to standard trace theorems. Note that L∗,R has compact resolvent as

a relatively compact perturbation of D∆, and its spectrum on L2({|x| < R}) consists therefore entirely of

discrete point spectrum for each fixed R.

Theorem 3.23 (Spectra of truncated linearization) Assume the existence of a transverse spiral wave

u∗(r, ψ) (see Definition 3.13) with frequency ω∗ > 0. Recall the Definitions 3.9 and 3.10 of the absolute spec-

trum Σabs and the extended point spectrum Σext, respectively, and Definition 3.20 of the boundary spectrum
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Σbdy. Assume that there exists a dense subset in the absolute spectrum where the absolute spectrum is (i)

simple (see Definition 3.21) and (ii) not resonant (Definition 3.22) for both the spiral wave linearization L∗
and the boundary linearization (3.13). Moreover, we assume that Σext and Σbdy do not intersect. For the

spectrum of the operator L∗,R defined in (3.14), we then have

specL∗,R −→ Σabs ∪ Σext ∪ Σbdy

as R → ∞ in the Hausdorff distance on each fixed compact subset of C. Note that Σabs consists of semi-

algebraic curves whereas Σext∪Σbdy is discrete. Convergence to the discrete part preserves multiplicity and is

exponential in R for Σext and algebraic in R for Σbdy. Convergence to the continuous part Σabs is understood

in the sense that for each fixed λ∗ ∈ Σabs the number of eigenvalues of L∗,R in U(λ∗) converges to infinity

as R→∞ for each fixed neighborhood U(λ∗) of λ∗.

Theorem 3.23 is proved in §10.

Remark 3.24 (Absolute spectra versus pseudo-spectra) We emphasize that eigenvalues accumulate

along curves that are not given by the Fredholm boundaries or the essential spectrum and instead lie strictly

to the left of the Fredholm boundaries. The limiting curves lie in the absolute spectrum and are, just as

the Fredholm boundaries, periodic in the complex plane with period iω∗ and determined solely by the linear

dispersion relation of the wave trains. It is possible to prove that the norm of the resolvent of L∗,R grows

exponentially in R in regions where the Fredholm index of the linearization is not zero; see [90] for a precise

statement in a context of travelling waves on the real line. Thus, the ε-pseudo spectra of L∗,R, defined as the

set of λ so that the resolvent has norm 1/ε, fill large regions between the absolute spectrum and the Fredholm

boundary for ε ≥ ε(R) with ε(R)→ 0 as R→∞.

3.7 Spectra of truncated spiral waves

This section extends the results from §3.6 by including the corrections to the nonlinear spiral wave profile

considered in §9. The solutions constructed can be thought of as spiral waves glued to a boundary sink that

corrects for the influence of the boundary conditions.

We therefore define the linear operator

Ls,Ru = D∆u+ ω(R)∂ψu+ f ′(uR(r, ψ))u for |x| < R, (3.15)

au+ b
∂u

∂n
= 0 at |x| = R

in Cartesian coordinates on L2({|x| < R}) with dense domain {u ∈ H2({|x| < R}) : (au+ b ∂u∂n )||x|=R = 0},
where uR and ωR are profile and frequency of the truncated spiral wave from Theorem 3.19. The spectrum

of L∗,R consists of discrete point spectrum for each fixed R.

We are interested in the convergence of the spectrum of Ls,R as R→∞. The results are very similar to the

results presented in §3.6. The main correction due to the gluing procedure accounts for the boundary sink

by replacing the boundary spectrum Σbdy in the results of §3.6 with the extended point spectrum of the

boundary sink. To be precise, consider the linearization at the boundary sink ubs(x, t) in the Floquet form

ut − λu = Duxx + f ′(ubs(x, t))u, x < 0,

au+ bux = 0, x = 0, (3.16)

u(x, t) = u(x, t+ 2π/ω), ∀(x, t) ∈ R− × R+.
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Since boundary sinks converge to the asymptotic wave trains of the spiral waves, we can again use the

absolute spectrum Σabs of the asymptotic wave trains. We can also define the space L2
η(R−) of functions

with exponentially weighted norms given by

|u|2L2
η

=

∫ 0

x=−∞
|u(x)eηx|2dx,

where the rates η will be related to the exponential growth rates νj(λ) that we identified in Definition 2.10.

Definition 3.25 (Extended point spectrum of boundary sinks) We define the extended point spec-

trum Σextbs of the boundary sink as the set of λ 6∈ Σabs for which there exists a nontrivial solution u(x, t) to

(3.16) with u(x, 0) ∈ L2
η(R−) for some η ∈ J0(λ) (where J0(λ) was defined in Definition 2.10).

The following main result closely mimics Theorem 3.23.

Theorem 3.26 (Spectra of truncated spirals) Consider the linearization Ls,R at the truncated spiral

(3.15). Assume that there exists a dense subset in the absolute spectrum where the absolute spectrum is (i)

simple (see Definition 3.21) and (ii) not resonant (see Definition 3.22) for the linearizations L∗ about the

spiral wave and (3.16) about the boundary sink. Moreover, we assume that the extended point spectra of

spiral wave and boundary sink do not intersect. We then have convergence

specLs,R −→ Σabs ∪ Σext ∪ Σextbs

as R→∞ in the Hausdorff distance uniformly on each fixed compact subset of C. Note that Σabs consists of

semi-algebraic curves whereas Σext ∪ Σextbs is discrete. Convergence to Σext is exponential and convergence

to Σextbs algebraic in R (and both preserve multiplicity), while convergence to Σabs is understood in the sense

that for each fixed λ∗ ∈ Σabs the number of eigenvalues of Ls,R in U(λ∗) converges to infinity as R→∞ for

each fixed neighborhood U(λ∗) of λ∗.

Theorem 3.26 is proved in §11.

3.8 Transverse instability of spiral waves

We note that none of our results about spectra or Fredholm properties of the linearization L∗ at a spiral

wave requires assumptions on the transverse stability of the asymptotic wave train belonging to the spiral

wave. We show here that transverse instabilities of the wave trains become important when considering

decay or growth properties of the C0-semigroup eL∗t generated by L∗ on L2(R2,CN ). In particular, we will

show that a transverse instability of the asymptotic wave train implies linear instability of the planar spiral

wave — we refer to this instability mechanism as a transverse instability of a planar spiral wave.

Lemma 3.27 Assume that u∗(r, ϕ) is a transverse spiral wave and that its asymptotic wave train u∞(kx−ωt)
is unstable with respect to transverse perturbations so that there are constants γ > 0 and λ∗ ∈ C with

Reλ∗ > 0 as well as a nontrivial 2π-periodic function v∞(ξ) with

D(k2∂ξξ − γ2)v∞ + ω∗∂ξv∞ + f ′(u∞(ξ))v∞ = λ∗v∞. (3.17)

Under these assumptions, we have

inf
{
a ∈ R : ∃Ma ≥ 1 : ‖eL∗t‖ ≤Maeat ∀t ≥ 0

}
≥ Reλ∗ > 0,

where eL∗t denotes the C0-semigroup generated by the linearization L∗ at the spiral wave u∗ on L2(R2,CN ).
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We will prove Lemma 3.27 in §8. We briefly discuss a few implications of the preceding lemma.

Recall that spectrally stable wave trains can be unstable with respect to transverse perturbations as our

definition of spectral stability of wave train pertains only to perturbations in the direction of propagation.

Assume that u∗ is a transverse spiral wave whose extended point spectrum lies on or to the left of the

imaginary axis. It then follows from the results in §3.2 that the entire spectrum of the linearization L∗ at u∗

lies on or to the left of the imaginary axis. If the spectral mapping theorem held for L∗, we could conclude

that the semigroup generated by L∗ could grow at most weakly exponentially. However, Lemma 3.27 shows

that if the asymptotic wave train is transversely unstable, then the spectral mapping theorem cannot hold

for the linearization. The reason for the exponential growth of the semigroup is the fact that the resolvent

of L∗ in L2(R2,CN ) cannot be bounded uniformly along the vertical line Reλ = Reλ∗ (we will prove this

in §8).

On large bounded domains, Theorems 3.23 and 3.26 imply that the spectrum of the linearization at the

truncated spiral wave will, inside each fixed bounded region in the complex plane, lie on or to the left of the

imaginary axis for all sufficiently large radii R. Hence, if the transverse instability of the asymptotic wave

train generates unstable eigenvalues in the spectrum of the truncated spiral wave that are bounded away

from the imaginary axis, then these eigenvalues λ must diverge with | Imλ| → ∞ as R→∞. We note that

we have not proved that transverse instabilities of the asymptotic wave train create unstable point spectrum

of the truncated spiral wave, though we expect that they do.

4 Wave trains

We give the proofs of the results stated in §2. Specifically, we consider one-parameter families of wave trains

and transverse instabilities of wave trains in §4.1, characterize the spectra in the laboratory frame in §4.2,

and compare properties of the PDE linearization and the spatial dynamical system in §4.3. In §4.4, we give

a different but equivalent definition of the relative Morse index of the wave trains that will be useful later.

4.1 Proofs of Proposition 2.1 and Lemma 2.12

We begin with the proof of Proposition 2.1. We want to solve the equation

F(u, k, ω) := k2Duξξ + ωuξ + f(u) = 0 (4.1)

in H2(S1,RN )×R2 near the solution (u, k, ω) = (u∞, k∗, ω∗). The linearization of this equation at u∞ gives

the linear operator L̂co(0)

L̂co(0) = k2
∗D∂ξξ + ω∗∂ξ + f ′(u∞(ξ))

in L2(S1,CN ). The condition ∂λE(0, 0) 6= 0 of simplicity of the linear dispersion relation, where the Evans

function E was defined in (2.7), guarantees that the eigenvalue λ = 0 of L̂co(0) has algebraic multiplicity one;

see [40]. In particular, the kernel of L̂co(0) is one-dimensional and spanned by u′∞, the kernel of the adjoint

operator L̂ad
co (0) is spanned by a nonzero function uad, and the L2(S1,CN )-scalar product 〈uad, u

′
∞〉 6= 0 of

u′∞ and uad does not vanish. We can now apply Lyapunov–Schmidt reduction: First, we solve (4.1) projected

spectrally onto the range Rg(L̂co(0)) of L̂co(0) near (u, k, ω) = (u∞, k∗, ω∗) for v = u − u∞ ∈ (Ru′∞)⊥ ∈
H2(S1,RN ) using the implicit function theorem. It remains to project (4.1), evaluated at the solution

u = u∞+v(k, ω) of the previous step, spectrally onto the one-dimensional null space of L̂co(0), which gives the
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equation h(k, ω) := 〈uad,F(u∞ + v(k, ω), k, ω)〉 = 0, where h(k∗, ω∗) = 0 and ∂ωh(k∗, ω∗) = 〈uad, u
′
∞〉 6= 0.

We can therefore solve the reduced equation for ω as a function of k using the implicit function theorem.

The derivative ω′(k) of the nonlinear dispersion relation can be computed as follows. Evaluating (4.1) along

the family u(ξ; k) of periodic solutions that we found in the preceding paragraph, taking the derivative with

respect to k, and evaluating at k = k∗ gives

L̂co(0)
∂u

∂k
(ξ; k) = −

[
2k∗D∂ξξu∞ +

dω

dk
(k∗)∂ξu∞

]
; (4.2)

see [35, §4] for details. Projecting with uad onto the kernel of L̂co(0) gives the expression

cg,nl =
dω

dk
(k∗) = −2k∗〈uad, Du

′′
∞〉

〈uad, u′∞〉
.

To see that the linear and nonlinear group velocity coincide, we take the derivative of the eigenvalue problem

L̂co(ν)u(ν) = λco(ν)u(ν),

with respect to ν, evaluate at λ = ν = 0, and project onto the kernel of L̂co(0) using uad. The resulting

expression for [−dλco/dν(0) + c] coincides with (2.8). This completes the proof of Proposition 2.1.

To prove Lemma 2.12, we solve the eigenvalue problem (2.12)

λv = D(k2∂ξξ + ν2
⊥)v + ω∂ξv + f ′(u∞(ξ))v

near (v, λ, ν⊥) = (u′∞, 0, 0) using Lyapunov–Schmidt reduction on L2(S1,CN ). The reduced equation on the

kernel is

λ〈uad, u
′
∞〉 = 〈uad, Du

′
∞〉ν2

⊥ + O(ν4
⊥),

which proves the lemma.

4.2 Proofs of Lemmas 2.3 and 2.8

We consider the linear non-autonomous parabolic equation

ut = Duxx + f ′(u∞(kx− ωt))u (4.3)

and are interested in the set of λ for which Ψst − e2πλ/ω does not have a bounded inverse, where

Ψst : L2(R,CN ) −→ L2(R,CN ), u(·, 0) 7−→ u(·, 2π/ω)

is the period map associated with (4.3). If we substitute the Floquet ansatz u(x, t) = eλtũ(x, ωt) into (4.3),

and use τ = ωt, we can rewrite (4.3) as the differential equation

ux =v (4.4)

vx =−D−1[−ω∂τu+ f ′(u∞(kx− τ))u− λu],

where we replaced ũ by u. Imposing 2π-periodic boundary conditions in τ , we can write this equation in the

abstract form

ux = Ã(x;λ)u, (4.5)

where Ã(x;λ) is a closed operator on Y := H
1
2 (S1,CN ) × L2(S1,CN ) with domain Y 1 = H1(S1,CN ) ×

H
1
2 (S1,CN ); see [93].
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Lemma 4.1 ([93, Theorems 2.6 and 2.8(i)]) The closed operator T̃λ,

T̃λ =
d

dx
− Ã(·;λ) : L2(R, Y ) −→ L2(R, Y ),

with domain L2(R, Y 1) ∩ H1(R, Y ) has a bounded inverse if and only if λ does not belong to the Floquet

spectrum of Ψst.

The differential equation (4.4) is non-autonomous in the spatial evolution variable x. However, if we change

coordinates by replacing the time variable τ by σ = kx− τ , we obtain the autonomous equation

ux =− k∂σu+ v (4.6)

vx =− k∂σv −D−1[ω∂σu+ f ′(u∞(σ))u− λu],

which we also write as

ux = A∞(λ)u, (4.7)

where A∞(λ) is a closed operator on Y with domain H
3
2 (S1,CN )×H1(S1,CN ).

Lemma 4.2 The operator Tλ

Tλ =
d

dx
−A∞(λ) : L2(R, Y ) −→ L2(R, Y )

with domain

D(Tλ) = {(u, v) ∈ L2(R, Y 1); (∂x + k∂σ)(u, v) ∈ L2(R, Y )}

is closed. It has a bounded inverse if and only if T̃λ does.

Proof. We refer to [49, §2.2] for the proof that Tλ is closed on L2(R, Y ). The statement about invertibility

is obvious as both operators are conjugated by a transformation of the independent variables.

The key is now that it is far easier to check invertibility of Tλ as this involves only the x-independent operator

A∞(λ). Particular solutions to (4.6) with exponential growth eνx can be readily constructed provided ν is

an eigenvalue of A∞(λ). Note that A∞(λ) has compact resolvent so that its spectrum is discrete.

Lemma 4.3 The operator Tλ has a bounded inverse if and only if A∞(λ) is hyperbolic, i.e., if none of its

eigenvalues is purely imaginary. In particular, λ is in the Floquet spectrum if and only if A∞(λ) has a purely

imaginary eigenvalue ν.

Proof. If there is an eigenvalue ν of A∞(λ) with Re ν = 0, then we can construct an almost eigenfunction

as in [50, 101], and Tλ does not have a bounded inverse. On the other hand, suppose that all eigenvalues of

A∞(λ) have non-zero real part. Transforming back to the τ = kx − σ variable, this excludes the existence

of bounded, purely imaginary Floquet exponents of (4.4) with Floquet eigenfunctions (u, v)(x+ 2π/k, τ) =

eiγ(u, v)(x, τ) for some γ ∈ R. Floquet theory [72, 93] for (4.4) shows that T̃λ is then invertible, and therefore

Tλ is invertible as well on account of Lemma 4.2.

It remains to study the eigenvalue problem (2.11),

νu =− k∂σu+ v

νv =− k∂σv −D−1[ω∂σu+ f ′(u∞(σ))u− λu]
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with 2π-periodic boundary conditions for (u, v). This is equivalent to the generalized eigenvalue problem

D(k∂σ + ν)2u+ ω∂σu+ f ′(u∞(σ))u = λu (4.8)

for ν, again with 2π-periodic boundary conditions for u and its derivative. Adding the term cνu with c = ω/k

on both sides, we find that u needs to be a 2π-periodic solution of

D(k∂σ + ν)2u+ c(k∂σ + ν)u+ f ′(u∞(σ))u = (λ+ ων/k)u. (4.9)

Comparing (2.5) and (4.9), we have found a way to compute the spectrum in the co-moving frame: for

ν ∈ iR, we have

λco = λ+ cν ∈ specL ⇐⇒ λst = λ = λco − cν ∈ spec Ψst.

Note that (4.8) implies that λst(ν + ik`) = λst(ν) − iω` for all ` ∈ Z and ν ∈ C. This completes the proof

of Lemma 2.3 and of the first part of Lemma 2.8. The remaining statements in Lemma 2.8 regarding the

spatial eigenvalues ν of the operator A∞(λ) can be proved easily using Fourier series; see [93] for similar

arguments.

4.3 Comparison of PDE and spatial-dynamics linearizations

We remark that elements of the null space of

L̂co(ν)− λco = D(k∂σ + ν)2 + ω∂σ + f ′(u∞(σ))− λ, λco = λ+ cν

and

A∞(λ)− ν =

(
−(k∂σ + ν) id

−D−1[ω∂σ + f ′(u∞(σ))− λ] −(k∂σ + ν)

)
are related. If u is an eigenfunction of L̂co(ν) associated with the temporal eigenvalue λco, then u = (u, (k∂σ+

ν)u) is an eigenfunction of A∞(λ) associated with the spatial eigenvalue ν, and vice versa. Furthermore,

uad is an eigenfunction of the L2-adjoint

L̂ad
co (ν) = D(−k∂σ + ν)2 + c(−k∂σ + ν) + f ′(u∞(σ))∗

associated with the eigenvalue λco if and only if uad = (D(−k∂σ + ν)uad, Duad) is an eigenfunction of the

formal adjoint (
k∂σ [ω∂σ − f ′(u∞(σ))∗ + λ]D−1

id k∂σ

)
of A∞(λ) to the eigenvalue ν.

4.4 The relative Morse index

We give an equivalent definition of the relative Morse index iM(λ) that we defined in §2.4. Recall that λ

belongs to the Floquet spectrum of the wave trains if and only if there exists a purely imaginary eigenvalue

ν ∈ iR of the operator A∞(λ) defined in (4.7).

We define the reference operator

Aref :=

(
−k∂σ id

−D−1ω∂σ + 1 −k∂σ

)
(4.10)
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on Y = H
1
2 ×L2 with domain H

3
2 ×H1. Using explicit Fourier-series calculations, we see that the operator

Aref is invertible on Y and that there are bounded stable and unstable projections P s
ref and P u

ref = id−P s
ref on

Y that commute with Aref on its domain such that Re specAref |Rg(P s
ref )

< 0 and Re specAref(λ)|Rg(Pu
ref )

> 0.

Proposition 4.4 If λ is not in the Floquet spectrum of the wave train u∞, then the following is true.

(i) There exist bounded stable and unstable projections P s
wt(λ) and P u

wt(λ) = id−P s
wt(λ) on Y that commute

with A∞(λ) on its domain such that

Re specA∞(λ)|Rg(P s
wt(λ)) < 0 and Re specA∞(λ)|Rg(Pu

wt(λ)) > 0.

(ii) The operator P u
ref − P u

wt(λ) : Y → Y is compact.

(iii) If λ̃ is also not in the Floquet spectrum of the wave train u∞, then the operators

P u
wt(λ̃) : Rg(P u

wt(λ))→ Rg(P u
wt(λ̃)) (4.11)

and

ι(λ, λ̃) : Rg(P u
wt(λ))× Rg(P s

wt(λ̃)) −→ Y, (uu,us) 7−→ uu + us.

are Fredholm operators with the same Fredholm index, which we denote by iPwt(λ, λ̃).

(iv) Choose λinv � 1 so large that [λinv,∞) belongs to the resolvent set of Ψst, then iM(λ) = iPwt
(λ, λinv),

where iM(λ) was defined in §2.4.

Proof. Statement (i) and the claims for the operator in (4.11) were proved in [98, Theorems 5.1 and 5.2].

Alternatively, these statements were proved in [93] for (4.5), and since the evolution operators and projections

of the exponential dichotomies of (4.5) and (4.7) are conjugated by the strongly continuous shift generated

by ux = −k∂σu, the results also hold for (4.7).

Statement (ii) was proved in [93, Remark 4.1]. Alternatively, we can use the results in §5 below: Using

the notation introduced there, the stable projections Ps
ref of the operator Ã∞ defined in (5.22) and Ps

m of

the right-hand side of (5.25) differ only in the finite-dimensional space Rg(Qm), and we conclude that the

difference of these projections is compact. Since the projections Ps
m of (5.25) converge in norm to the stable

projections Ps
∞ of the right-hand side of (5.24), we see that the difference Ps

∞−Ps
ref is also compact. Finally,

we note that the operator on the right-hand side of (5.24) corresponds to the operator A∞(λ).

To prove the statement about the operator ι(λ, λ̃), we note that the map (4.11) and the operator

ι̃(λ, λ̃) : Rg(P u
wt(λ))× Rg(P s

wt(λ̃)) −→ Y, (uu,us) 7−→ P u
wt(λ̃)uu + us

share the same Fredholm and Fredholm index properties. The difference of ι(λ, λ̃) and ι̃(λ, λ̃) is given by

P u
wt(λ) − P u

wt(λ̃), which is compact by (ii) (add and subtract P u
ref). This completes of the proof of (iii).

Finally, statement (iv) can be proved using Fourier series as in [93] or [98, §5].

5 Exponential dichotomies

Throughout this section, we assume that u∗(r, ψ), u∞(ψ), and θ(r) are smooth functions, written in polar

coordinates (r, ψ), such that for some non-zero number k∗

|u∗(r, ·)− u∞(k∗r + θ(r) + ·)|C1(S1) → 0 as r →∞,
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and θ′(r) → 0 as r → ∞. Note that we do not assume that u∗ is an Archimedean spiral wave or even a

solution to the reaction-diffusion equation (3.2). We are interested in the linear eigenvalue problem L∗u = λu

where

L∗ = D

[
∂rr +

1

r
∂r +

1

r2
∂ψψ

]
+ ω∗∂ψ + f ′(u∗(r, ψ)).

We assume that ω∗ is non-zero. We rewrite this eigenvalue problem as a first-order differential equation

ur =v (5.1)

vr =− 1

r
v − 1

r2
∂ψψu−D−1[ω∗∂ψu+ f ′(u∗(r, ψ))u− λu]

in the spatial “time”-variable r. The system (5.1) can be viewed as an abstract linear ordinary differential

equation

ur = A(r;λ)u, u = (u, v) (5.2)

on the Banach space X := H1(S1,CN )× L2(S1,CN ). For each fixed r, the operator A(r;λ) is closed on X

with domain X1 := H2(S1,CN )×H1(S1,CN ).

We say that a function u ∈ C0(J,X) is a solution of (5.2) on an interval J ∈ R+ if for each r in the interior

of J the function u(r) is continuous with values in X1 and differentiable in r as a function into X, and

satisfies (5.2) in X.

In §5.1 and §5.2, we construct exponential dichotomies in the core region 0 < r < R and the far-field r > R,

respectively. In §5.3, we describe different ways in which the resulting projections can be compared to

each other. Section 5.4 deals with exponential dichotomies for the adjoint differential equations. Finally,

we consider exponential dichotomies in weighted spaces in §5.5 and discuss exponential trichotomies, where

we allow for neutral center directions, in §5.6. For background, we refer to [82] for basic results on expo-

nential dichotomies in this infinite-dimensional, ill-posed setting, in particular for a result on robustness of

dichotomies, and to [93] for a slightly different approach based on Galerkin approximations.

5.1 Exponential dichotomies in the core region

Upon introducing the logarithmic radial time s = log r as in [102], the eigenvalue problem (5.1) becomes

us =esv (5.3)

vs =− v − e−s∂ψψu− esD−1[ω∗∂ψu+ f ′(u∗(e
s, ψ))u− λu].

We introduce the new variable w = esv so that (5.3) becomes

us =w (5.4)

ws =− ∂ψψu− e2sD−1[ω∗∂ψu+ f ′(u∗(e
s, ψ))u− λu],

which corresponds to the PDE

D(uss + uψψ) + e2s(ω∗uψ + f ′(u∗(e
s, ψ))u− λu) = 0. (5.5)

We consider (5.4) on the Hilbert space X = H1(S1,CN )×L2(S1,CN ) and write it as the abstract differential

equation

us = Acore(s;λ)u. (5.6)
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Our goal is to show that (5.6) has a dichotomy on (−∞, s∗] for each fixed s∗ ∈ R. We begin with the limiting

equation

us =w (5.7)

ws =− ∂ψψu,

which is obtained by formally taking s = −∞ in (5.4). Equation (5.7) can be readily solved using Fourier

series. The resulting solutions can be distinguished by their growth or decay properties which give a decom-

position of X into the following spaces:

Ess
−∞ =span

{
u0ei`ψ

(
1

−`

)
; ` ∈ Z \ {0}, u0 ∈ CN

}

Euu
−∞ =span

{
u0ei`ψ

(
1

`

)
; ` ∈ Z \ {0}, u0 ∈ CN

}

Ec
−∞ =span

{(
u0

w0

)
; u0, w0 ∈ CN

}
.

Note that solutions to initial data in Ess
−∞ exist for s > 0 and decay exponentially with rate 1, while solutions

to initial data in Euu
−∞ exist for s < 0 and decay again exponentially with rate 1. Solutions with initial data

(u, v) ∈ Ec
−∞ = CN ×CN are given by (u+ sv, v). Associated with these subspaces are projections P

ss/uu/c
−∞

which project onto E
ss/uu/c
−∞ , respectively, along the other spectral subspaces. For elements (u, v) ∈ Ec

−∞,

we define the complementary projections P̃ ker
−∞(s) = id−P̃ gker

−∞ (s) and the asymptotic linear generator of the

evolution via

P̃ ker
−∞(s)

(
u

w

)
:=

(
u− sw

0

)
, P̃ gker

−∞ (s)

(
u

w

)
:=

(
sw

w

)
, Ac

−∞ :=

(
0 1

0 0

)
.

We can extend these projections to X through P
ker/gker
−∞ (s) := P̃

ker/gker
−∞ (s)P c

−∞. The following proposition

states that solutions to the full equation (5.4) behave in the same fashion as those of the limiting equation

(5.7).

