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Abstract

Contact defects are one of several types of defects that arise generically in oscillatory media
modelled by reaction-diffusion systems. An interesting property of these defects is that the
asymptotic spatial wavenumber is approached only with algebraic order O(1/x) (the associated
phase diverges logarithmically). The essential spectrum of the PDE linearization about a contact
defect always has a branch point at the origin. We show that the Evans function can be
extended across this branch point and discuss the smoothness properties of the extension. The
construction utilizes blow-up techniques and is quite general in nature. We also comment on
known relations between roots of the Evans function and the temporal asymptotics of Green’s
functions, and discuss applications to algebraically decaying solitons.

1 Introduction

The goal of this paper is to investigate the stability properties of certain nonlinear waves that arise
in dissipative, pattern-forming partial differential equations (PDEs). Consider a reaction-diffusion
system

Ut = DUxx + F (U), (1.1)

posed on the real line x ∈ R, where U ∈ RN and D is a diagonal positive diffusion matrix.
We assume that (1.1) supports a family of wave-train solutions U(x, t) = Uwt(kx− ωt; k) that are
2π-periodic in φ = kx−ωt. Wave trains arise typically as one-parameter families for which the non-
zero temporal frequency ω and the non-zero spatial wavenumber k are related through a nonlinear
dispersion relation ω = ωnl(k). Thus, the wave train with wavenumber k travels with phase speed
cp = ωnl(k)/k. Of importance is also the group velocity cg = ω′nl(k) which can be thought of as the
speed with which small initial perturbations are transported along spectrally stable wave trains.

We are interested in defects which are solutions to (1.1) that are time periodic in an appropriate
moving coordinate frame and that converge to two, possibly different, wave trains as x → ±∞.
See Figure 1 for an illustration. In an accompanying paper [21], we give a list of four defects,
namely sinks, sources, contact defects and transmission defects, that occur generically in such a
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Figure 1: A defect that travels with speed cd through wave trains which themselves travel with
phase velocities c−p behind and c+

p ahead of the defect.

medium. The characteristics that distinguish these four defect types are the group velocities c±g
of the asymptotic wave trains at x = ±∞, measured relative to the speed of the defect cd: Sinks
are shock-like structures for which c−g > cd > c+

g so that perturbations are transported towards
the defect. Transmission defects are characterized by c±g > cd or c±g < cd so that the characteristic
curves enter at one side and leave at the other side of the defect. Sources generate waves for they
satisfy c−g < cd < c+

g so that perturbations travel away from the defect. In this paper, we focus
on contact defects that are asymptotic at x = ±∞ to the same wave train and that travel with
the group velocity cd = cg of the asymptotic wave train. These defect are referred to as contact
discontinuities, see for instance [22], in the context of conservation laws from which we borrowed
the terminology.

Contact defects occur in one-parameter families that are parametrized by the wavenumber k of the
asymptotic wave train. We seek them as solutions U(x, t) = Ud(x− cgt, ωdt) of (1.1) that satisfy

Ud(x− cgt, ωdt) = Ud(x− cgt, ωdt + 2π) (x, t) ∈ R× R+

|Ud(x− cgt, ωdt)− Uwt(kx− ωnl(k)t− θ±(x− cgt); k)| → 0 for x → ±∞

where we assume that ωd := ωnl(k) − cgk 6= 0 (this assumption simply means that the group
and phase velocities of the selected wave train Uwt(kx − ωnl(k)t; k) do not coincide). As we will
show in Section 3.1, a characteristic common feature of contact defects is the algebraic relaxation
of the wavenumber θ′±(x) = O(1/|x|) for |x → ∞ together with the logarithmic divergence of
the asymptotic phase θ±(x). The reason for the algebraic decay is, roughly speaking, that the
asymptotic wave train is in a saddle-node bifurcation configuration when considered in a frame
that moves with its group velocity. At saddle-nodes, however, spatial convergence is only algebraic
and not exponential.

Contact defects have been observed experimentally in several different contexts (see [21] for details).
One example are line defects that occur at period-doubling bifurcations of spiral waves [23]. We
refer to Figure 2 for the results of numerical simulations in the Rössler model with diffusion.

Our goal is to obtain a proper description of the reaction-diffusion system, linearized about a
contact defect, and of the spectrum of the associated linear period map; recall that defects are
time-periodic solutions of (1.1), considered in an appropriate co-moving frame. The key issue is to
trace eigenvalues of the linearized period map into the essential spectrum by using a variant of the
Evans function that was originally introduced in [1]. The main obstacle is the simultaneous presence
of a branch point in the continuous spectrum and the weak algebraic decay of the x-dependent
coefficients in the linearized equation that appear since the profile of the contact defect depends on
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Figure 2: The left picture shows a contour plot of a planar spiral wave that arises after
the asymptotic wave trains went through a period-doubling bifurcation. To accommodate the
geometry, a contact defect forms along a straight line (a magnification of the defect is shown
in the right plot).

x. We believe that a proper understanding of the linearized problem will prove useful in future work
on nonlinear stability and interaction properties of contact defects. Furthermore, the techniques
that we develop here enable us to assign linear stability properties in nonlinear bifurcation diagrams
such as those arising in locking and unlocking bifurcations of different types of defects [21]. We
remark that it was shown in [18], see also [12], that the Evans function can be constructed for
algebraically decaying coefficients as long as one stays away from the absolute spectrum that was
introduced in [19]. Note also that, thanks to the Gap Lemma [8, 11], exponentially decaying waves
are much easier to handle. In that sense, the results given here can be interpreted as extending
the Evans function beyond the Gap Lemma. We mention the related work [17], which came out
after our manuscript was submitted, where the Evans function is considered for certain 2× 2 Lax
operators with algebraically decaying potentials.

The eigenvalue problems that we consider are critical in the sense that the inhomogeneity O(1/x)
in the coefficients scales in the same way as the leading differential operator. Our methods apply
more generally to eigenvalue problems which are essentially one-dimensional and respect this char-
acteristic type of scaling. We view the eigenvalue and the existence problem simultaneously as a
dynamical system in the spatial variable x. On an appropriate center manifold, the critical scaling
behavior is reflected in a scaling invariance of the leading term of the Taylor jet. We exploit this
scaling invariance by using invariant coordinates which allow us to remove the degeneracy in the
linearization in the form of an Euler multiplier of the differential equations. The entire procedure
is motivated by the geometric approach to singularly perturbed problems via blow-up techniques
that were developed by Dumortier [5] and that have also been used more recently by Szmolyan and
coworkers [6, 14]. We also mention recent work by Howard [9, 10] who obtained related results on
degenerate shock waves using different methods.

In the blow-up coordinates that we use here, the influence of the far field becomes geometrically
separated from the influence of the spatial inhomogeneity. Whereas the far field contributes a

√
λ

branch point singularity to the Evans function as in eigenvalue problems with exponential spatial
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decay, the inhomogeneities introduce
√

λ log λ-terms in the expansion for the Evans function near
the origin via resonant terms in the Dulac map near a 1:1-resonant hyperbolic equilibrium.

In the particular case of a contact defect, we derive an expansion for the Evans function of the form

E(γ) = γ E0(γ, γ log γ), γ =
√

λ

where E0(γ, η) is of class C∞ in a neighborhood of the origin with a cut along the absolute spectrum
(see [19] for the definition of the absolute spectrum and its relevance in large but finite domains).
The construction allows us to compute Taylor jets of E , and we show that typically ∂ηE0(0, 0) 6= 0.
In particular, the Evans function is not analytic in γ =

√
λ in contrast to the case of exponentially

decaying waves [8, 11].

