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Abstract

We study interfaces in an Allen-Cahn equation, separating two metastable states. Our focus is on

a directional quenching scenario, where a parameter renders the system bistable in a half plane and

monostable in its complement, with the region of bistability expanding at a fixed speed. We show that

the growth mechanism selects a contact angle between the boundary of the region of bistability and

the interface separating the two metastable states. Technically, we focus on a perturbative setting in a

vicinity of a symmetric situation with perpendicular contact. The main difficulty stems from the lack of

Fredholm properties for the linearization in translation invariant norms. We overcome those difficulties

establishing Fredholm properties in weighted spaces and farfield-core decompositions to compensate for

negative Fredholm indices.
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1 Introduction

We are interested in the Allen-Cahn equation with directional quenching,

ut = ∆u+ µ(x− cxt)u− u3 + αg(x− cxt, u), (x, y) ∈ R2. (1.1)

Here, u denotes an order parameter, and α is a perturbation parameter. We assume for simplicity that µ(x)

and g(x, u) are constant in x > 0 (right half plane) and x < 0 (left half plane),

µ(x) =

{
+1, x < 0

−1, x > 0
, g(x, u) =

{
gl(u), x < 0

gr(u), x > 0
.

In particular, for α = 0, the origin u = 0 is the unique stable equilibrium in the region x > cxt and u = ±1

are the two stable equilibria in x < cxt. Throughout, when referring to solutions of (1.1), we refer to weak

solutions, understanding that solutions are smooth away from the jump x = cxt and possess continuous

derivatives across the jump.

We view this equation as a simple model for phase separation through directional quenching. The quenching

line {y ∈ R, x = cxt} separates bistable and monostable regions. The pointwise energy Wl/r(u), with

−W ′l (u) = u− u3 + αgl(u), −W ′r(u) = −u− u3 + αgr(u),

is of double-well type in the left half-plane and convex in the right half-plane; see Figure 1.1.

The speed cx > 0 measures the rate of growth of the bistable region. The parameter α encodes possible

asymmetries, that is, situations where for instance Wl(+1) 6= Wl(−1), or W ′r(0) 6= 0.
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Loosely speaking, we are interested in solutions where

u(x, y) −→


0, x→ +∞,
z+ > 0, x→ −∞, y → +∞
z− < 0, x→ −∞, y → −∞

, (1.2)

where z± denote the local minimizers in x < cxt, W
′
l (z±) = 0.

For x negative, large, we then expect an interface between the regions where u ∼ z+ and where u ∼ z−,

marked for instance by the level set {u = 0}. This interface typically propagates with a distinct normal

speed cn(α), small for α ∼ 0, while the region x < ct, in which the interface actually describes the dynamics,

expands to the right.

For α = 0, we previously showed that there exists a solution u(x, y) that is odd in y [12]. In particular, the

interface mentioned above consists of the x-axis, y = 0. We show here that this solution can be continued

as a traveling wave, that is, a stationary solution in a frame x̃ = x− cxt, ỹ = y− cyt, with a selected vertical

speed cy(α) and a selected asymptotic angle ϕ(α), that is, u = 0 on ỹ = cot(ϕ)x̃ as x→ −∞; see Figure 1.1.

φ

{u=0}

ψ

t=0 t=1

cy

cxcn

y

x

u~1

u~-1

u~0

Wl

u

t

x

x=cxt

Wr

u

Wl

u

t

x

x=cxt

Wr

u

Figure 1.1: Schematic figure of quenching line (blue), asymptotes (red), and nodal line of interface (black), at time

t = 0 and time t = 1, including contact angles and interfacial speeds (left). Local potential enegies W in space-time,

for α = 0, balanced, in the center figure, and for α 6= 0, unbalanced, on the right-hand side.

Questions of directional quenching are part of a larger set of questions of self-organization in growing domains.

The question of interest is how the growth process, here the movement of the quenching line x = ct, acts

as a selection mechanism for structure, such as interfaces or more complicated patterns, in its wake. Such

selection mechanisms may be exploited, in biology or engineering; see [12] for a somewhat broader overview.

Transforming to the comoving frame, and dropping tildes for the new variables, we find the elliptic traveling-

wave equation, denoting partial derivatives by subscripts,

∆u+ cxux + cyuy + µ(x)u− u3 + αg(x, u) = 0, (x, y) ∈ R2. (1.3)

As a next step, we will make the rough formulation of boundary conditions (1.2) more precise. Denote by

z±(α) the unique, smooth family of zeros of u− u3 + αgl(u) with z±(0) = ±1, and by z0(α) the unique zero

of −u− u3 + αgr(u), |α| sufficiently small.

Definition 1.1 (Contact angle) We say (1.3) possesses a solution u with contact angle ϕ∗ if u possesses

the limits

lim
x→+∞

u(x, y) = z0(α), lim
x→−∞

u(x, cot(ϕ)x) =

{
z+(α), ϕ > ϕ∗
z−(α), ϕ < ϕ∗

, (1.4)

for all 0 < ϕ < π. We also use the deviation from a right angle, ψ = ϕ− π
2 ; see Figure 1.1.

Our main result provides the existence of solutions with a selected contact angle.

Theorem 1.2 (Existence and contact angle selection) For 0 < cx � 1 sufficiently small, there exists

α0(cx) > 0 such that for all |α| < α0(cx) there exist a speed cy(α) and a solution u(x, y;α) to (1.3) with

contact angle ϕ(α). Moreover, cy(α) and ϕ(α) are smooth with ϕ(0) = π/2, cy(0) = 0, and u(x, y;α) is

smooth in α in a locally uniform topology, that is, considering the restriction u|BR(0) to an arbitrary large

ball.
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Figure 1.2: Direct simulations with g(x, u) = 1, cx = 0.5, α = −0.2, 0, 0.2 (left) and cx = 0.5, α = −0.2, 0, 0.2 (right).

Domain is (0, 130)2 with Neumann boundary conditions, starting with a step-like initial conditions.

The result is illustrated in direct simulations in Figure 1.2, where the selection of the contact angle is clearly

visible, dependent on the sign of α. One also notices the comparatively weak influence of the left boundary,

in particular for large speeds.

We remark here that the restriction on cx can be relaxed. Our approach is not based on a perturbation from

cx = 0 but rather exploits an existence result from [12] that was proven for cx & 0, only. One expects this

existence result to hold for all cx < 2 [11]. We therefore state below a more conceptual result that makes

the assumptions required at α = 0 more explicit.