Proposition 5.1 For any fixed s∗ ∈ R, the following is true. There exists a constant C > 0 and strongly

continuous families P uu
− (s), P ss

− (s) and P c
−(s) of complementary projections on X, all defined for −∞ < s <

s∗, as well as linear evolution operators Φss
−(s;σ), Φuu

− (σ; s) and Φc
−(s;σ) on X which are strongly continuous

in (s, σ) for −∞ < σ ≤ s ≤ s∗ and differentiable in (s, σ) for −∞ < σ < s < s∗, such that the following is

true on X:

• Compatibility. We have Φss
−(σ;σ) = P ss

− (σ), Φuu
− (σ;σ) = P uu

− (σ), and

id = P c
−(s) + P uu

− (s) + P ss
− (s)

for all s < s∗. The projections are bounded in norm uniformly in s.

• Instability. For any u0 ∈ X, Φuu
− (s, σ)u0 is a solution of (5.6) with

|Φuu
− (s;σ)u0|X ≤ Ce−|s−σ| |u0|X ,

where s ≤ σ ≤ s∗.
• Stability. For any u0 ∈ X, Φss

−(s, σ)u0 is a solution of (5.6) with

|Φss
−(s;σ)u0|X ≤ Ce−|s−σ| |u0|X ,

where σ ≤ s ≤ s∗.
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• Neutral directions. We have dim Rg(P c
−(s)) = 2N . For any u0 ∈ X, Φc

−(s, σ)u0 is a solution of (5.6)

with

|Φc
−(s;σ)u0|X ≤ C(1 + |s− σ|) |u0|X , P c

−(s) = Φc
−(s; s), |P c

−(s)− P c
−∞|L(X) = O(e2s)

where σ, s ≤ s∗. We can decompose even further

P c
−(s) = P ker

− (s) + P gker
− (s), ‖P ker

− (s)‖L(X) + ‖P gker
− (s)‖L(X) ≤ C(1 + |s|)

with

Φker
− (s;σ) := Φc

−(s;σ)P ker
− (σ) = P ker

− (s)Φc
−(s;σ)

Φgker
− (s;σ) := Φc

−(s;σ)P gker
− (σ) = P gker

− (s)Φc
−(s;σ).

There exist bounded transformations T (s) : Ec
−∞ → Ec

−(s) ⊂ X with

‖T (s)−id ‖ = O(e2s), Φc
−(s, σ) = T (s)eA

c
−∞(s−σ)T−1(σ), T−1(σ)P

ker/gker
− (σ) = P̃

ker/gker
−∞ (σ)T−1(σ).

In particular, for uker = P ker
− (σ)uker, the last identity implies that

Φc
−(s, σ)uker = T (s)eA

c
−∞(s−σ)T−1(σ)uker = T (s)eA

c
−∞(s−σ)P̃ ker

−∞(σ)T−1(σ)uker

= T (s)T−1(σ)uker = (id +O(e2s) + O(e2σ))uker.

• Invariance. The solutions Φss
−(s;σ)u0, Φuu

− (s;σ)u0, and Φc
−(s;σ)u0 satisfy

Φss
−(s;σ)u0 ∈ Rg(P ss

− (s)) for all σ ≤ s ≤ s∗
Φuu
− (s;σ)u0 ∈ Rg(P uu

− (s)) for all s ≤ σ ≤ s∗
Φc
−(s;σ)u0 ∈ Rg(P c

−(s)) for all s, σ ≤ s∗.

Proof. Since the perturbation

e2sD−1[ω∗∂ψu+ f ′(u∗(e
s, ψ))u− λu],

is bounded in X and converges to zero as s → −∞, we can apply the results in [82] to (5.4). Note that

the technical hypothesis [82, (H5)] is satisfied on account of [73, Theorem 2.5] which applies to (5.5). As a

consequence, for any 0 < δ < 1, there are projections P ss
− (s), P uu

− (s) and P c
−(s) as well as evolution operators

Φss
−(s, σ), Φuu

− (s, σ) and Φc
−(s, σ) of the full problem (5.4) such that

‖Φss
−(s, σ)‖+ ‖Φuu

− (σ, s)‖ ≤ Ce−|s−σ| for all σ < s < s∗

‖Φc
−(σ, s)‖ ≤ Ceδ|s−σ| for all s, σ < s∗.

In fact, since the perturbation converges to zero exponentially as s → −∞, the projection P c
−(s) converges

with rate e2s to the orthogonal projection onto Ec
−∞ as s → −∞. The equation in the center subspace

Rg(P c
−(s)) can therefore be projected onto the fixed reference frame Ec

−∞, where it is an O(e2s)-perturbation

of u′c = Ac−∞uc. As a consequence, following for instance [28, Chapter 3.8], the solutions are foliated over

this asymptotic equation in the form stated. Lastly, differentiability with respect to the initial time σ can

be shown as in [93, Lemma 5.5].

We can now define the stable and unstable projections and dichotomies in the core region that we will rely

on in the remainder of this paper. We set

P s
−(s) := P ss

− (s) + P gker
− (s), P u

−(s) := P uu
− (s) + P ker

− (s) (5.8)

Φs
−(s, σ) := Φss

−(s, σ) + Φc
−(s, σ)P gker

− (σ)︸ ︷︷ ︸
=:Φgker

− (s,σ)

, Φu
−(s, σ) := Φuu

− (s, σ) + Φc
−(s, σ)P ker

− (σ)︸ ︷︷ ︸
=:Φker

− (s,σ)

and refer to these operators from now on as the exponential dichotomies in the core region.
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5.2 Exponential dichotomies in the far field

Recall the eigenvalue problem (5.1)

ur =v

vr =− 1

r
v − 1

r2
∂ψψu−D−1[ω∗∂ψu+ f ′(u∗(r, ψ))u− λu],

which we write as the abstract system

ur = A(r;λ)u

on the Banach space X = H1(S1,CN ) × L2(S1,CN ). Alternatively, we can consider this equation in

Archimedean coordinates ϑ = k∗r + θ(r) + ψ. In these coordinates, (5.1) becomes

ur =− (k∗ + θ′(r))∂ϑu+ v (5.9)

vr =− (k∗ + θ′(r))∂ϑv −
1

r
v − 1

r2
∂ϑϑu−D−1[ω∗∂ϑu+ f ′(u∗(r, ϑ− k∗r − θ(r)))u− λu],

which we write as

ur = Aarch(r;λ)u, (5.10)

again on the Banach space X = H1(S1,CN )× L2(S1,CN ). We equip X with the r-dependent norm [102]

|u(r)|2Xr :=
1

r2
|u|2H1 + |u|2

H
1
2

+ |v|2L2 (5.11)

and write Xr whenever the r-dependence of the norm needs to be emphasized. Similarly, we equip the

common domain X1 = H2(S1,CN )×H1(S1,CN ) of A(r, λ) and Aarch(r, λ) with the r-dependent norm

|u(r)|2X1
r

:=
1

r4
|u|2H2 + |u|2

H
3
2

+ |v|2H1 . (5.12)

We are interested in comparing solutions to (5.9) with solutions to the asymptotic equation

ur =v (5.13)

vr =−D−1[ω∗∂ψu+ f ′(u∞(k∗r + ψ))u− λu]

for the wave trains. We therefore introduce the variable3 ϑ = k∗r + ψ, which transforms (5.13) into

ur =− k∗∂ϑu+ v (5.14)

vr =− k∗∂ϑv −D−1[ω∗∂ϑu+ f ′(u∞(ϑ))u− λu]

posed on Y = H
1
2 (S1,CN )×L2(S1,CN ), where the right-hand side coincides with the operator A∞(λ) that

we discussed in §2.4. Note that (5.14) coincides with (2.11) which describes the eigenvalue problem of the

wave train in the laboratory frame. Before we proceed, we recall that our assumptions on u∗ imply that

f ′(u∗(r, ψ)) −→ f ′(u∞(k∗r + θ(r) + ψ)) as r −→∞. (5.15)

In the Archimedean coordinates ϑ = k∗r + θ(r) + ψ, (5.15) becomes

f ′(u∗(r, ϑ− k∗r − θ(r))) −→ f ′(u∞(ϑ)) as r −→∞.

Neither (5.9) nor (5.14) admits a semiflow in the variable r. Instead, we are interested in exponential

dichotomies.
3Notation: We use the same letter ϑ for the spiral-wave coordinate ϑ = k∗r + θ(r) + ψ and the wave-train coordinate

ϑ = k∗r + ψ as this makes it easier to compare the formulations (5.9) and (5.14).
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Definition 5.2 ([82, §2.1]) We say that (5.9) has an exponential dichotomy on a subinterval J ⊂ R+ if

there exist constants C and η, strongly continuous family of projections P s/u : J → L(X). P s(r)+P u(r) = id,

and families of linear operators Φs(r; ρ) and Φu(r; ρ) such that the following is true:

• Stability. For any ρ ∈ J and u0 ∈ X, there exists a solution Φs(r; ρ)u0 of (5.2) that is defined for

r ≥ ρ in J , is continuous in (r, ρ) for r ≥ ρ and differentiable in (r, ρ) for r > ρ, and we have

Φs(ρ; ρ)u0 = P s(ρ)u0 as well as

|Φs(r; ρ)u0|Xr ≤ Ce−η|r−ρ| |u0|Xρ ,

for all r ≥ ρ such that r, ρ ∈ J .

• Instability. For any ρ ∈ J and u0 ∈ X, there exists a solution Φu(r; ρ)u0 of (5.2) that is defined

for r ≤ ρ in J , is continuous in (r, ρ) for r ≤ ρ and differentiable in (r, ρ) for r < ρ, and we have

Φu(ρ; ρ)u0 = P u(ρ)u0 as well as

|Φu(r; ρ)u0|Xr ≤ Ce−η|r−ρ| |u0|Xρ ,

for all r ≤ ρ such that r, ρ ∈ J .

• Invariance. The solutions Φs(r; ρ)u0 and Φu(r; ρ)u0 satisfy

Φs(r; ρ)u0 ∈ Rg(P s(r)) for all r ≥ ρ with r, ρ ∈ J,

Φu(r; ρ)u0 ∈ Rg(P u(r)) for all r ≤ ρ with r, ρ ∈ J.

• Regularity. The solution operators give strong solutions, that is, Φs(r; ρ)u0 and Φu(ρ; r)u0 are differ-

entiable in r and ρ for all r ≥ ρ and all initial conditions u0 in a dense subset of X.

Remark 5.3 (Strong solutions) We note that our characterization of differentiability in Definition 5.2

is slightly different from the one adopted in [82]. Differentiability on a dense subset is sufficient to guarantee

uniqueness of the continuous evolution operators as a continuous extension of strong solutions and provides

a convenient way to guarantee uniqueness in the context of strongly continuous semigroups, where the dense

subset is usually chosen as the domain of the generator. Alternatively, one can require differentiability in r

for r > ρ for all initial conditions, which was the approach taken in [82]: we shall recover this property in

our situation as well.

Proposition 4.4 shows that the asymptotic equation (5.14) has an exponential dichotomy on Y if and only

if λ is not in the Floquet spectrum of the wave trains. Our goal is to prove that (5.9) has an exponential

dichotomy on Xr = H1 × L2 for large r if the asymptotic equation (5.14) has an exponential dichotomy on

Y = H
1
2 × L2. In addition, it will be useful to understand the relation between the projections associated

with these two dichotomies. The following lemma, which follows immediately from Lemma 5.6 below, allows

us to compare these projections.

Lemma 5.4 There are constants C > 0 and R∗ > 0 so that the operators

Ir : Xr −→ Y, (u, v) 7−→ (A
− 1

2∞ A(r)
1
2u, v)

with

A∞ := −D−1ω∗∂ϑ + 1, A(r) := − 1

r2
∂ϑϑ −D−1ω∗∂ϑ + 1

are isomorphisms with ‖Ir‖L(Xr,Y ) + ‖I−1
r ‖L(Y,Xr) ≤ C for all r ≥ R∗.
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We can now define the bounded projections

P s/u
∞ (r, λ) := I−1

r P
s/u
wt (λ)Ir ∈ L(Xr) (5.16)

whenever the asymptotic equation (5.14) has an exponential dichotomy on Y with projections P
s/u
wt (λ). Note

that, even though the projections P s
wt(λ) on Y do not depend on r, the resulting projections P s

∞(r, λ) on Xr

will depend on r since the isomorphisms Ir : Xr → Y depend on r. We can now state our main result.

Proposition 5.5 Assume that the asymptotic equation (5.14) has an exponential dichotomy on Y . There

are positive constants C, η, and R∗ such that (5.9) has an exponential dichotomy on [R∗,∞). Furthermore,

we have ‖P s(r)−P s
∞(r)‖L(Xr) ≤ Cr−

1
3 , where P s(r) and P s

∞(r) denote the projections associated with (5.9)

and (5.14), respectively, on Xr.

The remainder of this section is devoted to the proof of Proposition 5.5. The main idea is to use robustness of

exponential dichotomies as established, for instance, in [82]. There, we constructed exponential dichotomies

to perturbed equations using a mild integral formulation and a fixed point argument in exponentially weighted

spaces. In our current case, perturbation terms are small and involve terms of order O( 1
r ). In the proof, we

will encounter two main difficulties.

First, comparing (5.9) and (5.14), we see that the perturbation term− 1
r2 ∂ψψ is not bounded (not even relative

to the remaining principal part D−1ω∗∂ψ). Thus, the main technical point of the proof of Proposition 5.5 is

to show that this unbounded term does not matter as far as exponential dichotomies are concerned.

An additional difficulty stems from the fact that the corotating frame, passing from (5.13) to (5.14), changes

regularity properties of the equation. In particular, the equation in the corotating coordinates is not bi-

sectorial, as one can readily verify by calculating the spectrum of the leafing order operator, setting terms

involving f ′ to zero. On the other hand, the equation in the corotating frame still has smoothing properties,

as one can see either directly using spectral computations or by noticing that solution of (5.13) transform

back to solutions of (5.14) using the simple shear transformation.

The following lemma will be crucial for addressing the unbounded perturbation − 1
r2 ∂ψψ.

Lemma 5.6 There are constants c1, c2, C > 0 such that the following is true for each r ≥ 1:

(i) The operator A
1
2∞ : H

1
2 (S1)→ L2(S1) is well defined and an isomorphism.

(ii) The operator A(r)
1
2 : H1(S1) → L2(S1) is well defined, bounded uniformly in r, and continuously

differentiable in r with ∥∥∥[∂r(A(r)
1
2 )
]
A(r)−

1
2

∥∥∥
L(L2)

≤ C

r
.

(iii) The operator defined on Xr → L2(S1)× L2(S1) through (u, v) 7→ (A(r)
1
2u, v) is an isomorphism with

c1

(
|A(r)

1
2u|2L2 + |v|2L2

)
≤ |u|2Xr ≤ c2

(
|A(r)

1
2u|2L2 + |v|2L2

)
for all u = (u, v) ∈ Xr.

Proof. Using Fourier series, it is straightforward to prove (i) and (iii) and to see that A(r)
1
2 : H1 → L2 is

well defined and bounded. Continuous differentiability of A(r)
1
2 is also clear since the family of operators is

analytic in r. We compute the derivative

∂r(A(r)
1
2 ) = ∂r

[
− 1

r2
∂ϑϑ −D−1ω∗∂ϑ + 1

] 1
2

=
1

r3
∂ϑϑA(r)−

1
2 =

1

r

[
1

r2
∂ϑϑ

]
A(r)−

1
2
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and conclude that ∥∥∥[∂rA(r)
1
2

]
A(r)−

1
2

∥∥∥
L(L2)

≤ 1

r

∥∥∥∥ 1

r2
∂ϑϑA(r)−1

∥∥∥∥
L(L2)

≤ C

r

for some constant C > 0 that is independent of r.

Next, we introduce the notation T (r) := −(k∗ + θ′(r))∂ϑ and

B := −D−1[f ′(u∞(ϑ))− λ]− 1, S(r) := −D−1[f ′(u∗(r, ϑ− k∗r − θ(r)))− f ′(u∞(ϑ))]

so that (5.9) becomes

ur =T (r)u+ v (5.17)

vr =T (r)v +A(r)u+Bu− v

r
+ S(r)u.

Note that the last two terms in the second equation in (5.17) converge to zero in norm as r → ∞. The

operator T (r) generates the shift in ϑ. The principal term in (5.17) is the system

ur =

(
0 1

A(r) 0

)
u.

It is convenient to symmetrize the principal term by using the transformation

û(r) = A(r)
1
2u(r).

Lemma 5.6(iii) shows that the | · |Xr norm for (u, v) and the ordinary L2-norm for (û, v) are equivalent so

that we can simply take (û, v) ∈ L2(S1,CN )× L2(S1,CN ). Equation (5.17) becomes

ûr =T (r)û+A(r)
1
2 v + [∂rA(r)

1
2 ]A(r)−

1
2 û

vr =T (r)v +A(r)
1
2 û+BA(r)−

1
2 û− v

r
+ S(r)A(r)−

1
2 û,

where we used that A(r)
1
2T (r)A(r)−

1
2 = T (r). If we now use that S(r) converges to zero as r →∞, we get

ûr =T (r)û+A(r)
1
2 v + or(1)u (5.18)

vr =T (r)v +A(r)
1
2 û+BA(r)−

1
2 û+ or(1)û+ or(1)v.

Proposition 5.9 states that we can safely neglect the or(1) terms in (5.18) since we are only interested in

proving the existence of exponential dichotomies. We then exploit the transformation w± = û ± v that

diagonalizes the principal part and leads to

w+
r =A(r)

1
2w+ + T (r)w+ +

1

2
BA(r)−

1
2 (w+ + w−)

w−r =−A(r)
1
2w− + T (r)w−− 1

2
BA(r)−

1
2 (w+ + w−)

or

wr = [Ã(r) +K(r)]w, (5.19)

where w = (w+, w−) ∈ L2(S1,C2N ) for each r and

Ã(r) :=

(
A(r)

1
2 + T (r) 0

0 −A(r)
1
2 + T (r)

)
, K(r) :=

1

2

(
BA(r)−

1
2 BA(r)−

1
2

−BA(r)−
1
2 −BA(r)−

1
2

)
.
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Next, we carry out the analogous analysis for the asymptotic equation (5.14). Using Lemma 5.6(i), we see

that the isomorphism

Y −→ L2 × L2, (u, v) 7−→ w = (A
1
2∞u+ v,A

1
2∞u− v) (5.20)

transforms (5.14) posed on Y into

wr = [Ã∞ +K∞]w (5.21)

posed on L2 × L2, where

Ã∞ :=

(
A

1
2∞ − k∗∂ϑ 0

0 −A
1
2∞ − k∗∂ϑ

)
, K∞ :=

1

2

(
BA
− 1

2∞ BA
− 1

2∞

−BA−
1
2∞ −BA−

1
2∞

)
. (5.22)

Since we assumed in Proposition 5.5 that λ is chosen so that the asymptotic equation (5.14) has an ex-

ponential dichotomy with r-independent projections, we can use the r-independent isomorphism (5.20) to

construct an exponential dichotomy of (5.21) on L2 × L2 with an r-independent stable projection denoted

by Ps
∞. We have the following result.

Lemma 5.7 There are positive constants C0, η0, and R∗ so that the following is true. For each R ≥ R∗,

equation (5.19) has an exponential dichotomy for r ≥ R with projections Ps
R(r) that satisfy

‖Ps
R(r)− Ps

∞‖L(L2×L2) ≤ CR−
1
3

for r ≥ R.

Proof. We denote by Qm the orthogonal projection onto the subspace of L2(S1,C2N ) spanned by e±i`ϑw0

for 0 ≤ |`| ≤ m and w0 ∈ C2N . We write wm = Qmw and w⊥m = (id−Qm)w for any w ∈ L2. Note that both

Ã∞ and Ã(r) commute with Qm. Using this fact, it is not difficult to prove that there is a constant C > 0

such that

‖A−
1
2∞ (id−Qm)‖L(L2) + ‖A(r)−

1
2 (id−Qm)‖L(L2) ≤

C√
m

uniformly in m ≥ 1 and r ≥ 1, which implies that

‖K∞(id−Qm)‖L(L2) + ‖(id−Qm)K∞‖L(L2) + ‖K(r)(id−Qm)‖L(L2) + ‖(id−Qm)K(r)‖L(L2) ≤
C√
m

(5.23)

uniformly in m ≥ 1 and r ≥ 1. Writing (5.21) in the components given by (wm, w
⊥
m), we obtain the equation(

wm

w⊥m

)
r

=

(
Ã∞ +QmK∞Qm QmK∞(id−Qm)

(id−Qm)K∞Qm Ã∞ + (id−Qm)K∞(id−Qm)

)(
wm

w⊥m

)
, (5.24)

which, by assumption, has an exponential dichotomy on L2 × L2. Note that differentiability of solutions as

stated in Definition 5.2 follows since derivatives in (r, ϕ) exist for sufficiently regular initial conditions u0

and therefore so do the derivatives in the corotating coordinates (r, ψ). In a similar fashion, we see that

the evolution operators gain regularity, that is, they map X to Xα for each given α > 0. For small α, this

follows as in [82], and we can bootstrap these arguments to larger values of α using uniqueness of the Cauchy

problem.

Using (5.23) and robustness of dichotomies [82], we see that there are constants C > 0 and m∗ ≥ 1 so that

the system (
wm

w⊥m

)
r

=

(
Ã∞ +QmK∞Qm 0

0 Ã∞

)(
wm

w⊥m

)
(5.25)
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also has an exponential dichotomy for each m ≥ m∗ and that the difference between the dichotomies of

(5.24) and (5.25) is bounded by C/
√
m uniformly in m ≥ m∗. The existence of these perturbed dichotomy

operators and decay estimates follow from a contraction argument for the mild variation-of-constant formula

in [82]. Differentiability is obtained by exploiting smoothing properties of the unperturbed solution operators

and the fact that the perturbation K preserves higher regularity so that K(r) : Xα → Xα for α > 0 since the

coefficients that appear in K∞ are smooth. Thus, derivatives in (r, ϕ) exist for r > ρ or for smooth initial

data u0 for r ≥ ρ.

Our next goal is to show that(
wm

w⊥m

)
r

=

(
Ã(r) +QmK(r)Qm 0

0 Ã(r)

)(
wm

w⊥m

)
(5.26)

has an exponential dichotomy and that its projections are close to those of (5.25). Since (5.25) and (5.26)

are both diagonal, it suffices to analyze the range and kernel of Qm separately. On the kernel of Qm, we

can use that both Ã∞ and Ã(r) commute with Qm and that T (r) generates the unitary shift flow in ϑ that

commutes with the evolution of wr = A(r)
1
2w to prove that each of the systems

(w⊥m)r = Ã∞w⊥m, (w⊥m)r = Ã(r)w⊥m

have an exponential dichotomy on L2 × L2 with constant C and rate larger than
√
m uniformly in m ≥ 1

and that their stable projections coincide. On the range of Qm, we see that there is a constant C > 0 so

that

‖Qm(K(r)−K∞)Qm‖L(L2) ≤
C

r
uniformly in m ≥ m∗. Similarly, an explicit Fourier-series computation shows that

‖Qm(Ã∞ − Ã(r))Qm‖L(L2) ≤ C
(
m

r
+
m3/2

r2

)
uniformly in m ≥ m∗ and r ≥ 1. Thus, there are constants C and R∗ ≥ 1 so that for each R ≥ R∗ equation

(5.26) with m := R
2
3 has an exponential dichotomy with projections whose difference to those of (5.25) can

be bounded by CR−
1
3 uniformly in r ≥ R. One also explicitly verifies that solutions are differentiable in

r and the initial radial time ρ for sufficiently smooth u0 and that the evolution operators map the space

L2 × L2 into HM ×HM for each M and each r 6= ρ.

Finally, using again (5.23), we can conclude as above that the system(
wm

w⊥m

)
r

=

(
Ã(r) +QmK(r)Qm QmK(r)(id−Qm)

(id−Qm)K(r)Qm Ã(r) + (id−Qm)K(r)(id−Qm)

)(
wm

w⊥m

)

with m = R
2
3 also has an exponential dichotomy for r ≥ R with constants and rates that are independent of

R and that the difference of its projections to those of (5.24) is bounded by CR−
1
3 uniformly in r ≥ R, since

1/
√
m = R−

1
3 when m = R

2
3 . The existence of evolution operators for the perturbed equation is obtained

from the mild variation-of-constant formula in [82], and differentiability on a dense subset can be obtained

using again the fact that the perturbation preserves smoothness.

This completes the proof of the lemma.

The preceding lemma shows that there are constants C, η,R∗ so that for each R ≥ R∗ equation (5.19) has

an exponential dichotomy with constant C and rate η for r ≥ R with projections Ps
R(r) that satisfy

‖Ps
R(r)− Ps

∞‖L(L2×L2) ≤ CR−
1
3 , r ≥ R. (5.27)
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Note that the ranges of Ps
R1

(r) and Ps
R2

(r) agree for all r ≥ max{R1, R2}. We can therefore use (5.27) to

conclude that for each r ≥ R∗ we can write the kernel of Ps
R∗

(r) as the graph of an operator from the kernel

of Ps
r(r) into the range of Ps

r(r) and that the norm of this operator is bounded by C uniformly in r. Using

[82, (3.20)], we see that

‖Ps
R∗(2r)− P

s
r(2r)‖L(L2×L2) ≤ Ce−ηr

for r ≥ R∗. Hence, we obtain

‖Ps
R∗(2r)− P

s
∞‖ ≤ ‖Ps

R∗(2r)− P
s
r(2r)‖+ ‖Ps

r(2r)− Ps
∞‖ ≤ Ce−ηr +

C

r
1
3

≤ C̃(R∗)

(2r)
1
3

for r ≥ R∗ where ‖ · ‖ := ‖ · ‖L(L2×L2). This completes the proof of Proposition 5.5.

Remark 5.8 We chose to construct the exponential dichotomies in the space X = H1(S1,CN )×L2(S1,CN ).

In fact, the same construction works in the spaces X = H1+α(S1,CN )×Hα(S1,CN ) for any α ≥ 0.

For later reference, we state here more formally a result on robustness of exponential dichotomies that we

used repeatedly in the proof.

Proposition 5.9 ([82]) Exponential dichotomies are robust. More precisely, if an abstract equation of the

form (5.2) has an exponential dichotomy on an interval J ⊂ R+ with constants C and η, then, for any choice

of ε > 0 and η̃ with 0 < η̃ < η, there are constants C̃ and δ̃ > 0 such that the perturbed system

ur = A(r;λ)u + B(r)u (5.28)

with

‖B(r)‖L(Xr) ≤ δ̃

has an exponential dichotomy on J with constants C̃ and η̃, and the projections of (5.28) are ε-close to the

projections of (5.2). If, in fact,

‖B(r)‖L(Xr) = or(1),

then we can choose η̃ = η.

5.3 Comparing core and far-field dichotomies

We now discuss briefly the relation between the core and far-field coordinates that we used to construct

exponential dichotomies. We started with the system (5.2)

ur = A(r;λ)u, u = (u, v).