The simplest example for critical inhomogeneous coefficients arises in eigenvalue problems for the
Laplacian with radial symmetry. Indeed, the 1/r-curvature terms in the eigenvalue problem

urr +
n− 1

r
ur = λu (1.2)

obey the same critical scaling behavior as the one described above. Although “everything” is
known about the eigenvalue problem (1.2), we revisit it in Section 2 to illustrate the methods and
phenomena that we shall encounter again in Section 3, where we carry out the actual blow-up of
the eigenvalue problem for contact defects.

Our main results are Theorems 1–3 that can be found in Sections 3.1, 3.6 and 3.7. In Section 4, we
discuss a variety of applications of these techniques to other limiting cases of the Evans-function
approach such as to the boundary of the region where the Gap Lemma applies and to eigenvalue
problems for algebraically decaying solitons.

2 The radial Laplacian and the Evans function

Consider the eigenvalue problem (1.2)

u′′ +
n− 1

r
u′ = λu, ′ =

d
dr

. (2.1)

We seek solutions so that u(r) and u′(r) are bounded as r → 0 and as r → ∞. For n = 1, we use
Neumann boundary conditions at r = 0. The operator on the left-hand side of (2.1) is closed and
densely defined for instance on the space C0

unif(R+) of bounded and uniformly continuous functions
and also on Lp(R+) equipped with the weighted measure rn−1dr induced by the Lebesgue measure
on Rn. We emphasize that the arguments presented below for (2.1) generalize easily to equations
with an additional algebraically localized potential V (r)u or gradients W (r)ur.

We rewrite (2.1) as a first-order differential equation

u′ = v (2.2)

v′ = −n− 1
r

v + λu.
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Note that each bounded solution has an expansion u(r) = u0 + O(r2) and v(r) = O(r) at r = 0. If
we use the homogeneous coordinates z = v/u in the projective space, write λ = γ2, and introduce
κ = 1/r as a new dependent variable, we obtain

z′ = −(n− 1)κz + γ2 − z2

κ′ = −κ2 (2.3)

γ′ = 0.

We remark that u and v can be recovered easily once z is known. For the sake of clarity, we restrict
ourselves in this section to real values of γ.

The equation in projective space is homogeneous of degree 2. We therefore introduce blow-up
coordinates and replace (z, κ, γ) ∈ R3 by polar coordinates on R+×S2, thus blowing up the origin
in R3 to a two-sphere {0} × S2. On the two-sphere, we choose two different sets of homogeneous
coordinates. The singular chart given by

z1 =
z

κ
, γ1 =

γ

κ
, κ1 = κ

regularizes the critical decay in the inhomogeneity, whereas the rescaling chart, defined via

z2 =
z

γ
, κ2 =

κ

γ
, γ2 = γ,

takes care of the singularity at γ = 0. In the singular chart, the equations become

z′1 = κ1

[
γ2

1 − (n− 2)z1 − z2
1

]
γ′1 = κ1 [γ1]

κ′1 = κ1 [−κ1] ,

while we obtain

z′2 = γ2

[
1− (n− 1)κ2z2 − z2

2

]
κ′2 = γ2

[
−κ2

2

]
,

γ′2 = 0

in the rescaling chart. In both charts, the equation has an Euler multiplier given by κ1 in the
singular chart and by γ2 in the rescaling chart. We can therefore rescale r by defining the new
independent variable dρ = κ1dr in the singular chart and dρ = γ2dr in the rescaling chart. We
begin by discussing the phase portrait in the rescaling chart. Writing ˙ = d/dρ and omitting the
trivial equation for γ, we obtain

ż2 = 1− (n− 1)κ2z2 − z2
2 ,

κ̇2 = −κ2
2.

The phase portrait is shown in Figure 3. For γ > 0, the equilibrium (z2, κ2, γ2) = (−1, 0, γ)
corresponds to the limit as r → ∞ of the r-dependent stable subspace of solutions to (2.2) that
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Figure 3: The phase portrait in the rescaling chart for γ > 0.

decay exponentially as r →∞. The center manifold of this equilibrium is unique in the half space
κ > 0 and is, in fact, given by the set of solutions that converge to the equilibrium. Note, however,
that the center manifold is not unique for κ < 0.

As a consequence of this discussion, the r-dependent stable subspace, i.e. the space of all solutions to
(2.2) that converge to zero as r →∞, is, for γ > 0, given by the stable manifold of the equilibrium
(z2, κ2, γ2) = (−1, 0, γ). Thus, to determine its fate as r becomes smaller, we have to follow the
stable manifold backward in radial time, uniformly in γ > 0. Thus, we begin with the stable
manifold at γ2 = 0. Since ż2 = 1 for z2 = 0, we can conclude that the stable manifold is contained
in the quadrant z2 < 0, κ2 > 0. A standard growth estimate shows that we can follow the solution
backward in time until we reach κ2 = 1/δ, where δ > 0 is arbitrarily small but fixed. At this point,
we can switch to the singular chart which is regular at γ = 0 so that we can locate the stable
manifold uniformly in γ near zero. Hence, we transform the point (z2, κ2, γ2) = (z∗2 , 1/δ, γ) with
z∗2 < 0 into the singular-chart coordinates which gives

z1 =
z

κ
=

z2

κ2
= z∗2δ < 0, γ1 =

γ

κ
=

1
κ2

= δ, κ1 = κ =
γ

δ
. (2.4)

The next step is then to discuss the dynamics of the equation

ż1 = γ2
1 − (n− 2)z1 − z2

1

γ̇1 = γ1

κ̇1 = −κ1

in the singular chart. The phase portrait, shown in Figure 4, depends crucially on whether 1 ≤
n < 2, n = 2, or n > 2. Since we will encounter the case n = 3 in Section 3, we will focus on n = 3
and briefly comment on the other cases later.

Thus, upon setting n = 3, we obtain the equation

ż1 = γ2
1 − z1 − z2

1

γ̇1 = γ1 (2.5)

κ̇1 = −κ1
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Figure 4: The phase portraits in the singular chart for different dimensions n.

in the singular chart. The planes γ1 = 0 and κ1 = 0 as well as their intersection, which is the
z1-axis, are flow invariant. Inside the plane κ1 = 0, which corresponds to the singular limit r = ∞,
the z1-axis is attracting in backward radial time, and every trajectory in the quadrant z1 < 0,
γ1 > 0 converges to the equilibrium (z1, γ1) = (−1, 0) in backward time since the vector field is
ż1 = γ2

1 ≥ 0 at z1 = 0. Note that the initial data (z1, γ1, κ1) = (z∗2δ, δ, γ/δ) in (2.4) lie in this
quadrant for γ = 0. In particular, for γ = 0, there exists a singular heteroclinic orbit that connects
(z1, γ1) = (−1, 0) in the singular chart to (z2, κ2) = (−1, 0) in the rescaling chart, see Figure 5.
These arguments take care of the transition between the singular and the rescaling chart.

It remains to study the dynamics of (2.5) in the singular chart near the equilibrium (z1, γ1) =
(−1, 0). Observe that this equilibrium has a one-dimensional stable manifold which is given explic-
itly by the set z1 = −1, γ1 = 0 and κ1 > 0. For γ > 0 small, solutions with initial conditions given
by (2.4) will intersect a Poincaré section at κ1 = δ close to the stable manifold of (z1, γ1) = (−1, 0),
see Figure 5. In particular, the subspace of all solutions to (2.2) that decay as r →∞ converges as
γ → 0 to the stable manifold of the equilibrium (z1, γ1, κ1) = (−1, 0, 0). Transforming back to the
original coordinates, we see that this stable manifold is spanned precisely by all solutions to (2.2)
with 1/r-decay in the u-component at r = ∞.

