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ASYMPTOTIC STABILITY OF CRITICAL PULLED FRONTS VIA
RESOLVENT EXPANSIONS NEAR THE ESSENTIAL SPECTRUM

MONTIE AVERY AND ARND SCHEEL

Abstract. We study nonlinear stability of pulled fronts in scalar parabolic equations on the
real line of arbitrary order, under conceptual assumptions on existence and spectral stability of
fronts. In this general setting, we establish sharp algebraic decay rates and temporal asymptotics of
perturbations to the front. Some of these results are known for the specific example of the Fisher-KPP
equation, and our results can thus be viewed as establishing universality of some aspects of this
simple model. We also give a precise description of how the spatial localization of perturbations to
the front affects the temporal decay rate, across the full range of localizations for which asymptotic
stability holds. Technically, our approach is based on a detailed study of the resolvent operator for
the linearized problem, through which we obtain sharp linear time decay estimates that allow for a
direct nonlinear analysis.

1. Introduction.

1.1. Background and main results. The formation of structure in spatially
extended systems is often mediated by an invasion process, in which a pointwise stable
state spreads into a pointwise unstable state. The Fisher-KPP equation

(1.1) Up = Uy + U — u?
is a fundamental model for invasion processes, and much is known about invasion
fronts in the Fisher-KPP equation. For all speeds ¢ > 2, this equation has monotone
traveling fronts u(z,t) = g.(z — ct) connecting the stable state 1 to the unstable state
0. The front with the minimum of these speeds, ¢ = 2, which we call the critical
front, is distinguished for several reasons. Using comparison principles [29, 18, 30, 1]
or probabilistic methods relying on the relationship between the Fisher-KPP equation
and branched Brownian motion [3, 4], one may show that compactly supported initial
conditions to (1.1) spread with asymptotic speed 2. On the other hand, from the point
of view of local stability, studying the critical front poses the greatest challenge. The
stability of the supercritical fronts, with ¢ > 2, was first established by Sattinger [40],
using exponential weights to move the essential spectrum to the left half plane. This
is not possible for the critical front, due to the presence of absolute spectrum [37] at
the origin for the linearization about the front — with the optimal choice of weight,
the essential spectrum is marginally stable, touching the imaginary axis at the origin.
Stability of the critical front in (1.1) was established by Kirchgéssner [28] and
later refined using energy methods [6], renormalization group theory [5, 14], and
most recently pointwise semigroup methods [8]. While some of these papers consider
equations of a more general form than (1.1), all are concerned with only second order,
scalar (but possibly complex-valued) parabolic equations. From the point of view of
time decay rates, the sharpest of these results is [14], in which Gallay showed that
sufficiently localization perturbations of the critical Fisher-KPP front decay with
algebraic rate t~3/2 and obtained a description of the leading order asymptotics of
the solution for large time. The ¢~3/2 decay rate was recently reobtained by Faye and
Holzer [8] using more direct pointwise semigroup methods, but without an asymptotic
description of the solution.
Here we study more general classes of equations. The main contributions of this
paper are as follows:
(i) We demonstrate that sharp nonlinear stability results on critical fronts depend
only on conceptual assumptions on the existence and spectral stability of fronts,
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and not on the precise form of the equation considered. For instance, our results
apply to equations without maximum principles.

(ii) We develop a new approach to the stability of critical fronts based on detailed
estimates of the resolvent operator of the linearization near the branch point in
the dispersion relation, which allow us to integrate along the essential spectrum
when constructing the semigroup generated by the linearization.

(iii) We explore precisely how the spatial localization of perturbations to a critical
front determines the algebraic time decay rate.

With a view towards pattern-forming systems which lack comparison principles in
mind, we consider semilinear parabolic equations on the real line of arbitrary order of
the form

(1.2) ug = P(0z)u + f(u), u=u(z,t) eR, t >0, z € R,

where f is smooth, and P is a polynomial of the form
2m

(13) P(V) = Zpkl/k7 (_1)mp2m < Oa Po = 0.
k=0

Hence P(9,) is an elliptic operator of order 2m. A key example is the fourth order
extended Fisher-KPP equation, which can be derived as an amplitude equation near
certain co-dimension 2 bifurcations in reaction-diffusion systems [36]. Sixth order
equations arise in the context of Rayleigh instabilities in fluid mechanics [42, Section
3.3] as well as in the phase field crystal model for elasticity and phase transitions
[7, 13]. See the remarks in Section 1.2 on applicability of our methods to more general
equations, and see Section 8 for a discussion of several models to which our results
directly apply.