In the core region, we used the new coordinates (u,w) := (u, rv) with (u,w) ∈ X = H1(S1,CN )×L2(S1,CN )

equipped with the usual H1 × L2 norm and proved in §5.1 the existence of exponential dichotomies with

projections P u
−(s) with s = log r for the core equation (5.6) on X. For r ≤ 1, we have |(u,w)|X = r|(u, v)|Xr

since

|(u,w)|2X = |u|2H1 + |w|2L2 = |u|2H1 + |rv|2L2 = r2

(
1

r2
|u|2H1 + |v|2L2

)
= r2|(u, v)|2Xr .

We define the linear isomorphism

j(r) : X −→ Xr, (u,w) 7−→ (u, v) :=
(
u,
w

r

)
(5.29)
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which has norm 1/r. The projections

P̂
s/u
− (r) := j(r)P

s/u
− (log r)j(r)−1 ∈ L(Xr)

then provide exponential dichotomies of (5.2) on Xr in the core region. Using the isomorphism

Xr −→ L2 × L2, (u, v) 7−→ (û, v) = (A(r)
1
2u, v) (5.30)

considered in Lemma 5.6(iii), we can also define projections P̂s/u
− (r) of (5.2) on L2 × L2. In the far-field

region, we used the variables (u, v) ∈ Xr for (5.9) and the variables (û, v) ∈ L2×L2 for the system (5.18) to

construct exponential dichotomies with projections Ps
+(r) for (5.18) on L2×L2 and exponential dichotomies

with projections P s
+(r) for (5.9) on Xr. Lemma 5.6(iii) shows that the constants and rates of the exponential

dichotomies on Xr and L2 × L2 agree. To compare the far-field projections of the spiral wave with those of

the asymptotic wave trains, we can use either of the following equivalent approaches:

(i) Relate the spiral-wave projections Ps
+(r) with the r-independent wave-train projections Ps

∞ of (5.21)

in the (û, v) variables on the space L2 × L2.

(ii) Relate the spiral-wave projections P s
+(r) with the r-dependent wave-train projections P s

∞(r) defined in

(5.16) in the (u, v) variables on Xr.

5.4 Exponential dichotomies for the adjoint equation

In the preceding sections, we proved the existence of exponential dichotomies for the linearizations (5.4) and

(5.9) in the core and the far field, respectively. In this section, we relate appropriate adjoint equations on

the PDE and spatial dynamics level.

We focus first on the adjoint systems in the far field. Using the notation

A(r) = − 1

r2
∂ϑϑ −D−1ω∗∂ϑ + 1, B̃(r) := −D−1(f ′(u∗(r, ϑ− k∗r − θ(r)))− λ)− 1,

we can write the eigenvalue problem for the PDE linearization of the spiral wave as

urr = (A(r) + B̃(r))u− 1

r
ur. (5.31)

Written as spatial dynamical system in the Archimedean coordinates ϑ = k∗r + θ(r) + ψ, we obtain(
u

v

)
r

=

(
T (r) 1

A(r) + B̃(r) T (r)− 1
r

)(
u

v

)
(5.32)

posed on Xr. Using again û := A
1
2 (r)u and defining C(r) := [∂rA

1
2 (r)]A−

1
2 (r), we arrive at the system(

û

v

)
r

=

(
T (r) + C(r) A

1
2 (r)

A
1
2 (r) + B̃(r)A−

1
2 (r) T (r)− 1

r

)(
û

v

)
, (5.33)

which is posed on L2 × L2. Taking the L2 × L2 adjoint of (5.33), we obtain the system(
z̃

w̃

)
r

= −

(
T (r)∗ + C(r)∗ A

1
2 (r)∗ +A−

1
2 (r)∗B̃(r)

∗

A
1
2 (r)∗ T (r)∗ − 1

r

)(
z̃

w̃

)
(5.34)

posed also on L2 × L2. Writing (
z̃

w̃

)
= r

(
−ẑ
w

)
, (5.35)
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equation (5.34) becomes(
ẑ

w

)
r

=

(
T (r)− C(r)∗ − 1

r A
1
2 (r)∗ +A−

1
2 (r)∗B̃(r)

∗

A
1
2 (r)∗ T (r)

)(
ẑ

w

)
. (5.36)

Next, we let ẑ = A−
1
2 (r)∗z and obtain(

z

w

)
r

=

(
T (r)− 1

r A(r)∗ + B̃(r)
∗

1 T (r)

)(
z

w

)
(5.37)

posed on X∗r so that w is a solution to the L2-adjoint

wrr = (A(r)∗ + B̃(r)
∗
)w − 1

r
wr (5.38)

of the PDE linearization (5.31) of the spiral wave in the coordinates (r, ψ).

We now summarize the conclusions we can draw from the computations carried out above. First, we can

apply the approach developed in §5.2 also to the adjoint system (5.34) to conclude that (5.34) and (5.37)

have exponential dichotomies on L2 ×L2 and X∗r , respectively. Alternatively, the arguments in the proof of

[93, Lemma 5.1] show that if Φj(r; ρ) with j = s,u denote the exponential dichotomies of (5.33) on L2×L2,

then the exponential dichotomies Φs
adj(r; ρ) of (5.34) on L2×L2 are given by Φs

adj(r; ρ) = Φu(ρ; r)∗. Second,

it follows from the form of the right-hand sides of (5.33) and (5.34) that

d

dr

〈(
û(r)

v(r)

)
,

(
z̃(r)

w̃(r)

)〉
L2×L2

= 0 (5.39)

for all r for any two solutions of (5.33) and (5.34).

Lemma 5.10 Suppose that (5.33) posed on L2 × L2 has an exponential dichotomy on [R∗,∞) with stable

projection Ps(r), then there is an R ≥ R∗ such that the following is true. If u(r) is a solution of (5.33) on

[r∗,∞) for some r∗ ≥ R that is uniformly bounded, then u(r) ∈ Rg(Ps(r)) for r ≥ r∗. In particular, not

only do solutions with initial data in the range Rg(P s(r∗)) exist and are uniformly bounded in r > r∗, but

any solution with these properties must lie in this range.

Proof. Step 1: We apply the results from §5.2 and the preceding arguments to the asymptotic wave-train

system and the associated adjoint system and denote the resulting stable/unstable projections by Ps/u
∞ and

Ps/u
adj,∞, respectively. We claim that

Rg(Ps
adj,∞)⊕ Rg(Ps

∞) = L2 × L2. (5.40)

To prove this, take any two initial conditions u0 ∈ Rg(Ps
∞) and w0 ∈ Rg(Ps

adj,∞) and denote the corre-

sponding solutions of the asymptotic systems belonging to (5.33) and (5.34) by u(r) and w(r), respectively.

Equation (5.39) then implies that

〈u0,w0〉 = 〈u(r),w(r)〉 = 0

for r ≥ 0, since u(r) and w(r) both decay to zero as r →∞. We conclude that Rg(Ps
adj,∞) ⊥ Rg(Ps

∞). We

can apply the same argument to the unstable projections and arrive at

Rg(Ps
adj,∞) ⊥ Rg(Ps

∞), Rg(Pu
adj,∞) ⊥ Rg(Pu

∞).
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Since we have

Rg(Ps
adj,∞)⊥ ⊕ Rg(Pu

adj,∞)⊥ = L2 × L2, Rg(Ps
∞)⊕ Rg(Pu

∞) = L2 × L2,

we conclude that (5.40) is true as claimed.

Step 2: We turn to the r-dependent equations (5.33) and (5.34), We have shown above that the adjoint system

(5.34) associated with (5.33) has an exponential dichotomy on [R,∞) with stable projection Ps
adj(r). The

results proved in §5.2 show that Ps
adj(r) → Ps

adj,∞ and Ps(r) → Ps
∞ as r → ∞. In particular, we conclude

from (5.40) that Rg(Ps
adj(r))⊕Rg(Ps(r)) = L2×L2 for all r ≥ R, possibly after making R larger. The same

argument involving (5.39) as in the first step of our proof then implies that Rg(Ps(r)) = [Rg(Ps
adj(r))]

⊥ for

all r ≥ R.

Step 3: Suppose now that u(r) is a solution of (5.33) on [r∗,∞) so that supr≥r∗ |u(r)|L2×L2 ≤M . We need

to show that u(r∗) ∈ Rg(P s(r∗)). For each initial condition w0 ∈ Rg(Ps
adj(r∗)), the associated solution w(r)

of (5.34) exists and decays exponentially as r increases. Equation (5.39) therefore implies that

〈u(r∗),w0〉 = 〈u(r),w(r)〉 = 0

for all w0 ∈ Rg(Ps
adj(r∗)), and we conclude that u(r) ⊥ Rg(Ps

adj(r)) for all r ≥ r∗. Step 2 implies u(r) ∈
Rg(Ps(r)) for r ≥ r∗ as claimed.

We state the following lemma, which is the analogue of Lemma 5.10 for the core region.

Lemma 5.11 Suppose that (5.4) posed on H1 × L2 has an exponential dichotomy on (−∞, logR] with

unstable projection P u
−(s). If u(s) is a solution of (5.4) on (−∞, log r∗] that is uniformly bounded, then

u(s) ∈ Rg(P u
−(s)) for s ≤ log r∗.

The proof of Lemma 5.11 follows from taking the adjoint of (5.4) with respect to the L2 ×L2 inner product

and relating the resulting equation to L2-adjoint of the PDE linearization about the spiral wave using (5.35)

without the factor r. The details are much simpler than those for the far-field region, and we therefore omit

them.

5.5 Exponential dichotomies in exponentially weighted spaces

Next, we summarize the changes needed to obtain the existence of exponential dichotomies of the wave-train

and spiral-wave systems we investigated in §4 and §5.1-5.4, respectively, in exponentially weighted spaces.

We begin with the spatial eigenvalue problem

ux = A∞(λ)u (5.41)

of the wave train that we defined in (4.6) and (4.7). Using the rate η ∈ J0(λ), we introduce the new variable

v := eηru (5.42)

and obtain the new system

vx = [A∞(λ) + η]v =: Aη∞(λ)v. (5.43)

Since the spatial eigenvalues of Aη∞(λ) are given by νj(λ) + η, it follows from Definition 2.10 and η ∈ J0(λ)

that Aη∞(λ) is invertible and has relative Morse index zero. Next, we consider the spatial dynamical-systems
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formulation (5.1)

ur =v (5.44)

vr =− 1

r
v − 1

r2
∂ψψu−D−1[ω∗∂ψu+ f ′(u∗(r, ψ))u− λu]

associated with the operator L∗ − λ, which we write as before as

ur = A(r;λ)u. (5.45)

Using the transformation (5.42), this system becomes

vx = [A(r;λ) + η]v =: Aη(r;λ)v. (5.46)

We see that the asymptotic far-field system belonging to (5.46) is given by (5.43). In the core region, we use

again the logarithmic radial time s = log r and see that (5.44) becomes

us =v + ηesu

vs =− ∂ψψu+ ηesv − e2sD−1[ω∗∂ψu+ f ′(u∗(e
s, ψ))u− λu]

which we write, using the notation from (5.6), as

vs = [Acore(s;λ) + ηes]v =: Aηcore(s;λ)v. (5.47)

We observe that the formal limiting problem of (5.47) for s→ −∞ is given by the same system (5.7) as for

the case η = 0. We can now analyze the systems (5.43), (5.46), and (5.47) in exactly the same way as the

systems (5.41), (5.45), and (5.6). In particular, the existence results for exponential dichotomies that we

established in §4 and §5.1-5.4 hold also for the new systems introduced here.

5.6 Exponential trichotomies

In this section, we discuss the spatial-dynamics formulation of the linearization L∗−λ at a spiral wave when

λ is in the Floquet spectrum of the asymptotic wave trains. We will show that the equation

ur = Aarch(r;λ)u +

(
0 0

D−1[f ′(u∗(r, · − k∗r − θ(r)))− f ′(u∞)] 0

)
u =: [A∞(λ) + C(r)]u (5.48)

posed on Xr with

A∞(λ) =

(
−k∗∂ϑ 1

−D−1[ω∗∂ϑ + f ′(u∞)− λ] −k∗∂ϑ

)
, C(r) = −

(
θ′(r)∂ϑ 0

1
r2 ∂ϑϑ

1
r + θ′(r)∂ϑ

)
.

has a decomposition into exponentially decaying and growing directions plus an additional center direction

caused by the Floquet spectrum. Throughout this section, we will make extensive use of the relation between

the operators L̂co(ν)− λco and A∞(λ) that we discussed in §4.3.

We assume that λ is a simple element of the Floquet spectrum of the wave trains that has non-zero group

velocity cg,l. Thus, there is a simple, unique Floquet exponent ν ∈ iR with λ = λst(ν) and the associated

spectral projection of A∞(λ) is given by

P c
∞(λ) =

1

〈uc
ad,u

c〉
〈uc

ad, ·〉uc, uc =

(
u

(k∗∂ϑ + ν)u

)
, uc

ad =

(
D(−k∗∂ϑ + ν)uad

Duad

)
, (5.49)
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where [L̂co(ν)− λco(ν)]u = 0, with λco(ν) = λst(ν) + ω∗ν/k∗, and [L̂ad
co (ν)− λco(ν)]uad = 0. We also define

P h
∞(λ) = id−P c

∞(λ). Note that the linear group velocity cg,l of λst(ν) is given by

cg,l = −2〈uad, Dv〉
〈uad, u〉

, (5.50)

as can be seen by differentiating (4.8) with respect to ν and taking the L2-scalar product with uad, and the

projection P c
∞ is therefore well defined since we assumed that cg,l 6= 0.

Proceeding as in §5.2, we see that the limiting equation

ur = A∞(λ)u (5.51)

has an exponential trichotomy on Xr with three complementary projections P s
∞(λ), P u

∞(λ), and P c
∞(λ) that

project onto the stable, the unstable and the center part of the spectrum of A∞(λ). The center subspace

is one-dimensional and can be characterized as the space of initial conditions whose solutions grow at most

exponentially in forward and backward “time” r with an exponential rate η > 0 which we can choose to be

smaller than the decay rates in the stable and unstable subspaces. Solving (5.48) using exponential weights

and invoking Proposition 5.5, we see that (5.48) also has an exponential trichotomy with projections that

converge to the projections of (5.51) as r →∞.

Next, we observe that the operators C(r)P c
∞(λ) and P c

∞(λ)C(r) are bounded with norm O(r−1). This is

clear for the first operator, while the second operator can be expressed as

P c
∞(λ)C(r)w =

1

〈uc
ad,u

c〉
〈C(r)uc

ad,w〉uc

whenever w is in X1, which proves the claim. Hence, the equation

ur = [A∞(λ) + P c
∞(λ)C(r)P c

∞(λ) + P h
∞(λ)C(r)P h

∞(λ)]u (5.52)

is a small perturbation of (5.48), and Proposition 5.9 shows that (5.52) has an exponential trichotomy also

with projections close to those of (5.51). Equation (5.52) can be written as

vh
r =[A∞(λ) + P h

∞(λ)C(r)]vh

vc
r =[ν + P c

∞(λ)C(r)]vc,

where vh ∈ Rg(P h
∞(λ)) and vc ∈ Rg(P c

∞(λ)). Recall that ν ∈ iR is the Floquet exponent associated with λ.

Since this system is decoupled and because the second equation clearly corresponds to the center direction, we

can conclude that the first equation has an exponential dichotomy that accounts for the remaining strongly

stable and unstable directions. Thus, we have shown the following result.

Lemma 5.12 The equation

wr = [A∞(λ) + P h
∞(λ)C(r)]w, w ∈ Rg(P h

∞(λ))

has an exponential dichotomy on Xr on the interval [R∗,∞).

For later reference, we remark that, when setting λ = ν = 0 in (5.49), we have

uc = u′∞ =

(
∂ϑu∞

k∗∂ϑϑu∞

)
, uc

ad =

(
−k∗D∂ϑuad

Duad

)
,

where Lco∂ϑu∞ = 0 and Lad
couad = 0.
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6 Fredholm properties

In this section, we prove Theorem 3.3 and Proposition 3.8, which characterize the Fredholm boundaries

and the regions of constant Fredholm index for the linearization at a planar spiral wave. In §6.1, we relate

the relative Morse indices of the asymptotic wave trains to the Fredholm indices of maps that involve

the exponential-dichotomy projections in the core and far field. In §6.2, we show that the existence of

exponential dichotomies for the spatial eigenvalue problem implies Fredholm properties of the linearization

at a spiral wave, which will complete the proof of Theorem 3.3. We then use these results in §6.3 to prove

Proposition 3.8.

6.1 Fredholm and Morse indices revisited

In preparation of the proof of Theorem 3.3, we relate the relative Morse index of the asymptotic wave train,

which we defined in §2.4, to Fredholm properties of the exponential dichotomies of the spiral wave. Assume

that λ is not in the Floquet spectrum of the asymptotic wave trains. In Proposition 4.4, we showed that the

relative Morse index iM(λ) is equal to the Fredholm indices of the Fredholm operators

P u
wt(λinv) : Rg(P u

wt(λ)) −→ Rg(P u
wt(λinv))

and

ι : Rg(P u
wt(λ))× Rg(P s

wt(λinv)) −→ X, (uu,us) 7−→ uu + us,

where P u
wt(λ) is the projection of the exponential dichotomy associated with the wave trains defined in Propo-

sition 4.4. In Propositions 5.1 and 5.5, we established the existence of exponential dichotomies P̂
s/u
− (r;λ) and

P
s/u
+ (r;λ) on Xr in the core and the far field, defined for r ≤ R and r ≥ R, respectively, of the linearization

at the spiral wave, where we used the notation introduced in §5.3.

Proposition 6.1 If λ is not in the Floquet spectrum of the asymptotic wave train, then the maps

ιspiral(λ) : Rg(P s
+(R;λ))× Rg(P̂ u

−(R;λ)) −→ XR, (us
+,u

u
−) 7−→ us

+ + uu
−

ι̃spiral(λ) : Rg(P u
+(R;λ))× Rg(P̂ s

−(R;λ)) −→ XR, (uu
+,u

s
−) 7−→ uu

+ + us
−

are Fredholm, and their indices are given by

ind(ιspiral(λ)) = − ind(ι̃spiral(λ)) = −iM(λ).

Proof. We will use the following argument repeatedly for different pairs of projections. Suppose that P1

and Q are projections in L(X) with the associated map ι1 given by

ι1 : Rg(P1)× Rg(Q) −→ X, (u1,u2) 7−→ u1 + u2.

Let P2 be another projection in L(X) together with the map ι2

ι2 : Rg(P2)× Rg(Q) −→ X, (u1,u2) 7−→ u1 + u2

and note that

ι1(u1,u2) = P1u1 + u2 = P2u1 + u2 + (P1 − P2)u1 = P2|Rg(P1)u1 + u2 + (P1 − P2)u1

= ι2 ◦
(
P2|Rg(P1) × id

)
(u1,u2) + (P1 − P2)u1.
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We can then conclude that if ι1 is Fredholm with index i1, the map P2 : Rg(P1) → Rg(P2) is Fredholm

with index i12, and the difference P1 − P2 : Rg(P1) → X is compact (or so small that the map (u1,u2) 7→
ι1(u1,u2) + (P2 − P1)u1 is still Fredholm with index i1), then ι2 is Fredholm with index i2 = i1 − i12.

We first focus on Fredholm properties of ι̃spiral. We fix λ and omit the dependence of the projections on λ.

To relate the Morse index iM and the Fredholm index of the pair (P u
+(R), P̂ s

−(R)), we construct a sequence

of pairs of projections and account for the changes of the Fredholm index when switching from one pair to

the next. To make the notation less awkward, we give only the projections instead of the associated maps ι.

Finally, to compare projections in the core and far field, we use the coordinates and isomorphisms discussed

in §5.3 that allow us to consider the relevant projections on the common space L2 × L2 instead of on XR.

We begin with the unstable projection of the reference equation

Durr + ω∂ψu = λinvu

in the far field and the stable projection of the reference equation

uss + uψψ = 0

in the core. Using explicit computations in angular Fourier space and pulling the ranges of the resulting

projections back to L2 × L2 using the isomorphisms from Lemma 5.4 and §5.3, it is not difficult to see that

the Fredholm index of the resulting pair (Pu
+,ref , P̂s

−,ref) is zero. Next, we consider the pair (Pu
∞, P̂s

−,ref).

Since the Fredholm index of

Pu
∞ : Rg(Pu

∞) −→ Rg(Pu
+,ref)

is, by definition, equal to iM, and the difference of Pu
∞ and Pu

+,ref is compact due to Proposition 4.4(ii),

we see that the Fredholm index of the pair (Pu
∞, P̂s

−,ref) is equal to iM. Closeness of projections proved in

Proposition 5.5 shows that switching to the pair (Pu
+(R), P̂s

−,ref) does not change the Fredholm index. Our

final step consists of replacing P̂s
−,ref by P̂ s

−(R). To do so, we claim that the operators

P̂ s
−(r) : Rg(P̂s

−,ref) −→ Rg(P̂ s
−(r)) (6.1)

are Fredholm of index zero for all 0 < r ≤ R. For 0 < r � 1, this claim follows from the convergence of

the stable core projections to the stable reference projection as r → 0 that we established in §5.1. We can

then apply Fourier projections as in [93, §4] to show that the operator in (6.1) is a Fredholm operator of the

same index independently of r, which establishes the claim for all r, and that the difference P̂ s
−(r)−P̂s

−,ref is

compact for all r. Hence, appealing to our general argument that we outlined at the beginning of the proof,

we can indeed replace the pair (Pu
+(R), P̂s

−,ref) by (Pu
+(R), P̂ s

−(R)) without changing the index. This shows

that the Fredholm index of

Rg(P u
+(R;λ))× Rg(P̂ s

−(R;λ)) −→ X, (uu,us) 7−→ uu + us

is indeed equal to iM(λ) as claimed.

The same considerations apply to the map ιspiral, where the Fredholm index is now determined by the map

Ps
∞ : Rg(Ps

∞) −→ Rg(Ps
+,ref).

Since the stable subspace for the linearization at wave trains is simply obtained by reversing spatial time,

the relative Morse index changes sign and we find that the Fredholm index is −iM. This concludes the proof

for both ιspiral and ι̃spiral.
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6.2 Exponential dichotomies imply Fredholm properties

We prove Theorem 3.3. Note that it is a consequence of, for instance, [101, Lemma 6.5] that L∗ − λ is not

Fredholm whenever λ is in the Floquet spectrum of the asymptotic wave trains. Thus, it suffices to show

that L∗−λ is Fredholm whenever λ is not in the Floquet spectrum of the asymptotic wave trains. To prove

this, we follow the strategy of the proofs in [93, §5.2] with modifications in the regime s→ −∞.

Since λ is not in the Floquet spectrum of the wave trains, there is an R � 1 so that the far-field equation

(5.1)

ur =v (6.2)

vr =− 1

r
v − 1

r2
∂ψψu−D−1[ω∗∂ψu+ f ′(u∗(r, ψ))u− λu]

has an exponential dichotomy for r ≥ R with projections P
s/u
+ (r;λ) defined on Xr. The equation in the core

region (5.4)

us =w (6.3)

ws =− ∂ψψu− e2sD−1[ω∗∂ψu+ f ′(u∗(e
s, ψ))u− λu]

with s = log r always has an exponential dichotomy and, following §5.3, we denote the associated projections

by P
s/u
− (s;λ) on X and by P̂

s/u
− (r;λ) on Xr. Combining the spatial dynamics equations in the core and far

field, and using the time variable r = es for r < R, we obtain an abstract ordinary differential equation

ur = Aλ(r)u, (6.4)

which coincides with (6.2) for r ≥ R and with (6.3) for s = log r ≤ logR. We say that (6.4) has an

exponential dichotomy on R if (6.2) has an exponential dichotomy on Xr for r ≥ R and if the unstable

subspace Rg(P̂ u
−(R;λ)) of the exponential dichotomy in the core region and the stable subspace Rg(P s

+(R;λ))

in the far field span the space XR at radial time R and have trivial intersection.

Assume that u = u(r, ψ) belongs to the null space of L∗ − λ, then the function (u, ur) is a bounded solution

to the spatial-dynamics formulation (6.4). Using Lemmas 5.10 and 5.11, it follows that (u(R,ψ), ur(R,ψ))

belongs to Rg(P̂ u
−(R;λ)) ∩ Rg(P s

+(R;λ)). Since different bounded solutions cannot share the same initial

data (u(R,ψ), ur(R,ψ)) by [73, Theorem 2.5], Proposition 6.1 implies that the null space of L∗ − λ is finite-

dimensional. Applying the above arguments to the L2-adjoint of L∗ − λ shows that the codimension of the

closure of the range of L∗ − λ is also finite-dimensional.

To complete the proof of Theorem 3.3, we need to (i) show that the range of L∗ − λ is closed since the

operator

L∗ − λ = D∆ + ω∗∂ψ + f ′(u∗(r, ψ))− λ

is then Fredholm and (ii) verify the statement about its index. We claim that (ii) follows from (i). Indeed, if

L∗ − λ is Fredholm, we replace the term f ′(u∗(r, ψ))u in the above expression for L∗ − λ with the Galerkin

approximation Qm(f ′(u∗(r, ψ))u) where Qm denotes the orthogonal projection onto the first m vector-valued

Fourier modes. Considered as operators from their common domain into L2, the resulting two operators are

close for m sufficiently large. In particular, the operator

u 7−→ D∆u+ ω∗∂ψu+Qm (f ′(u∗(r, ψ))u)− λu (6.5)

is also Fredholm and has the same index as L∗ − λ. The spatial-dynamics formulation for the Galerkin-

approximated operator is upper triangular, and it is not difficult to see that the relative Morse index of
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the wave trains and the Fredholm index of the operator (6.5) are as in (3.5) since the relevant system is

finite-dimensional. Thus, the statement about the Fredholm index in Theorem 3.3 follows once we know

that the range of L∗ − λ is closed, and we focus now on proving closedness of the range.

Suppose therefore that (L∗ − λ)u` = f` ∈ L2(R2,CN ) where f` → f in L2 as ` → ∞. We need to prove

that, for a suitable choice of the u`, the sequence u` converges to u in L2 which, by closedness of L∗, would

imply that (L∗ − λ)u = f ∈ L2(R2) so that the range is closed. To prove convergence of the u`, we use the

spatial-dynamics formulation (6.4).