We are now in a position to define an Evans function. We denote by z+ = z1 the γ-dependent
z-component of the stable manifold of the equilibrium (z2, κ2, γ2) = (−1, 0, γ), evaluated in the
singular chart at κ1 = 1. The observations above show that z+(γ) → −1 as γ → 0. Analogously,
we denote by z− the projective subspace, evaluated at radial time r = 1, that corresponds to
solutions of (2.2) that remain bounded as r → 0. Since this subspace depends analytically on λ,
we have z− = O(γ2). We can now define an Evans function via

E(γ) = z−(γ)− z+(γ) (2.6)

so that zeros of E(γ) with γ > 0 correspond to eigenvalues λ = γ2 of the operator on the left-hand
side of (2.1). The discussion above shows that we have the expansion

E(γ) = 1 + oγ(1)

for n = 3.

More generally, we have z−(γ) = O(γ2) for n ≥ 1 since the only solution of (2.2) with λ = 0 that
remains bounded as r → 0 is the constant function; this function, however, corresponds to z1 = 0.
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2− n −1

1

z2

γ2

κ2

r = 0
κ1 =∞

Singular chart Rescaling chart

Figure 5: The connecting orbits between r = 0 and the singular chart and from the singular
to the rescaling chart for n > 2. The z1-component z+(γ) of the left endpoint of the dashed
line, which indicates the stable manifold of the equilibrium (z2, κ2, γ2) = (−1, 0, γ), is used
in the definition of the Evans function in (2.6).

If n > 2, the same discussion as above shows that z+(γ) = (2 − n) + o(1) so that E(0) 6= 0. For
1 ≤ n < 2, the stability properties of the two equilibria on the z1-axis are interchanged, and the
singular heteroclinic orbit converges to z1 = 0 so that z+(γ) = o(1) and E(0) = 0. The case n = 2
is precisely on the boundary between these two regions characterized by a transcritical bifurcation
at (z1, γ1, κ1) = 0. Still, we have E(0) = 0 in this case.

In other words, the heteroclinic orbit from the singular to the rescaling chart, which arises as the
limit of the stable subspace of (2.2) as γ → 0, always comes from the solution of (2.2) that decays
fastest. For 1 ≤ n ≤ 2, the fastest decaying solution is the constant solution, while it is u(r) = r2−n

for n > 2. On the other hand, the only solution that satisfies the boundary condition at r = 0 is
the constant solution. This explains again why the Evans function vanishes at γ = 0 for 1 ≤ n ≤ 2
but not for n > 2. It is perhaps worthwhile to mention that the asymptotic system, i.e. (2.2) with
r = ∞, is always the same independently of n.

The entire picture is robust under small perturbations of the form ε[o(1/r)ur + o(1/r2)u]. In
particular, the singular heteroclinic orbit as well as the equilibria in the two singular subspaces
κ1 = 0 and γ2 = 0 remain unchanged. Stable and unstable manifolds outside of these subspaces
become slightly deformed. Therefore, the Evans function E depends continuously on ε. Since E is
non-zero for γ ≥ 0 and n > 2, we conclude that small perturbations of the Laplacian cannot create
positive eigenvalues, a result which has, of course, been known for a long time [15]. For 1 ≤ n ≤ 2,
small perturbations may create a small positive eigenvalue λ(ε). Expansions for this eigenvalue
λ(ε) can be derived using the methods outlined in Section 3.5.
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3 The Evans function for contact defects

3.1 The reduction near contact defects

We consider the reaction-diffusion system

Ut = DUxx + F (u), x ∈ R, (3.1)

and assume that there exists a family of wave-train solutions Uwt(kx−ωnl(k)t; k) for wavenumbers
k close to k∗ 6= 0 whose dispersion relation ωnl(k) is genuinely nonlinear so that ω′′nl(k∗) 6= 0.
Recall that the group velocity is defined by cg = ω′nl(k). We are interested in contact defects
which are solutions of the form U(x, t) = Ud(x − cgt, ωdt) where Ud(ξ, τ) is 2π-periodic in τ with
ωd = ωnl(k∗)− cgk∗ 6= 0 and

|U∗(ξ, ·)− Uwt(k∗ξ − θ±(ξ)− ·; k∗)|H1(S1) + |∂ξ(U∗(ξ, ·)− Uwt(k∗ξ − θ±(ξ)− ·; k∗))|L2(S1) → 0

as ξ → ±∞ for appropriate phase functions θ±(ξ) that satisfy θ′±(ξ) → 0 as ξ → ±∞. Using the
co-moving frame ξ = x− cgt and the rescaled time τ = ωdt, defects can be obtained as solutions to
the modulated-wave equation

Uξ = V (3.2)

Vξ = −D−1[−ωd∂τU + cgV + F (U)]

on Y = H1/2(S1) × L2(S1) with 2π-periodic boundary conditions in τ . Note that we have the
S1-shift invariance (U, V )(τ) 7→ (U, V )(τ + θ) of (3.2) on Y . The wave trains

Uwt(k∗x− ωnl(k∗)t; k∗) = Uwt(k∗ξ − τ ; k∗)

correspond to 2π/k∗-periodic solutions of (3.2). Introducing the co-rotating frame ϑ = k∗ξ − τ , we
obtain

Uξ = k∗∂ϑU + V (3.3)

Vξ = k∗∂ϑV −D−1[ωd∂ϑU + cgV + F (U)].

In these co-rotating coordinates, the wave trains correspond to circles of equilibria. The contact
defect can be viewed as a homoclinic orbit to this circle of equilibria induced by the wave trains.

We assume that the wave trains are asymptotically stable as solutions to (3.1) posed on the space
of L2-functions with period 2π/k∗. In particular, the critical spectrum of the linearization about
a wave train is given by an algebraically simple eigenvalue at λ = 0 which is caused by transla-
tion invariance. We also assume that the right-most spectrum of the linearization, considered in
L2(R), in a frame moving with the speed cp = ωnl(k∗)/k∗ of the wave trains is given by the linear
dispersion curve λ(ν) with λ(0) = 0 and λ′′(0) > 0, where ν ∈ C is the spatial growth rate of
eigenfunctions. We refer to [4] for more details. Since we passed to a frame that moves precisely
with the group velocity ω′nl(k∗) of the wave trains, we can vary the wavenumber without changing,
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to first order, the frequency. As a consequence, the derivative of the wave trains with respect to
the wavenumber satisfies the linearized equation: this shows that the linearization of (3.3) about
the circle of equilibria has a double eigenvalue at zero.

Thus, as shown in [4], we can reduce the dynamics of (3.2) near the circle of equilibria to a two-
dimensional center manifold. The reduced equation on the center manifold is

θξ = κ (3.4)

κξ = −f(κ)

where θ ∈ S1, κ ∈ R and

f(κ) = −
ω′′nl(0)
λ′′(0)

κ2 + O(κ3) =: f2κ
2 + O(κ3).

Note that f2 6= 0 provided ω′′nl 6= 0 which we assumed to be the case.

