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Abstract

We motivate and analyze a simple model for the formation of banded vegetation patterns. The model

incorporates a minimal number of ingredients for vegetation growth in semi-arid landscapes. It allows for

comprehensive analysis and sheds new light onto phenomena such as the migration of vegetation bands

and the interplay between their upper and lower edges. The key ingredient is the formulation as a closed

reaction-diffusion system, thus introducing a conservation law that both allows for analysis and provides

ready intuition and understanding through analogies with characteristic speeds of propagation and shock

waves.

1 Banded vegetation patterns — phenomena, questions, and a

simple model

The formation of banded vegetation patterns has been understood as a self-organizing mechanism that allows

vegetation to cope with scarcity of resources by leveraging beneficial effects of high density soil occupation; see

for instance the reviews [1, 23] and references therein. Present in semi-arid and some arid climates, where one

might expect sensitive dependence of vegetation patterns on climate variations, these patterns are surprisingly

robust. Recent analyses of satellite images and aerial photographs show very little variation in the patterns

over time spans as long as 50 years. Modeling efforts in this context are particularly difficult, not only because

of the intrinsic complexity of ecological systems, but because of the scarcity of time-dependent data that could

be used to validate models; see however the recent study [10]. On the other hand, the inherent fragility of

vegetation, the danger and irreversibility of desertification, and the difficulty of controlled experiments, make

it highly desirable to predict dynamics theoretically, in particular the dependence of vegetation densities on

parameters and the possibility of tipping points.

Our interest here is in a class of macroscopic models in the literature, that track vegetation densities, nutrients,

and water, possibly accounting for different roles of surface water and subsurface water. A common ingredient

to many models is a growth rate for vegetation densities that increases with the density, encoding a symbiotic

effect of plant growth due to a variety of factors such as reduced soil erosion, water binding, and protection

from sunlight. In the Klausmeier model, this autocatalytic effect is reflected in kinetic growth rates b2w,

where b is a vegetation density (biomass) and w measures water densities [17]. In most models, autocatalytic

growth is supplemented with linear death rates −b, and a variety of source and transport terms, modeling rain

fall, water evaporation, etc. Models for spatial transport vary from simple advective transport and diffusion

of water paired with diffusive spread of vegetation, to modeling porous media flow and nonlocal dispersal of

plant seeds; see for instance [14, 24, 30]. From a mathematical point of view, the analysis of such models

is often focused on Turing-type linear stability analysis, predicting the spontaneous formation of periodic

structures with a wavenumber given through a linear maximal growth calculation. More refined methods

then allow one to study transitions between vegetation bands, spots, and gaps in uniform vegetation; see for

instance [9, 11, 21, 22]. Here, one envisions that the small amplitude variations in vegetation density found

from a weakly nonlinear analysis near certain thresholds predict well the dynamics and patterns far from

this threshold, with possibly large variations of densities and steep gradients, as often observed in nature.

A technically complementary analysis focuses on separation of spatial scales as a means of systematically
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building and understanding spatial patterns, exploiting for instance disparities in spatio-temporal scales for

water transport versus biomass evolution; see for instance [33, 38]. In a different direction, the actual process

of formation of banded patterns may well have a crucial role in the selection of banded patterns: colonization

through spreading rather than emergence after a spontaneous and uniform change in the environment can

produce quite different resulting patterns; see for instance [35, 36].

From this technical point of view, our effort here can be seen as providing a different building block for the

analysis of patterns in such systems, seeking the simplest model that can yet reproduce many of the complex

patterns observed. Starting with the understanding of such a bare-bones model, we hope that one can more

systematically argue for the relevance of more complex processes for the phenomena observed. Our focus is

on the formation of banded patterns in a uniformly sloped environment, in contrast to many of the above

studies. We will comment only briefly in our discussion on the equivalent analysis in the absence of advection.

Our model. To set up our model, we encode the state of the system through two variables, b and w, that

represent biomass bound to the soil and nutrients dissolved in water, hence subject to advection. Transport

of biomass b is diffusive with rate db, while nutrients are simply advected with constant speed c determined

in particular by surface slope. Kinetics are as simple as possible, with a single rate function r(b, w) modeling

the conversion of nutrients in water w to biomass b bound to the soil,

r(b, w) = αb2w − µb,

with positive rate constants α for the autocatalytic effect on growth and µ for the mortality. The resulting

system of partial differential equations then is

bt = db∆b+ αb2w − µb,
wt = cwx − αb2w + µb, (1.1)

where b = b(t, x), w = w(t, x), and subscripts denote partial derivatives. Note that we posited constant

speed of advection, corresponding to an idealized terrain with constant slope, where water is being advected

towards negative x.

The main difference to the Klausmeier model [17] is the absence of source terms and the introduction of a

conservation law. Specifically, Klausmeier’s model adds a source term A for rain fall and an evaporation term

−Bw into the w-equation, but does not take reinsertion of nutrients after decay, the term +µb, into account.

We model nutrients and biomass, which we presume are conserved, either as vegetation bound to the soil, or

as nutrients advected with water. As a consequence, we obtain the conservation law

∂t

∫
Ω

(b+ w) =

∫
∂Ω

(db∂νb+ c sign (ν · ex)) , (1.2)

that is, the sum of nutrients and biomass changes only due to diffusive and advective fluxes.

Scaling time, space, and (b, w), one can readily obtain db = 1, α = 1, and µ = 1, arriving at

bt = ∆b+ b2w − b,
wt = cwx − b2w + b. (1.3)

We emphasize that we do not claim that water is conserved on time scales relevant for the evolution of

vegetation patterns — evaporation and rain fall clearly play significant rolls in the dynamics. We rather

think of w as the concentration of certain nutrients contained in water, and released back upon plant decay,

with the autocatalytic plant growth as a key but clearly not the sole ingredient to the ecological dynamics.

Somewhat more generally, the equations describe simple autocatalytic mass-action kinetics 2B + W → 3B

with rate wb2, in a reactor where the reactant W is supplied through advection in a liquid or gaseous phase and

the product B is insoluble, subject to (slower) diffusion. As opposed to general reaction-diffusion models, this

model describes a closed reactor, where reactants are supplied through an explicitly modeled flow process. We

comment briefly on related study of such closed reaction processes in biology, ecology, and physical chemistry

in the discussion section [7, 8, 16, 18, 19, 25, 40, 42].
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Main contributions. Our main results here exemplify two features of (1.3). First, the core part of this

paper contains a comprehensive analysis of traveling waves to (1.3). Despite its rather simple structure with

few parameters and the constraint of a conservation law, the model allows for interesting complexity, yet is

amenable to an almost complete analytical description and therefore quite explicit predictions. Second, we

add interpretation to the traveling wave analysis and the more general dynamics of the equation by providing

a partly rigorous, partly formal analogy to the dynamics of scalar viscous conservation laws, relating patterns

observed here to Riemann problems, shocks, and rarefaction waves.

It turns out that, due to an additional scaling in the traveling-wave equation, one can roughly characterize

traveling waves in terms of a total flux of biomass and nutrients, only. This flux is typically equivalent to a

prescribed uphill concentration w+. Our main results can be informally summarized as follows.

(i) Small disturbances of vegetation zones move uphill with positive group velocity; disturbances of vege-

tation-free zones are advected downhill; see Figure 1.1.

(ii) Vegetation zones at low densities are unstable against sideband instabilities, leading to spatially disor-

ganized patterns; see Figure 1.3 and Figure 2.2.

(iii) Upper edge: a uniform vegetation zone can spread uphill into a vegetation-free zone; see Figure 1.2.

(iv) Lower edge: a vegetation-free zone can spread uphill into a vegetation zone; see Figure 1.2.

(v) Passive edges: upper and lower edges move slowly, with the group velocity of the vegetation state, for

high w+ < w∗u and sufficiently high w+ > w∗` , respectively.

(vi) Single bands can move uphill for sufficiently large w+ > w∗s (with speeds significantly lower than upper

edges); see Figure 1.3.

(vii) Single gaps can spread uphill for intermediate ranges of w+.

(viii) Periodic vegetation bands: exist in a region slightly larger than single bands; see Figure 1.3.

From the point of view of scalar, viscous conservation laws, lower and upper edges are undercompressive shocks

that act as organizing centers in Riemann problems, possibly with a glancing mode. Many more complex

structures can be understood as bound states between these undercompressive shocks and simpler Lax shocks.