Recall the definitions (5.11) and (5.12) of the spaces X, X1 and Xr, X
1
r , respectively. We define the function

spaces

X := {(u−,u+) ∈ L2
loc((−∞, logR], X)× L2

loc([R,∞), Xr); ‖u‖X <∞},

‖(u−,u+)‖2X := ‖esu−‖2L2((−∞,logR],X) + ‖r1/2u+‖2L2([R,∞),Xr)

and

X 1 :={(u−,u+) ∈
(
L2

loc((−∞, logR], X1)× L2
loc([R,∞), X1

r )
)
∩(

H1
loc((−∞, logR], X)×H1

loc([R,∞), Xr)
)

; ‖u‖X 1 <∞ and j(R)u−(logR) = u+(R)}

‖(u−,u+)‖2X 1 :=‖esu−‖2H1((−∞,logR],X) + ‖esu−‖2L2((−∞,logR],X1)

+ ‖r1/2u+‖2H1([R,∞),Xr) + ‖r1/2u+‖2L2([R,∞),X1
r ),

where j(R) was introduced in (5.29). We then define the operator T : X 1 → X by T (u−,u+) = (T−u−, T+u+)

where

T−u− :=


d

ds
u− − v−

d

ds
v− + ∂ψψu− + e2sD−1[ω∗∂ψu− + f ′(u∗(e

s, ψ))u− − λu−]

 ,

T+u+ :=


d

dr
u+ − v+

d

dr
v+ +

1

r
v+ +

1

r2
∂ψψu+ +D−1[ω∗∂ψu+ + f ′(u∗(r, ψ))u+ − λu+]

 ,

and u± = (u±, v±). It is not difficult to check that T is closed when considered as an unbounded operator

on X , since the operator is a bounded perturbation of the Laplacian on the half cylinder (−∞, logR] × S1

and of D∆ + ω∗∂ψ on [R,+∞) when rewritten as spatial dynamical systems.

We return to the sequences u` → u and f` → f in L2(R2,CN ). We define

f`,+ =

(
0

f`(r, ψ)

)
, f`,− =

(
0

e2sf`(es, ψ)

)
, u`,+ =

(
u`(r, ψ)

∂ru`(r, ψ)

)
, u`,− =

(
u`(e

s, ψ)

∂s[u`(es, ψ)]

)
.

We claim that f` ∈ X and u` ∈ X 1. This claim can be easily checked by transforming the L2 and the

H2-norm in the plane into polar coordinates (r, ψ). Indeed, by Fubini’s theorem, the X -norm of the second

component of u− and u+ is precisely the L2-norm in the plane written in polar coordinates. Similarly,

bounds on the norms of ∂rru, r−1∂rψu, and r−2∂ψψu in L2(R2,CN ) imply L2-bounds on the norms of

es∂ssu−(s, ψ), es∂sψu−(s, ψ) and e−s∂ψψu−(s, ψ). The X 1-norm of the u+-component is equivalent to the

norm induced by the domain of ∆ + ∂ψ on L2(R2,CN ). This proves our claim that f` ∈ X and u` ∈ X 1. In

particular, we have T u` = f` for all `.
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A possibly different solution to T ũ` = f` is given by the variation-of-constant formula

ũ`,−(s) = Φu
−(s; logR)v`,− +

∫ s

logR

Φu
−(s; ζ)f`(ζ) dζ +

∫ s

−∞
Φs
−(s; ζ)f`(ζ) dζ, s ≤ logR

ũ`,+(r) = Φs
+(r;R)v`,+ +

∫ r

R

Φs
+(r; ζ)f`(ζ) dζ +

∫ r

∞
Φu

+(r; ζ)f`(ζ) dζ, r ≥ R, (6.6)

where the elements v`,± are defined by

v`,+ = P s
+(R)u`,+(R), v`,− = P u

−(logR)u`,−(logR)

and the evolution operators Φs,u
− and Φs,u

+ that appear in (6.6) are the exponential dichotomies in the core

and far-field regions that we constructed in §5.1 and §5.2, respectively. Using the properties of Φ
u/s
± , we

see that the integrals in (6.6) converge absolutely since the lack of exponential decay in the dichotomies on

(−∞, logR] is compensated for by the exponential decay of the right-hand side f .

We first prove that ũ` = u` for all `. The difference ũ`,+(r) − u`,+(r) is uniformly bounded for r ≥ R and

satisfies the homogeneous equation T+u+ = 0 for r ≥ R with ũ`,+(R)−u`,+(R) ∈ ker(P s
+(R)). Lemma 5.10

readily implies that ũ`,+(r) = u`,+(r) for r ≥ R. The same argument combined with Lemma 5.11 shows

that ũ`,−(s) = u`,−(s) for s ≤ logR. Thus, we have ũ` = u` as claimed.

Since ũ` = u`, we know that u` satisfies (6.6). Setting s = logR and r = R in (6.6), and using that

j(R)u`,−(logR) = u`,+(R), we see that

j(R)v`,− + j(R)

∫ logR

−∞
Φs
−(logR; ζ)f`(ζ) dζ = v`,+ +

∫ R

∞
Φu

+(R; ζ)f`(ζ) dζ. (6.7)

Setting v̂`,− := −j(R)v`,− ∈ Rg(P̂ u
−(R)), we can write (6.7) as

v`,+ + v̂`,− = j(R)

∫ logR

−∞
Φs
−(logR; ζ)f`(ζ) dζ −

∫ R

∞
Φu

+(R; ζ)f`(ζ) dζ

or, equivalently, as

ιspiral(v`,+, v̂`,−) = j(R)

∫ logR

−∞
Φs
−(logR; ζ)f`(ζ) dζ −

∫ R

∞
Φu

+(R; ζ)f`(ζ) dζ (6.8)

where (v`,+, v̂`,−) ∈ Rg(P s
+(R)) × Rg(P̂ u

−(R)). Since the right-hand side of (6.8) lies in Rg(ιspiral) for all `

and converges in XR as ` → ∞, and the map ιspiral is Fredholm by Proposition 6.1, we conclude that the

sequence (v`,+, v̂`,−) converges in Rg(P s
+(R)) × Rg(P̂ u

−(R)) upon subtracting appropriate elements in the

null space of ιspiral.

Hence, we have shown that the right-hand side of (6.6) converges for `→∞, and we conclude that u` = ũ`

converges to an element u in X . Restriction to the first component u± of u± shows that u` → u in

L2(R2,CN ). Inspecting the integral equation (6.6) for the limit u, we see that u ∈ H2. This proves that the

range of L∗ − λ is closed and, together with the previous observations, completes the proof of Theorem 3.3.

6.3 Proof of Proposition 3.8

To prove Proposition 3.8, we note that the operator L∗ − λ posed on L2
η(R2,CN ) corresponds to the spatial

dynamical systems (5.46) and (5.47) for which we constructed exponential dichotomies in §5.5. Applying

the results established in the previous sections to the weighted systems (5.43), (5.46), and (5.47) therefore

completes the proof of Proposition 3.8.
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Figure 6: Illustration of the construction of robust spiral waves. In the region 0 ≤ r ≤ 1, we use dynamics in

τ = log r to construct the manifoldMu
− of solutions that are bounded as r → 0. in the region 1 ≥ α = 1

r
≥ 0,

we construct the manifold Mcs
+ of solutions that are asymptotic to the wave train solutions at α = 0. The

robust intersection, as the parameter ω∗ is varied, gives the spiral wave solution. The schematic is shown

in (2 + 1)-dimensional phase space and should be thought as amended by infinitely many stable and unstable

(and equally many) directions in the (u, v)-direction.

7 Robustness and asymptotics of spiral waves

The goal of this section is to prove Proposition 3.14 and Theorem 3.15 about robustness and far-field

expansions of planar spiral waves. As in [91, 94, 102], our strategy is to view spiral waves as heteroclinic

orbits in the radial variable r, and we now describe this idea in detail and illustrate it further in Figure 6.

First, we cast the steady-state equation (3.3)

0 = D

(
∂rr +

1

r
∂r +

1

r2
∂ψψ

)
u+ ω∂ψu+ f(u;µ), u = u(r, ψ) ∈ RN (7.1)

for spiral waves as the dynamical system

ur =v (7.2)

vr =− 1

r
v − 1

r2
∂ψψu−D−1[ω∂ψu+ f(u;µ)]

in the spatial variable r. We consider (7.2) in the phase space X = H1(S1,RN ) × L2(S1,RN ) with norms

defined in (5.11). Throughout this section, we assume that (7.1) with µ = 0 and ω = ω∗ 6= 0 admits a smooth

Archimedean spiral wave u∗(r, ψ) that emits a spectrally stable wave train u∞ with non-zero wavenumber

k∗ 6= 0. Most of the work in this section is concerned with constructing nonlinear analogues of the stable and

unstable subspaces for the linear dichotomies. These nonlinear analogues are infinite-dimensional manifolds

Mu
− andMcs

+ , which contain solutions that are bounded as r → 0 and asymptotic to wave trains as r →∞,

respectively. The intersection of these two infinite-dimensional manifolds captures the spiral-wave solutions

we are interested in as heteroclinic orbits. A schematic of this approach is illustrated in Figure 6.

First, we discuss the existence of solutions near u∗ for r ≤ R and µ close to zero.
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Proposition 7.1 For any fixed choice of R with 0 < R <∞, there exists a smooth manifoldMu
−(µ, ω) ⊂ X,

which depends smoothly on µ and ω for µ close to zero and ω close to ω∗, such that Mu
−(µ, ω) consists

precisely of all boundary data of smooth solutions to (3.9) in |x| ≤ R that are close to the original spiral wave

(in particular, (u∗(R, ·), ∂ru∗(R, ·)) ∈ Mu
−(0, ω∗)). More precisely, there is an ε > 0 such that any solution

u(r, ψ) ∈ H2(|x| ≤ R) of (3.9) with u(r, ψ) ε-close to u∗(r, ψ) in H2(|x| ≤ R) satisfies (u(R, ·), ∂ru(R, ·)) ∈
Mu
−(µ, ω). Conversely, for any (u(R, ·), ∂ru(R, ·)) ∈ Mu

−(µ, ω), there actually exists a solution u(r, ψ) of

(3.9) that is ε-close to u∗(r, ψ) in H2(|x| ≤ R) and satisfies the given Dirichlet and Neumann boundary

values. These solutions depend continuously on µ and the boundary values. The tangent space of Mu
−(0, ω∗)

in (u∗(R, ·), ∂ru∗(R, ·)) is given by Rg(P u
−(R)) defined in (5.8).

Proof. The manifold is the union of the strong unstable fibers of the subspace {(u0, 0); u0 ∈ RN} of

constant functions in the center space Ec
−∞ at s = −∞, where s = log r is the rescaled logarithmic radial

variable introduced in §5.1. Using the exponential dichotomies in the core region, we can construct this

manifold by applying the uniform contraction mapping principle to the fixed-point equation(
u

w

)
(s) = Φu

−(s; logR)

(
uu

0

wu
0

)
+

∫ s

logR

Φu
−(s; ζ)G(u(ζ), ζ, µ) dζ +

∫ s

−∞
Φs
−(s; ζ)G(u(ζ), ζ, µ) dζ, s ≤ logR,

where (uu
0 , w

u
0 ) ∈ Rg(P u

−(logR)) and

G(u, s, µ) := e2s

(
0

f(u∗(e
s, ψ) + u, µ)− f(u∗(e

s, ψ), 0)− f ′(u∗(es, ψ), 0)u

)
= e2sO(|u|2 + |µ|).

Smoothness of the strong unstable fibers and smooth dependence on the asymptotic value and the parameter

µ follow from the uniform contraction mapping principle. Smoothness in ω can be shown similarly upon

dividing (7.1) by ω and rescaling r so that (7.1) depends on ω only through the nonlinearity.

The following result deals with solutions in the far field r � 1. Its proof is considerably more complicated and

will occupy the remainder of this section. The main challenge is that spiral waves converge only algebraically

with order 1/r in Archimedean coordinates as r →∞. In contrast, the scaling s = log r for the core region

ensures that the coefficients of the core equation converge exponentially as s → −∞, which simplifies the

analysis tremendously.

Proposition 7.2 Choose an ε > 0, then for all µ sufficiently close to zero and any R > 0 sufficiently large

there exists a smooth manifold Mcs
+(µ, ω) ⊂ X that depends smoothly on (µ, ω) and that contains precisely

the boundary data of smooth and bounded solutions to (3.9) in |x| ≥ R that are ε-close to the original spiral

wave. In particular, (u∗(R, ·), ∂ru∗(R, ·)) ∈Mcs
+(0, ω∗). More precisely, we have the following.

• Let u(r, ψ) ∈ H2(|x| ≥ R) be a solution to (3.9) such that

|(u(r, ·)− u∞(k∗r + θ(r) + ·), ∂ru(r, ·)− ∂ru∞(k∗r + θ(r) + ·))|Xr → 0 (7.3)

as r →∞ for some phase function θ(r), where u∞ denotes the µ-dependent wave train with frequency

ω, and

|(u(R, ·)− u∗(R, ·), ∂ru(R, ·)− ∂ru∗(R, ·))|X < ε,

then (u(R, ·), ∂ru(R, ·)) ∈Mcs
+(µ, ω).

• Conversely, for any (u(R, ·), ∂ru(R, ·)) ∈ Mcs
+(µ, ω), there exist a solution u(r, ψ) of (3.9) in r ≥ R

with the given Dirichlet and Neumann boundary values and a smooth phase θ(r) that satisfies θ′(r)→ 0
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as r →∞ such that u(r, ψ) is asymptotic to the profile u∞(kr+ θ(r) +ψ), where the wavenumber k is

determined implicitly through the nonlinear dispersion relation ω∗(k) = ω of the wave trains, and (7.3)

holds. The solution (u, ∂ru)(r) ∈ Xr and the phase θ(r) depend smoothly on (µ, ω) and the boundary

values in Mcs
+(µ, ω).

• The tangent space of Mcs
+(0, ω∗) in (u∗(R, ·), ∂ru∗(R, ·)) is given by Rg(P cs

+ (R)) as defined in Proposi-

tion 5.5.

Proof. Throughout the proof, we fix µ, since smooth dependence of the manifold and solutions on µ will

become clear from the proof. We have smooth dependence of these objects on ω since we may divide (7.1)

by ω and then rescale r so that (7.1) depends on ω only through the smooth nonlinearity.

Recall the steady-state equation

ur =v

vr =− 1

r
v − 1

r2
∂ψψu−D−1[ω∗∂ψu+ f(u)].

Introducing the Archimedean coordinate ϑ = k∗r + θ0 log r + ψ with θ0 to be determined, we obtain the

equation

ur =−
(
k∗ +

θ0

r

)
∂ϑu+ v (7.4)

vr =−
(
k∗ +

θ0

r

)
∂ϑv −

1

r
v − 1

r2
∂ϑϑu−D−1[ω∗∂ϑu+ f(u)]

for which we seek solutions u(r, ϑ) = (u, v)(r, ϑ).

Formal expansion: Before we embark on a rigorous analysis of (7.4), we seek formal solutions of the form

u(r, ϑ) = u∞(ϑ) +
1

r
u1(ϑ) + O

(
1

r2

)
.

In the following formal analysis, we shall neglect all terms that are formally of order O(r−2). Thus, from

the first equation in (7.4), we get

v = k∗u
′
∞ +

1

r
(θ0u

′
∞ + k∗u

′
1) + O

(
1

r2

)
,

where u′ = uϑ. Substituting this into the second equation in (7.4), we obtain, after some calculations, the

equation

k2
∗Du

′′
∞ + ω∗u

′
∞ + f(u∞) = 0 (7.5)

at order O(1) and the equation

k2
∗Du

′′
1 + ω∗u

′
1 + f ′(u∞)u1 = −k∗D(2θ0u

′′
∞ + u′∞) (7.6)

at order O(r−1). We can solve this equation for u1 if and only if the right-hand side is in the range of the

operator L̂co(0), the linearization of the one-dimensional reaction-diffusion system at the wave train u∞.

Thus, we need the compatibility condition

〈uad, 2θ0Du
′′
∞ +Du′∞〉 = 0,
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which gives

θ0 = − 〈uad, Du
′
∞〉

2〈uad, Du′′∞〉
=
k∗d⊥
cg

, (7.7)

upon using (2.8) and (2.13). Substituting this expression into (7.6), and using (2.14) and (4.2), we see that

u1 = a1u
′
∞ + uh, uh = θ0∂ku∞ −

k∗
2
uνν , (7.8)

where a1 ∈ R is arbitrary. Before we proceed, we remark that

〈uad, 2k∗θ0Du
′′′
∞ + k∗Du

′′
∞ + f ′′(u∞)[u′∞, u1]〉 = 0, (7.9)

for any a1 ∈ R, where u1 is given by (7.8). Indeed, taking the derivative of (7.6) with respect to ϑ, we see

that

Lcou
′
1 = −k∗D(2θ0u

′′′
∞ + u′′∞)− f ′′(u∞)[u′∞, u1],

so that the right-hand side is in the range of the operator Lco, which proves (7.9). The same arguments

show that

〈uad, f
′′(u∞)[u′∞]2〉 = 0, (7.10)

upon taking two derivatives of (7.5) with respect to ϑ.

Rigorous analysis: Now that we know the formal solution up to order O(r−2), we begin with the rigorous

analysis of (7.4)

ur =−
(
k∗ +

θ0

r

)
∂ϑu+ v

vr =−
(
k∗ +

θ0

r

)
∂ϑv −

1

r
v − 1

r2
∂ϑϑu−D−1[ω∗∂ϑu+ f(u)].

As in (7.7), we set θ0 = k∗d⊥/cg, and seek solutions u(r, ϑ) = (u, v)(r, ϑ) of (7.4) of the form

u(r, ϑ) = u∞(ϑ) + w̃(r, ϑ), (7.11)

where u∞ = (u∞, k∗u
′
∞). Note that u∞ = (u∞(ϑ), ku′∞(ϑ)) is an r-independent solution to the asymptotic

equation which is obtained formally by setting r = ∞ in (7.4). We substitute the ansatz (7.11) into (7.4)

and obtain

w̃r = [A∞ + C(r)]w̃ + C(r)u∞ + G(w̃), (7.12)

where

A∞ =

(
−k∗∂ϑ 1

−D−1[ω∗∂ϑ + f ′(u∞)] −k∗∂ϑ

)
, C(r) = −1

r

(
θ0∂ϑ 0
1
r∂ϑϑ 1 + θ0∂ϑ

)
and

G(w) = G(w1, w2) =

(
0

−D−1[f(u∞ + w1)− f(u∞)− f ′(u∞)w1]

)
,

so that G(w) = O(|w|2X).

Recall that, by assumption, the center eigenspace of A∞ is one-dimensional and spanned by u′∞. We use

the center spectral projection P c
∞ of A∞, see §4.3 and §5.6, and write

w̃(r) = a(r)u′∞ + w(r) +
1

r
u1, (7.13)
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where a(r) ∈ R and

u1 =

(
u1

k∗u′1 + θ0u′∞

)
.

We require that w(r) ∈ Rg(P h
∞) where P h

∞ = id−P c
∞. Substituting this ansatz into (7.12), we obtain

aru
′
∞ + wr = [A∞ + C(r)](au′∞ + w) + C(r)u∞ +

1

r
[A∞ + C(r)]u1 +

1

r2
u1 + G(au′∞ + w + u1/r).

Using the definition of u1, we see that

C(r)u∞ +
1

r
A∞u1 =

1

r2
C2u∞, C2 =

(
0 0

−∂ϑϑ 0

)
,

which gives the system

aru
′
∞ + wr = [A∞ + C(r)](au′∞ + w) +

1

r2
C2u∞ +

1

r
C(r)u1 +

1

r2
u1 + G(au′∞ + w + u1/r),

or

aru
′
∞ + wr = [A∞ + C(r)](au′∞ + w) +R1(r) + G(au′∞ + w + u1/r),

upon setting

R1(r) =
1

r2
C2u∞ +

1

r
C(r)u1 +

1

r2
u1 = O

(
1

r2

)
. (7.14)

Next, we project onto the center and the hyperbolic part using the spectral projections P c
∞ and P h

∞ and

obtain

aru
′
∞ =P c

∞ [C(r)au′∞ + C(r)w +R1(r) + G(au′∞ + w + u1/r)]

wr =[A∞ + P h
∞C(r)]w + P h

∞ [C(r)au′∞ +R1(r) + G(au′∞ + w + u1/r)] .

We rewrite the equation for a using the explicit form of the projection P c
∞ from §5.6 which gives

ar = 〈uad, C(r)au′∞ + C(r)w +R1(r) + G(au′∞ + w + u1/r)〉

=a〈uad, C(r)u′∞〉+ 〈C(r)∗uad,w〉+ 〈uad,R1(r)〉+ 〈uad, DG2(au′∞ + w + u1/r)〉.

We can write the second component of the nonlinearity as

G2(au′∞ + w + u1/r) = −D−1

[
1

2
f ′′(u∞)[au′∞ + u1/r]

2 − g1(a,w1, r)w1 − g2(a, r)

]
,

where

g1(a,w1, r) = O (|a|+ |w1|+ 1/r) , g2(a, r) = O
(
(|a|+ 1/r)3

)
. (7.15)

Hence, we find

ar =a〈uad, C(r)u′∞〉+ 〈C(r)∗uad,w〉+ 〈uad,R1(r)〉

− 1

2
〈uad, f

′′(u∞)[au′∞ + u1/r]
2〉+ 〈uad, g1(a,w1, r)w1 + g2(a, r)〉.

Using the definition

R2(r) = 〈uad,R1(r)〉 − 1

2r2
〈uad, f

′′(u∞)[u1]2〉 = O

(
1

r2

)
(7.16)

and exploiting (7.10), we find

ar =a〈uad, C(r)u′∞〉+
a

r
〈uad, f

′′(u∞)[u′∞, u1]〉

+ 〈C(r)∗uad,w〉+R2(r) + 〈uad, g1(a,w1, r)w1 + g2(a, r)〉.
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Writing out the first scalar product, and using the identity (7.9), we see that the a/r terms actually vanish,

so that we obtain the final equation

ar =− a

r2
〈uad, u

′′
∞〉+ 〈C(r)∗uad,w〉+R2(r) + 〈uad, g1(a,w1, r)w1 + g2(a, r)〉 (7.17)

wr =[A∞ + P h
∞C(r)]w + P h

∞ [C(r)au′∞ +R1(r) + G(au′∞ + w + u1/r)] . (7.18)

While we could proceed from here on and solve (7.17)-(7.18) directly using Banach’s fixed-point theorem

applied to a corresponding integral equation, we will first simplify the equation further using normal-form

transformations as this will help us obtain the higher-order expansions stated in (3.7). To do so, we note

that the definitions of the remainders R` and the nonlinearities g` and G imply that all terms appearing in

(7.17)-(7.18) admit a formal expansion in terms of (1/r, a,w). Possibly after modifying the remainder terms

Rj , we can also assume that the nonlinearities g2 and G vanish at (a,w) = 0. We claim that we can perform

a sequence of subsequent transformations

a 7→ a+ O(r−j+1), w 7→ w + O(r−j)

for j = 2, . . . ,K+ 1 so that the system (7.17)-(7.18) is transformed into a system of the same form, but with

remainders R` = O(r−(K+2)). To see this, we proceed inductively and assume R` = R`,jr−j + O(r−(j+1)).

First, the substitution

anew = a+R2,j
r−j+1

−j + 1
(7.19)

preserves the general form of the equation for ar but eliminates terms of order r−j in the inhomogeneous

terms R`. In fact, in the first equation only the terms ar = R2(r) yield terms of order r−j after the

substitution (7.19), so that the choice (7.19) for anew cancels those terms. We now substitute this new

variable anew into the equation for wr and collect inhomogeneous terms (terms that vanish for a = 0,w = 0)

in the new remainder R̃1. Note that the terms C(r)au′∞ and G(au′∞u1/r) contribute a new term at order

r−j , but there are no inhomogeneous terms of lower order. We next remove the term R̃1,jr
−j using the

substitution

wnew = w +A−1
∞ P h

∞R̃1,jr
−j . (7.20)

In the equation for wr, only A∞w + P h
∞R1(r) yield terms of order r−j after the substitution (7.20), and

those contributions cancel due to the choice of transformation in (7.20). Also note that the coefficients

R`,j are smooth, a property that is preserved under the transformation (7.19-7.20). Repeating this change

of coordinates shows that we can assume from now on that Rj = O(r−(K+2)) in (7.17)-(7.18) and that

nonlinear terms vanish for (a,w) = 0.

Our next goal is to derive an integral equation and solve the system with a fixed point argument in appropriate

function spaces. We therefore note that Lemma 5.12 implies that the principal part

wr = [A∞ + P h
∞C(r)]w, w ∈ Rg(P h

∞) (7.21)

of (7.18) has an exponential dichotomy on Xr which we denote by Φss(r, s) and Φuu(r, s). The desired

integral equation is given by

a(r) =

∫ r

−∞

[
−a(s)

s2
〈uad, u

′′
∞〉+ 〈C(s)∗uad,w(s)〉+R2(s)

+〈uad, g1(a(s), w1(s), s)w1(s) + g2(a(s), s)〉] ds (7.22)

w(r) =Φss(r,R)wss
0 +

∫ r

R

Φss(r, s)f(a(s),w(s), s) ds+

∫ r

∞
Φuu(r, s)f(a(s),w(s), s) ds,
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where we take r ∈ [R,∞), where wss
0 lies in the stable subspace Rg(P ss(R)), and where

f(a,w, r) = P h
∞ [C(r)au′∞ +R1(r) + G(au′∞ + w + u1/r)] .

We regard (7.22) as a fixed-point equation(
a

w

)
=

(
F1(a,w)

F2(a,w)

)
, (a,w) ∈ Xε, (7.23)

with parameter wss
0 on the space

Xε :=

{
(a,w) ∈ C0([R,∞),R×X); ‖a‖ := sup

r≥R
rK+ε|a(r)| <∞, ‖w‖ := sup

r≥R
rK+1+ε|w(r)|Xr <∞

}
equipped with the norm ‖a‖+ ‖w‖, where ε ∈ (0, 1). Using the norm on Xε as well as the estimates (7.14),

(7.15) and (7.16), it is not difficult to check that there is constant C > 0 such that

‖F1(a,w)‖ ≤ C
[
1 +

1

Rε
(‖a‖+ ‖w‖)

]
‖F2(a,w)‖ ≤ K|wss

0 |+
C

R
[1 + ‖a‖+ ‖w‖]

‖D(a,w)F1(a,w)‖ ≤ C

Rε
,

whereK denotes the constant of the exponential dichotomy of (7.21). Indeed, the exponential decay estimates

for the evolution operators Φss and Φuu imply that the integral operators appearing in F2 reproduce algebraic

weights. Also, due to the embedding H
1
2 ↪→ Lp for any p < ∞, the nonlinearities g1 and g2 define smooth

maps from Xε into itself provided f satisfies certain polynomial growth conditions which hold after the

standard cut-off close to w = 0. Alternatively, we may invoke Remark 5.8 and consider the equation on a

space Hα+1/2 ×Hα for some α > 0 so that u ∈ C0.

The estimates for F show that the right-hand side of (7.23) is a uniform contraction, which maps the closed

subset

Z = {(a,w) ∈ Xε; ‖a‖ < 2C, ‖w‖ < δ}

into itself for any wss
0 with |wss

0 |XR < δ/2 and for any R larger than some R∗ � 1 and any δ > 0 sufficiently

small. Therefore, for any such wss
0 , there exists a unique fixed point (a,w) of (7.22) in Z that depends

smoothly on wss
0 . Exploiting the norm in Xε, we see that a(r) decays with rate 1/rK+ε, while w(r) decays

like 1/rK+1+ε as r →∞.