There are several difficulties involved with establishing Theorem 1.2. First, one notices immediately that

the branch of solutions is not continuous in, say, C0(R2) with the uniform topology, since a changing contact

angle will cause values of two different profiles u to differ by roughly 2 in a sector bounded by the two

interfaces. A second problem arises when studying the linearization at the solution for α = 0, which turns

out not to be a Fredholm operator. In fact, translation invariance in y implies that the y-derivative off this

profile belongs to the kernel, but is not localized in space. A classical Weyl sequence argument then implies

that the linearization cannot be a Fredholm operator. Our main technical contributions address these two

difficulties as follows. We overcome the lack of Fredholm properties by passing to weighted spaces, relying on

a Closed Range Lemma, invertibility in far-field sectors, and a patching argument. We characterize kernels

and cokernels exploiting various forms of comparison principles. Related to the first difficulty of a lack of

smoothness of the solution is the fact that the resulting Fredholm index is negative. We compensate for the

negative index using a farfield-core decomposition, that is, an Ansatz that explicitly inserts a traveling-wave

solution in x < −1 with a prescribed angle ϕ, that eventually compensates for the negative index.

Outline. The remainder of this paper is organized as follows. We give a more detailed statement of

Theorem 1.2, making explicit the farfield behavior after formulating conceptual hypotheses in Section 2.

Section 3 contains the proof of the first main result, establishing the selection of the contact angle based on

conceptual assumptions at α = 0. Section 4 establishes the conceptual assumptions in the case of cx � 1.

We conclude with a brief discussion, that also presents some cases where explicit statements for the selected

angle are possible.

2 Traveling waves, farfield asymptotics, and a conceptual pertur-

bation result

We first describe far-field asymptotics of solutions by investigating one-dimensional limit equations of (1.3)

in Section 2.1. We then state conceptual hypotheses and a more detailed version of Theorem 1.2 in Section

2.2.
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2.1 Farfield patterns

Recall the definition of the zeros z±(α) and z0(α), smoothly continuing ±1 and 0 as zeros for the kinetics

in x < 0 and x > 0, respectively. Our goal here is to construct solutions to (1.3) outside of {|x|, |y| 6 1},
that is, in the regions {x > 1} (right), {x < 1} (left), {y > 1} (top), and {y < −1} (bottom), for α ∼ 0; see

Figure 2.1.

x
y

u ut(x)

ub(x)

ul(x)

ur(x)

u(x, y) ur
x→ +∞

ul(x, y)
x→ −∞

ut(x)

y → +∞

ub(x)

y → −∞

Figure 2.1: Sketches of the solution with farfield patterns.

Farfield pattern to the right. Here, we simply set ur(α) := z0(α).

Farfield pattern at the top and bottom. We seek one-dimensional solutions ut(x;α) to (1.3) with

limits ut(+∞) = z0(α), ut(−∞) = z+(α). At α = 0, such solutions have been constructed in [12, Prop.

1.4]. In fact, as explained there, the existence follows from a straightforward phase plane analysis for α = 0,

cx < 2. The results there also show invertibility of the linearization and monotonicity, ∂xut(x; 0) < 0. Both

properties can be either continued from α = 0 or established for α ∼ 0 using the very same methods. In the

same way, one establishes the existence of ub(x;α), monotonically increasing, with limits ub(+∞) = z0(α),

ub(−∞) = z−(α). From a construction using the Implicit Function Theorem in C1,β , say, one also finds that

both ut/b(x;α) are smooth in α. Convergence towards the asymptotic states is exponential with uniform

rate in α, small.

Farfield pattern to the left. In x < −1, we find the equation

∆u+ cxux + cyuy + u− u3 + αgl(u) = 0. (2.1)

We look for a family of planar traveling-wave solutions to this equation, ul(x, y;ψ, α) = ztw(sin(ψ)x +

cos(ψ)y;ψ, α), cy = cy(ψ, α). Here, the angle ψ = ϕ − π
2 denotes the deviation of the contact angle from a

right angle; see Figure 1.1 and Definition 1.1. The profile ztw solves the traveling-wave equation,

z′′tw + (sin(ψ)cx + cos(ψ)cy)z′tw + ztw − z3
tw + αgl(ztw) = 0, ztw(−∞) = z−(α), ztw(+∞) = z+(α). (2.2)

Now recall that the ordinary differential equation

u′′ + cu′ + u− u3 + αgl(u) = 0,

possess a unique (up to translation) family of solutions with boundary values as in (2.2), smoothly depending

on α in C2, with unique c = cn(α), smooth. The derivative at α = 0 can be explicitly calculated as

c′n(0) = −
∫
R
gl(u∗(y))u′∗(y)dy

(∫
R

(u′∗(y))
2

dy

)−1

, (2.3)
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with u∗(y) = tanh(y/
√

2). We conclude the existence of a solution ztw to (2.2) for all ψ, α ∼ 0, and

cy(α,ψ) =
1

cos(ψ)
cn(α)− cx tan(ψ). (2.4)

One readily finds smooth dependence on ψ, α after an appropriate normalization with respect to translation

and exponential convergence in the farfield.

Patching and partition of unity. We define a partition of unity χj , j = t,b, l, r, 0, that allows us to

smoothly glue the solutions constructed here to a solution in the far-field, with small errors. We will work

in polar coordinates, (x, y) = (−r cos(ψ), r sin(ψ)). Note the negative sign in the x-variable, corresponding

to our orientation of contact angles and interfaces in Figure 1.1 and Definition 1.1. Consider the mollified

characteristic functions χR and the partition of unity generated by χΨ,

χR(r) =

{
1, r > R

0, r < R− 1
, χΨ(ψ) =

{
1, π

4 + 1
10 < ψ < 3π

4 −
1
10

0, ψ > 3π
4 + 1

10 or ψ < π
4 −

1
10

,

where χΨ is understood as a smooth function on the circle R/2πZ, and
∑4
j=1 χΨ(· − jπ/2) = 1.

Now construct the farfield partition and the residual in the core through

χt(r, ψ) = χR(r) · χΨ(ψ),

χr(r, ψ) = χR(r) · χΨ(ψ − π/2),

χb(r, ψ) = χR(r) · χΨ(ψ − π),

χl(r, ψ) = χR(r) · χΨ(ψ − 3π/2),

χ0(r, ψ) = 1−
∑

j=t,r,b,l

χj(r, ψ). (2.5)

In the following, we will write χj(x, y) for the partition of unity in Cartesian coordinates, slightly abusing

notation. We note that χ0 is compactly supported and that, by 0-homogeneity in the far-field, partial

derivatives of the other elements decay algebraically,

|∂kx∂lyχj | 6 C(1 + r)−(k+l). (2.6)

See also Figure 3.1 for a sketch.

In order to state more precise asymptotics for the solution to (1.3), we define the farfield Ansatz as

uff(x, y;ψ, α) := χt(x, y)ut(x, y;α) + χr(x, y)ur(x, y;α) + χb(x, y)ub(x, y;α) + χl(x, y)ul(x, y;ψ, α). (2.7)

We emphasize that uff is not smooth as an element of L∞(R2), say, with respect to the parameter ψ. It

is however smooth in a locally uniform topology, for instance uniform convergence on finite balls BR(0), as

used in Theorem 1.2. On the other hand, this farfield Ansatz encodes nodal lines y ∼ − tan(ψ)x, hence a

contact angle ϕ = π
2 + ψ.