We also note that our result present the possibly simplest explanation of the somewhat counterintuitive uphill

motion of vegetation bands, quantified recently in [10], against the direction of advective transport, by relating

the transport to to a simple calculation of group velocities.

Remark 1.1 (Conservation laws — terminology). It is important to distinguish between the fact that our

system (1.1) possesses a “conservation law” (1.2), and the fact that we will view effective dynamics of (1.1)

as being conjugate in an appropriate sense to the dynamics of scalar viscous “conservation laws”. In the

latter sense, the term conservation law refers to the more narrow class of equations

ut = (d(u)ux)x − f(u)x, u ∈ R, x ∈ R, (1.4)

with flux f and viscosity d, whereas in the former sense, we are simply referring to the presence of a conserved

quantity. Throughout, we will use the term conservation law to refer to the latter narrow class of equations.

Outline. We discuss the dynamics of the ODE and the associated PDE stability in Section 2. Section 3

describes the connection with scalar viscous conservation laws. Section 4 contains our main results on traveling

waves. We prove existence of heteroclinic orbits in Section 5 and conclude with a discussion, Section 6.
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Figure 1.1: Upstream transport in vegetation zones (top) and downstream transport in desertified zones (bottom), illustrating

(i) and (ii). All numerical simulations carried out on a fixed grid with dx = 0.1, using upwind first-order discretization of

the advection term, second-order finite differences for the diffusion, and Matlab’s ode15s for time integration. Throughout,

densities from dark blue (minimum) to yellow (maximum) in space-time plots (time pointing upward, advection of w pointing

to the left); snapshots on the right, with biomass (green) and nutrients (blue).
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2 Spatially constant equilibria and linear properties

Spatially constant solutions satisfy

bt = b2w − b, wt = −b2w + b,

with two curves of equilibria Γ0 = {b = 0, w > 0} and Γ1 = {bw = 1, w > 0}. The equilibria in Γ0 and in

Γ1 ∩ {b > 1} are stable, equilibria with 0 < b < 1 are unstable. For PDE stability, we consider the linearized

equation at an equilibrium (b∗, w∗) after Fourier-Laplace transform, b, w ∼ eλt+i(kx+`y),

λb = −(k2 + `2)b+ (2b∗w∗ − 1)b+ b2∗w,

λw = cikw − (2b∗w∗ − 1)b− b2∗w. (2.1)

On the two stable branches, one finds two (explicit) eigenvalues λ1/2(k, `), with Reλ2(k, `) < 0 for all k, and

λ1(0, 0) = 0, reflecting mass conservation as a neutral eigenvalue. One verifies that Reλ1(k, `) 6 0 for all k
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Figure 1.2: Upper (top) and lower (bottom) edges of vegetation zones propagating uphill as described in (iii) and (iv).
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Figure 1.3: Single vegetation bands propagating uphill (top), (vi). Formation of regular periodic banded patterns, (viii).

if and only if Reλ1,kk(0, 0) 6 0, that is, the long-wavelength expansion around the neutral mode determines

stability. Expanding λ1, one finds

λ1(k) = −cgik − deff,xk
2 − deff,y`

2 + O(|k|3 + |`|3),

where cg = −c and deff = 0 for b∗ = 0, and

cg =
c

b2∗ − 1
, deff,x =

b2∗
(b2∗ − 1)3

(
(b2∗ − 1)2 − c2

)
, deff,y = b2∗ − 1, (2.2)

for b∗ > 1. The notation cg and deff refers to group velocity and effective diffusivities of long-wavelength

modulations of total mass, and can be understood as coefficients in the reverse Fourier transform of the long-

wavelength expansion, Φt = −cgΦ + deff,xΦxx + deff,yΦyy. We emphasize that from this simple calculation,

we conclude that disturbances of vegetation-free states are advected “downhill” with speed c, as expected,

while disturbances of the vegetation state b∗ > 1 are transported “uphill” with speed cg > 0.

As a consequence, spatially constant states are linearly (marginally) stable when

deff,x > 0, that is, b >
√

1 + c; (2.3)

see Figure 2.1 for schematic plots of eigenvalues and Figure 2.2 for the evolution of instabilities. Equivalently,

we see that vegetation states destabilize for large advection speeds.

We note that the group velocity diverges as b∗ ↘ 1. The “unphysical” large group velocities are irrelevant

since states with cg > 1 are unstable; see [3, §3.2.2.b]and [29] for a discussion of this phenomenon in the

context of wave trains

Figure 2.1: Dynamics of the kinetics in the b-w-phase plane with equilibria and spectra of the linearization from (2.1).
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In particular, for low levels of water flow, vegetation patterns are unstable and break up into disorganized

localized states. Linear transport by group velocities is illustrated in Figure 1.1, the sideband instability is

shown in Figure 1.3 and Figure 2.2.

Remark 2.1 (Geometry and cg). One can more generally compute cg from simple properties of the phase

portrait of the kinetics in Figure 2.1. For more general kinetics, bt = f(b, w), wt = −f(b, w), suppose that

there is a curve of equilibria f((γb, γw)(τ)) = 0. One then readily computes, expanding the neutral eigenvalue

in the linearization,

cg = −c γ′w
γ′b + γ′w

= −c
γ′ ·
(

0

1

)
γ′ ·
(

1

1

) ,

which is positive for vectors γ′ in the sector of width π/4 bordered by

(
1

0

)
and

(
1

−1

)
(and in the opposite

sector, where however deff < 0). More directly, equilibria with uphill transport are characterized by null clines

w = h(b) with 0 > h′ > −1. In words, the somewhat counterintuitive uphill migration of vegetation stems, in

this sense of group velocities, from a somewhat counterintuitive inverse (but not too strongly so) equilibrium

relation between nutrient supply and biomass: equilibrium states with higher biomass concentration correspond

to smaller (free) nutrient concentrations.

3 The conservation law formalism

The analysis so far can be reviewed from the point of view of viscous scalar conservation laws; see Remark

1.1. Our goal now is to explain how this analogy can be constructed formally and, to some extent rigorously.

We first briefly recall features of scalar conservation laws that are mimicked in our system. We then show how

to derive conservation law dynamics using a modulation approach, locally, and a formal reduction, globally.

Scalar conservation laws. Dynamics of scalar conservation laws of the form (1.4) can be most easily

understood in terms of small disturbances of a constant state, u(x) = u0 + εv0(x), where v(x) satisfies at

leading order the convection-diffusion equation vt = d(u0)vxx−f ′(u0)vx. The localized initial condition v0(x)

experiences linear transport with characteristic speed f ′(u0) and diffusive decay with effective diffusivity. One

can show that this convective-diffusive decay is preserved when taking into account higher-order terms in ε.

Beyond small amplitude, localized data, one describes dynamics in terms of Riemann problems, with initial

conditions u(x) = u− for x < 0, u(x) = u+ for u > 0. The values u± is propagated with characteristic speed
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Figure 2.2: Evolution of sideband instabilities (top) and typical patterns evolving from random initial data (bottom).
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f ′(u±). In the case f(u−) > f(u+), one typically observes a (unique) Lax shock, propagating with speed

given through the Rankine-Hugoniot condition

s =
f(u+)− f(u−)

u+ − u−
,

which can be readily obtained by substituting a traveling-wave ansatz u = u(x−st) into (1.4) and integrating

once. In the case f(u+) < f(u−), solutions typically evolve into rarefaction waves, explicit in the case d = 0

through an ansatz u = u(x/t).

Also, from the traveling-wave equation, one finds that all traveling waves are necessarily of (possibly degen-

erate) Lax type, that is, characteristics x = f ′(u±)t enter the shock location x = st. Equivalently, we always

have f ′(u−) > s > f ′(u+) for viscous shocks, simply by inspecting stability properties of equilibria in the

scalar traveling-wave ODE, and assuming well-posedness d > 0.

More generally, beyond the scalar setting here, one would classify shocks according to the number of char-

acteristics entering and leaving the shock, respectively. In particular, in the scalar setting, shocks where

characteristics leave the shock line, for example f ′(u−) < s, would be undercompressive.

We refer to Figure 4.5 for an illustration of these ideas, in the present context of vegetation patterns.