We remark that contact defects typically converge along the direction of the center manifold. In
particular, the wavenumber κ(ξ) converges to zero for ξ → ∞, whereas the phase θ(ξ) diverges
logarithmically as mentioned earlier. The nongeneric case of stronger exponential decay towards
the asymptotic wave trains is actually far easier to deal with, since the Evans function can be
extended using the Gap Lemma [8, 14].

If we allow the temporal frequency ω to vary near ωd (which amounts to replacing ωd by ω and k∗

by k in (3.3)), then the reduced vector field is given by [4]

f(κ) = − 1
λ′′(0)

[
ω′′nl(0)κ2 − (ω − ωd)

]
+ O(κ3).

In particular, if we assume that ω′′nl > 0, say, then we find two wave trains for ω > ωd, and no wave
train for ω < ωd. In the spatial dynamical system (3.3), the circle of equilibria therefore undergoes
a saddle-node bifurcation when ω is varied near ωd.

Next, consider the linearized equation

uξ = [k∗ + θ′(ξ)]∂ϑu + v (3.5)

vξ = [k∗ + θ′(ξ)]∂ϑv −D−1[ωd∂ϑu + cgv + F ′(Ud)u− λu]

in the co-rotating coordinate ϑ = k∗ξ + θ(ξ)− τ , where the contact defect Ud is determined by the
nonlinear problem (3.3). The eigenvalue parameter λ represents temporal Floquet exponents of
the linearization of the period map of (3.3) about the contact defect. Since we assumed that there
exists a unique dispersion curve λ(ν) that touches the imaginary axis at λ = 0 with λ′′(0) > 0,
the non-autonomous equation (3.5) has an exponential dichotomy both on R+ and on R− for each
value of λ 6= 0 for which Re λ ≥ 0 [20]. In particular, there exist stable and unstable subspaces
Es

+(λ) and Eu
−(λ) that consist precisely of all initial data at ξ = 0 of solutions to (3.5) that exist

and are bounded on R+ and R−, respectively. The subspaces Eu
−(λ) and Es

+(λ) depend analytically
on λ in the sense that there exist bounded projections onto Eu

−(λ) and Es
+(λ) that are analytic in

λ. In addition, the injection map

ι(λ) : Eu
−(λ)× Es

+(λ) −→ Y, (w−, w+) 7−→ w− + w+ (3.6)
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is Fredholm with index zero. The injection ι(λ) has a bounded inverse precisely when λ does not
belong to the Floquet point spectrum. The dimension of the kernel of ι(λ) is equal to the geometric
multiplicity of λ as a Floquet exponent of the linearized period map. The algebraic multiplicity
of λ can be obtained by adding the dimensions of the kernels of the derivatives ∂n

λ ι(λ) for n ≥ 0.
In fact, Jordan chains can be computed directly using Lyapunov-Schmidt reduction on the finite-
dimensional kernel of ι(λ). We refer to [20] for proofs and further details of the above statements.
Our goal here is to show that ι(λ) can be continued across λ = 0 and to derive an expansion in the
most interesting cases.

Theorem 1 In the above setting, the function ι can be continued analytically to a sufficiently small
neighborhood of λ = 0 in C with a cut taken along the negative real axis λ < 0. The subspaces
Eu
−(λ) and Es

+(λ) are C∞-functions of
√

λ and
√

λ log λ in the region Re
√

λ ≥ 0. Furthermore,
there exists an analytic function E0(

√
λ,
√

λ log λ), defined for all λ close to zero except for λ on
the negative real axis λ < 0. Its extension to Re

√
λ ≥ 0 is C∞ in both arguments. Roots λ of

E(
√

λ,
√

λ log λ) defined by E(γ, η) = γE0(γ, η) correspond to Floquet exponents of the linearized
period map for each λ to the right of the essential spectrum.

We prove Theorem 1 in Sections 3.2–3.5 and comment on additional properties of the Evans function
in Sections 3.6–3.7.

First, note that (3.5) with λ = 0 has an exponential trichotomy on R+ and on R−. In particular,
there are subspaces Euu

− (λ) and Ess
+(λ) that are analytic in λ in a neighborhood of λ = 0 and

that contain precisely those initial data that lead to exponentially decaying solutions on R− and
on R+, respectively. In addition, there are two-dimensional complements Ec

±(λ) which, for λ >

0, decompose into two one-dimensional subspaces es
±(λ) and eu

±(λ). We show below that this
decomposition can be continued analytically into C \ {λ < 0} with C∞-limits on λ < 0 from both
sides Im λ > 0 and Im λ < 0. The subspaces Eu

−(λ) and Es
+(λ) needed in the definition of ι(λ) are

then defined as
Eu
− = Euu

− ⊕ eu
−, Es

+ = Ess
+ ⊕ es

+.

By construction, ι(0) is then Fredholm with index zero at λ = 0, and we can find all eigenvalues from
the Lyapunov-Schmidt reduced finite-dimensional equation. In particular, eigenvalues correspond
to zeros of the determinant E of the Lyapunov-Schmidt reduced operator on the finite-dimensional
kernel. This completes the construction of E up to the construction of es

+(λ) and eu
−(λ) on which

we shall concentrate now.

To analyse the flow in the complements Ec
±(λ), we carry out a simultaneous center-manifold re-

duction of the nonlinear (3.3) and the linear problem (3.5) near the circle of equilibria. We focus
on continuing Es

+(λ) ∩ Ec
+(λ). Note that once we find a splitting close to the asymptotic circle of

equilibria, we can continue this splitting in ξ up to ξ = 0 by using the linearized evolution in the
two-dimensional space Ec

+(λ). Thus, it suffices to investigate the dynamics on the center manifold.
We observe that, on the center manifold, we recover the nonlinear equation (3.4) and its lineariza-
tion. The dependence of the linear problem on λ is the same as that of the nonlinear problem on

11



ω so that we obtain the system

κξ = −f(κ)

uξ = v (3.7)

vξ = −f ′(κ)v + λu + O(|λ|2(|u|+ |v|)),

where we set v = uξ and possibly rescale the eigenvalue parameter λ by a positive constant. Recall
that the nonlinearity satisfies

f(κ) = κ2 + f3κ
3 + O(κ4), (3.8)

after rescaling κ. Note also that we omitted the equation for the phase θ since it decouples from
the other equations due to equivariance with respect to time shifts.

The strategy is now to follow the analysis presented in Section 2 and to check whether the higher-
order terms of f can affect the results.

3.2 The blow-up

Introducing the homogeneous coordinates z = v/u in the complex projective space and the Riemann
surface parametrization λ = γ2, we obtain

κ′ = −f(κ)

z′ = −f ′(κ)z + γ2 − z2 + O(γ4). (3.9)

Note that the above equation agrees to leading order with the equation (2.3) for the 3-dimensional
Laplacian. In particular, (3.9) is, to leading order, homogeneous of degree 2. It is therefore natural
to introduce the homogeneous blow-up coordinates from Section 2. The first set of coordinates,
again referred to as the singular chart, is defined via

z1 =
z

κ
, γ1 =

γ

κ
, κ1 = κ,

and (3.9) becomes

z′1 = κ1

[
f(κ1)− f ′(κ1)κ1

κ2
1

z1 + γ2
1 − z2

1 + O(γ4
1)κ2

1

]
γ′1 = κ1

[
f(κ1)

κ2
1

γ1

]
κ′1 = κ1

[
−f(κ1)

κ2
1

κ1

]
.