We assume f is smooth, with f(0) = f(1) =0, f/(0) > 0, and f'(1) < 0. We are
interested in invasion fronts connecting u = 1 to u = 0, and so we begin by discussing
stability properties of these rest states for the full PDE (1.2) in a co-moving frame
with speed c. The linearization about u = 0 is then

(1.4) ug = P(0p)u + cug + f(0)u.

The L2-spectrum of the constant-coefficient operator P(9,) + ¢d, + f'(0) is given, via
the Fourier transform, by

(1.5) Y ={AeC:df(\ik) =0 for some k € R}.
where d} is the dispersion relation
(1.6) df (A v)=PW) +cv+ f(0) = A

A crucial feature of the Fisher-KPP front which we wish to retain is that the critical
Fisher-KPP front is pulled: it travels with the linear spreading speed, i.e. the speed c
which marks the transition from pointwise growth to pointwise decay of compactly
supported initial conditions to (1.4). Often these growth transitions are assumed to be
captured by the presence of pinched double roots of the dispersion relation. We assume
in the following hypothesis that there is a critical speed for which our dispersion
relation has a simple pinched double root at A = 0, v = —n,, which guarantees that
this speed marks a transition from pointwise growth to pointwise decay. See [21] for
a thorough description of linear spreading speeds and their relationship to pinched
double roots.
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HypoTHESIS 1 (Invasion at linear spreading speed). We assume there exists a
speed ¢, and an exponential rate n, > 0 such that
(i) (Simple pinched double root) For v, A near 0, we have

(1.7) df (\v—n.) =arv® =X+ 0P
with a > 0.
1 nimal critical spectrum 1K, 1K — Ny ) = or some k,k € R, then
i) (Minimal critical Ifdj*"k 0 f k R, th
k=x=0.
71 o unstable essential spectrum , UK — M)y orany k € R and any A €
51) (N bl jal dj*)\'k #0 f k€ R and recC
with Re A > 0.

We refer to c, as the linear spreading speed, and from now on we fix ¢ = ¢, and
write d. = d*. One expects that the dynamics of pulled fronts are governed by the
linearization at u = 0, so we assume that the spectrum of the left rest state u =1 is
stable in a strong sense, so that it does not interfere with the behavior on the right.
The spectrum of the linearization about u = 1, in the co-moving frame with speed c,,
is given by

(1.8) Y- ={AeC:d (\ik) =0 for some k € R},
where d~ is the left dispersion relation
(1.9) d-(\v)=PW)+cr+ f/(1) =\

HYPOTHESIS 2 (Stability on the left). We assume that Re (£7) < 0.
Front solutions u(z,t) = q(z — ¢.t) traveling with the linear spreading speed solve
the traveling wave equation

(1.10) 0 =P(0)q + c.0:q + f(q),

where £ =z — ct.

HypOTHESIS 3 (Existence of a critical front). We assume that (1.10) has a
bounded solution q. with q.(§) — 0 as £ — 0o and q.(§) — 1 as & = —oo, which we
refer to as a critical front.

The critical front ¢, is an equilibrium solution to (1.2) in a co-moving frame with
speed c,. Perturbations v = u — ¢, to a critical front g, solve

(1.11) v = Av+ f(g« +v) = flg-) = f(g)v,
where A : H?™(R) C L?(R) — L?(R) is the linearization about the front,
(1.12) A =P () + ¢ + f'(g:)

The assumption f’(0) > 0 implies that the spectrum of A in L? is unstable, but
Hypothesis 1 guarantees that the essential spectrum of £ = wAw™' is marginally
stable, where w is a smooth positive weight function satisfying

et xr>1
1.13 = T
(113) () { o

see Section 1.2 for details. In the Fisher-KPP equation, one has weak exponential
decay of the critical front, g.(x) ~ ze~™* and thus the derivative of the front does
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not give rise to a bounded solution to Lu = 0. We refer to the potential existence of
such an L*>-eigenfunction as a resonance at A = 0. The lack of a resonance at A =0
for the Fisher-KPP linearization has been identified as an explanation for the faster
t=3/2 decay rate compared to the diffusive decay rate ¢t=1/2 [38]. Our analysis makes
this observation precise, relying explicitly on the lack of a resonance at A = 0.

HypOTHESIS 4 (No resonance or unstable point spectrum). We assume that
L: H>™[R) C L*(R) — L*(R) has no eigenvalues with Re A > 0. We additionally
make the stronger assumption that there is no bounded pointwise solution to Lu = 0.