Local reduction — modulation of vegetation densities. We describe solutions in a vicinity of a

vegetation state, with an ansatz

b = b0 + εb1(ε2t, ε(x− st)), w =
1

b0
− ε 1

b20
b1(ε2t, ε(x− st)) + ε2w2(ε2t, ε(x− st)) + O(ε3), (3.1)

with error terms depending on the scaled variables τ = ε2t and ξ = ε(x − st). Substituting into (1.3) and

collecting terms at order O(ε2), we find

−sb1,ξ = b20

(
w2 −

b21
b30

)
,

s

b20
b1,ξ = − c

b20
b1,ξ − b20

(
w2 −

b21
b30

)
.

Adding the two equations gives (s− cg)b1,ξ = 0, with cg = c
b20−1

, as expected. We also collect

w2 = − s

b20
b1,ξ +

b21
b30
. (3.2)

At order O(ε3), we find, after adding the equations for b and w, and using the expression for w2 and the

ensuing equation for w2,ξ, (
1− 1

b20

)
b1,τ =

(
1− s(c+ s)

b20

)
b1,ξξ + (c+ s)

(
b21
b30

)
ξ

.

After some short algebra, we see that this equation is equivalent to Burgers equation

b1,τ = deffb1,ξξ − c′gb1b1,ξ. (3.3)

Derivations of this type are ubiquitous in the literature. One would hope that error terms can be rigorously

controlled using methods as in [5]. Figure 3.1 exemplifies the presence of both Lax shocks and rarefaction

waves in our system.

Global reduction — transport and viscosity. We notice that (3.3) could be derived heuristically from

simple linear information, the effective viscosity deff and the linear transport cg(b). Noticing that the quantity

z = b+ w solves a conservation law z+
t = Fx, we could postulate the form

z+
t = (deff(b)z+

x )x − cg(b)z+
x , b+ 1/b = z+, (3.4)
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Figure 3.1: Plots of Lax shock (top) and rarefaction wave (bottom) within a vegetation zone.

which, among the general forms of viscous scalar conservation laws is determined by properties of the lin-

earization at constants b ≡ b0. While it is not clear how one would describe how (3.4) approximates

bt + wt = bxx + cwx, (3.5)

we would like to pursue the idea of a global conservation law somewhat further. We could change variables

to z± = b ± w, and assume that z− =
√

(z+)2 − 4, at least for the stable branch. Substituting into (3.5)

gives, after a short computation,

z+
t = (d(z+))xx − f(z+)x,

with f ′(z+) = c/(b2 − 1) = cg. The effective diffusivity d′ = b2/(b2 − 1) 6= deff is incorrect at this order of

approximation, and an equation

z+
t = (deff(z+

x ))x − f(z+)x, (3.6)

with d′eff = d′ − c2b2/(b2 − 1)3, thus matching (2.2), appears to be more accurate. The Rankine-Hugoniot

condition for the speed of heteroclinic traveling-wave solutions is readily obtained from the Ansatz z+ =

z+(x− st), z+ → z+
± for ξ → ±∞,

s =
f(z+

+)− f(z+
−)

z+
+ − z+

−
,

and corresponds to (4.2). Lax shocks now correspond to shocks with f ′(z+
−) > s > f ′(z+

+). This condition is

generally satisfied for heteroclinic orbits connecting the two nontrivial equilibria, arising for instance as small

heteroclinics in the saddle-node bifurcation described in the next section; see Figure 3.1. It is however never

satisfied for upper and lower edges, since s > 0 and f ′(z+
−) < 0. In the traveling-wave analysis of the next

section, one can check that f ′(z+
+) > s for the heteroclinics connecting to the largest equilibrium, f ′(z+

+) = 0

when connecting to the saddle-node equilibrium, and f ′(z+
+) < s when connecting to the middle equilibrium.

In this respect, upper and lower edges are undercompressive shocks, connecting states with characteristics

emanating from the shock on the left, and characteristics either emanating from or with the same speed as

the shock on the right; see also Figure 4.5, below, for a schematic illustration.

As mentioned, it maybe quite difficult to describe precisely how long-time dynamics of the reaction-advection-

diffusion system (1.1) are approximated by a scalar conservation law. We notice however that the concepts

discussed here all translate immediately from the scalar conservation law to (1.1), replacing characteristic

speeds by group velocities, and the existence of shocks with the nonlinear analysis from Section 4.

4 A phase diagram for traveling waves

We look for traveling waves b̃(x− st), w̃(x− st), which gives

−sb̃′ = b̃′′ + b̃2w̃ − b̃, −sw̃′ = cw̃′ − b̃2w̃ + b̃. (4.1)
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Adding the equations and integrating once gives

sb̃+ (s+ c)w̃ + b̃′ = (s+ c)θ̃, (4.2)

for some constant of integration θ. Inspecting the original equation (1.1) in a co-moving frame ξ = x − st,
we see that (s+ c)θ is the flux for the total mass,

(b+ w)t = (s+ c)θξ.

The fact that θ is conserved for the traveling-wave equation can then be viewed as a Rankine-Hugoniot type

constraint on the speed of fronts, given asymptotic states where b̃′ = 0; see Section 4.3 for more details on

the conservation law point of view 1. Note that, for solutions that limit on a vegetation-free state b∞ = 0,

θ = w∞ encodes the amount of nutrient at infinity. Solving for w̃ and substituting into the first equation in

(4.1) gives

b̃′′ + sb̃′ + b̃2(θ̃ − s

s+ c
b̃− 1

s+ c
b̃′)− b̃ = 0.

Upon scaling

b = b̃(s+ c)−1/2, θ = θ̃(s+ c)1/2, (4.3)

we find

b′ = v − sb,
v′ = −b2(θ − v) + b. (4.4)

Our main theoretical results characterize bounded solutions to this planar ODE (4.4). We first list theoretical

results, Section 4.1, and then show numerically computed bifurcation diagrams, Section 4.2. We conclude

the section with interpretations of our results, Section 4.3.

4.1 Theoretical existence results

We first collect some elementary facts on equilibria and their bifurcations. We then state global results on

the existence of heteroclinic orbits, as well as local results on the existence of periodic and homoclinic orbits.

Steady-state bifurcations. For each s > 0, (4.4) possesses either a unique equilibrium b = v = 0, or two

additional equilibria (counted with multiplicity),

b± =
θ

2s
±
√

θ2

4s2
− 1

s
, v± = sb±.

The discriminant vanishes, and the equilibria disappear in a saddle-node bifurcation, when

(SN) θ2 = 4s, or s = cg, (4.5)

where the latter equality can be readily found by undoing the scaling b̃ =
√

s+c
s and using (2.2); see also [31]

for the relation between zero group velocities and saddle-node bifurcations in traveling-wave equations. Before

the saddle-node, s < θ2/4, there are two equilibria in addition to and compatible with a trivial equilibrium

b = 0, w = w+, with respect to the conserved quantity θ. Past the saddle-node, for large speeds s > θ2/4,

vegetation states are not compatible with a trivial equilibrium.

The saddle-node curve passes through a Bogdanov-Takens point, with algebraically double zero eigenvalue,

at

(BT) θ = 2, s = 1. (4.6)

1Compare also with [31, (1.8)] where such conditions were derived in reaction-diffusion systems when the underlying conserved

quantity is the phase of an oscillation rather than an explicit variable.
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For θ < 2, the saddle-node equilibrium b = 1 possesses a negative, stable eigenvalue in addition to the zero

eigenvalue, for θ > 2 the additional eigenvalue is positive.

In the PDE linearization, θ = 2, s = 1 corresponds to b = 1 and b̃ =
√

1 + c, that is, the Bogdanov-Takens

point coincides with the onset of the sideband instability at zero group velocity; see [13, §4.2] and [12, §6]

for a similar scenario in a different context. One can verify that the sideband instability, b̃ <
√

1 + c and the

homogeneous instability, b̃ < 1, only occur for b−.