Rescaling ξ to remove the Euler multiplier κ1, we get

ż1 =
f(κ1)− f ′(κ1)κ1

κ2
1

z1 + γ2
1 − z2

1 + O(γ4
1)κ2

1

γ̇1 =
f(κ1)

κ2
1

γ1 (3.10)

κ̇1 = −f(κ1)
κ2

1

κ1.

12



It follows from (3.8) that the subspace κ1 = 0 is invariant. Note that we recover the dynamics of
the radial Laplacian in three dimensions inside that subspace.

The second set of coordinates, referred to as the rescaling chart, is defined by

z2 =
z

ε2
, κ2 =

κ

ε2
, γ2 =

γ

ε2
, |γ2| = 1,

where γ2 = eiϕ ∈ C and ε2 ≥ 0, which gives

z′2 = ε2

[
−f ′(ε2κ2)

ε2
z2 + γ2

2 − z2
2 + O(ε2

2)
]

κ′2 = ε2

[
−f(ε2κ2)

ε2
2

]
ε′2 = 0.

After rescaling time, we obtain

ż2 = −f ′(ε2κ2)
ε2

z2 + γ2
2 − z2

2 + O(ε2
2)

κ̇2 = −f(ε2κ2)
ε2
2

(3.11)

ε̇2 = 0.

Equation (3.11) has two lines of equilibria given by (z2, κ2, ε2) = (±γ2 + O(ε2
2), 0, ε2) that are

parametrized by ε2 ≥ 0 and that emanate from the singular equilibria in ε2 = 0. If Re γ > 0,
the equilibrium at z2 = −γ2 is unstable inside the invariant plane κ2 = 0. For fixed values of
the parameter ε2, its stable manifold (alias the part of the center manifold that lies in κ2 > 0)
corresponds to the stable subspace of (3.7) we are interested in. The same arguments used for the
simple three-dimensional Laplacian now show that this subspace can be continued continuously
along the positive real axis γ ≥ 0 into the origin. In the remaining part of Section 3, we consider
the continuation of this manifold for complex values of γ with Re γ ≥ 0 and the derivation of
an expansion for this subspace. First, we show in Section 3.3 that the stable manifold depends
analytically on γ in the rescaling chart. In Section 3.4, we then construct the singular heteroclinic
orbit between the rescaling and the singular chart for complex values of γ. Lastly, in Section 3.5,
we analyse the transition map near the hyperbolic equilibrium z1 = −1 in the singular chart which
allows us to obtain expansions for the stable subspace at a fixed time κ1 = δ.

3.3 Continuing the stable manifold up to the absolute spectrum

Recall that the stable manifold of the equilibrium z2 = γ2 corresponds to the stable subspace of (3.7)
whenever Re γ2 > 0. We show that we can continue this stable manifold into Re γ2 ≥ 0 for ε2 ≥ 0
close to zero. We denote by z∗2 = z∗2(γ2, ε2) the equilibrium of (3.11) given by z∗2 = −γ2 + O(ε2

2).
Introducing the new variable z̃2 via z2 = z∗2 + z̃2 − κ2 results in the equation

˙̃z2 = 2γ2z̃2 + R(z̃2, κ2, ε2, γ2)

κ̇2 = −f(ε2κ2)
ε2
2

(3.12)

ε̇2 = 0

13



for the variable z̃2, where
R(z̃2, κ2, ε2, γ2) = O((|κ2|+ |z̃2|)2).

The imaginary axis Re γ2 = 0 corresponds to λ < 0 which in turn corresponds to the absolute
spectrum of the asymptotic wave trains [19], where the eigenvalues of the asymptotic equation
have equal real part. Indeed, the equation is real for Re γ = 0, so that the eigenvalues in Ec are
complex conjugates of each other. This shows that the absolute spectrum is indeed located on the
negative real axis λ < 0, and that the linearization at z̃2 = 0 in the first equation of (3.12) has
neutral eigenvalues exactly when Re γ2 = 0 (taking the higher-order terms R into account).

The stable manifold of (z̃2, κ2) = 0 can be constructed by the usual fixed-point argument. Bounded
solutions satisfy the integral equation

z(x) =
∫ x

∞
e2γ2(x−y)R(z(y), κ2(y; ε2), ε2, γ2) dy, (3.13)

where κ2(y; ε2) is the solution of the second equation in (3.12). We view (3.13) as a fixed-point
equation in the subspace X = BC0

1 ([`,∞), C) of those bounded, continuous functions for which
‖z‖X < ∞ where

‖z‖X = sup
x≥`

(1 + |x|)|z(x)|.

It is straightforward to verify that the right-hand side of (3.13) defines a contraction, uniformly in
Re γ2 ≥ 0, in a neighborhood of the origin in X provided ` � 1 is sufficiently large. The unique
fixed point is analytic in γ for Re γ2 > 0 with a C∞-limit on the imaginary axis.

3.4 The singular heteroclinic orbit between the singular and the rescaling chart

Consider equation (3.11) with ε2 = 0:

ż2 = γ2
2 − 2κ2z2 − z2

2

κ̇2 = −κ2
2.

If we set γ2 = eiϕ where arg ϕ ∈ [−π/2, π/2], then the stable manifold of the equilibrium (z2, κ2) =
(−γ2, 0) is parametrized by z2 = −eiϕ + O(κ2) for small κ2 > 0. The point κ2 = δ on this manifold
corresponds in the singular chart to

z1 =
z2

κ2
= −eiϕ

δ
+ O(|δ|), γ1 =

γ2

κ2
=

eiϕ

δ
, κ1 = 0 (3.14)

since κ1γ1 = γ = ε2eiϕ. We have to consider the backward trajectory with this initial condition for
the system

ż1 = γ2
1 − z1 − z2

1

γ̇1 = γ1.
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We change variables according to Z1 = z1e−iϕ and Γ1 = γ1e−iϕ so that Z1(0) < 0 and Γ1(0) > 0.
In the new variables, the equation reads

Ż1 = (Γ2
1 − Z2

1 )eiϕ − Z1 (3.15)

Γ̇1 = Γ1.

Since Re Ż1 > 0 whenever Re Z1 = 0, we can conclude that Re Z1 < 0 for all negative times. Since
Γ1 → 0 converges to zero exponentially in backward time, Z1 converges in backward time to the
equilibrium Z1 = −eiϕ that attracts, in backward time, all solutions of (3.15) in Re Z1 < 0. Since
this equilibrium corresponds to z1 = −1, the desired heteroclinic connection exists.

Let Σin denote the section |z1 + 1| = δ in the singular chart. If we choose δ > 0 sufficiently small,
the heteroclinic connection that we found above intersects the section Σin at a point

(z1, γ1, κ1) = (−1 + z∗1 , γ
∗
1 , 0)

where γ∗1 6= 0 and |z∗1 | = δ.

Next, we discuss equation (3.11) for small ε2 > 0. On account of the results in Section 3.3, the
stable manifold of the equilibrium near (z2, κ2) = (−γ2, 0) is differentiable in ε2. Furthermore, if
we solve (3.11) backward in time with an initial condition on this stable manifold, we stay ε2-close
to the heteroclinic orbit that we discussed above. Thus, the intersection of the solution near the
heteroclinic orbit with the section Σin is given by

(z1, γ1, κ1) = (zin, γin, κin) = (−1 + z∗1 + O(|ε2|), γ∗1 + O(|ε2|), ε2eiϕ/γ∗1 + O(|ε2|2)) (3.16)

since we have κ1γ1 = γ = ε2eiϕ.