We introduce algebraic weights to manage further subtleties in the localization

of perturbations. For ri € R, we define a smooth positive weight function p,_
satisfying

z T+7 ]-7

(114) o (2) = {< el

>
()", o< -1,
where (z) = (1+22)/2. Using these weights, we define algebraically weighted Sobolev
spaces Hfi’r+ (R) through the norms

(1.15) lgllas . = llor_rigllms

2T
For k = 0, we write H?
and denote the corresponding function space by HF(R).

We are now ready to state our main results. First, we show that the sharp decay
rate t—3/2 for sufficiently localized perturbations obtained by Gallay [14] and Faye and
Holzer [8] for the Fisher-KPP equation is valid in this general setting. Even in the
Fisher-KPP setting, our result refines that of [8] in the sense that Faye and Holzer
require some exponential localization of perturbations on the left as well as on the
right, which we show is not necessary.

R =L (R). Ifr_ =0, 7 =7, we write p, = po,r

THEOREM 1 (Stability with sharp decay rate). Assume Hypotheses 1 through /
hold, and fix v > 3/2. There exist constants € > 0 and C' > 0 such that if ||wvo | m: <,
then

C
(1.16) lw()oC Ol < Wllwvollfzg7

where v is the solution to (1.11) with initial data vo.

REMARK 1. Roughly speaking, in terms of spatial localization, we require that the
initial data wvy decays faster than 2 near x = oo, and we must measure the solution
wo(-,t) in a norm that controls algebraic growth with rate x. The choice of spaces
HY(R) for the initial data and H: (R) for measuring the solution for r > % captures
this while keeping the additional notation to a minimum.

Next, for more strongly localized data, we obtain an asymptotic description of
the solution profile for large times, recovering Gallay’s result [14] for the Fisher-KPP
equation based on renormalization group theory.

THEOREM 2 (Stability with asymptotics). Assume Hypotheses 1 through 4 hold,
and let ¢ € H*™(R),s < —%, be the (unique up to a constant multiple) solution to
L) = 0 which is linearly growing at +0o and exponentially localized on the left. For
any fized r > g, there exist constants € > 0 and C' > 0 such that if [|wvol|m: < e, then

4
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there is a real number o, = a.(wvy), depending smoothly on wvg in H}(R) such that
fort>1,

C
[w(-)v(-,t) = 04J_3/2¢(')||H1T < WHWUOHH,}’

where v is the solution to (1.11) with initial data vo.

Our methods are based on studying the regularity of the resolvent (£ — \)~!
in v = VA, with a suitable branch cut. In the setting of Theorem 1, we show that
the resolvent is Lipschitz in « near the origin in an appropriate sense. With more
localization, we expand the resolvent to higher order, which allows us to identify the
leading order asymptotics of the semigroup e“* used to prove Theorem 2. At lower
levels of localization, the resolvent loses Lipschitz continuity but first retains some
Hoélder continuity. As we allow for even less localized perturbations, the resolvent
blows up near the origin, but with a quantifiable rate. In these respective settings,
we obtain the following two theorems, giving a precise description of the relationship
between spatial localization of their perturbations and their algebraic decay rates,
which appears to be new even in the setting of the Fisher-KPP equation.

THEOREM 3 (Stability — moderate localization). Assume Hypotheses 1 through /
hold. sz% <r< % and s <r —2. ForanyO<a<r—%+min(17—%—s), there
exist positive constants C' and € such that if |lwvo| g1 < e, then

(1.17) lw( v )l mr < Wllwvollm

(1+¢

THEOREM 4 (Stability — minimal localization). Assume Hypotheses 1 through
4 hold. Fix —% <r<1/2 and s <r—2. For any % —r<f<-—s— %, there exist
positive constants C' and € such that if ||wvoll 1 < €, then

(1.18) lw( o O)llar <

— ol

(1+t)!

Note, choosing r 2 —3 and s < —%, the optimal choice for § is 8 < 2, thereby
giving arbitrarily slow algebraic decay. For the remainder of the paper, we assume
Hypothesis 1 through 4 hold.

REMARK 2. Estimates on the blowup of the resolvent near the essential spectrum
have also been used to quantify temporal decay rates in terms of algebraic localization
in [23, 24, 25]. However, in all of those cases, the essential spectrum can be pushed
strictly into the left half plane with an exponential weight, while this is not possible
here due to Hypothesis 1. In the framework of invasion fronts, such a setting typically
corresponds to supercritical fronts which travel with speeds ¢ > c4. For critical fronts,
we must estimate the resolvent near the edge of the absolute spectrum and thereby
unfold the branch point in the dispersion relation. Our methods towards obtaining
resolvent estimates are in fact quite different from the pointwise resolvent estimates in
these references. We also note that due to this difference, in [23, 24, 25] the authors
obtain arbitrarily fast algebraic decay for appropriate spatial localization, while here
Theorem 2 establishes that t—3/% is the optimal decay rate.