From the Bogdanov-Takens curve emerges a branch of Hopf bifurcation curves for b−,

(Hopf) θ =
s2 + 1√

s
, s < 1. (4.7)

One can verify that both Bogdanov-Takens and Hopf bifurcation are generically unfolded. Across the Hopf

bifurcation, stability equilibria destabilize with increasing θ, s fixed. The branching is towards decreasing θ,

hence subcritical as subcritical as a bifurcation in θ, for θ > 4·3−3/4 = 1.7547653 . . ., s < 3−1/2 = 0.5773502 . . .

and supercritical otherwise. We computed the cubic Hopf coefficient a using computer algebra and found, in

the basis (
√

(1− s2), 0), (s, 1),

Re a(s) =
1− 3s2

8s2 − 8
.

The location of the degenerate Hopf bifurcation coincides well with the end point of the continuation of the

periodic saddle-node in AUTO07p. For large θ, s ∼ 0, the real part of the cubic Hopf coefficient converges

to 1/8. In the limit s→ 1, the cubic coefficient diverges to −∞ as expected near the codimension-two point.

The Bogdanov-Takens point b = v = 1 at θ = 2.s = 1, is generically unfolded. Quadratic terms are, in

the notation of [20, Thm 8.4], a20 = 2, b20 = 2, and b11 = 0, such that the non-degeneracy condition

a20 + b11 6= 0, b20 6= 0 holds. One also readily verifies the versal unfolding in the parameters θ and s, based

on the non-degeneracy of the saddle-node and the derivatives in trace and determinant.

Heteroclinic orbits — lower and upper edges of vegetation bands. We now state our main existence

results on heteroclinic orbits in the traveling-wave equation (4.4). Throughout, we denote by 0 < w− 6 w+

the three equilibria of (4.4).

Theorem 1 (Upper edge). There exists a unique, continuous curve {su(θ), θ ∈ (0,∞)}, such that for pa-

rameter values on this curve there exists a heteroclinic orbit connecting w = 0 to w = w+, thus describing

the upper edge of a vegetation zone. Moreover,

• su is non-decreasing;

• su(θ)→ 0 for θ → 0;

• su(θ) = (s∞ + o(1))θ2/3 for θ →∞;

• su(θ) = θ2/4 for θ sufficiently small.

Moreover, the heteroclinic diverges, with w+ →∞ for θ → 0 or θ →∞.

We derive more precise asymptotics for the heteroclinics in the proof. Numerically, s∞ = 0.9055.

Theorem 2 (Lower edge). There exists a unique, continuous curve {s`(θ), θ ∈ (θ0,∞)}, such that for

parameter values on this curve there exists a heteroclinic orbit connecting w = 0 to w = w+, thus describing

the lower edge of a vegetation zone. Moreover,

• s` is non-decreasing;

• s`(θ)→ 0 for θ → θ0;

10



• s`(θ)→∞ for θ →∞;

• s`(θ) = θ2/4 for θ sufficiently large.

Moreover, the heteroclinic diverges, with w+ →∞ for θ → θ0 or θ →∞.

Again, we find more precise asymptotics in the proof. Numerically, θ0 ∼ 1.389 . . ..

Corollary 4.1 (Maxwell point). There exists a unique (θM, sM), such that there exists a heteroclinic loop,

that is, both upper and lower edge heteroclinics.

Numerically, (θM, sM) = (0.7689, 1.8465). In this regime, the trace of the linearization of w = 0 is negative

and the trace at w = w+ is positive. The heteroclinic loop bifurcation is therefore a somewhat non-standard

bifurcation discussed in [34, 37], where the two families of homoclinics emerging from the loop, asymptotic to

either of the two equilibria in the loop, respectively, bifurcate tangent to one of the heteroclinic orbit branches

(in this case the lower edge homoclinic). We do however not attempt to analytically verify the generic

unfolding conditions of the loop to rigorously establish the bifurcation diagram near the heteroclinic loop,

here. We note however that the numerically computed bifurcation diagram agrees well with the corresponding

diagram [37, Fig. 13.7.20].

Homoclinic and periodic orbits — vegetation bands and gaps. We describe results on existence of

homoclinic orbits, here. While it is conceivable to obtain somewhat more global existence and monotonicity

results for the curves of existence in parameter space, mimicking the methods employed to prove Theorems

1 and 2, we will not pursue this direction here but concentrate on end points of the numerically computed

bifurcation curves. We refer to homoclinic orbits asymptotic to w+ as vegetation gaps, and to homoclinic

orbits asymptotic to 0 as vegetation bands. We find

(i) a branch of vegetation gaps bifurcates from the BT point in the direction of decreasing θ and s;

(ii) the branch of vegetation gaps terminates on the Maxwell point from Corollary 4.1 and continues from

there as a vegetation band;

(iii) the branch of vegetation bands has speed s ∼ 6
7θ
−2 as θ → ∞, while the amplitude of the vegetation

density w+ diverges with θ.

The end points (i) and (ii) have been discussed above. We shall discuss (iii) in Section 5.2

Periodic vegetation patterns form a two-parameter family that happens to exist in a close vicinity of the

Hopf curve. It is however typically not confined to the region between these two curves, as the direction of

branching of periodic orbits from the Hopf curve as well as from the homoclinic curve change at some points.

We discussed direction of branching from the Hopf curve, above. It would be interesting to obtain analytical

existence results.

4.2 The complete bifurcation diagram — numerics and implications

We present the numerically computed bifurcation diagram, and undo the scalings (4.3).

Numerically computed bifurcation diagrams. We computed periodic, homoclinic, and heteroclinic

orbits using AUTO07p continuation software [4]; see Figure 4.1. We find the theoretically predicted cross-

ing of speeds of upper and lower edge heteroclinics, the Maxwell point, and the touch-down points, where

heteroclinic orbits hit the saddle-node curve, that is, the speed of the edge ceases to be larger than the group

velocity of the vegetation state. Somewhat less intuitively, there exists a curve of single vegetation bands
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Figure 4.1: Bifurcation diagrams with all bifurcations (left) and zooms (middle and right). Lines are saddle-node (gray) with BT

point (dark gray (2, 1)); upper edge (red) and lower edge (green), both with endpoints on the saddle-node curve ((1.314, 0.432)

and (2.229, 1.242), resp.), from where they continue on that curve; Hopf (light blue) and saddle-node of periodic orbits (yellow

dashed), terminating on a degenerate Hopf point ((1.755, 0.577), yellow dot) and heteroclinic loop/Maxwell point ((1.847, 0.769),

green/red circle); homoclinic bands (dark purple) and gaps (light purple), terminating at the BT point and the heteroclinic loop.

Periodic orbits exist in the area bounded by homoclinic, Hopf, and periodic saddle-node curves. The lower edge touches down

at θ0 ∼ 1.389, the upper edge diverges s ∼ 0.9055 · θ2/3 for θ →∞.

with very small speed for large fluxes θ. Interestingly, almost all homoclinic and periodic orbits are confined

to a rather narrow zone in parameter space, bounded by homoclinic, Hopf, and a periodic saddle-node curve.

The diagram shows a somewhat surprising complexity in the region including BT point, Maxwell point, and

a degenerate Hopf point.

Undoing the scaling. The bifurcation diagram can be translated into the original variables, undoing

the scaling (4.3), in a geometrically straightforward way, illustrated in Figure 4.2, which also includes two

sample-diagrams.

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

=⇒

0 0.5 1 1.5 2 2.5 3 3.5

Flux θ

0

0.5

1

1.5

S
p
e
e
d
s

Speed c = 0.2

0 0.5 1 1.5 2 2.5 3 3.5

Flux θ

0

0.5

1

1.5

S
p
e
e
d
s

Speed c = 4

0 0.5 1 1.5 2 2.5 3 3.5

Flux θ

0

0.5

1

1.5

S
p
e
e
d
s

=⇒

0 0.5 1 1.5 2 2.5 3 3.5

Flux θ

0

0.5

1

1.5

S
p
e
e
d
s

Speed c = 0.2

0 0.5 1 1.5 2 2.5 3 3.5

Flux θ

0

0.5

1

1.5

S
p
e
e
d
s

Speed c = 4

Figure 4.2: Effect of scaling on a uniform grid in the θ − s plane and on our bifurcation diagram from Figure 4.1 for speeds

c = .2 and c = 4.