3.5 Logarithmic expansions and the Dulac map

To get expansions for the location of the stable manifold at “time” κ1 = δ with δ > 0 fixed, we need
to analyse the transition map near the equilibrium (z1, γ1, κ1) = (−1, 0, 0) in the singular chart.
Upon introducing the variable z̃1 defined by z1 = −1 + z̃1, using the expansion (3.8)

f(κ) = κ2 + f3κ
3 + O(|κ|4)

for f , and rescaling time, equation (3.10) becomes

˙̃z1 = z̃1 + 2f3κ1 − 3f3κ1z̃1 − f3κ1γ
2
1 + γ2

1 − z̃2
1 + f3κ1z̃

2
1 + O(|κ1|2) + O(|κ1|2|z̃1|) + O(4)

γ̇1 = γ1 (3.17)

κ̇1 = −κ1

where O(4) = O((|z̃1|+ |γ1|+ |κ1|)4). Next, we put (3.17) into normal form. Note that the resonant
nonlinear terms that we cannot remove by near-identity polynomial coordinate changes are precisely
the monomials of the form

|κ1γ1|kz̃1, |κ1γ1|kγ1, |κ1z̃1|kz̃1, |κ1z̃1|kγ1
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κ1

γ1

z̃1

0

Σout

Σin

Figure 6: The Dulac map near z̃1 = 0, which corresponds to z1 = −1, with sections Σin and
Σout.

where k ∈ N. First, the coordinate change z̃1 7→ z̃1 + aκ2
1 for an appropriate a ∈ R replaces the

O(|κ1|2) in (3.17) by O(|κ1|3) without changing the other cubic terms. Afterwards, the transfor-
mation

z̃1 7−→ z̃1 + γ2 − z̃2
1 + f3κ1z̃1 (3.18)

puts (3.17) into the preliminary normal form

˙̃z1 = z̃1 − 2f3κ1γ
2
1 + non-resonant cubic terms + O(4)

γ̇1 = γ1 (3.19)

κ̇1 = −κ1.

Next, we invoke the Sternberg-Chen theorem [3] which shows that an appropriate C∞-coordinate
transformation will put (3.19) exactly into normal form:

˙̃z1 = z̃1(1 + Φ1(z̃1κ1, γ))− 2f3κ1γ
2
1 + γ1Φ2(γ)

γ̇1 = γ1 (3.20)

κ̇1 = −κ1

where Φ1 and Φ2 are C∞-functions that vanish together with their first derivatives at zero, and
where we used that κ1γ1 = γ. Note that the coefficient of the cubic resonant term is zero if, and
only if, the cubic coefficient of the nonlinearity f is zero, i.e. if, and only if, the expansion of κ in
terms of 1/x does not have a quadratic term 1/x2.

We then define two sections as follows. The first section Σout is given by κ1 = δ and |z̃1|, |γ1| ≤ δ,
while the second section Σin is defined via |z̃1| = δ and |κ1|, |γ1| ≤ δ. We refer to Figure 6 for
an illustration and remark that the notation with indices “in” and “out” refers to entering and
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leaving a neighborhood of the equilibrium in backward time. Note that we can assume that the
sections Σout and Σin are contained in the image of the above transformation of (3.10) into normal
form. We are interested in the local Poincaré map from Σin to Σout that is obtained by following
trajectories from Σin backward in time until they first hit Σout (see again Figure 6).

In fact, we need to calculate the image under the Poincaré map of the initial condition given in
(3.16) that corresponds to the continuation of the stable subspace of (3.7). Thus, after applying
the coordinate transformations of the z1 and z̃1 variables to (3.16), we get the initial data

(z̃1, γ1, κ1)(0) = (z̃in, γin, κin) = (z̃∗1 + O(|γ|), γ∗1 + O(|γ|), γ/γ∗1 + O(|γ|2)) (3.21)

where z̃∗1 has a certain value that we will calculate in Section 3.7, whereas γ∗1 is as in (3.16) since
we never transformed the (γ1, κ1) variables. We are interested in computing

(z̃1, γ1, κ1)(T ) = (z̃out, γout, δ)

where T is the time needed to pass from Σin to Σout in time (in particular, we have T < 0).
Using the explicit form of the equation for κ1, we see that T = log(κin/δ). Recall also that
κ1γ1 = κ1(0)γ1(0) = γ is independent of time. We introduce the new variable ζ1 = z̃1κ1 which
then satisfies the equation

dζ1

dt
= ζ1Φ1(ζ1, γ)− 2f3γ

2 + γΦ2(γ), ζ(0) = z̃inκin, ζ(T ) = z̃out.

Rescaling space ζ̃1 = ζ1/κin and time τ = κint, we obtain the equation

dζ̃1

dτ
=

ζ̃1Φ1(κinζ̃1, γ)
κin

− 2f3γ
2 − γΦ2(γ)

κ2
in

, ζ̃1(0) = z̃in, ζ̃1(Θ) =
z̃out

κin
. (3.22)

where Θ = κin log(κin/δ). Note that the right-hand side of the ODE for ζ̃1 is smooth in a neigh-
borhood of the origin since (Φ1,Φ2) = O(2) and κin = O(|γ|) by (3.21). We denote the associated
smooth flow by Ψ(τ, ζ̃1(0)). For the Poincaré map, we then have the explicit expression

z̃out = κinζ̃1(Θ) = κinΨ(κin log(κin/δ), z̃in).

In particular, z̃out is a smooth function of the variables κin, κin log κin, z̃in and γin. Since the time
of flight Θ = κin log(κin/δ) converges to zero for κin → 0, we can expand the flow in terms of Θ
and the vector field (3.22) evaluated at the initial condition, and obtain

Ψ(κin log(κin/δ), z̃in)

= z̃in + (κin log(κin/δ))
(

z̃inΦ1(κinz̃in, γ)
κin

− 2f3γ
2 − γΦ2(γ)

κ2
in

)
+ O(|κin log κin|2).

Recall that both z̃in and κin are smooth functions of γ. Using the expression (3.21) for these
functions, and writing η = γ log γ, we obtain

z̃out =
(

γ

γ∗1
+ O(|γ|2)

)[
z̃in(γ)− 2f3η

(γ∗1)3
+ O

(
(|γ|+ |η|)2

)]
. (3.23)

This shows that the function ι(λ) can be continued to a neighborhood of the branch point λ = 0
and proves Theorem 1.
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3.6 Non-analyticity of the Evans function

We state another consequence of equation (3.23).

Theorem 2 If we have, in the setting of Section 3.1, that

• the contact defects converge algebraically to the asymptotic wave trains (which is the generic
case),

• the contact defects are reversible (i.e. cg = 0, and the defect is either an even function of x

or else invariant under the operation (x, τ) 7→ (−x, τ + π)), and

• the null space of the injection map ι(0), defined in (3.6), is one-dimensional,

then the function E0(γ, η) from Theorem 1 satisfies

∂ηE0(0, 0) 6= 0

whenever f3 6= 0. In particular, the Evans function is not analytic in γ near γ = 0.

We remark that Theorem 2 implies that the Evans function is not analytic for an open set of
systems. Indeed, defects that are close to reversible defects will travel with small non-zero group
velocity, while retaining the logarithmic terms in the associated Evans function. We are not aware
of a structure in the system that would enforce logarithmic terms to vanish for an open set of
wavenumbers.