2.2 Main results and asymptotics

We first collect some basic properties of the solution with contact angle π/2 for α = 0. We formulate those

properties as assumptions. Our first result states that these assumptions hold for cx > 0, small. Our second

main result concludes a sharpened version of Theorem 1.2 from these assumptions.

In order to state hypotheses and main result, we define spaces of exponentially localized functions L2
η(R2),

and Hk
η (R2), for any η > 0, as the closure of C∞0 (R2) in the norms

‖u(·)‖L2
η(R2) := ‖u(·)eη|·|1‖L2(R2), ‖u(·)‖Hkη (R2) :=

∑
06|`|6k

‖∂`u(·)‖L2
η(R2),
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using multi-index notation ∂` = ∂`1x ∂
`2
y , |`| = `1 + `1, and |(x, y)|1 = |x|+ |y|.

Assumption (Existence and properties of solutions for α = 0, cx > 0) Fix cx > 0 and set α = 0.

(A1) Existence: We assume that there exists a solution Θ(x, y) to (1.3) with cy = 0, ϕ = π/2; moreover,

assume that for any fixed x the mapping y 7→ Θ(x, y) is nondecreasing.

(A2) Asymptotics: We assume that Θ(x, y) converges exponentially to asymptotics profiles ur(y; 0), ul(y; 0, 0)

and ut,b(x; 0), for x → ±∞ and y → ±∞, respectively. More precisely, (Θ − uj)χj ∈ H2
η (R2) for

j = t,b, l, r and some η > 0.

(A3) Linearization: The operator

L : H2
η (R2)→ L2

η(R2), u 7→ ∆u+ cxu+ µ(x)u− 3Θ2u.

is Fredholm with index −1 for all η > 0, sufficiently small, with trivial kernel, and with cokernel spanned

by ecxxΘy(·, ·) ∈ L2(R2).

Theorem 2.2 (Existence of balanced fronts) Assumptions (A1), (A2), and (A3) hold for all cx > 0

sufficiently small.

It turns out that Assumptions (A1) and (A2) are rather direct consequences of the results in [12], for small

cx > 0. Establishing (A3) will take up the major part of Section 4.

Theorem 2.3 (Existence of oblique fronts — refined asymptotics) Assume (A1), (A2), and (A3),

for some fixed cx > 0. Then there exists α0 > 0 such that there is a solution u∗(x, y;α) to (1.3), with contact

angle ϕ(α) as in Definition 1.1 and cy = cy(α,ϕ(α) − π
2 ) as in (2.4), for all |α| 6 α0. More precisely, we

have that, writing ψ(α) = ϕ(α)− π
2 ,

(i) ϕ(α) is smooth with ϕ(0) = π/2;

(ii) u∗(x, y;α) = uff(x, y;α,ψ(α)) + w(x, y;α), where uff was defined in (2.7) and α 7→ w(·;α) ∈ H2
η (R2)

is smooth, well-defined for η > 0 sufficiently small.

It is straightforward to verify that Theorem 2.3 implies Theorem 1.2.

3 Angle selection as a perturbation result

We proof Theorem 2.3 in this section. We first introduce a shear coordinate transformation such that ul is

independent of x in the farfield. We then set up an implicit function theorem and show that the nonlinear

mapping is well-defined. The key step to applying the implicit function theorem consists of establishing

invertibility of the linearization. Since the linearization L is Fredholm of index −1, we use a bordering

lemma, adding ϕ as an additional variable, to obtain invertibility and conclude Theorem 2.3.

Shear coordinates. We define a shear transformation:

(x̃, ỹ) = S(ψ)(x, y) =
(
x, y + xχ−(x) tan(ψ)

)
. (3.1)

where χ−(x) = 1, x < −2 and χ−(x) = 0, x > −1, is a smooth function. Note that S(0)(·, ·) is the identity

map and, inverting explicitly, S(ψ)(·, ·) is a C∞-diffeomorphism of R2, for each fixed ψ ∈
(
−π2 ,

π
2

)
.

6



y

x

y

x

y

x

{u=0}

u~1

u~-1

{u=0}~

x=0

Figure 3.1: Partition of unity (left) and sheared partition of unity (middle), as well as interfacial lines before and

after shearing (right).

Straightforward calculations show that, in the new coordinates, (1.3) becomes

[∆x̃,ỹ + cx∂x̃ + cy∂ỹ + µ(x)] ũ− ũ3 + αg(x̃, ũ) + tan(ψ)
[
2Sx∂x̃ ỹ + (Sx)2 tan(ψ)∂ỹỹ + (cxSx + Sxx)∂ỹ

]
ũ = 0,

(3.2)

where S(x) = xχ−(x) has linear growth, although all its derivatives are bounded. At ψ = 0, we recover

(1.3).

Farfield-core decomposition and smoothness of the nonlinear mapping. We will substitute an

Ansatz u = uff +w into (1.3), consider the resulting equation in the sheared coordinates, and strive to solve

for (w,ψ), as functions of α, exploiting the choice of cy from (2.4) for compatibility in the region x < −1.

In the transformed coordinates, we obtain a new partition of unity χ̃t,r,b,l,0, depending on the angle ψ in a

mild fashion, that is, derivatives in x̃, ỹ still exhibit decay as stated in (2.6) and derivatives with respect to

ψ are bounded. The blending regions along angles ψ ∼ π/4 and ψ ∼ −π/4 are slightly realigned; see Figure

3.1.

More importantly, the Ansatz functions ut/b/r are unaffected by the shear coordinate change. The Ansatz

function ul simplifies to ul(cos(ψ)ỹ;ψ, α), upon using the same angle ψ in the Ansatz for ul and for the shear

transformation. As a consequence, exploiting uniform exponential decay of derivatives of ul, the transformed

function ũl is smoothly dependent on ψ in C2.

We denote by ũff the farfield correction in the shear coordinates (x̃, ỹ). and write w̃ for the core correction.

Substituting u = ũff + w̃ into (3.2) and setting cy(α,ψ) as in (2.4) gives a nonlinear equation with variables

(w,ψ, α), which reads, after dropping tildes for readability,

0 = [∆ + cx∂x + cy∂y + µ(x)] (w + uff)− (w + uff)3

+ αg(x,w + uff) + tan(ψ)
[
2Sx∂2

xy + (Sx)2 tan(ψ)∂2
y + (cxSx + Sxx)∂y

]
(w + uff)

=:F (w,ψ, α), (3.3)

where uff depends implicitly on α,ψ. By assumption (A1), w = w0 := Θ− uff is a solution at ψ = α = 0.

Lemma 3.1 (Smoothness) The function F defined in (3.3) is smooth as a mapping from a neighborhood

of (w0, 0, 0) in H2
η (R2)× R2 into L2

η(R2) for η > 0, sufficiently small.