1.2. Preliminaries, notation, and remarks.
General exponential weights. In our analysis of the resolvent, we will use expo-
nential weights on the right to move the essential spectrum of £ in order to regain

5
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F1a. 1. Left: the two possibilities for the location of the spatial eigenvalues v of the asymptotic
system at +oo for A =0, according to Hypothesis 1. The red square around the spatial eigenvalue at
v = —nx indicates the presence of a Jordan block there. Right: Fredholm borders of L associated to
400 (red) and —oco (magenta); the inset shows the image of a meighborhood of the origin under the
map v = V.

Fredholm properties at the origin. Given n € R, we let w, be a smooth positive weight
function satisfying

ne >1
(1.19) wn(a:):{e »Te
X

Given a non-negative integer k, we define the exponentially weighted Sobolev space
HE_ (R) through the norm

exp,n
(1.20) gl = llwngllms-
If k =0, we write H),, .(R) = L2, (R).

Spectrum of the linearization. We say A € C is in the essential spectrum of
an operator B if B — A is not an index zero Fredholm operator. The assumptions
that f/(0) > 0 and f/(1) < 0 imply that the critical front ¢, converges to its limits
exponentially quickly, so the coefficients of A attain limits exponentially quickly as
x — too. By Palmer’s theorem [32; 33], the essential spectrum of A is determined
by the asymptotic dispersion relations. The dispersion curves ¥F, given in (1.7) and
(1.8), are the Fredholm borders of A: A — X is Fredholm if and only if A ¢ X T UX™.
Due to well-posedness of the underlying PDE, this implies that A — X is Fredholm
index zero if X is to the right of ¥ UX~, and hence the dispersion curves give a sharp
upper estimate of the location of the essential spectrum.

Locating the essential spectrum in an exponentially weighted space with weight
wy is equivalent to studying the spectrum of the conjugate operator w,.Aw,’ Lin L?,
since multiplication by w, is an isomorphism from LEXM (R) to L?(R). Operators
of this form still have exponentially asymptotic coefficients, but conjugation by the
weight changes the limits at 00 and hence moves the essential spectrum. Using the
exponential weight w = w,,, defined in (1.13), the limiting operators at oo are

(1.21) Ly =P(0y —n) + (0 — ) + f(0),
(1.22) L =P(0z)+ ciOp + f/(1).
6
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One finds that the right dispersion curve for £ = wAw™?! is
(1.23) ¥r={reC: dE (\,v) = 0 for some v € C with Re v = —7,}.

Hypothesis 1 then guarantees that this choice of 7, pushes the essential spectrum
as far left as possible (due to the presence of absolute spectrum [37] at the origin),
and that with this choice of weight, the spectrum of £ touches the imaginary axis
at the origin and nowhere else. See the right panel of Figure 1 for a depiction of the
Fredholm borders of £, and see [12, 26] for further details on the essential spectrum of
operators of this type.

Spatial eigenvalues and asymptotics of the front. When one writes the traveling
wave equation (1.10) as a first order system with coordinates Q = (g, ¢, ..., ¢*™ ) and
linearizes about the equilibrium @ = 0, obtaining an equation Q' = AQ, Hypothesis 1
implies that the matrix A has a Jordan block of length two at v = —n, [21]. If there
are no slower-decaying stable eigenvalues, that is, if

(1.24) —n. = max{Re v : v € ¢(A) with Re v < 0},

then, counting the dimensions of stable and unstable manifolds, one expects that
the critical front g., solving (1.10) with ¢ = ¢,, is locally unique up to translation
invariance, and that it inherits the decay rate from the Jordan block, that is

(1.25) g«(x) ~ze™ T 1 — o0.

This is the situation pictured in the top left panel of Figure 1. Since we are assuming
L has no resonances, (1.25) must hold in this case, since otherwise we would have
lgh(z)] < Ce™* for x large, which would imply that £ has a resonance at A = 0.