To prove Theorem 2, we decompose the eigenvalue problem into even and odd eigenfunctions which
can be captured by the modified maps

ιNeu(λ) : ENeu × Es
+(λ) −→ Y, (w−, w+) 7−→ w− + w+

ιDir(λ) : EDir × Es
+(λ) −→ Y, (w−, w+) 7−→ w− + w+,

where ENeu = H1/2 × {0} and EDir = {0} × L2 in H1/2(S1)× L2(S1). We find two reduced Evans
functions ENeu and EDir associated with ιNeu and ιDir, respectively. The product E = ENeuEDir

is an Evans function for the full eigenvalue problem. Since EDir does not vanish in λ = 0, the
leading order terms in the expansion for E are given by ENeu. Since ENeu does not depend on λ,
the Lyapunov-Schmidt reduced equation for ιNeu(λ) = 0 contains precisely the

√
λ log λ-terms from

the expansion in the far field.

3.7 The derivative of the Evans function at the branch point

Lastly, we prove that γ = 0 is a simple root of the Evans function for reversible contact defects that
satisfy the assumptions stated in Theorem 2. Using (3.23) and the results stated in Section 3.1, it
is not difficult to prove that

dENeu

dγ
(0) =

dz̃out

dγ
(0) =

z̃in(0)
γ∗1
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possibly up to a non-zero factor. Thus, it suffices to prove that z̃in(0) 6= 0. Recall that this
expression originated in (3.21) and (3.16) as the endpoint of the heteroclinic orbit that connects
the singular and the rescaling chart. We calculate the heteroclinic orbit in the new chart

z3 = z, γ3 =
γ

z
, κ3 =

κ

z
.

In this chart, equation (3.9) becomes

ż3 = −f ′(z3κ3) + z3γ
2
3 − z3 + O(z3

3γ
4
3)

γ̇3 =
f ′(z3κ3)

z3
γ3 − γ3

3 + γ3 + O(z2
3γ

5
3)

κ̇3 =
f ′(z3κ3)

z3
κ3 −

f(z3κ3)
z2
3

− κ3γ
2
3 + κ3 + O(z2

3κ3γ
4
3)

after rescaling the independent variable to remove the Euler multiplier z. Note that

z3 = z1κ1 = z2γ2, γ3 =
γ1

z1
=

1
z2

, κ3 =
1
z1

=
κ2

z2
.

The heteroclinic orbit between the singular and the rescaling chart that we discussed in Section 3.4
lies in κ1 = γ2 = 0 which means that it lies in z3 = 0. Upon setting z3 = 0, we obtain the system

γ̇3 = γ3[2κ3 − γ2
3 + 1] (3.24)

κ̇3 = κ3[κ3 − γ2
3 + 1].

The equilibria that are connected by the heteroclinic orbit transform according to

(z1, γ1) = (−1, 0) 7−→ (γ3, κ3) = (0,−1), (z2, γ2) = (−1, 0) 7−→ (γ3, κ3) = (−1, 0).

In particular, the heteroclinic orbit that we seek lies on the line γ3 + κ3 = −1 which is invariant
under the flow of (3.24). Expanding near (γ3, κ3) = (−1, 0), we obtain that the endpoint (zin, γin)
of the heteroclinic orbit that satisfies |zin + 1| = δ is given by

zin =
1
κ3

=
1

−1− γ3
= −1− δ

γin =
γ3

κ3
=

γ3

−1− γ3
= δ + O(δ2).

Upon transforming (zin, γin) into (z̃in, γin) using the coordinate changes given in Section 3.5, we
finally obtain

(z̃∗1 , γ
∗
1) := (z̃in, γin) = (−δ, δ) + O(δ2)

so that
z̃in(0)

γ∗1
= −1 + O(|δ|) 6= 0

for δ sufficiently small. In summary, we proved the following theorem.

Theorem 3 Under the assumptions of Theorem 2, we have

d
dγ
E(γ, γ log γ)

∣∣∣
γ=0

= E0(0, 0) 6= 0

so that γ = 0 is a simple root of the C1-function E(γ, γ log γ).
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4 Discussion

We conclude this paper by commenting on a number of related issues and by indicating how the
technique presented here can be applied to some other open problems.

The role of zeros of the Evans function

A legitimate question is whether zeros of the Evans function at the branch point λ = 0 play any role
at all for the temporal dynamics. One might argue that “embedded eigenvalues”, objects studied
thoroughly, for instance, in the context of linear Schrödinger operators in L2-function spaces, should
be the relevant object for the asymptotic temporal dynamics. We claim that the extension of the
Evans function provides the correct intuition for the temporal asymptotics. Our argument is based
on well-known results for the long-time behaviour of solutions to the radial Laplacian that follows
from pointwise estimates for the Green’s function of the linear heat equation with potentials and
drift terms [16]. Consider, for instance, the heat equation

ut = uxx

on R. Its Green’s function G(x, t) has the asymptotics

G(x, t) ∼ a1

t1/2
+

a2

t3/2
+ . . . (4.1)

where a1 6= 0. The associated Evans function can be continued in a smooth fashion to the Riemann
surface λ = γ2 where it has a simple zero at γ = 0. This zero disappears if we add a localized
negative potential V (x) ≤ 0 to the heat equation. The temporal asymptotics of the Green’s function
of the resulting equation

ut = uxx + V (x)u

is again of the form (4.1) except that the coefficient a1 = 0 vanishes [16, Theorem 5.5] so that
the asymptotics changes dramatically. Thus, upon adding an arbitrarily small localized negative
potential, solutions decay faster to zero. A similar phenomenon arises in two space dimensions [16,
Theorem 5.4], while the asymptotics is unchanged in three space dimensions [16, Theorem 5.3].
This is precisely the behaviour predicted from an analysis of the Evans function: The zero in
dimensions n ≤ 2 disappears under perturbations, whereas E(0) 6= 0 is robust in dimension n > 2.
A related argument is as follows: Adding a small localized positive potential to the heat equation
can create a small unstable eigenvalue, with corresponding small exponential growth of solutions,
in dimensions n ≤ 2 but not in dimensions n > 2.

The Kolmogorov-Petrovsky-Piskunov equation and the radial Laplacian in R3

The asymptotics of the radial Laplacian in R3 arises also in the Kolmogorov-Petrovsky-Piskunov
equation

ut = uxx + u− u2, x ∈ R.
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This equation has a unique travelling wave u∗(x− 2t) with speed 2 that satisfies u∗(ξ) → 1 as ξ →
−∞ and u∗(ξ) → 0 as ξ →∞. Gallay [7] derived the temporal decay asymptotics of perturbations
v(ξ, t) to u∗. After applying Kirchgässner’s [13] Eich transformation v(t, ξ) = w(t, ξ)u′∗(ξ), the linear
part of the equation for w becomes the three-dimensional Laplacian in the limit ξ → ∞. Since
translations of the profile corresponds to constant functions w ≡ 1 that do not lie in the kernel of the
three-dimensional Laplacian, it is reasonable to expect that the asymptotics are indeed governed
by the same expansion as those for the heat equation in R3. Gallay [7] derived such an expansion
for the solutions to the full nonlinear equation.

Note that zeros of the Evans function for the linearized problem

vxx + v − 2u∗v = λv (4.2)

can be computed from the analytic extension of the Evans function to the Riemann surface λ = γ2

that is possible due to the Gap Lemma [8, 14]. At λ = 0, (4.2) written as a first-order system
has a branch point that is caused by a Jordan block of the eigenvalue ν = −1. Since the stable
subspace converges to the proper eigenspace of the Jordan block, we see that a zero of the Evans
function corresponds to a solution with asymptotic decay e−x. Since the wave decays according
to u′∗ ∼ ξe−ξ, the derivative u′∗ of the wave has a component in the direction of the generalized
eigenvector. It does therefore not contribute a zero of the Evans function which is consistent with
the much more difficult nonlinear result proved by Gallay.