For large advection speeds c, the effect of the scaling is simply a scaling of the flux by
√
c. For small speeds√

c, however, the diagram is distorted, pushing the portion of the diagram with speed s < 1 out to large
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Figure 4.3: Bifurcation diagrams, scaled according to large speed (left) and small speed (middle) with zoom (right); note the

different scales on the axes.

fluxes θ. As a consequence, flux-speed relations for all periodic and homoclinic orbits will be monotone for

large speeds. On the other hand, the flux-speed relation of the lower-edge heteroclinic changes monotonicity,

exhibiting turning points for intermediate speeds c ∼ 0.5. On the other hand, the saddle-node curve stays

monotone for all speeds and flux-speed relation of the upper edge also remains monotone for arbitrarily small

speeds. For very small speeds, existence of both upper and lower edges, as well as bands and periodic orbits,

is guaranteed for θ > 2, with speeds decreasing monotonically in θ for all traveling waves but the upper edge;

see Figure 4.3.

4.3 Interpretation and implications

Upper and lower edge. We saw throughout the existence of upper and lower edges in direct simulations.

Notice that, as apparent in Figure 1.2, the profile of b is monotone, apparent also from the proof, but w is

not necessarily monotone. In fact, w is obtained from (4.2), which includes the derivative of b in addition

to the monotone profile of b. Phenomenologically, the apparent peak of w near the upper edge reflects an

enhanced potential for growth in the leading edge of the front.

We compared predicted speeds with speeds in direct simulations, with generally good agreement, suggesting

in particular that the front solutions found here are stable as solutions of the PDE. For upper edges, we

initiated a Riemann problem with prescribed concentrations b = 0, w = w+ at the right end and somewhat

arbitrary values b, w > 0 at the left end. We observed that the leading edge front selects the state in its wake

in the following sense. With b∗− = 1/w∗− the state in the wake selected by the front, we see can set up Riemann

problems with b− = 1/w− > b∗−. In this case, the characteristic speed in the wake cg(b−) is smaller than the

speed s of the upper edge. One finds, as illustrated in Figure 4.4, left panel, that the region between the upper

edge, b ∼ b∗− and the wake b ∼ b− is filled in by a rarefaction wave with approximately linear profile of b. If on

the other hand, b− < 1/b∗−, the upper edge changes as a bound state between a Lax shock connecting b− and

b∗− and the upper edge. These bound states are, in our traveling wave problem, heteroclinic orbits connecting

to the middle equilibrium. Reducing b− further, the left equilibrium undergoes a sideband instability and

more complicated dynamics ensue; see Figure 1.3, left panel. When the heteroclinic is of saddle-saddle-node

type, that is, when group velocities in the vegetation state equal speed of propagation, one notices distinctly

slower spatio-temporal rates of convergence. We did not attempt to investigate those quantitatively.

For the lower edge, we set up the reflected Riemann problem. The resulting dynamics are very much equivalent

and we omit detailed results, here. Group velocities in the vegetation state larger than the speed of the lower

edge lead to rarefaction waves, smaller group velocities lead to bound states of lower edges and Lax shocks.

In this sense, nutrient flow below the lower edge selects the vegetation state uphill.
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Figure 4.4: Upper edge dynamics for Riemann problems with smaller group velocity, generating an interpolating rarefaction

wave (left), and with larger group velocity, generating a bound state of Lax shock and upper edge (middle). Comparisons of

predictions from Section 2 with speed measurements in direct simulations for c = 4 (right).

Small diffusion or large advection. Small diffusion db = ε2 in (1.1) amounts, after scaling of space and

time, to a large parameter c 7→ c/ε and small effective speeds s 7→ εs. Assuming, ε = 0.01, c = 1, we find

the bifurcation diagram in the left panel of Figure 4.3, where speeds s need to be multiplied by ε. We find

that most of the complexity is now confined to a very narrow region of fluxes θ, such that for most values

of nutrient flow w+, say, we find a upper and lower edges with different speeds, and single and periodic

vegetation bands with comparatively small speeds (θ & 0.2).

In particular, small diffusion in the presence of an O(1) value of the nutrient flow w in the vegetation-less

state b = 0 gives θ̃ ∼ 1, θ ∼
√
s+ 1/ε, in (4.3). Therefore, θ � 1 such that lower edges occur at s = θ2, which

gives s ∼ 1/ε, with resulting unscaled speed seff ∼ 1. For upper edges, s ∼ θ2/3, which gives s ∼ ε−2/3 and

effective small speeds seff ∼ ε1/3. Speeds of vegetation bands are yet smaller, s ∼ θ−2, which gives seff ∼ ε2.

The conservation law formalism — undercompressive versus Lax shocks. In a short summary,

our main results are existence results for shocks that are not the typical Lax shocks, but rather various types

of undercompressive shocks, degenerate Lax shocks, and spatio-temporally periodic solutions. This aspect of

the traveling-wave solutions is illustrated in Figure 4.5. The existence of these shocks can in some limits be

understood in relation to the sideband instability, which causes the Bogdanov-Takens point and generates

curves of homoclinic and periodic solutions. The other ingredient is the inherent difficulty with the reduction

to a scalar conservation law (3.6): the global elimination is ill defined since equilibrium branches w = 1/b and

b = 0 are not connected, separated by a region 0 < b < 1 with negative effective viscosity, and a justification

beyond the small-amplitude approximation in (3.1) seems unrealistic.

Figure 4.5: Schematic plot of upper, lower edges, and vegetation bands, with direction of characteristics added in space-time

plots, illustrating the undercompressive nature of the traveling-wave solutions found here. Note that characteristics are always

sloped to the left, negative speed, when b = 0, and sloped to the right when b > 0, while all traveling waves (shocks) propagate

to the right, uphill.
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5 Analysis — existence proofs

We first establish existence using monotonicity in θ and s, Section 5.1. We then investigate limits of lower

and upper edge heteroclinics, Section 5.2 and 5.3.

5.1 Monotonicity and existence

We prove Theorem 2 in detail. We merely outline the differences in the proof of Theorem 1, which is

conceptually similar but requires a different set of coordinates. Both proofs rely on phase plane analysis,

constructing invariant regions and using the Poincaré-Bendixson Theorem. Key ingredient is a monotonicity,

in appropriate coordinates, with respect to θ and s, that implies an ordering of stable and unstable mani-

folds. Interestingly, the ordering property holds in a different set of coordinates for upper and lower edge

heteroclinics.

5.1.1 Proof of Theorem 2

We begin by examining the local behavior of the traveling wave ODE (4.4) near the equilibrium (0, 0). The

linearization is hyperbolic and we denote the unstable manifold by Wu with subscripts (θ, s) when necessary.

Proposition 5.1 (Position of the Local Unstable Manifold Wu). The following hold in a sufficiently small

neighborhood of (0, 0):

(i) Wu lies above the line v = sb for any choice of (θ, s).

(ii) If θ1 < θ2, then the unstable manifold Wu
θ1

lies above the unstable manifold Wu
θ2

for any fixed s.

(iii) If s1 < s2, then the unstable manifold Wu
s2 lies above the unstable manifold Wu

s1 for any fixed θ.

Proof. The linearization of (4.4) at (0, 0) is[
−s 1

1 0

]
with unstable eigenvector eu =

[
2

s+
√
s2 + 4

]
.

The slope of eu is greater than s, the slope of the line, thus proving (i).

For (ii), note that b′ > 0 above the line v = sb. Thus, part (i) allows us to smoothly parametrize the local

unstable manifold as a function of b. We let hi(b) be such a parametrization so that Wu
θi

= graph hi, for

i = 1, 2. Assuming that θ1 < θ2, we will show that h1 > h2 in a neighborhood of (0, 0).

Expanding in b, we write

hi(b) = hi,1b+ hi,2b
2 +O(b3), for i = 1, 2,

where hi,1 = 1
2 (s+

√
s2 + 4), the slope of eu. We compute the derivative v′i in two ways, first using the chain

rule v′i = h′i(b)b
′ and second by plugging into the ODE (4.4). Setting coefficients of b2 equal, we find

βi =
−θi(s+ 3

√
s2 + 4)

2s2 + 9
.

So β1 > β2 and we may choose b sufficiently small to guarantee that h1(b) > h2(b).

Part (iii) follows from a similar but simpler argument since monotonicity is encoded in the linear coefficient

in the expansion of hi.
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Figure 5.1: A partial bifurcation diagram including the saddle-node curve (4.5) and the existence curve of lower edge heteroclinics

s`(θ) (green). For various parameter values (θ, s) insets show: the semi-invariant region Σ (shaded gold); its boundaries α, β, γ

(black); selected arrows from the vector field (red); and an initial section of the unstable manifold Wu (maroon).