On the other hand, if A has another eigenvalue v with —n, < Re v < 0, as pictured
in the bottom left panel of Figure 1, then one expects that fronts with speed ¢, come
in a two-parameter family, with one parameter arising from translation invariance.
Typically these fronts decay exponentially as © — oo but with a rate slower than —,.
In this case, our results apply to any of these fronts in this two-parameter family.
Exponential expansions and uniqueness of the front. Solutions to the equation
Lu = 0 have exponential expansions, in the sense that solutions which are at most
linearly growing at infinity have the form

u(x) = x4 () (po + paz) +w(z),

where x4 is a smooth positive cutoff function satisfying

(1.26) Yo () = {0’ v=2

1, >3,

and w is exponentially localized. This decomposition follows from the presence of a
Jordan block at the origin when writing £,u = 0 as a first-order system, with the
rest of the eigenvalues away from the imaginary axis. From this characterization, we
conclude that there is a unique solution to Lu = 0 which is linearly growing at +oo,
up to a constant multiple: otherwise, a linear combination of two distinct solutions
would give rise to a resonance at A = 0. This justifies the claim of uniqueness of ¢ in
the statement of Theorem 2.

Furthermore, if (1.24) holds, then wq) is linearly growing at oo, by (1.25). Since
L(wq),) = 0 by translation invariance of (1.2), we conclude that in this case we have
1 = wy, ¢, (fixing the constant multiple appropriately).

7
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Threshold for asymptotic stability. We note that Theorem 4 is sharp in the sense
that asymptotic stability is no longer true for initial data in H!(R) with r < f%, and

accordingly the algebraic decay rate in Theorem 4 goes to zero as r — —%+. On the
linear level, this can be seen from the fact that ¢ € H}(R) for r < f%, and et =
since L4 = 0. On the nonlinear level, if (1.24) holds, then using the asymptotics
(1.25), one sees that using a small shift of the critical front as an initial condition
is a perturbation which is small in H}(R) for r < —32. The shifted front is still an
equilibrium solution, so asymptotic stability does not hold for the nonlinear equation.
More general equations. Since we already control all derivatives up to order 2m —1
in our linear decay estimates in Proposition 4.1, our results readily extend to the general
semilinear case, where f = f(u,uy, ..., 02 tu). With mostly editorial modifications,
our methods should also apply to systems of semilinear parabolic equations. We focus
on the scalar case with f = f(u) here for clarity of presentation.

Additional notation. For two Banach spaces X and Y, we let B(X,Y) denote the
space of bounded linear operators from X to Y, with the operator norm topology. For
d > 0, we let B(0, ) denote the ball centered at the origin in C with radius 0.
Outline. The remainder of the paper is organized as follows. We first focus on the
necessary ingredients for the proofs of Theorems 1 and 2, to clearly demonstrate
our approach for analyzing the resolvent. We start by analyzing the resolvent of the
limiting operator (£ —v%)~! in Section 2, by obtaining pointwise estimates on the
integral kernel for this resolvent. In Section 3, we then transfer our estimates to the
full resolvent (£ —~2)~1, by decomposing our data and solution into left, right, and
center pieces, solving the left and right pieces with the asymptotic operators, and
using a far-field/core decomposition as developed in [34] to solve the center piece.

In Section 4, we construct the semigroup et via a contour integral, and use our

resolvent estimates to obtain sharp decay rates and an asymptotic expansion for large
time for this semigroup through a careful choice of the integration contour. With
these linear decay estimates in hand, we establish nonlinear stability in Section 5 via
a direct argument, proving Theorem 1 — the principle challenge in this problem is in
obtaining optimal linear estimates, rather than handling the nonlinearity. In Section 6,
we again use a direct argument to transfer large time asymptotics for the semigroup
e“t to asymptotics for the solution for the nonlinear equation, proving Theorem 2.
In Section 7, we describe the modifications necessary to handle less localized initial
conditions, proving Theorems 3 and 4. We conclude in Section 8 by giving examples
of systems to which our results apply and discussing some subtleties surrounding our
assumptions.
Acknowledgements. This material is based upon work supported by the National
Science Foundation through the Graduate Research Fellowship Program under Grant
No. 00074041, as well as through NSF-DMS-1907391. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

2. Resolvents for asymptotic operators. In this section, we establish regu-
larity properties in A for the resolvents (£+ — \)~! of the limiting operators. Since the
dispersion relation has a degree 2 branch point at the origin, roots of the dispersion
relation are therefore analytic functions of ¥ = v/X near v = 0, and so we study
regularity in  near this branch point. We choose the branch cut along the negative
real axis, so that Re v > 0. We let R*(y) = (L4 —~?)~!. The key result of this
section is the following proposition, which gives expansions for R*(v) to finite order
in 7, depending on the amount of algebraic localization required, when restricting to

8
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odd functions.
PROPOSITION 2.1. Let r > 3/2. There is a limiting operator Rar, which is a
bounded operator from L2 ((R) to H*""L(R) for any s > L, and a constant C > 0

I 2

such that for any odd function g € L%,T(R), we have
(21) (& () = R gllgons < Chrllglzs,

for all v sufficiently small with v? to the right of 2747‘*.
If r > 5/2, then in addition there is an operator R} : L2, (R) — H%Tj(R) and a
constant C' > 0 such that for any odd function g € L%’T(R), we have

(2:2) I(R*(v) = Ry = vB gl gznr < ClyPllgllzz,

for all v sufficiently small with v? to the right of 2747‘*.