Beyond the Gap Lemma

With this background, we can interpret our analysis as a continuation of the Evans function onto the
boundary of the open domain of validity of the Gap Lemma at a branch point. The difficulties that
one encounters when trying to extend the Evans function away from branch points are somewhat
different. We use a simple model to show that blow-up techniques can again be used to extend the
Evans function beyond the boundary of validity of the Gap Lemma in an analytic fashion, except
for a pole that arises at the boundary. Consider

κ′ = −κ

V ′
u = (λ− 1)Vu + aκVs + O(κ2)Vs + O(κ)Vu

V ′
s = O(κ)Vs + O(κ)Vu,

where Vs stands for the coordinate that parametrizes the continuation of the stable subspace beyond
the essential spectrum. The idea in [8, 14] is to view the κ-dependent stable subspace as the strong
stable manifold of the subspace spanned by Vs in κ = 0. This is possible as long as the eigenvalue
in the direction of κ is actually stronger than the eigenvalue in the direction of Vu, i.e. for λ > 0.
Continuing the Evans function beyond the Gap Lemma amounts to a continuation of this strong
stable manifold into λ ≤ 0. We therefore introduce projective coordinates z = Vu/Vs and obtain

z′ = −z + λz + aκ + O(2)

κ′ = −κ.
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For λ > 0, the κ-dependent stable subspace corresponds to the strong stable manifold of z = 0
which is tangent to the strong stable eigenspace given by aκ = −λz. To resolve the eigenvalue −1
that has algebraic multiplicity two at λ = 0, we introduce a second blow-up ξ = κ/z and obtain

ξ′ = −λξ − aξ2 + O(3) (4.3)

κ′ = −κ.

The stable eigenspace ξ = −λ/a can be continued analytically in these coordinates through the
transcritical bifurcation in the ξ-equation that occurs at λ = 0. The resulting strong stable man-
ifold, continued through the bifurcation point, is the continuation of the stable subspace that is
necessary for the analytic continuation of the Evans function. In the original projective coordi-
nate, the corresponding subspace is given by z = κ/ξ = −aκ/λ which is analytic except at λ = 0,
where a pole occurs. We mention that similar phenomena have been observed independently in [2,
Section 3.3] and [17] in explicit examples.

We note that we assumed that the coefficient a is not zero. If a = 0, we expect a pitchfork
bifurcation in λ so that λ = γ2 is again the variable necessary for an analytic description of
the subspace through the bifurcation. Note, however, that these bifurcations are determined by
coefficients of the non-autonomous terms, in analogy to the resonant terms in the radial Laplacian
that were introduced in the singular chart and that describe the influence of the non-autonomous
terms.

In passing, we remark that a blow-up similar to (4.3) can also be used to derive the estimate for
the Dulac map in Section 3.5 without using the resonant normal form.

Solitary waves with algebraic spatial decay

The method we presented in this paper can be adjusted to more difficult situations. We briefly
sketch how the Evans function can be extended for algebraically decaying solitons of the cubic-
quintic nonlinear Schrödinger equation

iAt = Axx −A|A|2 + βA|A|4. (4.4)

We denote by U(x) the positive localized homoclinic solution of the equation

Uxx − U3 + βU5 = 0.

If we linearize (4.4) about U , we obtain the coupled system

u′1 = v1

v′1 = 3u1U
2 − γ2u2

u′2 = v2

v′2 = u2U
2 + γ2u1

U ′ = V

V ′ = U3
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that describes the eigenvalue problem. Note that we omitted the quintic monomials which become
irrelevant after the blow-up procedure. For γ2 > 0, we parametrize the two-dimensional stable
subspace in the form (

v1

v2

)
= A

(
u1

u2

)
, (4.5)

where A denotes an appropriate x-dependent 2× 2-matrix that replaces the projective coordinate
z used in Sections 2 and 3. The result is a Riccati equation for A coupled to the system for (U, V ):

A′ =

(
3U2 −γ2

γ2 U2

)
−A2

U ′ = V (4.6)

V ′ = U3.

For γ > 0, this equation has the equilibria

U = V = 0, A± = ± γ√
2

(
1 −1
1 1

)
, (4.7)

where A− corresponds to the stable subspace and A+ to the unstable subspace. The linearization
about A−, given by the equation

A′ = −(A−A + AA−),

has only unstable eigenvalues. Thus, there exists a unique stable manifold of the equilibrium A−

in U > 0 which corresponds to the x-dependent stable subspace for eigenvalues to the right of the
essential spectrum.

The following procedure is completely analogous to the blow-up procedure of Section 2. We first
study the rescaling chart (A2, U2, V2) = (A/γ, U/γ, V/γ2) in which (4.6) becomes

Ȧ2 =

(
3U2

2 −1
1 U2

)
−A2

2

U̇2 = V2

V̇2 = U3
2

after rescaling the independent variable to remove the Euler multiplier γ. In the singular subspace
γ = 0, we continue the stable manifold of the matrix A−, defined in (4.7), in backward time.
Its α-limit set can be found in the singular chart (A1, γ1, V1) = (A/U, γ/U, V/U2) in which (4.6)
becomes

Ȧ1 =

(
3 −γ2

1

γ2
1 1

)
−A2

1 − V1A1

γ̇1 = −γ1V1

U̇1 = U1V1

V̇1 = 1− 2V 2
1
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again after rescaling the independent variable to remove the Euler multiplier U . We set U1 = 0,
and observe that γ1 → 0 and V1 → −1/

√
2 in backward time since V1 < 0. The equation for A1,

with (γ1, V1) = (0,−1/
√

2) substituted, is given by

Ȧ1 =

(
3 0
0 1

)
−A2

1 +
1√
2
A1,

which admits a unique repellor given by

As
1 = − 1√

2

(
2 0
0 1

)
.

We checked numerically that the stable manifold of A− in the rescaling chart converges in backward
time towards As

1, but did not attempt an analytic proof. Thus, the numerical evidence suggests
again that the stable subspace converges, for γ = 0 and computed in the singular chart, to the
stable manifold of As

1 which is given explicitly by (A1, γ1, U1, V1) = (As
1, 0, U1,−1/

√
2) with U1 > 0

arbitrary.

It remains to interpret these results in terms of the original variables. Using U(x) =
√

2/x as well
as (4.5) with A = UAs

1, we see that(
u′1
u′2

)
=
(

v1

v2

)
= −U(x)√

2

(
2 0
0 1

)(
u1

u2

)
= −1

x

(
2 0
0 1

)(
u1

u2

)
so that u′1 = −2u1/x and u′2 = −u2/x which yields u1 = 1/x2 and u2 = 1/x. In particular, the
x-derivative ∂xU(x) and the phase derivative iU(x) lie in the two-dimensional stable subspace and
therefore contribute a double root of the Evans function at γ = 0.

We do not know whether the stable manifold always converges in backward time in the singular
chart for critical eigenvalue problems. In principle, it is possible that connections to other equilibria
that are not repellors within the singular sphere U = 0 (or κ = 0) exist for exceptional parameter
values. Related to this problem is the question whether the singular limit of the stable subspace
always consists of solutions with the fastest possible decay. Again, it is possible that solutions in
the singular subspace decay slower than solutions outside of this subspace for certain eigenvalue
problems.
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