The family of traces w(R), considered as a function of wss
0 , describes a graph over Rg(P ss(R)). To describe

the manifoldMcs
+ as a graph over Rg(P cs(R)), we replace the term u∞(ϑ) in our ansatz (7.11) by u∞(ϑ+a∞)

and treat the asymptotic phase a∞ ∈ R as a parameter (in addition to wss
0 ). The right-hand side of the

fixed-point equation (7.22) is then a contraction uniformly in (a∞,w
ss
0 ), and the resulting fixed points depend

smoothly on (a∞,w
ss
0 ). This eventually proves the existence and characterization of the manifold Mcs

+ as a

graph over Rg(P cs(R)) as desired. As mentioned at the beginning of the proof, smooth dependence on the

external parameter µ and on the frequency ω follows in the same fashion.

Proof of Proposition 3.14. During the proof of the preceding Proposition 7.2, we actually derived the

expansion for the solution u∗. Reverting the normal form transformations, we find an expansion for w and

a up to any finite order and can then use (7.13) and (7.11) to derive an expansion for u. Next, interpreting
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a(r) as a phase correction, u∞+ a(r)u′∞ = u∞(·+ a(r)) + O(a(r)2), we find an expansion for u∗ as in (3.7).

Finally, from the proof of Proposition 7.2, we also find the leading-order expansion

u∗(r, ψ) =u∞(k∗r + θ∗(r) + ψ) +
1

r
u1(k∗r + θ∗(r) + ψ) + O

(
1

r2

)
θ∗(r) =

k∗d⊥
cg

log r + O

(
1

r

)
u1(ϑ) =k∗

(
d⊥
cg
∂ku∞ −

1

2
uν⊥ν⊥

)
as claimed in Proposition 3.14.

Proof of Theorem 3.15. We assumed that the spiral wave u∗ is transverse (see Definition 3.13) and

therefore know that the generalized kernel of the linearization L∗ about u∗ posed on the exponentially

weighted space L2
η with η ∈ J0(0) = (−Re ν0(0), 0) ∈ R− is one-dimensional and spanned by ∂ψu∗(r, ϕ). We

conclude that the tangent spaces toMu
−(0) andMcs

+(0) intersect in a one-dimensional subspace spanned by

∂ψ(u∗(R, ·), ∂ru∗(R, ·)). Using the results proved in §5.5, we know that the complement of the sum of the

tangent spaces is also one-dimensional and spanned by u⊥ ∈ X, say. To prove persistence of the intersection,

we have to compute the derivative of the manifoldsMcs,u
± (0) with respect to ω and show that the projection

onto u⊥ of the difference does not vanish. Indeed, this would prove that the linearized equation is onto if

we include the parameter ω as an independent variable. We argue by contradiction and assume that this

difference is contained in the sum of the tangent spaces. Using the adjoint evolution operators, which exist

due to the results in §5.4, we see that the function (0, D−1∂ψu∗(r, ψ)), the derivative of the difference of

the two invariant manifolds with respect to ω, is contained in the range of the operator T from §6.2. Using

regularity properties of solutions to T u = f for smooth right-hand sides f , we see that the first component

u of u is a classical solution to L∗u = ∂ψu∗. This contradicts the assumption that the generalized kernel of

L∗ considered in L2
η with η ∈ J0(0) has dimension one.

Remark 7.3 In the proof of Theorem 3.15, we have seen that spirals that emit spectrally stable wave trains

actually select the frequency of rotation (and a wavenumber via the inverse nonlinear dispersion relation). If

we had assumed that the group velocity of the spectrally stable wave trains in the far field is negative, we would

have found spiral waves for an open interval of frequencies which are selected by the wavenumber of the wave

trains that transport towards the core. These spiral sinks have been found in the complex Ginzburg–Landau

equation [44].

8 Shape of eigenfunctions, and transverse instabilities

In §8.1, we investigate the spatial shape of eigenfunctions u, which satisfy L∗u = λu, and prove the far-field

expansions of their profiles in terms of spatial eigenvalues that we formulated in §3.4. We focus on the proof

of Proposition 3.17 and note that Proposition 3.16 is an immediate consequence of the spatial-dynamics

formulation of the eigenvalue problem and the existence of exponential dichotomies in the far field that we

introduced in §5. In §8.2, we prove Lemma 3.27, which states that transverse instabilities of the asymptotic

wave train prevent the spectral mapping theorem from holding.
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8.1 Proof of Proposition 3.17

We expand the eigenvalue problem

ur =− (k∗ + θ′∗(r))∂ϑu+ v

vr =− (k∗ + θ′∗(r))∂ϑv −
1

r
v − 1

r2
∂ϑϑu (8.1)

−D−1

[
ω∗∂ϑu+ f ′(u∞(ϑ))u− λu+

1

r
f ′′(u∞(ϑ))[u1(ϑ), u] + O(r−2)u

]
,

at r =∞, where θ∗(r) is the asymptotic phase of the spiral wave relative to the emitted wave trains and u1

is the first-order correction of the profile of the spiral wave; see Proposition 3.14. We rewrite this equation

as an abstract equation

ur = [A∞ + C(r)]u, (8.2)

where

A∞ =

(
−k∗∂ϑ 1

−D−1[ω∗∂ϑ + f ′(u∞)− λ] −k∗∂ϑ

)
, (8.3)

C(r) =−

(
θ′∗(r)∂ϑ 0

1
r2 ∂ϑϑ

1
r + θ′∗(r)∂ϑ

)
− 1

r

(
0 0

D−1f ′′(u∞)[u1, ·] + O(1/r) 0

)
.

Denote by P c
∞ and P h

∞ the complementary spectral projections onto the center and the hyperbolic subspace,

respectively, of the asymptotic equation

ur = A∞u,

which represents the eigenvalue problem of the wave trains. Let ν ∈ iR be the, by assumption unique,

Floquet exponent with λ = λst(ν). By hypothesis, Rg(P c
∞) is one-dimensional. The results in §5.6 show

that it is spanned by

uc =

(
u

(k∗∂ϑ + ν)u

)
,

where [L̂co(ν)−λco(ν)]u = 0 and λco(ν) = λst(ν)+ω∗ν/k∗. The results in §5.6 also show that the projection

P c
∞ is given by

P c
∞ =

1

〈uad,uc〉
〈uad, ·〉uc, uad =

(
D(−k∗∂ϑ + ν)uad

Duad

)
,

where [L̂ad
co (ν)− λco(ν)]uad = 0. Thus, given the eigenfunction u of the spiral wave, we write

u = P c
∞u + P h

∞u =: a(r)uc + w

so that (8.2) becomes

aru
c =a[ν + P c

∞C(r)]uc + P c
∞C(r)w (8.4)

wr =[A∞ + P h
∞C(r)]w + aP h

∞C(r)uc. (8.5)

Since the second summand in the definition (8.3) of C(r) converges to zero in norm as r →∞, we can apply

Proposition 5.9 and Lemma 5.12 which show that the equation

wr = [A∞ + P h
∞C(r)]w

has an exponential dichotomy on [R,∞) for R� 1 sufficiently large. Thus, (8.5) is equivalent to

w(r) = Φss(r,R)wss
0 +

∫ r

R

a(s)Φss(r, s)P h
∞C(s)uc ds+

∫ r

∞
a(s)Φuu(r, s)P h

∞C(s)uc ds. (8.6)
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To analyze the equation (8.4) for a(r), we first neglect the coupling term involving w. The remaining

equation is

ar =

[
ν +
〈uad, C(r)uc〉
〈uad,uc〉

]
a.

This expression can be evaluated as in the proof of Proposition 7.2, and we obtain

ar =

[
ν − 1

r

〈uad, [2θ0∂ϑ + 1]Dv + f ′′(u∞)[u1, u]〉
2〈uad, Dv〉

+ O

(
1

r2

)]
a, (8.7)

where θ0 is given by θ0 = k∗d⊥/cg, see (7.7). Recall from (5.50) that the linear group velocity of λst(ν) is

given by

cg,l = −2〈uad, Dv〉
〈uad, u〉

.

In particular, the denominator in (8.7) is non-zero. Integrating (8.7) gives

a(r) = a0r
αeνr

[
1 + O

(
1

r

)]
, (8.8)

for some a0 ∈ C where

α =
〈uad, [(2k∗d⊥/cg)∂ϑ + 1]Dv + f ′′(u∞)[u1, u]〉

cg,l 〈uad, u〉
.

We claim that a0 6= 0. Indeed, if a0 were zero, the expansion of the eigenfunction u(r, ψ) of the spiral wave

would only involve the solution w of the hyperbolic part. As a consequence, due to (8.6), u(r, ψ) would

decay exponentially as r →∞ so that the null space of L∗−λ would be non-trivial in L2
η for any sufficiently

small η > 0. This contradicts our hypotheses. Thus, a0 6= 0.

Using (8.8), we can therefore also integrate equation (8.4). Putting the resulting equation and (8.6) together,

we see that (8.4)-(8.5) is equivalent to

a(r) =a0r
αeνr +

∫ r

∞

rα

sα
eν(r−s)

[
O

(
1

s2

)
a(s) +

〈C(s)∗uad,w(s)〉
〈uad,uc〉

]
ds (8.9)

w(r) =Φss(r,R)wss
0 +

∫ r

R

a(s)Φss(r, s)P h
∞C(s)uc ds+

∫ r

∞
a(s)Φuu(r, s)P h

∞C(s)uc ds,

where the O(1/r2) term in the equation for a coincides with the corresponding term in (8.7). Note that∣∣∣∣ 〈C(r)∗uad,w〉
〈uad,uc〉

∣∣∣∣ ≤ C |w|Xr ,
∣∣P h
∞C(r)uc

∣∣
X
≤ C

r
(8.10)

for some constant C > 0 that is independent of r.

We regard (8.9) as the fixed-point equation(
a

w

)
=

(
F1(a,w)

F2(a,w)

)
, (a,w) ∈ Xε

on the space

Xε =

{
(a,w) ∈ C0([R,∞),R×X); ‖a‖ := sup

r≥R
r−α|a(r)| <∞, ‖w‖ := sup

r≥R
r1−α−ε|w(r)|Xr <∞

}
,

equipped with the norm ‖a‖+ ‖w‖, where ε ∈ (0, 1) is fixed. Using that∫ r

1

(r
s

)α
e−(r−s) ds→ 1 as r →∞
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for any α ∈ R (which follows from the fact that the integral on the left-hand side satisfies the differential

equation br = 1 + (α/r − 1)b), and exploiting the estimate (8.10), it is not difficult to check that there is a

constant C > 0 such that

‖F1(a,w)‖ ≤ |a0|+ C

[
‖a‖
R

+
‖w‖
R1−ε

]
‖F2(a,w)‖ ≤ C

[
|wss

0 |XR +
‖a‖
Rε

]
.

Thus, there exists a unique solution of (8.10) provided we choose R � 1 sufficiently large. This solution is

given by

a(r) = a0r
αeνr

[
1 + O

(
1

r1−ε

)]
, w(r) = O

(
1

r1+α

)
.

Now that we have obtained a solution in the weighted space, we can substitute w(r) back into the integral

equation for a, and we see that, in fact,

a(r) = a0r
αeνr

[
1 + O

(
1

r

)]
.

This completes the proof of Proposition 3.17.

8.2 Proof of Lemma 3.27

Decay estimates for strongly continuous semigroups are tied to uniform estimates for the resolvent of their

generator on vertical lines. It follows from [36, Theorem II.1.10(iii)] that it suffices to find λn ∈ C with

Reλn = Reλ∗ and nonzero elements un ∈ L2(R2,CN ) such that

1

|un|L2

|(L∗ − λn)un|L2 −→ 0 as n −→∞

to prove the statement of the lemma. We first choose a smooth cutoff function χ(x) such that

χ(x)


= 1 |x| ≤ 1

∈ [0, 1] 1 ≤ |x| ≤ 2

= 0 |x| ≥ 2.

Next, we let

un(r, ψ) := ein2ψv∞(kr + θ∗(r) + ψ)χ

(
γr − n2

n

)
, λn := λ∗ + iω∗n

2.

Note that Reλn = Reλ∗ for all n as required and

n2

r
= γ + O(1/n) whenever χ

(
γr − n2

n

)
6= 0

uniformly in r ≥ 0. Furthermore, the support of un lies in an annulus of diameter 2n/γ centered at r = n2/γ.

It follows that there is a constant C0 > 0 so that

|un|L2(R2,CN ) ≥ C0n
3
2 |v∞|L2(S1,CN )
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for all n� 1. Next, using (3.7), we find

(L∗ − λn)un =

[
D

(
∂rr +

1

r
∂r +

1

r2
∂ψψ

)
+ ω∗∂ψ + f ′(u∗(r, ψ))− λn

]
un(r, ψ)

= ein2ψ

[
D

(
k2v′′∞χ+ O(1/n)− n4

r2
v∞χ

)
+ iω∗n

2v∞χ+ ω∗v
′
∞χ+ O(1/n)

+f ′(u∞(kr + θ∗(r) + ψ) + O(1/n2))v∞χ− (λ∗ + iω∗n
2)v∞χ

]
= ein2ψ

[
χ
(
D(k2v′′∞ − γ2v∞) + ω∗v

′
∞ + f ′(u∞(kr + θ∗(r) + ψ))v∞ − λ∗v∞

)
+ O(1/n)

]
= O(1/n),

where we used (3.17) to obtain the last identity. Since (L∗− λn)un has the same support as un, we see that

there is a constant C1 > 0 so that

|(L∗ − λn)un|L2(R2,CN ) ≤ C1n
1
2 |v∞|L2(S1,CN ),

for all n� 1. We conclude that
1

|un|L2

|(L∗ − λn)un|L2 ≤ C1

C0n
,

which completes the proof of Lemma 3.27.

9 Spiral waves on large finite disks

In this section, we prove Theorem 3.19, which states that planar spiral waves persist under domain truncation

to large bounded disks provided that the boundary conditions can be accommodated via boundary sinks.

First, we prepare the actual proof by discussing in §9.1 the boundary sinks whose existence we assumed in

Theorem 3.19. In §9.2, we construct solutions to the spatial-dynamics formulation

ur =− [k + θ′(r)]∂ϑu+ v

vr =− [k + θ′(r)]∂ϑv −
1

r
v − 1

r2
∂ϑϑu−D−1[ω∂ϑu+ f(u)]

separately in the core region, the far-field region and the boundary-layer region. These solutions are then

matched in §9.3 in the transitions zones between core, far field, and the boundary sink.

9.1 Boundary sinks

Recall that we assumed that there is a solution u(x, t) = ubs(x, ω∗t) of the reaction-diffusion equation

ut = Duxx + f(u), x ∈ (−∞, 0), (9.1)

(u, ux)(0, t) ∈ Ebc
0 , t > 0,

where ubs(x, τ) is 2π-periodic in τ with

|ubs(x, ·)− u∞(k∗x− ·)|H1(S1) → 0 as x→ −∞

and Ebc
0 ⊂ R2N is an N -dimensional subspace. We denote by Φt(u0) the semiflow associated with (9.1)

on H1(R−,RN ). Since we assumed that the asymptotic wave trains are spectrally stable and have positive

group velocity, we know that the Fredholm index of the linearization Ψbs = DΦ2π/ω∗(ubs(·, 0)) is +1 in the
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region to the left of the Floquet spectrum at λ = 0. We also assumed that the linearization of (9.1) about

the boundary sink ubs(x, ω∗t) does not have a solution that decays to zero exponentially as x→ −∞.

Next, we interpret these hypotheses in terms of the spatial-dynamics formulation

ux =v (9.2)

vx =−D−1[−ω∂τu+ f(u)],

where u(x) = (u, v)(x) ∈ Y = H
1
2 (S1)× L2(S1) for all x ∈ (−∞, 0) with the boundary condition

u(0) ∈ Ebc
Y := {(u, v) ∈ Y ; (u(τ), v(τ)) ∈ Ebc

0 ∀τ}. (9.3)

Note that ubs := (ubs, ∂xubs) is a solution to (9.2)-(9.3) for ω = ω∗. Furthermore, the assumptions on

spectrum and group velocity of the asymptotic wave train imply that the linearization

ux =v

vx =−D−1[−ω∗∂τu+ f ′(ubs)u]

of (9.2) at ubs has an exponential dichotomy on Y with strong unstable projections P uu(x) and center-

unstable P cu(x) both defined for x ≤ 0. In addition, the assumption that the linearization of (9.1) about

ubs(x, ω∗t) does not have an exponentially decaying solution implies the transversality conditions

Rg(P cu(0)) t Ebc
Y = {∂τubs}, Rg(P uu(0)) t Ebc

Y = {0}. (9.4)

We show in the next lemma that these transversality properties imply that the boundary sink, whose existence

we assumed only for the fixed temporal frequency ω∗, is robust so that it persists when we change ω from

ω∗ to nearby values.

Lemma 9.1 Up to the time-shift symmetry, equations (9.2)-(9.3) have a locally unique solution ubs(x;ω)

for each ω close to ω∗. Furthermore, there is a κ > 0 and a constant C such that

|ubs(x, ·;ω)− u∞(kx− ·;ω)|Y ≤ Ce−κ|x|, x ≤ 0,

the solutions ubs(x;ω) depend smoothly on ω, and the linearization of (9.2) at each ubs(x;ω) has an expo-

nential dichotomy on Y that satisfies (9.4).

Proof. The proof involves two steps. First, we compute the strong unstable fibers of the asymptotic wave

trains u∞(kx−ω(k)t; k) (note that we can switch forth and back between parametrizing solutions via k or ω

since the group velocity ω′(k∗) is not zero). In the second step, we match the strong unstable fibers and the

boundary condition using the boundary-sink solution ubs(x, τ). The existence of exponential dichotomies

of the linearization about each of the boundary sinks and the transversality property (9.4) follow from the

robustness theorem for exponential dichotomies.

After rescaling x→
√
ωx, the original reaction-diffusion equation (9.2) reads

ux =v (9.5)

vx =−D−1

[
−∂τu+

1

ω
f(u)

]
.

We write u(x, τ) = u∞(kx−τ ;ω)+w(x, τ), then w(x) converges to zero as x→ −∞ if and only if it satisfies

the integral equation

w(x) = Φuu(x,−R)wuu
0 +

∫ x

−R
Φuu(x, ξ)G(ξ,w(ξ)) dξ +

∫ x

−∞
Φcs(x, ξ)G(ξ,w(ξ)) dξ (9.6)
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on Y for x ∈ (−∞,−R], where

G(x,w) =
1

ω

(
0

−D−1[f(u∞(x;ω) + w1)− f(u∞(x;ω))− f ′(u∞(x;ω))w1]

)
and Φuu and Φcs denote the ω-dependent exponential dichotomies of the linearization of (9.5) at the wave

trains u∞(·;ω). We denote by κ the exponential rate associated with this dichotomy. We can solve (9.6)

on an appropriate function space with exponential weight eκ|x|, using a contraction mapping theorem and

choosing R� 1 sufficiently large. Since the exponential dichotomies [82] as well as the other terms in (9.6)

depend smoothly on ω, so do the strong unstable fibers which are the fixed points of (9.6).

The second step is carried out analogously by writing down an integral equation on [−R, 0] and using the

exponential dichotomies of the linearization of (9.5) at the sink ubs. The fact that the subspace Ebc
Y and the

range of the center-unstable projection of the sink intersect transversely by (9.4) allows us to then solve the

resulting integral equation for all ω close to ω∗. We omit the details.

Next, we transform the above solutions and statements into Archimedean coordinates. Thus, we define a

new function ûbs(x, ϑ) by

ûbs(x, ϑ) := ubs(x, k∗x− ϑ), i.e. ubs(x, τ) = ûbs(x, k∗x− τ),

so that

|ûbs(x, ϑ;ω)− u∞(ϑ;ω)| ≤ Ce−κ|x| (9.7)

as x → −∞. The boundary conditions remain unchanged since u(0) ∈ Ebc
Y means that u(0, τ) ∈ Ebc

0

pointwise in τ . Hence, dropping the hats and using ρ instead of x, we see that ubs(ρ;ω) satisfies the system

∂ρu =− k∗∂ϑu+ v (9.8)

∂ρv =− k∗∂ϑv −D−1[ω∂ϑu+ f(u)]

for ω close to ω∗, where ρ ∈ (−∞, 0) and u(ρ) = (u, v)(ρ) ∈ Y satisfies u(0) ∈ Ebc
Y . Since the only difference

between (9.2) and (9.8) is the appearance in (9.8) of the generator of the shift in ϑ, we still have transversality

of Ebc
Y and the range Rg(P uu

bs (0)) of the exponential dichotomy of the linearization of (9.8) at ubs (this can

be proved as in §4.2 using the detour via the corresponding operators T ).

9.2 Construction of core, far-field and boundary-layer solutions

We can now address the existence of solutions to the equation

ur =− [k + θ′(r)]∂ϑu+ v (9.9)

vr =− [k + θ′(r)]∂ϑv −
1

r
v − 1

r2
∂ϑϑu−D−1[ω∂ϑu+ f(u)],

where u(r) = (u, v)(r) ∈ Xr for r ∈ (0, R) with the boundary condition

u(R) = (u, v)(R) ∈ Ebc. (9.10)

Solutions to (9.9)-(9.10) correspond to rigidly-rotating spiral waves on the disk of radius R.

To show the existence of these spirals, we will, for some fixed R∗ � 1, construct solutions to (9.9)-(9.10)

in the core region (0, R∗), the far field (R∗, R − κ−1 logR), and the boundary layer (R − κ−1 logR,R) for

R� 1. These solutions are then matched at r = R∗ and r = R−κ−1 logR. The constant R∗ will be chosen

as in Proposition 7.2, while κ > 0 is as in Lemma 9.1. A sketch of the construction in phase space is shown

in Figure 7.

63



Figure 7: Gluing ingredients for the construction of spiral waves in finite-size disks. Planar spiral (green)

consisting of core region and far-field region, constructed as a transverse heteroclinic as ω varies near ω∗ to

the wave train solution at r =∞, α = 0. In α = 0, the boundary sink is contained in the unstable manifold

of wave trains as a transverse intersection of the unstable manifold of wave trains (2-dimensional in picture)

with the boundary condition Ebc (0-dimensional in picture). A truncated spiral follows the green and blue

curve to intersect the extension of Ebc outside of α = 0 at α = 1
R
> 0.

Core region. We begin by discussing (9.9) in the core region (0, R∗). Proposition 7.1 shows that the

relevant solutions to (9.9) on (0, R∗) are those that have initial data in the manifold Mu
−(ω). Since we can

write Mu
−(ω) near u∗(R∗) as a graph of a map from Rg(P̂ u

−(R∗)) into Rg(P̂ s
−(R∗)), we can parametrize the

elements of Mu
−(ω) as functions of wu

core ∈ Rg(P̂ u
−(R∗)) via

ucore(R∗;ω,w
u
core) ∈Mu

−(ω), ucore(R∗;ω,w
u
core)− u∗(R∗)−wu

core ∈ Rg(P̂ s
−(R∗)). (9.11)

Far-field region. Next, we consider solutions to (9.9) in the far field for r ∈ (R∗, R−κ−1 logR). Proposi-

tion 7.2 shows that the center-stable manifoldMcs
+(ω) of the asymptotic wave trains is smooth in ω and can

be parametrized as the graph of a map from Rg(P cs
+ (R∗)) into Rg(P uu

+ (R∗)). We can then use a rotation of

the planar spiral wave u∗(R∗, ·) by an angle α to parametrize the center direction in Rg(P cs
+ (R∗)) and use

vectors wss
ff ∈ Rg(P ss

+ (R∗)) close to zero to parametrize the remaining strong stable directions. Thus, for

R∗ ≤ r ≤ R− κ−1 logR, we can write

u(r) = uff(r;ω, α,wss
ff ) + wff(r), (9.12)

where uff(r;ω, α,wss
ff ) denotes the solution of (9.9) on [R∗,∞) with

uff(R∗;ω, α,w
ss
ff ) ∈Mcs

+(ω), uff(R∗;ω, α,w
ss
ff )− u∗(R∗, ·+ α)−wss

ff ∈ Rg(P uu
+ (R∗)), (9.13)

for wss
ff ∈ Rg(P ss

+ (R∗)). We see that u(r) is a solution to (9.9) if and only if wff(r) satisfies

wr = [A(r) + C(r)]w + G(r,w), (9.14)

64



with

A(r) =

(
−k∂ϑ 1

−D−1[ω∂ϑ + f ′(uff(r))] −k∂ϑ

)

C(r) =−

(
θ′(r)∂ϑ 0

1
r2 ∂ϑϑ

1
r + θ′(r)∂ϑ

)
(9.15)

G(r,w) =

(
0

−D−1[f(uff(r) + w1)− f(uff(r))− f ′(uff(r))w1]

)
= O(|w|2Xr ),

where uff(r) = uff(r;ω, α,wss
ff ) is the solution discussed in (9.13). Note that w(r) = 0 is always a solution

of (9.15) since it is the deviation from the actual solution uff(r). On account of Propositions 5.5 and 5.9,

the linear equation

wr = [A(r) + C(r)]w,

has an exponential dichotomy on [R∗,∞) for some sufficiently large R∗ � 1 uniformly in (ω, α,wss
ff ) close

to zero (note that these dichotomies depend on (ω, α,wss
ff ), but we will suppress this dependence in our

notation). We have the estimates

‖Φcs
ff (r, s)‖L(Xr,Xs) ≤ Ceδ|r−s|, r ≥ s ≥ R∗, (9.16)

‖Φuu
ff (r, s)‖L(Xr,Xs) ≤ Ce−κ|r−s|, s ≥ r ≥ R∗

for some κ > 0 and some arbitrarily small δ > 0. Using the dichotomies, we can convert (9.14) into the

integral equation

w(r) = Φuu
ff (r,R− κ−1 logR)wuu

ff +

∫ r

R∗

Φcs
ff (r, s)G(s,w(s)) ds+

∫ r

R−κ−1 logR

Φuu
ff (r, s)G(s,w(s)) ds,

where r ∈ [R∗, R − κ−1 logR]. Using the estimates (9.16) for the exponential dichotomies and the fact

that the nonlinearity G defined in (9.15) vanishes with order O(|w|2), it is not hard to see that the integral

equation can be solved using a contraction mapping theorem in the function space

Xff =

{
w ∈ C0([R∗, R− κ−1 logR], X); ‖w‖ = sup

r∈[R∗,R−κ−1 logR]

R−1eκ(R−r)|w(r)|Xr <∞

}

uniformly inR and for any wuu
ff sufficiently close to zero. The resulting solutions are smooth in (ω, α,wss

ff ,w
uu
ff )

near (ω∗, 0, 0, 0), and they satisfy

‖w‖ = O(|wuu
ff |). (9.17)

For later reference, we evaluate these solutions at the end points r = R∗ and at r = R − κ−1 logR of their

interval of existence:

wff(R∗) =Φuu
ff (R∗, R− κ−1 logR)wuu

ff +

∫ R∗

R−κ−1 logR

Φuu
ff (R∗, r)G(r,w(r)) dr

=O
(
Re−κ(R−R∗)|wuu

ff |
)
, (9.18)

wff(R− κ−1 logR) =P uu
ff (R− κ−1 logR)wuu

ff +

∫ R−κ−1 logR

R∗

Φcs
ff (R− κ−1 logR, r)G(r,w(r)) dr

=P uu
ff (R− κ−1 logR)wuu

ff + O
(
|wuu

ff |2
)
. (9.19)
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Boundary-layer region. In the last step, we consider solutions to (9.9)-(9.10) in the boundary-layer

region where r ∈ [R − κ−1 logR,R]. It is convenient to use the independent variable ρ = r − R instead of

r = ρ+R. In this variable, (9.9)-(9.10) become

uρ =− [k + θ′(ρ+R)]∂ϑu+ v (9.20)

vρ =− [k + θ′(ρ+R)]∂ϑv −
v

ρ+R
− ∂ϑϑu

(ρ+R)2
−D−1[ω∂ϑu+ f(u)],

where ρ ∈ (−κ−1 logR, 0), and

(u, v)(0) ∈ Ebc. (9.21)

We seek solutions to (9.20)–(9.21) using the ansatz

u(ρ) = ubs(ρ;ω) + wbs(ρ), (9.22)

where ubs(ρ;ω) is the boundary-layer solution of (9.8). In particular, we see that ubs(ρ;ω) satisfies (9.21)

and also (9.20) if we formally set R =∞. Substituting the ansatz (9.22) into (9.9), we obtain

wρ = [Abs(ρ) + C(ρ)]w + C(ρ)ubs(ρ) + G(ρ,w) (9.23)

with ρ ∈ (−κ−1 logR, 0), where

Abs(ρ) =

(
−k∂ϑ 1

−D−1[ω∂ϑ + f ′(ubs(ρ))] −k∂ϑ

)
,

C(ρ) =−

(
θ′(ρ+R)∂ϑ 0

1
(ρ+R)2 ∂ϑϑ

1
ρ+R + θ′(ρ+R)∂ϑ

)
, (9.24)

G(ρ,w) =

(
0

−D−1[f(ubs(ρ) + w1)− f(ubs(ρ))− f ′(ubs(ρ))w1]

)
= O(|w|2),

and ubs(ρ) = ubs(ρ;ω). Our strategy for solving (9.23) is the same as before: we show that the linear

equation

wρ = [Abs(ρ) + C(ρ)]w (9.25)

has an exponential dichotomy on Xρ+R, uniformly in ω and R, then use the dichotomy to convert (9.23)

to an integral equation, and lastly solve the integral equation in a function space with appropriate weights.