To prove this, we construct the Green’s function for the resolvent equation via a
reformulation as a first order system. Hypothesis 1 will guarantee that the dynamics in
this system are to leading order the same as for the system corresponding to the heat
equation on the real line. Restricting to odd initial data then improves the regularity
of the resolvent by introducing effective absorption into the system. Since the equation
(L4 —~?)u = g has constant coefficients, the solution operator is given by convolution
with a Green’s function G;‘, which solves

(2.3) (L1 —A)GE = —do,

where Jg is the Dirac delta distribution supported at the origin. We now write £ as

(2.4) Ly=) bioh.

As in [21], we recast (L4 —~v?)u = g as a first-order system in U = (u, ,u, ..., 02"~ ),
and find

(2.5) 8,U = M(y)U + F,

where F' = (0,0,...,0,9)7, and M(v) is a 2m-by-2m matrix

0 1 0 . 0
0 0 1 0
0o mMe=| PGP0 1
0 .. 0 1 0
0 . S 0 1
V2 /bom 0 —ca/bom ... —Com—1/bom

By Palmer’s theorem [12, 26], if 2 is to the right of the essential spectrum
¥F, then M(7) is a hyperbolic matrix, with stable and unstable subspaces B3/ ()
satisfying dim F*(y) = dim E*(y). We let P5(y) and P"(y) = I — P*(vy) denote the
corresponding spectral projections onto these subspaces. The matrix Green’s function
T, for this system solves
(2.7) (0x = M(7))Ty = =bol,

9

This manuscript is for review purposes only.



415
416
417
118
419

S
N DN
=)

422
123
424
425
426

where [ is the identity matrix of size 2m-by-2m. The matrix Green’s function is given
by

(2.8) T, (z) = {_eM(V)wPS(W)’ v>0

eMMzpuy) 2 <.
The scalar Green’s function G is recovered from T, through
(2.9) G = PiT,Q1b;,,

where P; is the projection onto the first component and @Q); is the embedding into
the last component, i.e. Pj(ug,...,u2m,) = u; and Q19 = (0,...,0,¢)T. From these
formulas, since M () is analytic in 72, we see that the only obstructions to regularity
in v of G are singularities in the projections P3/"(~). Such a singularity does occur:
the structure of M (~), arising from writing a scalar equation as a first-order system,
implies that

(2.10) det(M(7) —v) = d* (v,v = n.).
Hence the spatial eigenvalues v of M () are roots of the dispersion relation, satisfying
(2.11) 0=d" (Vv —mn.) =’ 5" +0(°),

with a > 0. Solving near the origin with the Newton polygon, one finds two solutions
bifurcating from the origin, given by

(2.12) V) = 2oy +0(R)

As v approaches zero from the right of the essential spectrum, v* merge to form a
2-by-2 Jordan block to the eigenvalue zero, necessarily giving rise to a singularity in
Ps/"(~) [27]. With the Newton polygon, one readily finds that these are the only
eigenvalues of M () near the origin for v small.

We therefore isolate the singularity by splitting the projections as
(2.13) P/ () = P/ () 4 P/ (),

for 42 to the right of the essential spectrum, where P/t () are the spectral projections
onto the one-dimensional eigenspaces associated to v*(v), respectively, and P/ ()
are the spectral projections onto the rest of the stable/unstable eigenvalues, respectively.
Standard spectral perturbation theory [27] implies that P%/"(v) are analytic in 42
for v small. We characterize the singularities of P/<%(~) in the following lemma.