Proof. We first show that F is well defined. Clearly, F belongs to L2
loc(R2) when w ∈ H2(R2). We show that

F (w0, ψ, α) ∈ L2
η(R2). This is a consequence of the construction of farfield profiles in our Ansatz as we will

see next. In the regions where the partition of unity does not overlap, we have that uff is an exact solution

and F (w0, ψ, α) therefore vanishes. Due to exponential convergence of the Ansatz functions ut,r,b,l to their

asymptotic states, errors in the overlapping regions are exponentially small. Next, note that w0 ∈ H2
η (R2)

due to (A2). As a consequence, F (w0, ψ, α) ∈ L2
η(R2).

The linear terms in w belong to L2
η(R2) provided that (x, y)-dependent coefficients are bounded. This in turn

is a consequence of the fact that derivatives of S are bounded. Nonlinear terms involving w are automatically

in L2
η(R2) since H2

η (R2) is an algebra.
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Continuity in w,ψ, α follows from the smooth dependence in the equation and uniform exponential bounds

in the farfield. One similarly obtains that derivatives with respect to w,ψ, α are well-defined, bounded, and

continuous in w,ψ, α.

We remark that it is here that we exploit the shear transformation. In the original coordinates, a ψ-derivative

would generate a term xw in x < −2, which is unbounded in L2
η(R2).

Lemma 3.2 (Invertibility of the linearization) The linearization Dw,ψF |(w0,0,0) : H2
η (R2)×R→ L2

η(R2)

is bounded invertible.

Proof. By (A3), DwF (w0, 0, 0) = L is Fredholm of index -1, with trivial kernel, such that it is sufficient

to show that DψF (w0, 0, 0) does not belong to the range of DwF (w0, 0, 0). Using the explicit expression for

the cokernel from (A3), we find

DψF |(w0,0,0) = ∂wF (w0, 0, 0)∂ψuff + (2Sx∂xy + (cxSx + Sxx)∂y) Θ− cxΘy,

where the last term stems from differentiating cyΘy, with explicit derivative ∂ψcy = −cx at ψ = α = 0 from

(2.4). Again by (A3), the cokernel of L is spanned by Θyecxx. We therefore need to evaluate the L2-inner

product between DψF (w0, 0, 0) and Θyecxx,

Mψ =

∫
R2

Θyecxx {L (∂ψuff) + 2SxΘxy + (cxSx + Sxx)Θy − cxΘy} dxdy

=

∫
R2

Θyecxx {2SxΘxy + (cxSx + Sxx)∂yΘ− cxΘy} dxdy.

Here we used that ∂ψuff is exponentially localized, belongs in particular to H2
η (R2) for η > 0 sufficiently small,

and the scalar product of L (∂ψuff) with the cokernel vanishes as a consequence. Writing 2ΘxyΘy = ∂xΘ2
y

and integrating by parts, exploiting that boundary terms vanish due to the exponential factor, we find

Mψ = −cx
∫
R2

(Θy)
2

ecxxdxdy < 0. (3.4)

This proves the lemma.

We are now ready to proof our first main theorem.

Proof of Theorem 2.3. Using Lemma 3.1 and 3.2, we can use the Implicit Function Theorem to solve

F (w,ψ, α) = 0 and find a branch of solutions (w,ψ)(α). The decomposition stated in the theorem is an

immediate consequence of the farfield-core decomposition used in the proof.

On a coarse level, the most interesting information here is of course the contact angle ϕ = π
2 + ψ. Its

derivative with respect to the perturbation parameter α can be readily obtained by projecting leading-order

terms on the cokernel,
dϕ

dα
= −Mα

Mψ
, Mα =

∫
R2

∂αFΘyecxxdxdy, (3.5)

evaluated at (w0, 0, 0). For applications in Section 5.1, we compute

∂αF = L (∂α)uff + ∂αcyΘy + g(x,Θ).

Using the geometric relation (2.4), and recalling the definition of the normal speed cn(α), we find ∂αcy = c′n
at α = ψ = 0. Further exploiting that ∂αuff belongs to H2

η (R2), we find after a short calculation

Mα = −c′n(0)Mψ −
∫
R

ecxx [G(x, ut)−G(x, ub)] dx, (3.6)

where ∂uG(x, u) = −g(x, u) = ∂αW (x, u) and c′n(0) is given in (2.3).
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4 Establishing (A1)–(A3) and Fredholm properties of the lin-

earization

In this section, we proof Theorem 2.2, that is, we establish assumptions (A1)–(A3) for small speeds, cx > 0.

In particular, throughout this section, we will work with α = 0. We first recall the main relevant result from

[12], Section 4.1, which establishes (A1) and gives some additional qualitative properties. We show that L

is Fredholm in L2
η(R2) in Section 4.2, and we establish exponential asymptotics (A2), in Section 4.3. Finally,

we compute the Fredholm index and show that L has trivial kernel in Section 4.4, establishing (A3).

4.1 Existence and qualitative properties at small speeds

We recall the relevant parts of [12, Prop. 1.4] and prove some slight refinements.

Proposition 4.1 For all cx > 0, sufficiently small, there exists a solution Θ to (1.3) at α = 0 with contact

angle π/2. In addition, we have that Θ(x, y) = −Θ(x,−y), Θy(x, y) > 0 for all (x, y), and

lim
x→−∞

Θ(x, y) = ul(y; 0, 0) = tan(y/
√

2), uniformly in y;

lim
x→∞

Θ(x, y) = ur(0) = 0, uniformly in y;

lim
y→−∞

Θ(x, y) = ub(x; 0), uniformly in x;

lim
y→−∞

Θ(x, y) = ut(x; 0, 0), uniformly in x.

Proof. Existence, reflection, and convergence properties have been established in [12], as well as weak

monotonicity Θy(x, y) > 0 at cx = 0. To show strong monotonicity for cx > 0, first notice that weak

monotonicity implies strong monotonicity as follows. We use a Harnack type inequality [3, Thm. 9.22].

Suppose u is nonnegative, Lu 6 f , for u, f ∈W 2,n(Ω) with B2r ⊂ Ω, then(
1

|Br|

∫
Br

up
)1/p

6 C

(
inf
Br
u+ r‖f‖B2r

)
.

Applied locally with f = 0, u = Θy and L = L , this implies that {(x, y)|Θy(x, y) = 0} is open. Since this

set is clearly also closed, it is empty as a subset of the (connected) plane R2, hence Θy(x, y) > 0 as claimed.

It remains to show that Θy > 0 for cx > 0, small enough. First, for any R > 0, there is c0 > 0 such that

Θy > 0 in Ω = {(x, y| |y| 6 R, x < R}, by positivity at cx = 0 and continuity as established in [12]. Also,

note that, for all cx > 0, small, we have lim inf |(x,y)|→∞Θy > 0. We next construct a function w̄(x) > 0 that

will serve as a supersolution in the complement Ωc. We want to solve

wxx + cxwx + (µ− 3u2
t )w = −1.