The phase plane. For given values of (θ, s), we define a semi-invariant region in the of (4.4)

Σ ··=
{

(b, v) | b > 0,max{sb, θ − 1
b} 6 v 6 θ

}
,

bounded below by the nullclines

γ ··= {b′ = 0} = {(b, v) | v = sb}
α ··= {v′ = 0} =

{
(b, v) | v = θ − 1

b

}
,

and above by the line β ··= {v = θ}; see Figure 5.1.

From Proposition 5.1, we know that, near (0, 0), Wu starts in Σ. By computing the direction of the vector

field on ∂Σ, one sees that Wu may only exit Σ by crossing α or β. We will treat Σ as a semi-invariant region

and formalize a dichotomy in Proposition 5.2.

Dichotomy in the parameter plane. We define two sets in the (θ, s)−plane

SU ··= {(θ, s) | Wu ∩ β 6= ∅}
SD ··= {(θ, s) | Wu ∩ α 6= ∅}.

We claim that both these sets are nonempty. For SU , choose θ = 1 and s > θ2/4. This choice lies above

the saddle-node curve (4.5) and so the curves α and γ do not intersect. The vector field points only in the

positive v direction along the line γ, so Wu cannot cross γ from above. Since Wu starts above γ it must

stay above γ. Thus it eventually intersects β. This type of invariant-region argument, verified by comparing

slopes, will recur throughout the proof.

For SD, we choose (θ, s) = (4, 1), which lies to the right of the Hopf curve (4.7). By Proposition 5.1, near the

origin we have that Wu lies beneath the line v = 4b. The slope of the vector field along v = 4b is less than 4,

so Wu must remain below v = 4b. This forces an intersection with α because v = 4b is tangent to α at b = 1
2 .

Additionally, these two sets are disjoint. If they were not, we let (b∗, v∗) be the point at which Wu first

exits Σ. If (b∗, v∗) ∈ β, then for b > b∗ the unstable manifold must remain in the invariant rectangle

{(b, v) | b > b∗, v > θ} and thus can never intersect α. If (b∗, v∗) ∈ α, then after (b∗, v∗) the unstable manifold

Wu must remain below itself for b < b∗ and below the line {(b, v) | v = v∗} for b > b∗ This nearly proves the

next proposition.
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Proposition 5.2 (The SU ,SD Dichotomy). The interior of the first quadrant of the (θ, s) parameter plane

is partitioned into the two nonempty sets SU and SD.

Proof. We have already shown SU and SD are nonempty and disjoint. We only need to show that the

union SU ∪ SD covers the first quadrant. For any (θ, s), Proposition 5.1 implies that Wu begins in Σ. For

convenience, let s > 0 so that the region Σ is bounded with no equilibria in its interior. Thus, by the

Poincaré-Bendixson Theorem the unstable manifold must either exit Σ or converge to an equilibrium on ∂Σ.

If Wu exits Σ, it must intersect either α or β to do so, as previously stated. This dichotomy is central to

the proof and the reader may verify these statements by computing the vector field on ∂Σ. If Wu does not

exit Σ, it must converge to one of the three equilibria (0, 0), (b−, v−), (b+, v+) ∈ ∂Σ. Since b′ > 0 in Σ, the

unstable manifold cannot return to (0, 0) without exiting Σ. Meanwhile (b±, v±) are both contained in α.

Remark 5.3. If s = 0, the region Σ is infinite and the equilibrium (b+, v+) does not exist. Assuming Wu

does not exit Σ, it is squeezed between α and β. So it must converge to the line v = θ. In a sense, one may

think of this situation as consistent with the proposition since the equilibrium (b+, v+)→ {v = θ} as s→ 0.

The semi-invariant region Σ. The local Proposition 5.1 actually has consequences in the whole region

Σ.

Proposition 5.4 (Relative Positioning of Wu). Within the region Σ, the following hold:

(i) For any fixed s and any θ1 < θ2, the global unstable manifold Wu
θ1

lies above Wu
θ2

.

(ii) For any fixed θ and any s1 < s2, the global unstable manifold Wu
s1 lies below Wu

s2 .

Proof. We prove part (i) and omit the similar proof of part (ii).

Since b′ > 0 in Σ, both unstable manifolds are functions of b and so the only way for them to switch their

relative positioning is by intersecting. For the sake of contradiction, suppose there is an intersection at

(b∗, v∗) ∈ Σ. Without loss of generality, we may assume that (b∗, v∗) is the first such intersection. We know

by Proposition 5.1 that Wu
θ1

lies above Wu
θ2

for all b < b∗. However, computing the vector fields at (b∗, v∗)

with each θi reveals that the one for θ1 has a larger slope. This contradicts the fact that, due to their relative

positions, the v value of Wu
θ2

must be at least as fast as that of Wu
θ1

in order to have an intersection.

Corollary 5.5 (Rectangular Subsets).

(i) If (θ∗, s∗) ∈ SU , then (θ, s) ∈ SU for all θ < θ∗ and s > s∗.

(ii) If (θ∗, s∗) ∈ SD, then (θ, s) ∈ SU for all θ > θ∗ and s < s∗.

Proof. Again, prove part (i) and omit the similar proof of part (ii).

Suppose that (θ∗, s∗) ∈ SU and that θ < θ∗. Fixing s = s∗ the proposition implies that Wu
θ lies above Wu

θ∗

(even in the larger region Σθ∗). Thus Wu
θ intersects βθ∗ = {v = θ∗}. But since βθ = {v = θ} is strictly below

βθ∗ , Wu
θ must have also intersected βθ and so (θ, s∗) ∈ SU . Now suppose that s > s∗ and fix θ. The second

part of Proposition 5.4 implies that Wu
s∗ lies below Wu

s . Thus Wu
s must intersect βθ, so (θ, s) ∈ SU .

This powerful statement immediately guarantees that SU ,SD are path connected (use paths along edges of

rectangles) and that the common boundary ∂S ··= ∂SU ∩ ∂SD is non-decreasing.
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The curve of lower-edge heteroclinics s`(θ). The next proposition implies that the common boundary

∂S = ∂SU ∩ ∂SD forms a curve of parameter values for which the system (4.4) has a heteroclinic orbit that

corresponds to the desired traveling wave of equation (1.3).

Proposition 5.6. Fix an arbitrary θ∗ and suppose that SD ∩ {θ = θ∗} is nonempty and bounded above. Let

s∗ = sup
s>0

(SD ∩ {θ = θ∗}) .

Then (b+, v+) ∈ Wu
(θ∗,s∗) and s∗ is the only s value in SD ∩ {θ = θ∗} with this property.

Proof. With θ∗ and s∗ as above, suppose that (b+, v+) /∈ Wu
(θ∗,s∗). We treat two cases.

First, suppose that (θ∗, s∗) ∈ SU . There exists s < s∗ arbitrarily close to s∗ with (θ∗, s) ∈ SD. But this is

impossible because the unstable manifold Wu
s is continuous in the parameter s.

Second, suppose that (θ∗, s∗) ∈ SD. ThenWu
s∗ must intersect α at a point below (b+, v+). Since the unstable

manifold is continuous in parameters, there must be a s > s∗ such that Wu
s intersects α near the intersection

Wu
s∗ ∩ α. But now (θ∗, s) ∈ SD, contradicting the maximality of s∗.

Now we show that s∗ is unique. Suppose that there is an s 6= s∗ such (b+, v+)s ∈ Wu
(θ∗,s)

. Clearly, (θ∗, s) ∈ SD,

so we must know that s < s∗. Then, by Proposition 5.4,Wu
s lies belowWu

s∗ . However, (b+, v+)s > (b+, v+)s∗ ,

so Wu
s could never reach (b+, v+)s.

Corollary 5.5 implies that ∂S is non-decreasing. We parameterize ∂S by a function s`(θ) so that ∂S =

graph s`. The continuity ofWu with respect to parameters implies that s`(θ) is continuous. All that remains

is to characterize the location and some properties of this boundary curve by describing the sets SU and SD.

Proposition 5.7 (Location and Shape of ∂SD). In the first quadrant of the (θ, s)−plane, we have:

(i) The subset {s > θ2/4} ⊆ SU . So the intersection of Proposition 5.6 is always bounded above.