LEMMA 2.2. The projections P®/°“(v) have poles of order 1 at v = 0, with
expansions

(2.14) P/t (y) = %P,l +0(1)

near v = 0. In particular, the poles in these expansions differ only by a sign. Fur-
thermore, the top right entry of P_1 is nonzero. We denote the remainder term

by

- 1
(2.15) P/ (y) = PO/ (3) F Py,

10
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129
430
431
432
433
434
135

436
437
438
439
440
441
442

443
444
445
146
147

459
460
461
162
463
464
465

166

467

Proof. Since for v nonzero v+ (7) are each algebraically simple eigenvalues of M (7),
we can construct the projections onto their eigenspaces via Lagrange interpolation.
This approach gives a formula sometimes known as the Frobenius covariant. We order
the eigenvalues of M () as (v1(7y), v2(7), ..., Yam (7)), repeating eigenvalues according to
algebraic multiplicity if there are non-trivial Jordan blocks in the strong stable/unstable
subspaces, with v1(y) = vT(y) and v2(y) = v~ (). The center stable projection is
then given by

2m

cs _ 1 —v

Repeating the eigenvalues according to algebraic multiplicity guarantees that the right
hand side annihilates all the other eigenspaces, and one can check that the normalization
guarantees it gives the spectral projection. Since all the other eigenvalues are bounded
away from zero for  small, the only singularity arises from the factor (v~ (y)—vT(vy))~L.
Using the fact that v=(y) — v+ (y) = —%7 + O(v?), we write

AP0 = = 5 010) = 0D T] =L

; M(0) — v, (0)1).
k=3

Note that this is a polynomial of degree 2m — 1 in M (0). From the form of M (v) in

(2.6), one sees that the top right entry of M (0)?™~1 is equal to 1, and the top right
entry of M(0)* is zero for all k < 2m — 1. Hence the top right entry of yP(v)|,—o is

(2.17) B = _\éaji <_ ) 7

which is nonzero. Repeating the argument for
(M () = ve()1),

1
Vi (0)

2m
1
P v) =
D=1l e
one readily finds yP(y)|y=0 = —vP*(7)|y=0, completing the proof of the lemma. O
We now use this result to expand the formula (2.9) for G:Y“. For x > 0, we have
G () = =P1eM(PS(y) + P*(7))Qibyy,
— _b;nlléevf(’v)ﬂﬁ _ b;ﬂllelf(“/)xplpcs(,y)Ql _ b;,iLP].eM(’Y)xPSS(’y)Q:U
v

and for x < 0, we have

— 6 vi(y)z -1 _vt(y)z pcu — T puu
Gj(a;):—bzrige Mz 4 poler" Nz py peu()Qy + by L PeM T Put(4)Q,.

The leading term is the only term which is singular in 7. Lemma 2.2 guarantees that
this term has the same coefficient for x > 0 and x < 0. We now show that this term
can be replaced by (essentially) the resolvent kernel for the heat equation, and that
the remaining error terms can be controlled as well, so that the behavior is the same
as for the resolvent in the heat equation. Let

. —bytBerME x>0
(2.18) @) = {—b21 %e”(v)w x<0
m 9 9

11
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and let

_p7lBe-vovr 2>
2.19 Ghet(z) = 2 U
( ) ¥ ( ) {_bQT}lgeuovw’ z <0,

where vy = ﬁ We separate the resolvent kernel into four pieces

h he: ~ h
(2.20) GT =G + (G5 - G5°™) + G5 + G,
where C?f/ consists of the remainder term associated to the central spatial eigenvalues

~ _b_1 Vﬁ(’)’):tP Pcs >0
(2.21) Ge(z) = _fmi 1PC(M)Q, w2
v by ke (’Y)mplpcu(,y)Ql, z <0,

and Gz is the piece associated to the hyperbolic projections,

1 M(vy)x pss
(2.22) Gh(x) = { a1 P Q, 220
by PreMMTPui()Qy,  x <O0.

This decomposition is natural in terms of « dependence, since it isolates the
pieces of G:Y" which have a singularity at v = 0. However, this decomposition is not
natural from the point of view of spatial regularity: for 42 to the right of the essential
spectrum, the total Green’s function G belongs to H?™=Y(R), but for instance
Ggeat is only in H*(R). In order to prove Proposition 2.1, we will need estimates on
derivatives of G:YL up to order 2m — 1. Taking higher derivatives of the individual
terms in the decomposition (2.20) introduces terms involving the Dirac delta and its
derivatives, since these terms have only one classical derivative at x = 0. However,
because Gj € H?>™~Y(R), these distribution-valued terms arising from derivatives
of G:eat, G5 - Ggeat, and C?f/ + Gg up to order 2m — 1 must disappear when added
together. Therefore, when estimating these derivatives, it suffices for our purposes
to disregard the singular parts, as they give no contribution to the end result in
Proposition 2.1.

In light of this, for any function g € H*™~1(R) which is smooth away from = = 0,
for any integer 1 < k < 2m — 1, we define an operator 5;“ returning only the regular
part of the derivative, which is of course given by the piecewise derivative

= oFg(z), >0
ak — T ’ ’
=9() {8§g(x), z < 0.