The left-hand side defines a Sturm-Liouville operator that we claim possesses strictly negative spectrum. One

easily finds that the essential spectrum has negative real part considering the limnits x = ±∞, and that point

spectrum is real. We showed in [12] that the linearization is negative definite at cx = 0. The construction

of profiles immediately gives continuity of profiles in L∞(R) as a function of cx, such that point spectra are

continuous in cx. On the other hand, the construction also shows that λ = 0 is not an eigenvalue for any cx.

This can be seen by inspecting the phase portrait for finite cx, where stable and unstable manifolds intersect

necessarily in a transverse fashion, thus implying that the linearization does not possess a bounded solution.

We conclude that the spectrum has strictly negative real part for all cx > 0 since eigenvalues are all negative

for cx = 0 and cannot cross λ = iR for cx > 0 since they are real and nonzero, as explained above. As

a consequence, the Green’s function is negative and the solution w is positive, approaching nonzero limits
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w± > 0 at x = ±∞ exponentially. We smoothly change w to w̄ such that w̄ ≡ w+ in x > R, while preserving

the fact that w is a supersolution

w̄xx + cxw̄x + (µ− 3u2
t )w̄ 6 −1/2.

Choosing R large enough and exploiting boundedness of w̄ as well as uniform convergence Θ(x, y)→ ut(x),

we also have

∆w̄ + cxw̄x + (µ− 3Θ2)w̄ 6 −1/4, in |y| > R.

One also readily finds that

∆w̄ + cxw̄x + (µ− 3Θ2)w̄ 6 −1/4, in x > R, (4.1)

thus establishing that w̄ is a supersolution in Ωc. Also, we have lim inf |(x,y)|→∞ w̄ > δ > 0, for some δ

independent of cx and R. Now, consider v := Θy + κw̄. Define

κ∗ = inf{κ > 0|v > 0}.

Clearly, the infimum is taken over a nonempty set and is therefore well-defined. If κ∗ = 0, then Θy > 0. We

therefore assume κ∗ > 0. Using the fact that v > 0 in Ω and that v > 0 at infinity, we find a zero minimum

at (x∗, y∗) ∈ Ωc, which implies that, at (x, y) = (x∗, y∗),

∆v + cxvx + (µ− 3Θ2)v > 0.

On the other hand, since Θy is in the kernel,

∆v + cxvx + (µ− 3Θ2)v = κ
(
∆w̄ + cxw̄x + (µ− 3Θ2)w̄

)
6 −κ/4,

in Ωc, establishing a contradiction. Hence, κ∗ = 0 and Θy > 0 as claimed.

4.2 The linearization is Fredholm

We rely on the following abstract result to prove that the linearization is Fredholm in appropriately weighted

spaces.

Lemma 4.2 (Closed Range Lemma [18, Prop. 6.7]) Given a sequence of Banach spaces X ⊂ Y ⊂ Z

so that X ↪→ Y is continuous and dense and X ↪→ Z is continuous and dense, let K : X → Z be a compact

linear operator and T : X → Y be a continuous linear operator. If

‖u‖X 6 C‖Ku‖Z + ‖Tu‖Y ,

then T is a semi-Fredholm operator, i.e., it has closed range and finite dimensional kernel.

In our case, the compactness portion stems from contributions in a bounded region of the plane. We show

next how to apply this lemma in a somewhat more general case of an elliptic operator with coefficients that

have limits as x, y → ±∞. Consider therefore

A := ∆ + b(x, y) · ∇+ a(x, y), (4.2)

with a, b ∈ L∞(R2). We assume that a, b possess uniform limits,

limx→−∞ a(x, y) = al(y), limx→∞ a(x, y) = ar(y), limy→−∞ a(x, y) = ab(x), limy→∞ a(x, y) = at(x),

limx→−∞ b(x, y) = bl(y), limx→∞ b(x, y) = br(y), limy→−∞ b(x, y) = bb(x), limy→∞ b(x, y) = bt(x),
(4.3)
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and define the limiting operators

Aju = ∆u+ bj · ∇u+ aju, j = l, r,b, t. (4.4)

Proposition 4.3 (Asymptotic invertibility implies Fredholm) Assume that A, defined in (4.2) with

domain of definition H2(R2) in L2(R2), possesses limits as in (4.3), and that the limiting operators Aj from

(4.4) are bounded invertible in L2(R2). Then A is semi-Fredholm. In particular, we have, for any R > 0

sufficiently large, that there is a constant C(R) such that

‖u‖H2(R2) 6 C(R)
(
‖u‖L2(BR) + ‖Au‖L2(R2)

)
,

where BR := {|x| 6 R}.

Proof. Here, C denotes a constant that may change throughout but does not depend on quantities appearing

in the equation unless otherwise noted. Elliptic regularity readily gives

‖u‖H2(R2) 6 C(‖u‖L2(R2) + ‖Au‖L2(R2)), (4.5)

for some C > 0. In the following, we briefly write ‖ · ‖H2 for ‖ · ‖H2(R2), and similarly for L2 and H1 norms.

We begin by splitting the first term on the right-hand side

‖u‖L2 6 ‖u‖L2(BR) +
∑

j=l,r,b,t

‖χju‖L2 ,

where the χj are elements of the partition of unity (2.5), supported in |(x, y)| > R − 1. Next, decomposing

Au = f in the equivalent form Aχju = χjf + [A, χj ]u, where brackets denote the commutator, we have that

Aj(χju) = χjf + [A, χj ]u+ [Aj −A]χju.

At this point we use that the far field operators Aj are bounded invertible, obtaining

‖χju‖H2 6 ‖ (Aj)−1
χjf‖H2 + ‖ (Aj)−1

[A, χj ]u‖H2 + ‖ (Aj)−1
[Aj −A](χju)‖H2

6 C (‖χjf‖L2 + ‖[A, χj ]u‖|L2 + ‖[Aj −A]χju‖L2) .

By convergence, we can choose R sufficiently large such that ‖(A − Aj)χj‖H1→L2 6 ε, arbitrarily small.

Hence,

‖χju‖H2 6 C (‖χjf‖L2 + ‖[A, χj ]u‖|L2) .

Inserting this estimate into (4.5), we obtain

‖u‖H2 6 C

(
‖u‖L2(BR) +

4∑
d=1

‖χju‖L2 + ‖Au‖L2

)

6 C

‖u‖L2(BR) + ‖Au‖L2 +
∑
j

‖χjf‖L2 + ‖[A, χj ]u‖|L2


6 C

(
‖u‖L2(BR) + ‖Au‖L2 + ‖[A, χj ]u‖|L2

)
. (4.6)

Using smallness of derivatives of χj when R is large (2.6), we find

‖[A, χj ]u‖|L2 6
∑

16|α|62,j=1,...4,

‖∂αχj‖L∞ · ‖u‖H1(R2) 6 ε‖u‖H1 ,

with ε arbitrarily small when R is large. Absorbing this term on the left hand side of (4.6), we obtain

‖u‖H2(R2) 6 C(‖u‖L2(BR) + ‖Au‖L2(R2)), as claimed. Together with Lemma 4.2, this establishes that A is

semi-Fredholm.
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Remark 4.4 From the proof, we see that it is sufficient to require the slightly weaker convergence ‖(a −
aj)χj‖L∞(R2) → 0, ‖(b− bj)χj‖L∞(R2) → 0 as the perimeter R of the partition of unity tends to infinity.