The existence of exponential dichotomies for (9.25) on [−κ−1 logR, 0] that satisfy the estimates

‖Φcs
bs(ρ, σ)‖ ≤ Ceδ|ρ−σ|, −κ−1 logR ≤ σ ≤ ρ ≤ 0,

‖Φss
bs(ρ, σ)‖ ≤ Ce−κ|ρ−σ|, −κ−1 logR ≤ σ ≤ ρ ≤ 0, (9.26)

‖Φuu
bs (ρ, σ)‖ ≤ Ce−κ|ρ−σ|, −κ−1 logR ≤ ρ ≤ σ ≤ 0,

for some κ > 0 and some arbitrarily small δ > 0 can be established following the arguments in the proof of

Proposition 5.5 upon freezing the ρ-dependent coefficients that appear in the definition (9.24) of Abs(ρ) and

C(ρ) at their value at ρ = −κ−1 logR for ρ ≤ −κ−1 logR. Equation (9.23) is then equivalent to

w(ρ) =Φss
bs(ρ,−κ−1 logR)wss

bs +

∫ ρ

−κ−1 logR

Φcs
bs(ρ, σ) [C(σ)ubs(σ) + G(σ,w(σ))] dσ (9.27)

+ Φuu
bs (ρ, 0)wuu

bs +

∫ ρ

0

Φuu
bs (ρ, σ) [C(σ)ubs(σ) + G(σ,w(σ))] dσ,
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where ρ ∈ [−κ−1 logR, 0]. If we consider (9.27) as a fixed-point equation on the space

Xbs =

{
w ∈ C0([−κ−1 logR, 0], X); ‖w‖ = sup

ρ∈[−κ−1 logR,0]

|w(ρ)|Xρ+R <∞

}

and fix ε so that 1 > ε > δ > 0, then there is a constant K > 0 such that (9.27) has a unique solution for

every R sufficiently large in the ball ‖w‖ ≤ KR−1+ε for every ω close to ω∗ and every wss
bs and wuu

bs of norm

less than R−1+ε. This claim follows upon exploiting the estimates (9.26) for the exponential dichotomies

and the fact that the nonlinearity G (9.24) vanishes with order O(|w|2). Furthermore, the resulting solutions

are smooth in (ω,wss
bs,w

uu
bs), and they satisfy

‖w‖ = O
(
|wss

bs|+ |wuu
bs |+R−1+δ

)
. (9.28)

Evaluating the solution at ρ = −κ−1 logR and at ρ = 0 gives

wbs(−κ−1 logR) =P ss
bs(−κ−1 logR)wss

bs + Φuu
bs (−κ−1 logR, 0)wuu

bs (9.29)

+

∫ −κ−1 logR

0

Φuu
bs (−κ−1 logR, ρ) [C(ρ)ubs(ρ) + G(ρ,w(ρ))] dρ

=P ss
bs(−κ−1 logR)wss

bs + O

(
1

R1−δ +
|wuu

bs |
R

+ | logR|
[
|wss

bs|2 + |wuu
bs |2

])
,

wbs(0) =P uu
bs (0)wuu

bs + Φss
bs(0,−κ−1 logR)wss

bs (9.30)

+

∫ 0

−κ−1 logR

Φcs
bs(0, ρ) [C(ρ)ubs(ρ) + G(ρ,w(ρ))] dρ

=P uu
bs (0)wuu

bs + O

(
1

R1−δ +
|wss

bs|
R

+ | logR|
[
|wss

bs|2 + |wuu
bs |2

])
.

This completes the construction of the solutions in the core, the far-field, and the boundary-layer region.

9.3 Matching of core, far-field, and boundary-layer solutions

It remains to match the solutions obtained in the last section at r = R∗, r = R−κ−1 logR, and r = R. Using

the coordinate transformations established in §5.3, we push the matching conditions to the space L2 × L2

and solve them in this space as this allows us to compare the various projections with the r-independent

projections of the asymptotic wave train. Note that the estimates we established above remain valid when

we transform the equations to L2 × L2.

Matching far-field and boundary-layer solutions. First, we match the far-field solution at r = R −
κ−1 logR and the boundary-layer solutions at ρ = −κ−1 logR. From (9.12) and (9.22) we obtain the equation

uff(R− κ−1 logR;ω, α,wss
ff ) + wff(R− κ−1 logR) = ubs(−κ−1 logR;ω) + wbs(−κ−1 logR).

Note that Proposition 7.2 implies that

uff(R− κ−1 logR;ω, α,wss
ff ) = u∞(·;ω) + u′∞(·;ω)α+ O

(
α2 +

1

R

)
,

while (9.7) shows that

ubs(−κ−1 logR;ω) = u∞(·;ω) + O

(
1

R

)
.
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Using these facts together with (9.19) and (9.29), we arrive at the equation

u′∞(·;ω)α+ Puu
ff (R− κ−1 logR)wuu

ff − Pss
bs(−κ−1 logR)wss

bs,

= O

(
1

R1−δ + α2 + |wuu
ff |2 +

|wuu
bs |
R

+ | logR|
[
|wss

bs|2 + |wuu
bs |2

])
(9.31)

where

wuu
ff ∈ Rg(Puu

∞ (ω∗)), wss
bs ∈ Rg(Pss

∞(ω∗)),

with |wss
bs| ≤ R−1+ε. We will solve (9.31) below.

Matching boundary conditions. Next, we need to satisfy the boundary conditions at r = R or, alterna-

tively, at ρ = 0. Using the ansatz (9.22) and exploiting the fact that ubs(0;ω) ∈ Ebc satisfies the boundary

condition, it remains to solve wbs(0) ∈ Ebc. It is convenient to introduce the projection Pbc defined via

Rg(Pbc) = Rg(Puu
bs (0;ω∗)), ker(Pbc) = Ebc.

Note that Pbc is well defined on account of the results in §9.1 and bounded uniformly in R. Using this

projection, we see that wbs(0) ∈ Ebc if and only if Pbcwbs(0) = 0 which becomes

Pbc

[
Puu

bs (0)wuu
bs + O

(
1

R1−δ +
|wss

bs|
R

+ | logR|
[
|wss

bs|2 + |wuu
bs |2

])]
= 0 (9.32)

when we use (9.30). Here, we can choose wuu
bs subject to

wuu
bs ∈ Rg(Puu

bs (0;ω∗)), |wuu
bs | ≤ R−1+ε.

Solving (9.31) and (9.32). Collecting the equations (9.31) and (9.32) we derived so far, we obtain the

system

0 =u′∞(·;ω)α+ Puu
ff (R− κ−1 logR)wuu

ff − Pss
bs(−κ−1 logR)wss

bs

+ O

(
1

R1−δ + α2 + |wuu
ff |2 +

|wuu
bs |
R

+ | logR|
[
|wss

bs|2 + |wuu
bs |2

])
0 =Pbc

[
Puu

bs (0)wuu
bs + O

(
1

R1−δ +
|wss

bs|
R

+ | logR|
[
|wss

bs|2 + |wuu
bs |2

])]
,

(9.33)

where

wuu
ff ∈ Rg(Puu

∞ (ω∗)), wss
bs ∈ Rg(Puu

∞ (ω∗)), wuu
bs ∈ Rg(Puu

bs (0;ω∗)),

and α need to be close to zero with |wss
bs| ≤ R−1+ε and |wuu

bs | ≤ R−1+ε. The remainder terms, and their

derivatives with respect to (wuu
ff ,wss

ff ,w
uu
bs ,w

ss
bs) and ω, are uniform inR, ω and wss

ff . Note that the projections

Puu
bs (0), Puu

ff (R − κ−1 logR) and Pss
bs(−κ−1 logR) are smooth in ω and that Puu

ff (r) and Puu
bs (−ρ) are close

to Puu
∞ (ω∗) for r and ρ sufficiently large and ω close to ω∗. We also recall that Ebc ⊕ Rg(Puu

bs (0;ω∗)) = X.

Using that 1 > ε > δ > 0, it is then not difficult to solve (9.33) for (wuu
ff ,wuu

bs ,w
ss
bs, α) as a smooth function

of ω and wss
ff . Furthermore, for some constant C > 0, we have

|α|+ |wuu
ff |+ |wss

bs|+ |wuu
bs | ≤

C

R1−δ (9.34)

uniformly in ω and wss
ff . The above estimate is also true for derivatives with respect to ω and wss

ff .
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Matching core and far-field solutions. Lastly, using (9.12), we see that the matching condition of the

core and the far-field solution at r = R∗ is given by

ucore(R∗;ω,w
u
core) = uff(R∗;ω, α(ω,wss

ff ),wss
ff ) + wff(R∗),

where α(ω,wss
ff ) denotes the function we obtained in the previous step. Using (9.18) and (9.34), this equation

becomes

ucore(R∗;ω,w
u
core) = uff(R∗;ω, α(ω,wss

ff ),wss
ff ) + O

(
R2−δe−κR

)
, (9.35)

where we can choose wu
core ∈ Rg(Pu

−(R∗)) and wss
ff ∈ Rg(Pss

+ (R∗)) near zero as we wish. The arguments

given in [89, §4.2] for matching homoclinic orbits in finite dimensions also apply to (9.35), and we obtain

that (9.35) has a unique solution (ω,wu
core,w

ss
ff ) for each R � 1. Furthermore, [89, Lemma 4.2] shows that

there is a constant C > 0 such that

|ω − ω∗|+ |wuu
core|+ |wss

ff | ≤ CR2−δe−κR. (9.36)

This completes the proof of the existence part of Theorem 3.19. The estimates (3.12) follow from the

representations (9.11), (9.12), and (9.22) together with the estimates (9.17), (9.28), (9.34), and (9.36).

10 Spectra of spiral waves restricted to large finite disks

In this section, we prove Theorem 3.23, which characterizes the spectrum of the linearization at a spiral

waves restricted to a large bounded disk. We define

LRu = D∆u+ ω∗∂ψu+ f ′(u∗(r, ψ))u

on the disk 0 ≤ r ≤ R with boundary conditions au + bur = 0 at the boundary r = R, where a, b are fixed

constants. We denote by ΣR the spectrum of the operator LR posed on L2. Our goal is to characterize the

limit of ΣR as R→∞. It is convenient to define the set

Σacc := {λ ∈ C | ∃Rk →∞, λk ∈ ΣRk so that λk → λ as k →∞}

of accumulation points of ΣR as R → ∞. We claim that Σacc is equal to the limiting spectral set Σst :=

Σabs ∪ Σext ∪ Σbdy. To prove that Σacc = Σst, it suffices to show the following inclusions:

(i) Σacc ⊆ Σst, (ii) Σbdy ⊆ Σacc, (iii) Σext ⊆ Σacc, (iv) Σabs ⊆ Σacc.

We will establish (i) in §10.1, (ii) and (iii) in §10.2, and (iv) in §10.3. From the proofs, it will be clear that

the multiplicities are preserved in the limits (ii) and (iii), while multiplicities tend to infinity in (iv).

10.1 Excluding eigenvalues outside of the limiting spectral set

We prove that Σacc ⊆ Σst, thus excluding the case that eigenvalues of LR can accumulate in the complement

of the limiting spectral set Σst.

Lemma 10.1 (Continuity of the resolvent under restriction) Suppose that λ∗ /∈ Σst. Then there ex-

ist δ > 0 and R̄ > 0 such that Bδ(λ∗) belongs to the resolvent set of LR for all R > R̄. Moreover, R̄(λ∗) can

be chosen uniformly in compact subsets of the complement of Σst. In particular, we conclude that λ∗ /∈ Σacc.
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Proof. Since λ∗ /∈ Σabs ∪ Σext, the spatial dynamical system belonging to the system Lu = λ∗u associated

with the linearization of the planar spiral wave admits an exponential dichotomy in appropriate weighted

spaces for r ≥ 0; see §5.5. Since λ∗ /∈ Σbdy, there exists an R̄ so that the space Ebc of boundary condition

in the spatial dynamics formulation is transverse to the unstable subspace of the exponential dichotomy at

r for each r ≥ R̄. We can therefore find exponential dichotomies that satisfy Es(R) = Ebc that are uniform

in R, which proves the absence of point spectrum of LR at λ∗. These arguments can be extended, uniformly

in R, to all λ near λ∗ by continuity of the dichotomies in λ.

10.2 Convergence of eigenvalues to the boundary and the extended point spec-

trum

We first consider eigenvalues created by boundary conditions and prove that Σbdy ⊆ Σacc.

Lemma 10.2 (Eigenvalues induced by boundary conditions) Suppose that λ∗ ∈ Σbdy \ (Σabs ∪Σext)

belongs to the boundary spectrum but not to the absolute or the extended point spectrum of the spiral wave.

Let m be the algebraic multiplicity of λ∗ as an element of Σbdy. Then there is a δ > 0 such that for

all R sufficiently large the truncated linearization LR has precisely m eigenvalues, counted with algebraic

multiplicity, in Bδ(λ∗). Moreover, there exists a constant C > 0 such that |λ − λ∗| ≤ CR−
1

3m for any

eigenvalue λ in this δ-neighborhood of λ∗.

Proof. As in the preceding lemma, since λ∗ /∈ Σabs ∪ Σext, the spatial dynamical system belonging to the

system Lu = λu associated with the linearization of the planar spiral wave admits an exponential dichotomy

in appropriate weighted spaces for r ≥ 0 for each λ near λ∗. In addition, we proved in Proposition 5.5 that

the unstable subspace Eu(R) of the dichotomy is O(R−1/3)-close to the unstable subspace of the linearization

at the asymptotic wave trains. We find eigenvalues by looking for nontrivial intersections of the unstable

subspace Eu(R) and the boundary subspace Ebc, which yields a linear equation with parameter λ that is

O(R−1/3)-close to the equation for elements of the boundary spectrum. Using Lyapunov–Schmidt reduction,

we obtain a characteristic equation for eigenvalues that is analytic in λ of the form λm = O(R−1/3), which

then gives roots as desired. Though we do not provide details, it can be shown that the multiplicity of each

root obtained in this fashion is equal to the algebraic multiplicity of the corresponding eigenvalue of LR.

Next, we show that elements in the extended point spectrum Σext lie in Σacc.

Lemma 10.3 (Eigenvalues induced by extended point spectrum) Assume that λ∗ ∈ Σext \ (Σabs ∪
Σbdy) belongs to the extended point spectrum but not to the absolute or the boundary spectrum of the spiral

wave. Let m be the algebraic multiplicity of λ∗; then there is a δ > 0 such that for all R sufficiently large

the truncated linearization LR has precisely m eigenvalues, counted with algebraic multiplicity, in Bδ(λ∗).

Moreover, there are constants C, η > 0 such |λ − λ∗| ≤ Ce−ηR for any eigenvalue λ in this δ-neighborhood

of λ∗.

Proof. Since λ∗ /∈ Σabs, the spatial dynamical system belonging to the system Lu = λu associated with the

linearization of the planar spiral wave admits exponential dichotomies in appropriate fixed weighted spaces

separately for 0 ≤ r ≤ R∗ and for R∗ ≤ r for each λ near λ∗. We restrict the dichotomy for R∗ ≤ r to

the interval R∗ ≤ r ≤ R and, using the assumption that λ∗ /∈ Σbdy, modify the dichotomy by selecting the

new stable subspace Ẽs
+(R) to satisfy Ẽs

+(R) = Ebc for each λ near λ∗. The resulting dichotomy has rates
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and constants that are independent of R and λ near λ∗. Furthermore, the new stable eigenspace Ẽs
+(R∗)

at r = R∗ is exponentially close in R to Es
+(R∗). A number λ near λ∗ is an eigenvalue of LR if and only if

Ẽs
+(R∗) and Eu

−(R∗) have a nontrivial intersection. Using Lyapunov–Schmidt reduction, this condition gives

a reduced equation that is exponentially close in R to the equation for eigenvalues in the extended point

spectrum of the planar spiral wave. As a consequence, the eigenvalue λ∗ of multiplicity m in the extended

point spectrum creates precisely m eigenvalues, counted with multiplicity, of LR near λ∗, and the latter

converge to λ∗ exponentially in R as R→∞.

10.3 Accumulation near the absolute spectrum

It remains to prove that Σabs ⊆ Σacc, which turns out to be more subtle than the previous cases.

Take an element λ∗ ∈ Σabs so that Re ν−1(λ∗) = Re ν0(λ∗). After choosing a new variable λ̃ via λ = λ∗ + λ̃

and using an exponential weight Re ν0(λ∗), we can assume that λ∗ = 0 with ν−1(0) = −i/2 = −ν0(0).

Note that simplicity of the absolute spectrum implies that Re νj < 0 for j < −1, Re νj > 0 for j > 0, and
dν−1

dλ 6=
dν0
dλ at λ = λ∗ = 0. Finally, using that dν−1

dλ (0) 6= dν0
dλ (0), we can make an invertible analytic change

of coordinates of the λ variable so that the absolute spectrum near λ = λ∗ = 0 is given by Reλ = 0.

First, we describe the asymptotics of solutions in the two-dimensional center subspace associated with the

spatial eigenvalues ±i/2. We write the spatial-dynamics formulation (8.1) associated with the eigenvalue

problem LRu = λu as

wr = Aλ(r)w. (10.1)

The associated asymptotic system, obtained by formally setting r =∞ in (8.1) or (10.1), admits a trichotomy

belonging to the splitting of spatial eigenvalues ν into center, stable, and unstable sets with associated

eigenspaces Ec,s,u
∞ . The next lemma shows that similar trichotomies exist for (10.1).

Proposition 10.4 For each λ close to zero, the linearized equation (10.1) has an exponential trichotomy

for r ≥ R∗ with subspaces Ec,s,u(r). The center subspace Ec(r) has dimension two and is a graph over Ec
∞

that can be chosen to be of class CN in 1
r for each fixed N <∞. The dynamics in Ec(r) projected onto Ec

∞
are given by the linear equation

w′c = Ac(r;λ)wc, wc ∈ Ec
∞ (10.2)

and, in suitable coordinates in Ec
∞,

Ac(r) = A∞c +

N∑
j=1

Ajcr
−j + O(r−(K+1)), A∞c =

(
ν−1(λ) 0

0 ν0(λ)

)
.

Furthermore, the subspace Ec(r), and the reduced equation (10.2) are analytic in λ.

Proof. The proof is similar to the proof of Proposition 3.17. In the far field, for r ≥ R∗, we can use the

trichotomy for the asymptotic equation to decompose

w′h =Ah(r)wh +Ahc(r)wc

w′c =Ac(r)wc +Ach(r)wh, (10.3)

where we wrote wh = (ws,wu), and where Ahc(r), Ach(r) = O( 1
r ). Proceeding as in Proposition 3.17, we

can compute the expansion

wh = B(r)wc + w̃h, B(r) =

N∑
j=1

Bjr
−j
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such that (10.3), written in the new variables (w̃h,wc), becomes

w̃′h =Ah(r)w̃h + Ãhc(r)wc

w′c =Ãc(r)wc + Ãch(r)w̃h, (10.4)

where Ãhc(r) = O(r−(K+1)), and where Ãc(r) has an expansion in r−1 up to order N . We will now argue

that (10.4) has an exponential trichotomy. Artificially setting Ãhc ≡ 0, we can construct an exponential

trichotomy with Ec = {w̃h = 0}. Quantitative robustness of exponential trichotomies then guarantees

that the equation with Ãhc(r) = O(r−(K+1)) also admits an exponential trichotomy with subspace Ec(r) =

O(r−(K+1)). Diagonalizing the linear part within this subspace implies the claim of the proposition.

The key step in our analysis of the far-field asymptotics of (10.2) is a change of coordinates that allows us

to diagonalize the system in Ec uniformly in r and λ. This result is presented in the following proposition.

Proposition 10.5 For each fixed natural number M , there exists a linear, (r, λ)-dependent change of coor-

dinates in Ec
∞ that is CM+1 in λ and has an expansion up to order M in r−1 such that the reduced equation

(10.2) is of the form

w′c = Ac(r, λ)wc, Ac(λ, r) =

(
ν1(λ, r) 0

0 ν2(λ, r)

)
, νj(λ, r) = νj∞(λ) +

M∑
`=1

νj` (λ)r−` + O(r−(M+1)),

where νj∞(λ) are the eigenvalues ν−1(λ) and ν0(λ) from Proposition 10.4.

Proof. To prove the statement, we need to continue the asymptotic eigenvectors that belong to the asymp-

totic matrix at r = ∞ on the center space associated with the eigenvalues ν1 and ν2 to finite values of r.

The proof is divided into several steps.

Step 1. We perform a sequence of near-identity transformation of the form id +r−jBj(λ) so that Ac(r, λ)

is diagonal up to terms of order r−(K+1). This can be readily accomplished since diagonalizing at order r−j

introduces error terms only of order r−(j+1).

Step 2. We introduce projective coordinates z = w1
c/w

2
c , thus reducing the linear two-dimensional equation

to an equation on the complex Grassmannian C̄ ∼ S2. Setting α := r−1, we arrive at the equation

z′ = (ν1(λ, r)−ν2(λ, r))z+O(αM+1)+z2O(αM+1), ν1(λ, r)−ν2(λ, r) = i+(ν1
λ(0)−ν2

λ(0))λ+O(λ2)+O(α).

Since the analytic coordinate transformation for λ we discussed at the beginning of this section ensures that

the absolute spectrum through λ∗ = 0 is given by the line Reλ = 0, the equation for z becomes

z′ = iz + λz +

M∑
j=1

ajα
jz + O(αM+1) + z2O(αM+1)

α′ = −α2

λ′ = 0.

Note that we included the equations for α and λ for later use.
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Step 3. Next, using the corotating frame z = ei(1+Imλ)r z̃ and setting λr := Reλ, we find, after dropping

the tildes, that z satisfies the system

z′ =λrz +

M∑
j=1

ajα
jz + O(αM+1) + zO(αM+1) + z2O(αM+1)

α′ =− α2 (10.5)

λ′ =0,

where the remainder terms now depend on ei/α, hence inducing negative powers of α when we differen-

tiate these terms in α. Choosing M sufficiently large, we conclude that the resulting system can still be

differentiated arbitrarily often in α up to α = 0.

Step 4. The dynamics of (10.5) is degenerate near the origin as the leading-order terms in the vector

field are quadratic in (z, α, λ). In order to understand the dynamics of this system, we desingularize using

geometric desingularization techniques. We describe the dynamics in the neighborhood of the origin using

polar coordinates, which leads to a dynamical system on R+×S4, where z is treated as real two-dimensional

variable and the parameter Imλ is hidden in the higher-order terms. As we will see later, it suffices to

describe the dynamics near the equator {z = 0}, which can be described by the following two directional

coordinate charts.

1-chart: We define the coordinates (z1, λ1) via

z = αz1, λr = αλ1

and note that these parametrize our system near the α-pole of the sphere. After introducing the independent

variable s with α d
dr = d

ds and then using again ′ to denote d
ds , equation (10.5) becomes

z′1 = λ1z1 + (1 + a1)z1 +

M∑
j=2

ajα
j−1z1 + O(αM+1) + z1O(αM ) + z2

1O(αM−1)

α′ = −α (10.6)

λ′1 = λ1.

2+-chart (λr > 0): To characterize the dynamics near the z-pole for λr > 0, we introduce the coordinates

z = λrz2, α = λrα2.

After introducing s with λr
d
dr = d

ds and then denoting d
ds again by ′, equation (10.5) becomes

z′2 =z2 + a1α2z2 + λr

M∑
j=2

ajα
j
2λ
j−2
r z2 + O(λM+1

r αM2 )

α′2 =− α2
2

λ′r =0.

2−-chart (for λr < 0): Similarly, we use the variables

z = −λrz2, α = −λrα2
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Figure 8: Left two panels: We illustrate the dynamics near the origin in the 1-chart, with the sphere shaded

in blue, depending on the sign of (1 + Re a1). Also included in the left panel is a schematics of the Shilnikov

sections used to track the stable manifold past the singular equilibrium as described in Steps 6 and 7. Right

two panels: Shown is the dynamics near the origin in the 2-charts, including the center manifold and the

lines of equilibria.

to parametrize the region near the z-pole λr < 0. After introducing s with −λr
d
dr = d

ds and then denoting
d
ds again by ′, equation (10.5) becomes

z′2 =− z2 + a1α2z2 + λr

M∑
j=2

ajα
j
2λ
j−2
r z2 + O(λM+1

r αM2 )

α′2 =− α2
2

λ′r =0.