(ii) The subset {s = 0, θ 6 1} ⊆ SU . So the intersection of Proposition 5.6 is empty for θ∗ 6 1.

(iii) The subset {s = 0, θ > 2} ⊆ SD. So the intersection of Proposition 5.6 is nonempty for θ∗ > 2.

(iv) The subset {s = θ2/4, θ > 25/4} ⊆ SD. In fact, the saddle-node (b+, v+) ∈ Wu for these parameter

values.

Proof. We use the same construction for the proof of each statement, which are all similar to the earlier

proofs of the nonemptiness of SD,SU . Define

L ··= {v = cb} for any slope 0 < c 6 1,

M ··=
−b2(θ − cb) + b

cb− sb
the slope of the vector field (4.4) on L.

For given parameter values (θ, s), we choose c such that Wu is above (or below, as appropriate) L in a

neighborhood of (b, v) = (0, 0). Such choices of c may be determined by examining the expansion of Wu as

computed in Proposition 5.1. Then, we may compare c and M to ensure that Wu stays above (or below) L.

For (i), let θ > 0 and s > θ2/4. Choose c = s, so L = γ, and note that Wu is above L in a neighborhood of

(0, 0). Now M is undefined because near L the slope of the vector field increases to ∞. Thus Wu is trapped

above L. Since (θ, s) lies above the saddle-node curve, α lies strictly below γ = L and so (θ, s) ∈ SU .

For (ii), let s = 0 and θ = 1. Choose c = 1
2 and note that Wu is above L a neighborhood of (0, 0). For

all b > 0, we have M > c, so Wu cannot cross L from above. Note that α is below L and so (1, 0) ∈ SU .

Corollary 5.5 finishes the proof.
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For (iii), let s = 0 and θ = 2. Choose c = 1 and note that Wu is below L in a neighborhood of (0, 0). Now,

for b < 1 we have M < 1 = c, so Wu cannot cross L from below. Note that α is below L, except for a single

intersection (b, v) = (1, 1). Thus Wu must intersect α and so (2, 0) ∈ SD. Corollary 5.5 finishes the proof.

For (iv), let θ > 25/4 and s = θ2/4. Choose c = s = θ2/4. As in the proof of (i), Wu is trapped above L.

Now let L2 ··= {v = θ2

8 b + θ
4} and M be the slope of the vector field on L2. Clearly, Wu is below L2 in a

neighborhood of (0, 0) and a brief computation shows that M < θ2

8 , the slope of L2, for b < 2
θ = b+. Thus,

we’ve shown that Wu is trapped between L and L2 and so it must converge to the only equilibrium in the

region.

To summarize, we have shown that the curve starts on the line {s = 0} at some 1 < θ0 6 2. We’ve shown

that the curve is defined for all θ > 2, and it is well-defined by construction. Finally, we showed that the

curve lands on and joins the saddle-node starting at some θ < 25/4. See Figure 5.1.

5.1.2 Outline of Proof of Theorem 1

Our proof of the existence of the curve su(θ) of upper edge traveling waves uses the same ideas as the proof

above. These traveling waves correspond to heteroclinic orbits (b+, v+)→ (0, 0) of the ODE (4.4). The first

difference is that we choose new coordinates in which to do the phase plane analysis. We apply the coordinate

transformation (b, v) 7→ (b, u) = (b, v − sb) to arrive at the ODE

b′ = u,

u′ = −b2(θ − u− sb) + b− su. (5.1)

Note that this transformation shifts the important nullcline γ to the line {u = 0}, so the rest of the analysis

occurs in the lower half plane {u < 0}. By examining the local stable manifold Ws of (b, u) = (0, 0), we

obtain local results on the positioning ofWs with respect to the parameters (θ, s), which is precisely reversed

from the lower edge proof. We extend this local monotonicity to a statement about the relative positions of

Ws
(θ,s), for various (θ, s), within a large semi-invariant region

Σ′ ··=
{

(b, u) | 0 6 b 6 b+,
−1
ε b < u < 0

}
, for small ε > 0 depending on s.

The region Σ′ has only two entrance sets that, when considered in backwards time, correspond to the exit

sets α and β in the proof above. We use these entrance sets to characterize a dichotomy in the (θ, s)−plane,

SR ··= {(θ, s) | Ws ∩ {b− 6 b 6 b+, u = 0} 6= ∅}
SU ··=

{
(θ, s) | Ws ∩ {b = b+,

−1
ε b+ < u < 0} 6= ∅

}
.

Here, the set SR plays the role of SU above while the set SU plays the role of SD above. Just as above, these

sets have an analogous “rectangular subsets” property due to the relative positioning of unstable manifolds

within Σ′, for various parameter values. Again, one has {s > θ2/4} ⊆ SR but this time, for any θ, one shows

that (θ, s) ∈ SU for arbitrarily small s. Thus both sets are nonempty and SU is bounded above for each fixed

θ∗. Setting

s∗ = sup
s>0

(SU ∩ {θ = θ∗}) ,

we have (b+, 0) ∈ Ws
(θ∗,s∗). The asymptotic results appear in the next section.

5.2 Large θ

We study the existence of upper and lower edge heteroclinics, and of homoclinics, in the limit θ →∞. In each

case, we introduce a suitable scaling which allow us to construct heteroclinic and homoclinic orbits based on

simple transversality arguments.

19



Vegetation bands. We scale θ = 1/ε, v = εṽ, b = β, which gives

β′ = η − sβ,
η′ = −(1− ε2η)β2 + β. (5.2)

At s = ε = 0, we find a homoclinic β∗(x) = 3
2 sech 2(x) to the origin, from explicitly solving β′′ − β + β2 = 0.

We now follow standard Melnikov theory along homoclinics, as laid out for instance in [2]. One writes (5.2) as

an equation F (β, η; s, ε) = 0, defined as a smooth map from H1(R,R2)×R2 into L2(R,R2. The linearization

at the homoclinic, s = ε = 0, is Fredholm of index 0 and possesses a one-dimensional cokernel, given through

the unique (up to scalar multiples) solution to the adjoint equation, ψ = (−β′′∗ , β′∗)T . One also computes the

derivative of F with respect to s and ε2 at the homoclinic, which gives,

∂sF = (−β∗, 0)T , ∂ε2F = (0, β′∗β
2
∗)
T .

After Lyapunov-Schmidt reduction, we find the leading-order equation

〈∂sF,ψ〉s+ 〈∂ε2F,ψ〉ε2 + O
(
|s|2 + ε4))

)
= 0,

where 〈·, ·〉 denotes the L2-inner product. Evaluating the relevant integrals, one readily finds at leading order

− 6
5s+ 36

35ε
2 = 0, hence

s =
6

7
θ−2 + O(θ−4).

Upper edge. We set θ = ε−3, s = σε−2, b = βε−1, v = ηε−3, and x = ε2y, and obtain

βy = η − σβ (5.3)

ηy = −(1− η)β2 + ε4β. (5.4)

This planar system possesses equilibria η = β = 0 and η = 1, β = σ−1. Linearizing at the origin reveals a one-

dimensional stable subspace spanned by (1, 0)T and a one-dimensional center subspace spanned by (1, σ)T . In

the one-dimensional corresponding center manifold, the flow is given to leading order by ηy = −σ−2η2, such

that the equilibrium is stable in the positive quadrant. The other equilibrium is a saddle. Elementary phase

plane analysis similar to the analysis for finite speed, presented below, reveals the existence of a unique value

σ∗ > 0 for which the system possesses a heteroclinic orbit connecting the unstable manifold of the non-trivial

equilibrium and the strong stable manifold of the origin. Moreover, this intersection is transverse in the

parameter σ. Perturbations in ε unfold the saddle-node in a transcritical bifurcation with an equilibrium

bifurcating into the positive quadrant. There hence exists σ = σ∗ + O(ε4) for which a connecting orbit

between the equilibrium β = σ−1 + O(ε4) and the origin exist. Scaling back gives

s = s∞θ
2/3 + O(θ−2/3).

Numerically, we find s∞ ∼ 0.9055.