Corollary 4.5 Under the assumption of Proposition 4.3, suppose that b,∇b ∈ L∞(R2) satisfy a convergence

estimate of the form (4.3). Then A is Fredholm.

Proof. We apply Proposition 4.3 to the L2-adjoint A∗u = ∆u+∇ · (bu) + au, which is of the same form as

A, with limiting operators simply being the adjoints of the limiting operators Aj . As a conequence, A∗ is

semi-Fredholm, and hence the cokernel of A is finite-dimensional, establishing that A is Fredholm as claimed.

Unfortunately, Corollary 4.5 cannot be directly applied to L , since Al is not invertibility due to a kernel,

spanned by Θy(x = −∞, y). We therefore resort to exponentially weighted spaces that allow for control of

localization of functions along the vertical quenching line and along the interface y ∼ 0, respectively. It is

convenient to slightly generalize the class of exponential weights considered. Consider therefore the smooth

rate functions

σηl,ηr(x) = −ηlxχ−(x) + ηrxχ+(x), σηb,ηt(y) = −ηbyχ−(y) + ηtyχ+(y),

with χ± a smooth partition of unity for the real line mollifying the indicator functions of R±. Define the

associated exponentially weighted spaces L2
η(R2), η = (ηl, ηt, ηb, ηt), with norm

‖u‖2L2
η

=

∫
R2

|u(x, y)ρ(x, y)|2 dxdy, ρ(x, y) = eση(x,y), ση(x, y) = σηl,ηr(x) + σηb,ηt(y),

and the associated spaces Hk
η (R2). Clearly, ‖u‖Hkη (R2) is equivalent to ‖u(·)ρ(·)‖Hk(R2). In other words,

multiplication by ρ(·) provides and isomorphism Hk
η (R2)→ Hk(R2). As a consequence, an operator A of

the form (4.2) is Fredholm on H2
η (R2) if and only if Aη, defined through

Aηu = ∆u+ (2∇ση + b) · ∇u+ (∆ση + |∇ση|2 + b · ∇ση + a)u, (4.7)

is Fredholm as an operator on H2(R2). The product structure in x- and y-weights in the norms shows that

the coefficients of ∇Aη satisfy the uniform limit and smoothness assumptions from Corollary 4.5. More

precisely, we find limiting operators that are obtained from the unweighted limiting operators Ab,t,l,r by

conjugating with the limiting rate functions

l : σηb,ηt(y) + ηlx, b : σηl,ηr(x) + ηby,

r : σηb,ηt(y) + ηrx, t : σηl,ηr(x) + ηty.
(4.8)

One can now investigate invertibility of the asymptotic operators depending on the weights ηj . By continuity

of the Fredholm index, it does not change as long as invertibility of the asymptotic operators is preserved. In

fact, one can even show that dimensions of kernel and cokernel are constant in those connected components

of η ∈ R4. To make this precise, first define the bounded embeddings

ιη 7→η′ : Hk
η (R2)→ Hk

η′(R2), u→ u, ηj > η′j , j = l, r, t,b.

Lemma 4.6 (Fredholm properties and weights) Let A be as in (4.2), closed and densely defined on

L2
η(R2). Then the set of η ∈ R4 for which A is Fredholm is open. Let N be a connected subset of the Fredholm

region. Then the Fredholm index is constant on N and the kernels are isomorphic with isomorphism ιη 7→η′

and its adjoint, respectively, for any η, η′ ∈ N satisfying ηj > η′j for all j.
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Proof. Clearly, the conjugate operators depend in an analytic fashion on the parameters ηj such that the

Fredholm index is constant on connected components. In order to show the isomorphism properties of kernel

and cokernel, it is enough to vary one component, ηt, say, by a small amount, and show that the dimension

of the kernel is constant, since the embedding ι gives a one-to-one map from the kernel in the larger space

into the smaller space. The analysis in [8, §7.1.3] then shows that the dimension of the kernel is constant.

More precisely, we solve A(η)u = 0 near η = 0, say. For this, we choose projections P and Q on kernel and

cokernel of A(0), respectively, and decompose u = Pu+(1−P )u =: z0 +zh, obtaining the equivalent system

QA(η)(z0 + zh) = 0, (1−Q)A(η)(z0 + zh) = 0.

We can solve the second equation for zh = B(η)z0, with B(η) analytic in η for η ∼ 0, and substitute into the

first equation, to obtain a finite-dimensional reduced equation, A(η)u0 = 0. By construction, A(0) = 0, and,

because of the natural inclusion, A(η) = 0 for ηt < 0, fixing other weights. By analyticity in ηt, we conclude

that A(η) = 0 also for ηt > 0, locally, as claimed. This proves the lemma.

Remark 4.7 Equivalent results can be derived and are well known in a one-dimensional setting, omitting

y-derivatives and y-dependence in our setup. The operator A on the real line is then Fredholm when the

operators Al/r at x = ±∞ are invertible; see for instance [13, 15, 17] for computations of the Fredholm

index.

Proposition 4.8 The operator

L : H2
η (R2)→ L2

η(R2)

is a Fredholm operator in a connected open set of weights containing (ηl, ηr) ∈ ((−δ, 0) ∪ (0, cx)) × [0, cx],

ηb/t = 0. In particular, L is Fredholm for ηj ≡ η0, j = b, t, l, r, 0 < η0 sufficiently small.

Proof. We need to show that the farfield operators Lj , j = b, t, l, r, conjugated with the weights as listed

in (4.8), are bounded invertible. Since the y-weights are trivial, the calculation is much simplified.

We start by considering the linearization at the top,

Ltu = ∆u+ cxux + µ(x)u− 3u2
tu,

in the space with weight eσηl,ηr (x), ηj ∈ (0, cx). Fourier transform in y shows that it is sufficient to establish

that the spectrum of Lt has negative real part. We first consider the case ηj = 0, and then invoke Lemma

4.6 and Remark 4.7 to conclude the general case. From [12], the operator ∂xx+ cx∂x+µ(x)−3u2
t is negative

definite at cx = 0. Continuity in cx and Fourier transform in y then readily imply that Lt is invertible for

all cx > 0, small1.

For nonzero weights, we only need to verify that the linearization at the asymptotic states,

Ltlu = ∆u+ cxux − 2u, Ltr = ∆u+ cxu− u,

are invertible in exponentially weighted spaces with weights ηl/r, respectively, which follows readily from

Fourier transform. The linearization Lb can be shown to be invertible in the same manner.