We glue these coordinate charts together near {α2 = 1}, which corresponds to {λ1 = ±1} for the 2±-chart,

respectively. Using this information and the definitions of the charts, we see that these coordinates are

related via

z1 = z2, α = |λr|.

In the next step, we analyze the dynamics in the 1- and 2-chart: we refer to Figures 8 and 9 for illustrations

of the overall dynamics.

Step 5. In the 1-chart, the set {α = 0} corresponds to the origin in the original equation. This set is

invariant and carries non-trivial dynamics due to the singular rescaling of time by α. In this chart, the origin

is an equilibrium that is stable in the direction of α, perpendicular to the sphere, with eigenvalue −1. The

eigenvalues within the sphere are +1 and (1 + a1), which depends on the leading-order correction in the

expansion. The z-equator {z1 = 0} inside the sphere is invariant, and solutions in this set converge to the

origin in backwards time in the 1-chart due to the eigenvalue +1; see Figure 8.

In each 2-chart, there is a line of equilibria α2 = z2 = 0 that correspond to the asymptotic eigenspaces

parametrized by λr. The linearization at the equilibrium α2 = z2 = |λr| = 0 inside the singular sphere has

an eigenvalue zero associated with this line of equilibria, and an additional eigenvalue zero associated with

the dynamics in the α2-direction. In addition, there is an eigenvalue ±1 associated with the z2-direction in

the 2±-chart, respectively. The α2-axis is invariant with solutions converging to α2 = 0 in forward time.

Recall that λr is real and that Imλ appears only as a hidden parameter in the higher-order terms of the

equation for z2. We will omit the hidden variable Imλ from our dimension counts below.
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Figure 9: Shown is the singular sphere with the 1- and 2-charts, singular equilibria, connecting orbits, and

Shilnikov passage constructions indicated.

As illustrated in Figure 9, two heteroclinic orbits connect the origin in the 1-chart and the origins in the

2±-charts along the z-equator z1 = 0 and z2 = 0, respectively. Eigenfunctions in the 2±-chart correspond

to trajectories that converge to the manifold of equilibria α2 = z2 = 0 as time goes to infinity. Our goal

is to construct a smooth curve in the section Σout = {α = δ} in the 1-chart that is parametrized by λr

near zero so that the corresponding solutions converge to the manifold of equilibria at time goes to infinity

in the 2±-chart depending on the sign of λr. We accomplish this by tracking solutions in the center-stable

manifolds of these equilibria back towards Σout and establishing smoothness in λr in this section. In the

2−-chart, all solutions converge to the manifold of equilibria as time goes to infinity. We therefore focus first

on the 2+-chart. In this chart, we are interested in the two-dimensional center manifold of these equilibria.

The tangent space to this manifold at λr = 0 is simply the two-dimensional center eigenspace z2 = 0. Inside

this two-dimensional center manifold, the dynamics is given by α′2 = −α2
2 and λ′r = 0, and trajectories indeed

correspond to the stable manifolds of the asymptotic equilibria. We are interested in tracking this manifold

backward in time to and past the origin in the 1-chart to a finite value of α. Note that the Taylor jet of this

center manifold is of arbitrarily high order O(|α2λr|M ) due to the fact that we diagonalized eigenspaces up

to order M .

Step 6. In order to track the center manifold near the set {z2 = 0} past the 1-chart origin, we need

to analyze the passage map near the origin in the 1-chart. This is a somewhat standard Shilnikov-type

problem, and we outline the results of this analysis here. The center manifold that we track is given as a

graph z1 = h(α), with h = O(αM ), in a cross section Σin = {λ1 = δ} of the flow. We wish to transport this

manifold backwards past the equilibrium to a section Σout = {α = δ}. We add superscripts to the variables
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in the cross section and, due to the fact that λ is constant and does not evolve, find that

λin
1 α

in = λout
1 αout hence λout

1 = αin.

We determine zout
1 from the equation for z′1 by integrating for a time T with e−T = αin/δ. Using only the

linearization for illustration, we expect to arrive at

zout
1 =

(
αin

δ

)a+1

O
(
|αin|M

)
= O

(
|λout

1 |M+a+1
)
.

In the next step, we show how this linear calculation can be turned into a nonlinear estimate.

Step 7. We observe that we can write the first equation in (10.6) in the 1-chart as

z′1 = (1 + a(α, λ1))z1 + αM−1R(z1, α, λ1),

where the functions a(α, λ1) and R(z1, α, λ1) are smooth. We artificially augment the system (10.6) by

introducing the additional variable ᾱ := αM−1 to arrive at

z′1 =(1 + a(α, λ1))z1 + ᾱR(z1, α, λ1)

α′ =− α

λ′1 =λ1

ᾱ′ =− (M − 1)ᾱ.

For M large enough, the dynamics in ᾱ is strongly contracting, and the system is therefore fibered in a

neighborhood of the origin over the invariant subspace ᾱ = 0. A smooth coordinate transformation

(z̃1, α̃, λ̃1) = (z, α, λ1) + ᾱΨ(z1, α, λ1; ᾱ)

will straighten out these fibers such that, after this transformation, the dynamics in (z̃1, α̃, λ̃1) are indepen-

dent of ᾱ, hence given through the equation at ᾱ = 0,

z̃′1 =(1 + a(α̃, λ̃1))z̃1

α̃′ =− α̃

λ̃′1 =λ̃1.

We can now solve explicitly for z̃out and recover the desired estimates z̃out
1 = O(|λ̃out

1 |M̃ ), where M̃ can be

chosen large provided M is large, with equivalent estimates for the derivatives due to the linearity in z̃1.

In the original coordinates, zout
1 is therefore a smooth function of λout

1 up to λout
1 = 0, which completes the

analysis of the 2+-chart. Next, we extend this function smoothly into the region λout
1 < 0. Reversing the

analysis presented above in time, we can track this manifold through the 1-chart to the 2−-chart, where all

trajectories limit on the family of stable equilibria.

Step 8. The preceding analysis provides z∗(λ, α) for each α with 0 ≤ α ≤ α∗ = δ and shows that this

expression is smooth in λ near λ = 0. The change of coordinates z 7→ z − z∗(λ, α) =: z̃ gives, upon omitting

the tilde, the new equation

z′ = (λ+ a(λ, α))z + O(αM )z2,

76



which, in particular, leaves z = 0 invariant. Inverting ξ := 1/z, we find

ξ′ = −(λ+ a(λ, α))ξ + O(αM ).

We can now repeat the construction outlined above for this new equation, which results in a function ξ∗(λ, α)

with analogous properties to those of z∗. Subtracting this expression, we obtain an equation for ξ, or z, that

is linear. Linear equations on the Grassmannian correspond to linear systems whose matrix is diagonal as

claimed. This completes the proof of the proposition.

In the coordinates provided by Proposition 10.5, we can solve the equation inside the center eigenspace ex-

plicitly by separation of variables. In particular, there exist unique solutions that converge with asymptotics

associated with the eigenvalues ν−1,0(λ), respectively. Since the ordering of these two eigenvalues by real

part is exchanged upon crossing the absolute spectrum, solutions with asymptotics given by ν0(λ) give rise

to eigenfunctions to one side of the absolute spectrum, while solutions with asymptotics associated with

ν−1(λ) give rise to eigenfunctions on the opposite side. With this background, we can now formulate the

concept of a resonance in the absolute spectrum (see Definition 3.22) more precisely.

Recall that the system (8.1) associated with the eigenvalue problem LRu = λu is given by

wr = Aλ(r)w. (10.7)

This equation admits exponential dichotomies on 0 ≤ r ≤ R∗, and the corresponding center-unstable sub-

space Ecu
− (R∗) contains all initial conditions whose associated solutions correspond to bounded solutions of

LRu = λu on r ≤ R∗.

Definition 10.6 (Resonances in the absolute spectrum) Fix λ∗ in the simple part of the absolute

spectrum.

(i) Resonances caused by the spiral wave: We say that there is a resonance in the absolute spectrum

at λ∗ caused by the spiral wave if there exists a solution w(r) of (10.7) defined for r ≥ R∗ with

w(R∗) ∈ Ecu
− (R∗) ∩ Ecs(R∗) so that, in the coordinates of Proposition 10.5, at least one of its two

center components in Ec(r) vanishes for one, and hence all, values of r.

(ii) Resonances caused by the boundary conditions: We say that there is a resonance in the absolute

spectrum at λ∗ caused by the boundary conditions if Ebc∩(Ec
∞⊕Eu

∞) contains a vector whose component

in Ec
∞ lies in R(1, 0)T or R(0, 1)T .

We will exclude points in the absolute spectrum that exhibit a resonance as these points are more challenging

to handle. In the context of travelling waves, the extension of the Evans function into the absolute spectrum

vanishes at these points, and it is then possible that discrete eigenvalues or resonance poles emerge at

these points upon adding small bounded perturbation to the underlying operator. This phenomenon was

first observed in [104] in the context of multi-dimensional Schrödinger operators and later found for one-

dimensional travelling waves and degenerate shock waves in [41, 52, 55].

Proposition 10.7 (Accumulation of eigenvalues near the absolute spectrum) Suppose that λ∗ is a

point in the simple absolute spectrum with no resonances caused by the planar spiral wave or the boundary

conditions. For each fixed number m there are constants C,R0 such that the linearization at the spiral wave

with Robin boundary conditions imposed at |x| = R, R ≥ R0, possesses m distinct eigenvalues λj (with

1 ≤ j ≤ m) with |λj − λ∗| ≤ C/R.
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Proof. Since we assume that Σabs is simple at λ∗, the configuration of Morse indices of the spatial dynamical

system (10.7) at λ∗ implies that Ecu
− (R∗)∩Ecs

+ (R∗) has dimension at least one. We claim that the assumption

that there are no resonances caused by the spiral wave implies that

dim(Ecu
− (R∗) ∩ Ecs

+ (R∗)) = 1, Ecu
− (R∗) ∩ Es

+(R∗) = {0}. (10.8)

Indeed, the second identity follows immediately as any nontrivial element in the intersection would yield a

solution that decays exponentially as r → ∞, thus causing a resonance as the dichotomy projection on the

center space vanishes identically. The first identity follows similarly upon observing that if there are two

linearly independent solutions with initial conditions in the intersection, then these solutions either span

Ec
+(r), leading to a resonance, or one of them lies in Es

+(r), yielding a contradiction to the second identity

that we already proved.

Since Ec
+(R∗) is two-dimensional, it follows from (10.8) that there is a one-dimensional subspace Ṽ ⊂ Ec

+(R∗)

so that

(Ecu
− (R∗) ∩ Ecs

+ (R∗))⊕ Es
+(R∗)⊕ Ṽ = Ecs

+ (R∗).

We now define

Ẽcu
+ (R∗) := Ecu

− (R∗)⊕ Ṽ , Ẽs
+(R∗) := Es

+(R∗)

and note that Ẽcu
+ (R∗)⊕ Ẽs

+(R∗) = X. We can use these two subspaces to define an exponential dichotomy

on [R∗, R] with rates and constants that are uniform in R. In particular, we have that Ẽcu
+ (R) and Ẽs

+(R)

are O(e−(R−R∗)) close to Ecu
∞ and Es

∞, respectively.

Proceeding in the same way at r = R, and using our assumption that there are no resonances at λ∗ caused

by the boundary conditions, we see that

dim(Ebc ∩ Ecu
+ (R)) = 1, Ebc ∩ Eu

+(R) = {0}.

We conclude that there is a one-dimensional subspace V̂ ⊂ Ec
+(R) so that

(Ebc ∩ Ecu
+ (R))⊕ Eu

+(R)⊕ V̂ = Ecu
+ (R).

This allows us to define the complementary spaces

Êcs
+ (R) := Ebc ⊕ V̂ , Êu

+(R) := Eu
+(R)

and use them to define an exponential dichotomy on [R∗, R] with rates and constants that are uniform in R.

The resulting subspaces Êcs
+ (R∗) and Êu

+(R∗) are O(e−(R−R∗)) close to Ecs
+ (R∗) and Eu

+(R∗), respectively.

It follows that Ec
new(r) := Ẽcu

+ (r) ∩ Êcs
+ (r) is two-dimensional with

dim(Ec
new(R∗) ∩ Ecu

− (R∗)) = 1, dim(Ec
new(R) ∩ Ebc) = 1.

We conclude that there is a solution w(r) of (10.7) with w(R∗) ∈ Ecu
− (R∗) and w(R) ∈ Ebc if and only if

w(R∗) ∈ Ecu
− (R∗) ∩ Ec

new(R∗) and w(R) ∈ Ebc ∩ Ec
new(R).

To find such intersections, we now turn to the diagonal coordinates in the center subspace constructed in

Proposition 10.5. Each intersection corresponds to a solution z(r) of the boundary-value problem

z′ = (λ+ hλ(r))z, z(R∗) = z0(λ), z(R) = z+(λ), (10.9)

in projective space, where 0 < |z0,+(λ)| < ∞ due to the absence of resonances. Defining η := log z and

η0,+(λ) := log z0,+(λ), we find that

η′ = λ+ hλ(r) =⇒ η+ = η0 + λ(R−R∗) +

∫ R

R∗

hλ(s)ds,
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which we write in the form

λ =
η+ − η0

R−R∗
− 1

R−R∗

∫ R

R∗

hλ(s)ds.

Exploiting the nonuniqueness of the logarithm, we set η+(λ) = η0
+(λ) + 2πij (with 0 ≤ j < m and j ∈ Z)

and write ζ(λ) = η0
+(λ)− η0(λ) to arrive at the equation

λ =
2πij

R−R∗
+

ζ(λ)

R−R∗
− 1

R−R∗

∫ R

R∗

hλ(s)ds. (10.10)

Since h has an expansion in r−1, we conclude that the last term and its derivative with respect to λ

are bounded by log(R−R∗)
R−R∗ . In particular, the right-hand side of (10.10) defines a contraction in λ for all

sufficiently large R, and we find eigenvalues λ within a ball of radius R−1 for each 0 ≤ j < m, which proves

the proposition.

11 Spectra of truncated spiral waves

This section extends the results from §10 to include corrections to the nonlinear spiral wave profile, con-

structed in §9. The solutions constructed can be thought of as spiral waves glued to a boundary sink that

corrects for the influence of the boundary conditions. In comparison with the situation in §10, the additional

difficulty due to this gluing procedure is to account for the boundary sink, effectively replacing the boundary

spectrum Σbdy in the results of §10 with the extended point spectrum of the boundary sink.

Many of the proofs are analogous to the proofs in §10 and we will mainly point out the key differences. We

start in §11.1 by collecting some geometric information on the linearization at the boundary sink, depending

on the eigenvalues λ. In §11.2, we characterize the resolvent set and point eigenvalues away from the absolute

spectrum, before we consider accumulation of eigenvalues onto the absolute spectrum in §11.3.

11.1 Geometry of the linearization at boundary sinks

The eigenvalue problem near a boundary sink can be written in spatial dynamics on x < 0,

ux =v

vx =−D−1[−ω∂τu+ f ′(ubs)u− λu]

with boundary subspace as in (9.3),

u(0) ∈ Ebc
1 = {(u, v) ∈ Y ; (u(τ), v(τ)) ∈ Ebc

0 ∀τ}.

More conveniently, we consider the equation in the corotating coordinates

ux =− k∗∂σu+ v (11.1)

vx =− k∗∂σv −D−1[−ω∂τu+ f ′(ubs)u− λu],

where the coefficients ubs(x, σ)→ u∞(σ) converge to an x-independent limit. We collect geometric informa-

tion on this equation that results from our spectral assumptions.

The case λ∗ /∈ Σabs. In this case, we can conjugate the equation with an exponential weight η ∈ J0(λ∗),

considering (ũ, ṽ) = eηx(u, v), and find an exponential dichotomy on x < 0 with projections P s/u(x). More-

over, the P s/u converge exponentially to the corresponding projections P
s/u
wt of the asymptotic wave train.

If in addition λ∗ does not belong to the extended point spectrum, we may choose RgP s(0) = Ebc
0 .

79



The case λ∗ ∈ Σabs. In this case, we again conjugate with an exponential weight η = −Re ν0(λ∗) and we

can then define a trichotomy for the shifted equation with projections P s/c/u(x), dim Rg(P c) = 2. Moreover,

each solutions in Rg(P c) satisfies

|(u, v)(x)− α0e0eν0(λ∗) − α−1e−1eν−1(λ∗)| −→ 0

at an exponential rate for some α0, α−1 ∈ C.

Definition 11.1 (Boundary resonance in absolute spectrum) For a point λ∗ ∈ Σabs where the abso-

lute spectrum is simple, we say that the linearization at the boundary sink possesses a resonance if there exists

an solution to (11.1) with (u, v)(x, σ) ∈ L2
η−ε, for some ε > 0, arbitrarily small, such that the component in

RgP c satisfies α0 = 0 or α−1 = 0.

Continuity in ω. Non-degenerate boundary sinks come in one-parameter families parametrized by ω; see

Lemma 9.1. In corotating coordinates σ, the boundary sinks depend smoothly on ω as functions in L∞. We

may then consider the spectral properties described above for nearby values of ω. Continuity of exponential

dichotomies with respect to the parameter ω, through explicit dependence and implicit dependence in k

and the profile, gives continuity of the exponential dichotomies in ω and thereby continuity of absolute and

extended point spectra of the boundary sink. Similarly, absence of resonances is robust with respect to

changes in ω.

11.2 Eigenvalues and resolvent outside of the absolute spectrum

We exclude eigenvalues in the complement of the limiting spectrum, that is, for λ∗ in the complement of

extended point spectra of spiral wave and boundary sink, and not in the absolute spectrum.

Lemma 11.2 (Resolvent continuity under truncation) Suppose that λ∗ does not belong to the absolute

spectrum, the extended point spectrum, or the boundary spectrum; then there exists δ > 0 and R̄ > 0 such

that Bδ(λ∗) belongs to the resolvent set of Ls,R for all R > R̄. Moreover, R̄(λ∗) can be chosen uniformly in

compact subsets of the complement of absolute, extended, and boundary spectrum.

Proof. Convergence estimates in the construction of the boundary sink give us that the truncated spiral is

uniformly close to the profile of a boundary sink on r ≥ R− κ−1 log r with nearby frequency and uniformly

close to the spiral wave on r ≤ R − κ−1 log r. Since stable and unstable subspaces of spiral waves converge

to the stable and unstable subspaces of the wave trains for r → ∞, and stable and unstable subspaces

of the boundary sink similarly similarly converge for x → −∞, we find can conclude transversality of the

unstable subspace for the spiral wave and the stable subspace for the boundary sink at the gluing point

r = R − κ−1 logR, which implies existence of an exponential dichotomy near the glued profile and absence

of spectrum for all R sufficiently large and nearby values of the parameter λ.

Establishing persistence of eigenvalues in the extended point spectrum of the spiral wave or the boundary sink

is equivalent to the constructions in §10.2 since the equation near the boundary sink possesses exponential

dichotomies.
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11.3 Accumulation of eigenvalues onto the absolute spectrum

We now show how to adapt the techniques from §10.3 to establish accumulation of eigenvalues near simple

points of the absolute spectrum, assuming absence of resonances. We consider the linearized equation

w′ = AR,λ(r)w

with parameters λ and R on R∗ < r < R with boundary conditions

w ∈ Eu
− at r = R∗ and w ∈ Ebc

1 at r = R.

We choose λ ∼ λ∗, with λ∗ in the simple absolute spectrum, not a resonance for boundary sink or spiral

wave.

Step 1: Relaxing the boundary conditions. The linearization at the boundary sink possesses an

exponential trichotomy with subspaces Es,c,u
bs,∞(r), r ≤ R, where we shifted the boundary sink profile and the

associated linearized equation as in the construction in §9 such that the boundary condition is situated at

r = R. Absence of resonances implies that Ebc
1 ∩Ecu

bs,∞(R) and we can choose a one-dimensional complement

Vbs ⊂ Ec
bs,∞(R) such that Ebc

1 ⊕ Vbs ⊕ Eu
bs,∞(R) = X. We can then assume that Ecs

bs,∞(R) = Ebc
1 ⊕ Vbs.

Similarly, the linearization about the primary spiral wave has an exponential trichotomy with subspaces

Es,c,u
sp,∞(r) for r ≥ R∗. The intersection Eu

− ∩ Ecs
sp,∞ is one-dimensional and we can choose a one-dimensional

complement Vsp ⊂ Ec
sp,∞(R∗) such that Eu

− ⊕ Vsp ⊕ Es
sp,∞ = X. We can now assume that Ecu

sp,∞(R∗) =

Eu
− ⊕ Vsp.

Step 2: Robustness and transversality. The dichotomies constructed in the first step are robust

and yield exponential trichotomies with subspaces Es,c,u
sp,bs on R∗ ≤ r < R0 and on R0 < r < R, where

R0 = R − κ−1 log(R). In particular, exponential dichotomies converge to the corresponding trichotomy of

the wave train. As a consequence, at r = R0, we have transversality

Ecs
bs ⊕ Ecu

sp = X, Ecs
bs ∩ Ecu

sp =: Ec
R

with

Ec
R ∩ Eu

sp = {0}, Ec
R ∩ Es

bs = {0}.

We can now continue this two-dimensional intersection Ec
R along r to find Ec

R(r), R∗ ≤ r < R. By construc-

tion, Ec(r) and the flow in these subspaces converge exponentially to the flow on Ecsp(r).

Step 3: Un-relaxing the boundary conditions. Eigenfunctions for finite R are in one-to-one corre-

spondence to solutions of the ODE in the subspace Ec
R(r) that also satisfy the boundary condition, that is,

whose component in Vbs and Vsp vanish at r = R and r = R∗, respectively.

Step 4: Scattering and reduction to the pure spiral. The resulting equation on Ec
R(r) can be

identified with an equation on Ec
∞ as a convenient trivialization of the two-dimensional bundle. Exponential

convergence implies that this equation is, in suitable coordinates, of the form given in Proposition 10.5, with

an exponentially decaying correction

w′c = (Ac(r, λ) +B(r;R, λ)) wc, |B(r;R, λ)| ≤ Ce−δ(R−r)
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for some constants C, δ > 0 that are independent of R, r, λ. Exponential decay gives a continuous foliation

over the asymptotic equation, that is, we have

wc(r) = Ψ(r;R, λ)w∞c (r)

where w∞c satisfies

(w∞c )′ = Ac(r, λ)w∞c ,

and Ψ(r;R, λ) is continuous in r, decays exponentially so that |Ψ(r;R, λ)| ≤ Ce−δ(R−r), and has the limits

Ψ(r;R, λ)→ Ψ(r;∞, λ) as R→∞, Ψ(r;∞, λ)→ 0 as r →∞.

In summary, we reduced our eigenvalue problem to an boundary-value problem for the linearized equation

for the primary spiral with boundary conditions pulled back from the foliation Ψ. Absence of resonances, as

used in §10.3, follows from the assumptions on absence of resonances for boundary sink and spiral.

Step 5: Conclusion. As a consequence, we reduced the problem to precisely the problem studied in §10.3.

We reduced to an equation of the form given in Proposition 10.5 with boundary conditions at r = R and

at r = R∗. Proceeding as in Proposition 10.7 now establishes accumulation of eigenvalues for the truncated

problem near λ∗ as R→∞ and concludes the proof of Theorem 3.26.

12 Applications to spiral-wave dynamics and discussion

The theory developed here can illuminate many experimental and numerical observations of spiral-wave

dynamics. In order to illustrate the role of our results in the prediction and understanding of observations, we

return to the phenomena alluded to in the introduction. In §12.1, we discuss the viewpoint that spiral waves

are robust coherent structures that can be continued in parameter space, both analytically and numerically,

on large but bounded domains. We then discuss possible instabilities and how they relate to the fine structure

of spectra developed here in §12.2. We conclude with a discussion of selected open problems in §12.3. We

focus here on the phenomena and relegate details of numerical algorithms, their implementation, and the

PDE models used for our computations to the appendix.

12.1 Rigid rotation, truncation, and continuation.

Existence, continuation, and logarithmic phase. Existence of spiral waves has been proved only in the

special case of the complex Ginzburg–Landau equation and, extending from there by perturbative arguments,

in the vicinity of a Hopf bifurcation in the reaction-diffusion kinetics [102]. In excitable media, good matched

asymptotic approximations are available [17, 58, 69, 106]. From the point of view taken in this paper, spiral

waves will exist in open classes of reaction diffusion systems, possibly containing a connected region that

included both oscillatory and excitable media. We used numerical continuation to follow a spiral wave from

the excitable to the oscillatory regime in Barkley’s variant of the FitzHugh–Nagumo system; see Figure 10.

Note that one typically thinks of excitable media as organized around excitation pulses and their periodic

concatenation, so-called trigger waves, whereas periodic media are organized around spatially homogeneous

oscillations and their spatial modulation, so-called phase waves. At the transition from oscillatory to excitable

media, excitation pulses terminate in a saddle-node bifurcation [15, 26], while homogeneous oscillations end

in homoclinic or Hopf bifurcations. Phase waves can however be continued to trigger waves [15, 25], and we

82



100 0 100
100

0

100
(1) oscillatory

100 0 100
100

0

100
(2) excitable

100 0 100
100

0

100

spiral arm

tip dynamics

tip

(3) weakly excitable

0 20

(4) oscillatory

0 20

(6) excitable

0.05 0.00 0.05
b

2.1

2.0

1.9
te

m
po

ra
l f

re
qu

en
cy

 

(5) temporal frequency and wave number

k

0.65

0.60

wave num
ber k

Figure 10: Panels (1)-(3) show snapshots of spiral waves in the Barkley model in the oscillatory, excitable,

and weakly excitable regimes. Panels (4) and (6) show snapshots of spiral waves in the oscillatory (b = −0.05)

and excitable (b = 0.05) regimes that were computed using a continuation algorithm together with the temporal

frequencies and spatial wave numbers for spiral waves as functions of the system parameter b.

show in Figure 10 that spiral waves emitting those phase and trigger waves, respectively, are connected in

parameter space. Spiral waves eventually terminate at a point where the temporal frequency ω∗ approaches

zero (ω∗ ↘ 0) in the regime of weak excitability. In this regime, the wavelength of wave trains selected

by the spiral diverge. It is worth noticing however that during the crossover from excitable into oscillatory

regimes, the spiral-wave profile changes very little.

Our main robustness result relies on the construction of a center manifold Mc
+, which continues wave-train

solutions to finite radii r. Solutions in this center manifold can be expanded in the radius r and the leading-

order correction contains the effect of curvature on the speed and wavenumber of wave trains. Figure 11

confirms the predicted logarithmic phase shift and corresponding algebraic 1
r -convergence of the wavenumber.