Lower edge. Here, we scale θ = ε−1, s = σε−2, v = ηε−1, b = βε, x = ε2y, to find

βy = η − σβ
ηy = ε4

(
−(1− η)β2 + β

)
. (5.5)

This slow-fast system possesses a one-dimensional slow manifold [6] β = ση+ O(ε4), with reduced slow flow,

projected on the η-axis,

ηy = ε4
(
−σ−2(1− η)η2 + σ−1η

)
.

In this cubic nonlinearity, a heteroclinic connecting the left-most equilibrium η = 0 and the right-most

equilibrium exists precisely when the right-most equilibrium is double, for σ = 1/4, that is, on the saddle-

node curve where s = θ2/4.
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5.3 Heteroclinic limits — small s

We study small-speed limits of upper and lower edge homoclinics.

Upper edge. We scale θ = ε and set s = σε2, which gives

b′ = v − σε2b,

v′ = −(ε− v)b2 + b. (5.6)

At ε = 0, we find the simple system

b′ = v,

v′ = vb2 + b. (5.7)

Setting b = 1/β, thus compactifying the plane in the b-direction, we find

βy = −β4v,

vy = v + β, (5.8)

where we used a nonlinear rescaling of time β2∂x = ∂y. Equations (5.7) and (5.8) together define a flow on

v ∈ R, b 6 1, β > 1, patching continuously at b = β = 1. There are precisely two equilibria b = v = 0,

a saddle, and β = v = 0, with a one-dimensional strong unstable manifold and a one-dimensional center

manifold, tangent to v = −β, with leading-order flow βy = β3. One readily establishes the existence of

a connecting orbit by continuing the stable manifold of the origin into b > 0 by flowing backward, and

exploiting that β = v = 0 is asymptotically stable in backward time within β > 0. Perturbing in ε, two

equilibria bifurcate within the center manifold. By continuity, the stable manifold always connects to the

left-most non-trivial equilibrium, such that we can have connecting orbits to the right-most equilibrium only

when it coincides with the middle equilibrium, for s = 4θ2.

Lower edge. We complement the system

b′ = v − sb
v′ = −(θ − v)b2 + b, (5.9)

with the compactification β = 1/b,

βy = −β4v + sβ2

vy = −(θ − v) + β, (5.10)

after a nonlinear rescaling of time β2∂x = ∂y. Similar to the previous limit, (5.9) and (5.10) together define

a flow in b 6 1, β > 1, with trivial gluing at b = β = 1. At s = 0, the system possesses three equilibria.

The origin is a saddle, β = θ, v = 0 is totally unstable, and β = 0, v = θ possesses a one-dimensional strong

unstable manifold within β = 0, and a center manifold tangent to v = θ − β, with local flow

βy = −β4θ + sβ2 + O(β5) + O(s2).

For θ > 0, the equilibrium β = 0 therefore possesses a one-dimensional stable manifold in β 6 0, given by the

center manifold. Using the comparison techniques used above, one establishes the existence of a heteroclinic

orbit connecting the origin and the equilibrium in β = 0 for some θ∗ > 0. One also shows that the heteroclinic

is transversely unfolded in θ. For s > 0, small, an equilibrium β =
√
s bifurcates within the center manifold,

with one-dimensional stable manifold given by the stable manifold, hence smoothly depending on s and θ. As

a consequence, the heteroclinic orbit persists for finite s as a heteroclinic to the finite right-most equilibrium.

21



6 Discussion

We presented a simplistic model for the conversion of nutrients to biomass in the present of advection. The

analyzed traveling-wave solutions and explained an analogy with viscous scalar conservation laws. We now

briefly discuss generalizations and possible extensions.

Threshold conversion. One can easily envision other applications, where an ingredient w is converted

into a product b, with rate function f(b, w). The ingredient w is “supplied” through a constant-speed mean

flow, and the product b simply diffuses. Our rate function illustrates a threshold behavior in f , where curves

Γ = {b(s), w(s)|s ∈]R} of equilibrium concentrations, f(b(s), w(s)) = 0, are not monotone in b. In other words,

increasing the concentration of the ingredient w at equilibrium may not result in a continuous change off b.

This lack of monotonicity is at the origin of both sideband instabilities and the existence of undercompressive

shocks. We believe that the methods here generalize to a much larger class of rate functions f , while details

of the bifurcation diagram will of course vary. It is worth noticing that much of the information on group

velocities and instabilities is contained in the geometry of the equilibrium curve, as made explicit Remark

2.1.

Wavenumber selection. Our model does not contain Turing instabilities in the sense that at onset of an

instability, the fastest growing Fourier mode of the linearization would be nonzero. The only instabilities

present are sideband instabilities, leading to notoriously complex dynamics. We notice however that, similar

to the case of diffusive transport of water discussed below, invasion processes do select distinct wavenumbers

in their wake; see Figure 1.3. For most parameter values, those wavenumbers can be predicted from a linear

analysis [39, 15]. We did not perform a systematic study here of this selection mechanism, but refer to [35]

for a scenario where wavenumber selection in the presence of invasion can possibly yield information on the

origin of banded patterns.

Advective transport versus diffusion. The case when the ingredient w is diffusing rather than advected

is in many ways much simpler,

bt = bxx + f(b, w), wt = dwxx − f(b, w). (6.1)

Stationary solutions can be obtained by noticing that b + dw ≡ θ, and then solving the scalar equation

bxx + f(b, θ− dw) = 0. Equations of this type have been studied in many contexts [7, 8, 16, 25, 26], showing

that in many cases stationary layers are the key ingredient. In particular, for threshold-type kinetics as

described above, with for instance f(b, w) = b(1− b)(b− a)− γw, the system is equivalent to the phase-field

system and possesses a Lyapunov function, provided d > 1 [7]. When d < 1, traveling fronts bifurcate

from the stationary layer solutions [27]. For d > 1, one observes slow coarsening of layers and only stable

solutions (energy minimizers) are single layer solutions or constants [28]. Quite analogous to our system,

(6.1) does not possess an inherent wavenumber selection mechanism, that is, a fastest-growing mode analysis

shows selected wavenumbers close to zero near onset [18]. Invasion fronts do however exhibit predictable

wavenumber selection mechanisms [7, 18, 32], yielding phenomena similar to Figure 1.3. It is worth noticing

that linear stability information is qualitatively contained in information on the geometry of the curves of

equilibria, in analogy to Remark 2.1 on the sign of group velocities, here; see [7].

Sideband instabilities, breakup, and scale-free patterns. One of the robust predictions here is the

occurrence of sideband instabilities prior to a saddle-node bifurcation in which the vegetation state disappears;

see Section 2. Near sideband instabilities, one expects a description of spatio-temporal dynamics in terms of

Kuramoto-Sivashinsky-like equations, with additional third-order dispersion, which in turn tend to exhibit

spatio-temporally chaotic, sustained dynamics. This correlates well with the observation of disorganized,
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“scalefree” patterns near the edges of banded zones; see for instance [41] for a discussion of observations and

mechanisms for scalefree vegetation patterns.

Stability. The next most natural question would appear to be for stability of the traveling waves found

here. While the elementary phase-plane analysis insinuates that stability questions might be accessible, we

did not attempt such a study. Numerically, we did not see instabilities of upper and lower edges (under-

compressive shocks), except for instabilities in the Lax case, when one of the asymptotic states undergoes

a sideband instability. Beyond analytical results, it would be interesting to add stability information to the

rather comprehensive numerical diagram established here even numerically. We suspect that stability of pe-

riodic traveling waves will reveal a plethora of instability mechanisms that might guide through qualitative

transitions between patterns.

Beyond mass conservation. As we emphasized early on, the present model is to be understood as a

building block for more realistic and complex models. Adding source terms, such as evaporation and rain

fall promises yet more complexity. In the case of simple diffusion, the effect of source terms on models with

conservation laws was studied in [19, 42, 40], revealing in particular the presence of localized patches of

periodic structures.

Two space-dimensions and topography. Comparing with natural patterns, an important next step

will be an analysis in two dimensions, including the stability of patterns found here with respect to two-

dimensional perturbations, but also the existence and properties of banded patterns not aligned with level

sets, functions of nxx + nyy, with |(nx, ny)| = 1. In fact, much of the analysis here can be adapted to this

situation in a straightforward fashion. One would then wish to explain phenomena such as the alignment of

bands perpendicular to the slope, or the deformation of bands in non-uniform slopes.
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