We next turn to the linearization Ll,

Llu = ∆u+ cxu+ u− 3u2
l u.

Conjugating with the exponential weight ηl and using Fourier transform in x gives

L̂l(`, ηl)u = ∂yyu+ (i`− ηl)
2 + cx(i`− ηl)u+ u− 3u2

l u.

1This holds true also for finite speeds cx as seen in the proof of Proposition 4.1
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Since the spectrum of the self-adjoint operator L̂l(0, 0) is negative except for the simple eigenvalue λ = 0,

we find that L̂l(`, ηl) is invertible provided that r(`, ηl) = (i`− ηl)
2 + cx(i`− ηl 6∈ R+ for all ` ∈ R. One finds

that the imaginary part vanishes only when η = cx/2, which however yields r(`, cx/2) = −`2− c2/4 < 0. On

the other hand, vanishing imaginary part gives ` = 0, and r(0, ηl) = η2
l − cxηl. This quantity is negative for

ηx ∈ (0, cx) and not in the spectrum of L̂l(0, 0) for ηl < 0, sufficiently small. This shows invertibility of Ll

with weights 0 < ηl < cx as needed.

Invertibility of Lr is easily established in a similar fashion.

4.3 Exponential asymptotics in the far field

We establish (A2) for cx sufficiently small. From [12], the linearization at Θ is invertible on L2(R2) for

cx = 0, hence for cx > 0, small, in the subspace of functions odd in y. The results from the previous section

can easily be adapted to show that invertibility therefore holds in spaces of functions odd in y with small

weights ηj , j = l, r,b, t, ηb = ηt.

We will now show that the residual w0 = Θ(·) − uff(·; 0, 0) is exponentially localized, that is, it belongs to

H2
η (R2). First, consider w = Θxχ−1, where χ is smooth, χ−1 = 1 for x < −2 and χ−1 = 0 for x > −1.

Clearly w is bounded and the residual, Lw = f is odd and an element of L2
δ,δ,−δ′,−δ′(R2), for some δ, δ′ > 0,

since it is bounded and supported in x ∈ (−2,−1). As a consequence, w ∈ H2
δ,δ,−δ′,−δ′(R2). Integrating,

Θ(x, y)− ul(y; 0, 0) =

∫ x

−∞
w(x′, y)dx′, x < −2,

gives Θχ−1 ∈ H2
δ,δ,δ′,−δ′(R2). Inspecting the norms and the support of χl, we immediately see that (Θ −

ul(y; 0))χl ∈ H2
η (R2) for some η > 0, small.

Next, consider w = Θy, which solves Lw = 0. Since L is Fredholm in on L2
−δ,−δ,δ′,δ′(R2) for all δ > 0, δ′ ∼ 0,

and since w is bounded, w ∈ H2
−δ,−δ,−δ′,−δ′(R2), for all δ, δ′ > 0, we conclude from Lemma 4.6 that in fact

w ∈ H2
−δ,−δ,δ′,δ′(R2) for all δ, δ′ > 0. Integrating,

Θ(x, y)− ut(x; 0) =

∫ y

∞
w(x, y′)dy′,

we find that Θ ∈ H2
−δ,−δ,δ′,δ′(R2), and therefore, inspecting the values of the norm in the sector giving the

support of χt, χt(Θ− ut) ∈ H2
η (R2) for η > 0, sufficiently small.

The estimates for the limits at the bottom and to the right are similar and easier, respectively. This

establishes (A2) for cx > 0, sufficiently small.

4.4 The Fredholm index and cokernel

The linearization L of (1.3) at Θ,

L v = ∆v + cxvx + µ(x)v − 3Θ2v,

clearly leaves invariant subspaces of functions that are even in y, or subspaces of functions that are odd in

y, since coefficients Θ(x, y) are even in y. From [12, Lem. 4.6], we conclude that L is bounded invertible on

the odd subspace, L2
η,odd(R2), for all η with |η| ∼ 0 sufficiently small. Next, recall that Fredholm properties

are additive for direct sums. In particular, Fredholm indices and dimensions of kernels and cokernels for L

on L2
η(R2) are the sums of those for L2

η,odd(R2) and L2
η,even(R2). We therefore only need to show that the

kernel of L is trivial and the cokernel is one-dimensional on L2
η,even(R2), η > 0 sufficiently small.

Lemma 4.9 Consider h ∈ H2
η (R2), η > 0, even in y, L h = 0. Then h = 0.
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Proof. From Proposition 4.8 and Lemma 4.6, we conclude that ecxx/2h(x, y) ∈ L2(R2). The following proof

mimics an argument found in [1, §4], also explored in [10]. Clearly, Θy belongs to the kernel and is even,

although not exponentially localized. Since Θy > 0 we may define

H = e
cx
2 xh, W = e

cx
2 xΘy = ∂y(e

cx
2 xΘ), σ =

H

W
=

h

Θy
.

Both W and H = σW solve L̃ v = 0, where L̃ v :=
[
∆ +

(
µ(x)− 3Θ2 − c2x

4

)]
v. We conclude that

σW L̃ (σW ) = σW∆(σW ) + σW

(
µ(x)− 3Θ2 − c2x

4

)
(σW )

= σW (W∆σ + 2∇σ∇W ) + σ2W

{
∆W +

(
µ(x)− 3Θ2 − c2x

4

)
W

}
= σdiv (W 2∇σ). (4.9)

Now, define

ζR = ζ

(√
x2 + y2

R

)
, ζ(z) =

{
1, for z 6 1;

0, for z > 2.

Multiply (4.9) by ζ2
R and integrate to obtain, using the notation r(x, y) =

√
x2 + y2,∫

R2

ζ2
R|∇σ|2W 2dxdy = − 2

R

∫
R2

ζRW
2σζ ′R(∇r · ∇σ)dxdy

6
2

R

(∫
R6r62R

ζ2
R|∇σ|2W 2dxdy

) 1
2
(∫

R6r62R

|ζ ′R|2|∇|r|||σW |2
) 1

2

6
2

R

(∫
R6r62R

ζ2
R|∇σ|2W 2dxdy

) 1
2
(∫

R6r62R

|ζ ′R|2|∇|r|||H|2
) 1

2

.

Since |∇r| 6 1 and H ∈ L2(R2), we can choose R > 1 and obtain the existence of a constant C independent

of R such that ∫
R2

ζ2
R|∇σ|2W 2dxdy 6 C

1
2

(∫
R6r62R

ζ2
R|∇σ|2W 2dxdy

) 1
2

.

from this, we conclude that
∫
R2 ζ

2
R|∇σ|2W 2dxdy is bounded by C. Next, letting R →∞ on the right-hand

side we conclude from Lebesgue’s Dominated Convergence Theorem that
∫
R2 |∇σ|2W 2dxdy = 0. Now, since

W > 0, we find ∇σ = 0, which proves that h = ρΘy for some constant ρ. Since Θy 6∈ H2
η (R2) for η > 0,

ρ = 0 which concludes the proof.