Group velocities and transport. A crucial property of spiral waves we assumed throughout this paper

is that the group velocities of the asymptotic wave trains are directed outward in the far field. This basic

property underlies the selection of wavenumber and frequency by the spiral core and determines growth and

decay properties of eigenfunctions and adjoint eigenfunctions on the imaginary axis. Figure 12 illustrates

that positive group velocities imply outward transport via direct simulation in Barkley’s model and in the

Rössler system. Shown are temporal dynamics along a line section through the center of rotation, which

clearly exhibit outward transport (diffusive decay and spreading) of perturbations. We emphasize that this

transport is independent of the apparent phase velocity of wave trains, which indeed is directed towards the

core of the spiral in the Rössler system.
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Figure 11: Panel (1) shows a rigidly-rotating spiral wave in the Barkley model. Panel (2) shows the spiral

wave evaluated along the horizontal ray starting at the center of the spiral: for each r, we denote by r+L(r)

the second-next value of the radius at which the spiral wave attains the same value. Panel (3) shows the

graph of the function L(r) together with a curve fit of the quotient of two linear functions: the fit shows that

the asymptotic period is L(∞) = 11.22. In panel (4), we plot log(L(∞)− L(r)) against log(r): a fit with a

linear function gives a slope of −0.87, which is close to the expected value of −1.
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Figure 12: To illustrate transport properties of spiral waves, we added a localized perturbation near the spiral

core for spiral waves with positive group velocity, evaluate the difference of the original and the perturbed

solution along a line through the spiral core, and plot the result overlaid with the original spiral waves as a

space-time plot for spiral waves in the Barkley model (positive phase velocity) in panel (1) and the Rössler

system (negative phase velocity) in (2). These computations indicate that, in both cases, perturbations are

transported away from the core
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Figure 13: Panel (1) shows the spectrum Σdisk (blue disks) of an unstable spiral wave in the Karma model

posed on a bounded disk with Neumann boundary conditions together with the stable absolute spectrum Σabs

(red curves) and the unstable Fredholm boundary Σfb (green curves). As shown in panel (2), the Fredholm

boundaries stabilize in exponentially weighted spaces (we used η = −1 to obtain Σwt (orange curves)) and

point spectrum may emerge as the spectral boundaries move. The instability is caused by a discrete point

eigenvalue that belongs to the extended point spectrum: as indicated in panel (3), the associated eigenfunction

grows exponentially as r increases.

Spectra at linearization and shape of eigenfunctions. Without using any information about the

specific model, our results predict a number of structural and qualitative properties of the spectra4 of the

linearization about a spiral wave. Figure 13 illustrates many of those basic properties in the Karma model.

We computed Fredholm boundaries, Fredholm boundaries in weighted spaces, and absolute spectra based on

the wave train linearization using continuation [85]. We compared those with spectra computed in a finite-

size disk. As predicted, spectra stabilize when exponential weights are introduced that allow exponential

growth of functions. Absolute spectra are stable and eigenvalues in finite-size disks cluster along the absolute

spectrum. We also see an unstable isolated eigenvalue in the extended point spectrum. As predicted, the

eigenfunction belonging to this unstable eigenvalue exhibits exponential growth in the radial variable and

therefore contributes to the kernel only in the exponentially weighted space.

We note here that the location of the unstable eigenvalue near the edge of the absolute spectrum is not

purely incidental (see Figure 15 for another clearer example). In [96], we showed using formal asymptotics

that eigenvalues in the extended point spectrum can accumulate on the edge of the absolute spectrum (or,

conversely, that eigenvalues in the extended point spectrum can emerge from branch points of the absolute

spectrum) and predicted the asymptotic locations for these eigenvalue clusters. Since these eigenvalues belong

to the extended point spectrum, they converge exponentially in the radius R of the domain, as opposed to the

weak set-wise, algebraic convergence near the absolute spectrum. Their presence can be roughly attributed

as follows to curvature corrections to the wave train linearization. Curvature effects can be thought of as

slowly varying in space. In an adiabatic approximation, one can then consider the linearization at a curved

wave train to predict possible eigenvalues. If, for instance, the curved wave train is more unstable than

the planar wave train, this would then predict existence of eigenvalues to the right of the spectrum of the

wave train. Though it appears to be difficult to analytically predict the rightmost of these eigenvalues,

which would give rise to the first instability, complex conjugation λ 7→ λ̄ and Floquet-covering symmetry

λ 7→ λ+ iω∗ generally predict the robust presence of near-resonant eigenvalues at ±i`ω∗ or ±i(`+ 1
2 )ω∗ with

4The different spectra we refer to in this paragraph are defined in §3.2
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Figure 14: For spiral waves in the Rössler model, panel (1) contains the discrete spectrum of the spiral on

a bounded disk of radius R = 125 together with the absolute spectra (red curves) and Fredholm boundaries

(green curves). Panel (2) illustrates the predicted convergence towards the absolute spectrum, while panels (3)

and (4) zoom in on the rightmost regions along Reλ = 0 and Reλ = ω/2, respectively, and also include

Fredholm boundaries (blue curves) computed in an exponentially weighted norm with negative rate η < 0.

Panels (5)-(7) contain the spatial spectra for λ = 0.1,−0.05,−0.1, respectively.
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Figure 15: Shown are the spectra of the spiral wave in the Bär–Eiswirth model for radii R = 40, 80, 160, 320.

Panel (2) demonstrates convergence to the absolute spectrum. Panels (3) and (4) illustrate how eigenvalues

in the extended point spectrum can emerge from the edge of the absolute spectrum.

` ∈ Z, a fact that contributes to the rich phenomenology of spiral instabilities that we shall discuss briefly

below.

We use the Rössler model to illustrate our predictions for eigenvalue clusters near the absolute spectra and

their relation to spatial spectra in more detail; see Figure 14. We observe, in particular, the predicted iω∗-

periodicity of eigenvalue clusters, algebraic 1
r -convergence of eigenvalue clusters to the absolute spectrum

together with increased density of clusters, and typical singularities of absolute spectra as triple junctions

and branch-point termination. We also computed the spatial Floquet exponents νj and demonstrate how

crossing of real parts on the imaginary axis induces essential spectrum and crossing real parts of separate

eigenvalues corresponds to absolute spectra. We note that it was shown in [33] that the discrete eigenvalue

near iω∗/2 arises as an eigenvalue of the boundary sink that accommodates Neumann boundary conditions.

Figure 15 contains a refined numerical analysis near absolute spectra in the Bär–Eiswirth model, which

shows the very rapid convergence of (extended) point spectrum versus algebraic convergence of clusters

on the absolute spectrum and also demonstrated the emergence of point eigenvalues from the edge of the

absolute spectrum.

Position and response. Our results on spectral properties include characterizations of adjoint eigen-

functions. In particular, we proved that the adjoint eigenfunctions associated with the rotation eigenvalue

λ = 0 and the translation eigenvalues λ = ±iω∗ are exponentially localized as originally conjectured in [21].

Assuming that no other eigenvalues in the extended point spectrum are located on or to the right of iR, these

three eigenvalues span the tangent space of a center manifold to a spiral wave in any large finite disk, con-

sisting of rotated and translated spirals. Perturbations of the centered spiral will rapidly relax to this center
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Figure 16: Separately for the Rössler, Karma, and Barkley models, we show snapshots of spiral waves and

the associated eigenfunctions w(r) of the adjoint linearization belonging to the rotation eigenvalue λ = 0

together with a log plot that indicates that the adjoint eigenfunctions decay exponentially as r increases. The

expected decay rates predicted by the associated spatial spectra are −0.42 for Rössler, −9.47 for Karma, and

−3.55 for Barkley, thus indicating good agreement between theory and numerical computations. Note that

the spiral wave for the Barkley model is in the oscillatory regime.
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manifold, with position on the center manifold computed to leading-order approximation by the spectral

projection onto the center eigenspace. As a consequence, the effect of a spatially localized perturbation on

a spiral wave is to leading order a phase shift in the rotation and a translation. The magnitude of the effect

can be computed by evaluating the scalar product in L2 of the perturbation and the adjoint eigenfunctions.

As a consequence, the effect of perturbations decreases exponentially with distance from the center of rota-

tion, making spiral waves extremely robust also against perturbations of initial conditions as long as those

are centered away from the core. Adjoint eigenfunction were computed, for instance, in [22–24, 67]. We

provide additional computations of adjoint eigenfunctions in Figure 16, where we also compare the spatial

exponential decay rates with the rates predicted by the spatial spectra.

12.2 Instabilities of spiral waves

The structural description of essential, absolute, and point spectra allows us to classify instabilities of spiral

waves. In the following we list common instabilities and explain the implications of our spectral analysis on

the phenomenology. An overview is shown in Figure 17.

Transition to meandering and drifting spiral waves The possibly most prominent spiral-wave in-

stability, described in the introduction, is the transition from rigidly rotating to meandering and drifting

spiral waves. Tracking the location of the spiral tip, defined for instance through the location x(t) ∈ R2

where u(x(t), t) = ū for some fixed ū ∈ R2, one notices that, past a distinct threshold of a system parame-

ter, the motion occurs on epicycloids rather than circles. In other words, small periodic circle motions are

superimposed on the primary circular rotation. These superimposed rotations can occur with the same or

the opposite orientation as the primary rotation, leading to outward and inward petals in the epicycloids,

respectively; see Figure 17(4-6). At the codimension-one transition from outward to inward petals, the spiral

wave moves along a straight line. An explanation of this striking motion was found by Barkley [9], noticing

the coupling of Hopf instability modes to the inherent neutral modes induced by translation and rotation.

More formalized treatments, both in terms of center-manifold reductions and reduced dynamics followed in

[37, 42, 100, 101]. We remark here that all of those rely on a spectral gap which, for the Archimedean spirals

considered here, is not present. In Figure 18, we illustrate the Hopf instability in the Barkley model by

computing eigenvalues during the transition and showing that the instability is caused by point spectrum

with frequency ωH > ω∗ for outward meander and ωH < ω∗ for inward meander. Since the Floquet spectrum

of the wave trains touches the imaginary axis at iω∗, eigenfunctions grow linearly in r at resonance ωH = ω∗,

and are localized only with small exponential rate for near-resonant Hopf bifurcations. Using the results on

shape of eigenfunctions presented here, we were able to predict in [94] striking superspiral patterns in the far

field of meandering spirals. Meandering transitions and the associated super-spiral patterns were observed

in [54, 74, 81, 84, 105]

Core and far-field breakup Instabilities caused by essential rather than point spectrum exhibit a more

complex phenomenology. Often, the associated instabilities of wave trains are subcritical, leading to breakup

of wave trains and spatio-temporal chaos. We investigated such instabilities from the point of view presented

here in [91]; see Figure 17, panels (7) and (8) for phenomenologies. Depending on parameter values, the

absolute spectrum induces eigenfunctions corresponding to exponential growth or exponential decay in r.

The resulting instability then is strongly localized in the far field or near the core, respectively. In the

former case, the instability is convective at onset, with perturbations growing as they travel outwards, but

decaying pointwise: the essential spectrum is unstable but the absolute spectrum is still stable. Only when
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Figure 17: We illustrate several typical instabilities of spiral waves. Panel (1)-(3) show snapshots of out-

wardly meandering, drifting, and inwardly meandering spiral waves in the Barkley model; the curves traced

out by the spiral tips are shown in panels (4)-(6). Panels (7)-(8) show core and far-field instabilities in the

Bär–Eiswirth model, while panel (9) shows the snapshot of a spiral wave in the FitzHugh–Nagumo model that

exhibits a transverse instability. Panels (10)-(11) show period-doubling instabilities in the Rössler system

and the Karma model, respectively.
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Figure 18: Shown are the rotation and translation eigenvalues together with the Hopf eigenvalues that cause

the transition to (1) inward and (2) outward meander in the Barkley model as the parameter a is varied.

the absolute spectrum destabilizes do perturbations grow pointwise and perturbations invariably lead to

breakup of the primary spiral. The onset of convective and absolute instability matches well the prediction

from computations of spectra of wave trains. In the regime of convective instability, the subcritical nature of

the instability implies that basins of attraction of the spiral are exponentially small in the size of the domain.

In the case of absolute spectrum with exponential decay, instabilities grow in the core region and the transition

immediately leads to breakup and turbulence with small correlation length scales. Barkley and Wheeler [107]

confirmed the predictions made in [91] using numerical computation of spectra of spirals in bounded domains.

In addition to the eigenvalue clusters along absolute spectra with the predicted exponential radial decay, they

found an eigenvalue in the extended point spectrum near the edge of the absolute spectrum, thus showing

that the core instability is in fact caused by subcritical Hopf bifurcation due to extended point spectrum.

The location of the leading Hopf eigenvalue near the edge of the absolute spectrum can be attributed to

curvature effects as analyzed in [96].

Period-doubling bifurcations and alternans As mentioned above, Floquet and complex conjugation

symmetries of essential and absolute spectra can lead to robust resonances. One of those resonances is the

robust period-doubling of a spiral wave, intrinsically linked to a period-doubling of a periodic orbit in the

kinetics; see [33, 97] and references therein. The three-variable Rössler ODE exhibits periodic orbits that

undergo a period-doubling cascade. When adding diffusion to all three components, the resulting system

supports spiral waves that emit phase waves, which, in turn, can undergo a period-doubling instability. In the

linearization of the spiral wave, this period-doubling instability corresponds to marginally stable spectrum

at iω∗/2 (half the spiral frequency). The instability causes the emergence of line defects in the far field which

appear almost stationary; see Figure 17(10–11). In any finite-size domain, this resonant instability can be

caused by resonant absolute spectrum, near-resonant extended point spectrum near the edge of the absolute

spectrum, or by period-doubling instabilities through extended point spectrum of the boundary sink; see

again [33, 97]. We emphasize that this robust period-doubling instability really can only be understood

through an analysis of the far field and the limit of unbounded domains since a spiral, in any finite domain,

is simply an equilibrium in a corotating frame, rendering the possibility of a period-doubling impossible.

In particular, since time evolution of the spiral is simply given by rotation, the center manifold along the
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periodic orbit is a trivial bundle induced by symmetry rather than the non-orientable Möbius strip typical

in period-doubling instabilities.

12.3 Open problems

We conclude with a discussion of open problems and possible extensions.

Nonlinear perturbations: stability. The presence of essential spectra on the imaginary axis for the

linearization at a spiral wave, induced by the wave trains in the far field, is essential to much of the impli-

cations of our results described above. In this regard, essential spectra, while inherently complicated, give

us additional insight, while of course presenting many technical challenges. Our results exploit the linear

theory to show robustness under parameter changes and domain truncation to large disks. In any finite-size,

sufficiently large disk, our results give a rigidly rotating wave with a simple zero eigenvalue induced by the

rotational symmetry. Standard semigroup methods [50] then yield nonlinear asymptotic stability of the

spiral wave profile in any such large domain. A significant drawback of this argument is the fact that the

size of the basin of attraction established in such stability proofs depends on the norm of the resolvent, used

to construct the spectral projections and the exponential decay estimates in the complement of the center

subspace. Our results show that the norm of the resolvent grows exponentially in R, leading to exponen-

tially small estimates in R for the basin of attraction. The discussion of the dynamics in the case of far-field

breakup show that such a conclusion is in fact optimal when only information from the bounded domain is

used.

To strengthen the result, one would need to incorporate the effect of the essential spectrum, tracking in

particular how perturbations are transported away from the spiral core and decay diffusively. While such

results have been established in one spatial dimension [14], the two-dimensional radial geometry is likely

to introduce difficulties due to the azimuthal stretching that prevents diffusive decay; see [88] for a related

analysis.

Nonlinear perturbations: boundaries and interaction. Due to the exponential localization of the

adjoint, one expects more robust persistence results for truncation to bounded domains in the form of a

slow manifold parametrized by translations and rotations of the spiral wave, with dynamics induced by the

boundary, exponentially slow in the distance between core and boundary. In a similar way, one would expect

to be able to describe the nonlinear interaction of multiple spirals on a reduced slow manifold parametrized by

their respective position and rotational phase, with dynamics that are exponentially slow in the separation

distance of the spiral cores. Approximate profiles for such multi-spiral solutions would be obtained by

inserting sinks similar to the boundary sinks considered here in between the spiral domains. Similar to

the boundary sinks we used in the domain truncation, we would not expect these domain boundaries to

contribute neutral eigenvalues to the linearization, that is, their dynamics would be determined by phase

matching of waves emanating from the spiral core; see [95] for the one-dimensional analogue.

Bifurcations: nonlinear aspects. Further extending the nonlinear analysis, beyond asymptotic stability

and interaction dynamics, one would want to complement the linear predictions for spiral wave instabilities

with nonlinear analysis. A simple example would be an existence proof for meandering spirals past a super-

critical Hopf bifurcation. Again, one could resort to analysis in a large bounded disk. Assuming that the

critical extended point spectrum consists of a simple pair of imaginary eigenvalues crossing the imaginary
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axis in addition to the neutral eigenvalues induced by translation and rotation, one finds a 5-dimensional

center manifold in any bounded domain. We conjecture that the Taylor jet of the vector field on this manifold

converges exponentially as the size of the disk radius R increases and that the limiting equation is given by

the skew-product equations from [9].

Again, this analysis is somewhat unsatisfactory since it only captures exponentially small neighborhoods of

the primary spiral wave profile. Also, the interesting resonant case with a drifting spiral is not accessible by

this approach, as generally the truncation to a bounded domain destroys the underlying Euclidean symmetry.

Lastly, the approach fails to clearly describe nonlinear effects such as possible frequency locking on super

patterns in the far field.

More ambitious reductions would, especially in the case of bifurcations involving instabilities of wave trains,

derive in a rigorous fashion equations that couple the localized core dynamics to far-field modulation equa-

tions such as the viscous eikonal equation or, in the case of instabilities, the Kuramoto–Sivashinsky equation

for breakup or even coupled mode equations in period-doubling instabilities.

Other instabilities and bifurcations. Some instability mechanisms do not fit well into the formalism

developed here. One prominent example are instabilities of wave trains against perturbations perpendicular

to their direction of propagation; see Figure 17(9). In the simplest case, such instabilities arise when d⊥

becomes negative. Inspecting our results, one readily notices that the two-dimensional stability of wave

trains simply does not affect the spectra of spiral waves. In fact, as shown in the proof of Lemma 3.27,

the temporal frequency of transverse perturbations of a wave train in the corotating frame of a spiral

wave converges to infinity as their distance from the spiral core grows. These effects are relevant when

trying to establish even linear stability from the spectral-stability assumptions made in the present paper.

In general, spectral stability for generators of strongly continuous semigroups may not imply exponential

growth bounds without further assumptions on resolvent bounds; see, for instance, [36] for such additional

assumptions. We have shown that the semigroup associated with the linearization at a spectrally stable

spiral waves whose asymptotic wave trains are transversely unstable exhibits exponentially growth with a

strictly positive exponential rate. Note that this observation does not lead to contradictions as our results

on convergence of spectra under truncation to finite disks hold only in compact subsets of the complex plane

and therefore do not exclude unstable eigenvalues created near ±i∞.

The scenario where the temporal frequency ω∗ of the spiral tends to zero (so that ω∗ ↘ 0) is not within

the scope of the analysis presented here since the loss of the rotational term ω∗∂ϕ changes the spatial

dynamics at r = ∞ at leading order, rendering the equation completely degenerate. In this case of the so-

called retracting-wave bifurcation, the spiral core grows and the branch of spiral waves in parameter space

terminates on an asymptotically straight spiral arm that, while propagating in the normal direction, also

retracts in the tangential direction. Symmetry considerations [5] predict the growth of the spiral core as

ω∗ ↘ 0 and a drifting wave at ω∗ = 0; they also predict that the branch of spirals continues into the regime

ω∗ < 0, a phenomenon that has not been observed in experiments or simulations.

Beyond spirals. We suspect that our results can also serve as a basis for the study of a variety of related

and more complex phenomena in excitable and oscillatory media. Changing the winding number ` in the far

field, we find target patterns ` = 0 and multi-armed spirals ` > 1. It appears that, in most simple models,

neither structure exists as a stable periodic solution, although many of our analytical tools would apply to

those structures with minor modifications.
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In three-dimensional physical space, one can “stack” spirals along filaments while possibly rotating the

spiral. Straight filaments yield scroll waves and twisted scroll waves, circular filaments yield scroll waves; see

[109]. It seems that scroll waves and twisted scroll waves would be amenable to an analysis similar to the one

presented here. More interestingly, the analysis here predicts that the filament dynamics as generalizations of

tip dynamics should be described by a PDE for the three independent variables of local normal displacement

of the filament and phase, as function of the arc length along the filament. Continuing the extended point

spectrum of the spiral in a Fourier variable along the filament would then yield bending and torsion stiffness

of the filament.

A Numerical computation of spiral waves in model systems

In §A.1, we outline the models we used to produce the computations and simulations summarized in §12

and provide a brief summary of the numerical algorithms used for these computations in §A.2.

A.1 Model systems

Barkley model. The model

ut = ∆u+
1

ε
u(1− u)

(
u− v + b

a

)
vt = δ∆v + u− v

was introduced in [11] as a system that exhibits meander and drift of spiral waves. In [8], spectral computa-

tions were used to demonstrate that these instabilities arise due to Hopf instabilities. This model also exhibits

retracting spiral waves in the weakly excitable regime (see [51] and references therein). In all computations,

we set δ = 0.01 and ε = 0.02. We used the following parameter values:

Description Figure a b

rigid (excitable) 10(2,6), 11, 12(1) 0.8 0.05

rigid (oscillatory) 10(1,4), 16(7)-(9) 0.8 -0.05

retracting (weakly excitable) 10(3) 0.44 0.05

outward meander 17(1,4) 0.67 0.05

drift 17(2,5) 0.63 0.05

inward meander 17(3,6) 0.59 0.05

In Figure 18, b = 0.05 is fixed and a varies.

Bär–Eiswirth model. The model

ut = ∆u− 1

ε
u(u− 1)

(
u− v + b

a

)
vt = δ∆v + g(u)− v

with

g(u) =


0 0 ≤ u < 1/3

1− 6.75u(u− 1)2 1/3 ≤ u ≤ 1

1 1 < u
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was introduced in [6]. As shown in [6], it exhibits core and far-field instabilities of spiral waves. These

instabilities were further studied using absolute and convective instabilities [7], absolute spectra [91, 96],

and spectral computations [107]. Figure 15 uses the parameter values a = 0.84, b = −0.045, δ = 0.1, and

ε = 0.0751. We used a = 0.75, b = 0.0006, δ = 0.01, and 1/ε = 13.15 for core break-up in Figure 17(7) and

a = 0.84, b = −0.045, δ = 0.01, and 1/ε = 13.1 for far-field break-up in Figure 17(8).

FitzHugh–Nagumo model. Transverse instabilities of spiral waves in the FitzHugh–Nagumo model

ut = ∆u+
1

ε

(
u (u− 0.5) (1− u)− v + b

a

)
(A.1)

vt = δ∆v + u− v

were observed in [47, Figure 9] (the model in [47] is written in a different form, which can be transformed

into (A.1) using a linear change of the dependent and independent variables). For Figure 17(9), we set

a = 8, b = −0.45, ε = 1/57, and δ = 1.215. Figure 19, which uses the same values for (a, b, ε), provides

numerical evidence that the instability visible in Figure 17(9) is indeed caused by a transverse instability of

the asymptotic wave train.

Karma model. The Karma model

ut = 1.1 ∆u+ 400

(
−u+

(
1.5414− v4

)
(1− tanh(u− 3))

u2

2

)
vt = 0.1 ∆v + 4

(
ϑ(u− 1)

1− e−Re
− v
)

with ϑ(u) = (1 + tanh(4u))/2 admits spiral waves that undergo period-doubling bifurcations to alternans.

We refer to [56, 57] for the model and direct simulations, to [66] for spectral computations, and to [33] for

recent computations and further references. For our computations, we used the parameter value Re = 1.2

in Figures 13 and 16(4)-(6) and Re = 0.95 in Figure 17(11).

Rössler model. The Rössler model

ut = 0.4 ∆u− v − w

vt = 0.4 ∆v + u+ 0.2 v

wt = 0.4 ∆w + uw − cw + 0.2

admits spiral waves with positive group velocity and negative phase velocity. Spiral waves exhibit spatio-

temporal period-doubling bifurcations as c is increased. We refer to [31, 33, 43, 97] and the references

therein for detailed studies of spiral waves in this model. In our computations, we used c = 2 in Figures 14

and 16(1)-(3), c = 3 in Figure 12(2), and c = 4.2 in Figure 17(10).

A.2 Methods

Since our codes and data are publicly available [34, 99], we discuss our numerical algorithms and the com-

putational parameters only briefly.
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Figure 19: For the FitzHugh–Nagumo system (A.1), we show the transverse instability coefficient d⊥(k) and

the nonlinear dispersion relation ω(k) in panels (1) and (2), respectively, as functions of the wavenumber

k of the wave trains for different values of δ; also shown are the curves (k∗, d⊥)(δ) and (k∗, ω∗)(δ), respec-

tively, evaluated along the spiral wave of (A.1). Recall that d⊥ < 0 corresponds to a transverse instability.

Panels (3)-(4) contain the Floquet and transverse spectra of the wave train with wavenumber k = 0.29 and

frequency ω = 0.41 selected by the spiral wave at δ = 1.16. Panels (5)-(6) contain the spiral wave and the

graph of successive wavelengths L(r) at δ = 1.16, showing that wave trains are now compressed as r increases

(see Figure 11 for additional details for the case d⊥ > 0).
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Direct numerical simulations. We used the package ez-spiral written by Dwight Barkley [10] for the

direct numerical simulations shown in Figure 10(1)-(3) and Figures 11, 12, 17, and 19(5)-(6). In each case,

we used a square domain of length L with Neumann boundary conditions. The package ez-spiral uses a

finite-difference scheme in space and provides both explicit and implicit Euler schemes for time integration.

Details about the choices for L, grid sizes, and time steps are given in the repository [99].

Continuation and computations of spectra. To continue spiral waves in parameters and to compute

their spectra, we used the matlab scripts developed in [33, 34]. The one-dimensional wave trains and two-

dimensional spiral waves shown or used in Figure 10(4)-(6) and Figures 13-16 and 18-19 were computed using

(2.2) posed on a circle and (3.3) posed on bounded disks with Neumann boundary conditions, respectively.

These equations were discretized in polar coordinates using a spectral Fourier scheme in the angular variable

and finite differences in the radial direction, and the resulting systems were then solved using matlab’s

fsolve routine. The point spectra of the linearization (3.4) about spiral waves on bounded disks in Fig-

ures 13-15 and 18 were computed using matlab’s eig and eigs routines applied to the discretization of (3.4).

We also used these routines to compute the adjoint eigenfunctions shown in Figure 16. We computed the

absolute and essential spectra (including transverse spectra) shown in Figures 13-15 and 19 using the algo-

rithms developed in [85], which were implemented in matlab. The spatial spectra used in Figure 16(3,6,9)

to predict the exponential decay rates of adjoint eigenfunctions and shown in Figure 14(5)-(7) to illustrate

absolute and essential spectra were computed using matlab’s eig routine applied to the discretization of

(2.11).
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