It remains to show that the cokernel of L is one-dimensional in L2
η(R2). We therefore consider the L2-adjoint

operator

L ∗ = ∆− cx∂x + µ(x)− 3Θ2,

with domain H2
−η(R2). One readily verifies that ecxxΘy ∈ Ker (L ∗). Note that L and L ∗ are conjugate

through the multiplication operator ecxx. In particular, if h∗ ∈ Ker (L ∗) then ecxxh∗ ∈ Ker (L ) . We

can therefore use a slight variation of the arguments in Lemma 4.9 to show that the kernel of L ∗ is one-

dimensional.

Lemma 4.10 Let h∗ ∈ H2
−η(R2), even in y, belong to the kernel of L ∗. Then h∗ is a scalar multiple of Θy.

Proof. Define H∗ = e−cxx/2h∗. We have that

0 = L ∗h∗ = L ∗(ecxx/2H∗) = ecx x/2
[
∆x,y +

(
µ(x)− 3Θ2 − c2x

4

)]
H∗.
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Now, defining W ∗ = ecxx/2Θy, we also have that L ∗[ecxx/2W ∗] = 0. Next, with

σ∗ =
H∗

W ∗
=
e−cxx/2h∗

ecxx/2Θy
,

we can follow the proof of Lemma 4.9 to conclude that σ∗ is constant a.e, hence h∗ = ρecxxΘy for some

scalar ρ > 0.

Summarizing, we have established (A3) for cx sufficiently small.

Proposition 4.11 ( (A3) holds for cx > 0, small) The operator L : H2
η (R2) → L2

η(R2) is a Fredholm

operator with index -1, with trivial kernel, and with cokernel spanned by ecxxΘy.

Remark 4.12 (Spectral flow) One would in general compute the Fredholm index using a spectral flow

argument; see for instance [15, 17].

5 Applications and Discussion

We first give brief examples in which we compute the sign of dϕ
dα from (3.5), Section 5.1. We then discuss

our results and possible extensions, also pointing to related results in the literature.

5.1 Examples of contact angle selection

Recall from (3.5),(3.4), and (3.6), that

dϕ

dα
= −Mα

Mψ
,

Mψ = −cx
∫
R2

(Θy)
2

ecxxdxdy < 0,

Mα = −c′n(0)Mψ −
∫
R

ecxx [G(x, ut)−G(x, ub)] dx,

with G′j(u) = −gj(u), j = l/r, and c′n(0) from (2.3).

First, consider gl(u) = 0, such that cn(α) ≡ 0, that is, interfaces in the left half plane x < 0 do not propagate.

Note however that cy 6= 0 in general, when ψ 6= 0. For gr(u) = 1, we find G(x, u) = −u and Mα > 0 in (3.6).

Using Mψ < 0 from (3.4), we find dϕ
dα > 0.

Intuitively, a contact angle greater than π/2 implies that at the contact line, x = 0, the interface is prop-

agating downwards, hence at the contact line, the region where u > 0 is expanding. This aligns well with

the intuition where a positive equilibrium state in x > 0 would facilitate the selection of u = 1 rather than

u = −1.

In this light, it is worth noticing that nonzero contact angles are not created by an imbalance in the energy.

in fact, we can choose gl(u) = 1
2u

2, thus retaining the equilibrium state ur(α) ≡ 0, for all α. Yet,

Mα = −2

∫
R

ecxxu3
t dx < 0,

since ut = −ub.

Next, starting with the selection of a contact angle in x > 0, one can now add relatively small effects in

x < 0, such as gl(u) = ε, thus changing the speed c′n(0) = 3√
2
ε.
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In fact, these considerations give an interpretation to the two contributions in Mα. The second term gives

the speed of the contact point between interface and contact line, that is the vertical speed of the point

u = 0 along the quenching line x = 0. The first term is a simple geometric adjustment to the contact angle

such that normal speed in the wake and horizontal propagation of the interface combined result in precisely

this vertical propagation. The contribution to the motion of the contact point, through the integrals of

G, is indeed exponentially localized near the contact line: the exponential prefactor localizes the effect in

x > −M , say, and the exponential decay of ut/b for x→ +∞ enforces localization in x < M , say.

Slightly generalizing our results, we could have considered g(x, u) converging to gl/r(u), exponentially. Choos-

ing g(x, u) = 0 in −M < x < 0, M � 1, g(x, u) = ε in x < −M − 1, we see that the contribution of to the

integral in the definition of Mα is exponentially small in M . With this choice of g in x < 0 and g(x, u) = 1 in

x > 0 we can therefore control normal speed cn and contact angle ϕ independently, choosing ε not necessarily

small.

5.2 Summary and future directions

We presented perturbative results that characterize the creation of interfaces at an internal discontinuity,

where system parameters change. At the heart of the analysis is a Fredholm theory that, through a negative

Fredholm index, exhibits the necessity of adjusting a farfield matching parameter, naturally chosen as the

angle of the interface. The Fredholm analysis and the partition of unity constructions are reminiscent of and

to some extend inspired by work on multiple-end solutions in the Allen-Cahn equation; see for instance [2].

The moving quenching line and the possibility of propagating fronts create however technical differences, such

as non-selfadjoint operators. An alternative approach would have adapted the spatial dynamics techniques

from [6] to this situation, giving of course equivalent results.

The most natural extension would be to non-small perturbations, preserving the asymptotic monostable

and bistable character of the equation, respectively. Results in this global spirit have been obtained in the

context of front propagation in homogeneous media, where propagation is accelerated along lines with fast

diffusion; see for instance [14].

Phenomenologically, one can envision more complicated dynamics in the wake. Beyond planar fronts, simple

structures known to govern interfacial dynamics are for instance conical fronts [5, 6, 7], or, in our language

here, corners between interfacial lines of different angles. Depending on their horizontal speed of propagation,

such corners may or may not interact strongly with the contact line.

Within the perturbative setup considered here, we would only look at obtuse corners, which propagate at

small speeds, hence would not be able to form bound states with the contact line. In order to study such a

possibility in more detail, one would therefore want to study small speeds cx & 0. In that setting, one would

envision the possibility of weakly absorbing contact lines as the dominant structure, similar to the “holes”

in interfaces constructed in [6] or the contact defect structures in [9]. In further analogy to [9], see also [16],

solution constructed here are “sources” generating interface, with pointwise transport away from the contact

line. The fact that such transport leads to negative Fredholm indices had been noticed in [16]; see also [17].

More basically, in the case of small speeds, the question of interface being “generated” at the boundary

becomes more subtle, since interface propagation at angles with large enough speed may effectively lead to

interface being absorbed in the boundary.

Comparing with the results in [12], one would wish to extend the results here to situations periodic in y, or

to more general equations such as the Cahn-Hilliard equation. Results on such periodic configurations, with

two-dimensional structure have recently been obtained in [4] for the Swift-Hohenberg equation, again in a

perturbative setting.
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