In order to show that Gi‘ behaves like the heat resolvent, we first estimate the
difference G —G}Wleat, showing that the difference is O(7y) and therefore can be absorbed
into our error term.

LEMMA 2.3. Let § > 0O be small. There exists a constant C > 0 such that if
72 is to the right of the essential spectrum of L and |y| < &, then for any integer
0<k<2m-1,

(2.23) 0565 (2) — 05 GE ()] < Chl{).

12
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Proof. Let x > 0, and first suppose |y?z| < 2. We write

by - -
|ny(x) _ Gﬁlyeat(x” — Zmﬂ‘ e Mz _ e VT = g\e“’“””e(” (M+royv)z _ 1].
0

ol

Since
v~ (1) = =y + O(?)
we know that
v~ (v)z + voyz| < Cly’a| < 20

for some constant C > 0. It follows from differentiability of the exponential function
that

e (HonT 1] < O|(v™ (7) + woy)a| < Cly’al.
Also, Re v > 0 implies e7"°7* is bounded. Hence we have
G5 (2) — G5 ()] < Chl{x),

for x > 0 and |y2x| < 2. Next, we assume |y2z| > 2. Then, since |e*| < 1 for Re z < 0,
and Re v~ (y) < 0 for 72 to the right of the essential spectrum, we have

c, - C C
G (2) — Gheat )| < = eV Mz _ e~ VovT <2 < =
) =GRl T

Hence we have the desired estimate in all cases, for x > 0. The argument for x < 0 is
completely analogous, as are the estimates on the regular parts of the derivatives. O

|2z < Cly|(z).

To prove the second part of Proposition 2.1, we will also need to control the
difference between G% — Ggeat and the leading order term in ~ in this expression.
Fixing = and expanding formally, one finds

(2.24) GS (x) — Gh™ (2) = by, Byh(z) + O(7?),
where

o >
hz) = {I/2 z, x>0,

viz, x<0,

and where v*(y) = :I:ﬁ’y + vi4? 4+ O(4%). We now show precisely that the O(y?)
term in this expression is appropriately controlled in space, and so contributes to the
error term in (2.2).

LEMMA 2.4. Let 6 > 0 be small. There exists a constant C > 0 such that if v* is
to the right of Erf* and |y| < 4, then for any integer 0 < k <2m —1,
(2.25) |95 (G5 () — GL2 () + by Bvh(x))| < Ol *(z)?.

Proof. We focus on proving (2.25) for k = 0, since the estimates on the regular
parts of higher derivatives are similar. We only show the case where x > 0, since z < 0
is similar. For x > 0, we have

1 - 1
|G () — Ggeat(x) + by, L Byh(z)| = C ;e” M _ ;e‘”‘”x — vy yx|.
13

This manuscript is for review purposes only.



582

583
584

Since

vy yI — < ClyPlal,

(v~ () + Vov)x‘
v

we may replace v, 7y in this expression with (v~ (y) + voy)/ and absorb the difference
into the error term. We let z = yx, and w = (v~ (y) + voy)z. Note that for v small,
lw| < Clv]|z| < C|z|. Hence

RREHE : T ISR w
C
< m |6*l/02(1 + O(w)) _ 1|
C
S (le=% — 1] + Clw||e %)
<C

for z,w small. The expression is also bounded for z,w large: the only term which
appears potentially problematic is |[e™"0%e®| = |e¥ (V)|  which is bounded since ? is
to the right of the essential spectrum, so Re v~ (y) < 0. Hence we obtain (2.25). 0O

We now estimate the remaining error terms in the decomposition of the Green’s
function.

LEMMA 2.5. Let r > 3/2. There is a constant C' > 0 such that the remainder
terms in the Green’s function satisfy the estimate

(2.26) l03(GS +GY = G = Gl *gllre . < Chlllglzz,

for any integer 1 <k < 2m — 1, any g € L2(R), and any v sufficiently small with >
to the right of ¥} .

Furthermore, if r > 5/2, then we can expand to second order in the sense that
there is a function G' such that

(2.27) 105G + Gy = G5 = Gi —1G")] *glle < ChyPlllre,
for any integer 1 <k <2m—1, any g € Lg,T(R), and any v sufficiently small with ~?
to the right of ¥} .

Proof. We focus on the estimate (2.26) for k = 0, since the estimates on the
regular parts of the derivatives are analogous. Note that for v small, Gg is analytic
in v and is exponentially localized in space, with decay rate independent of ~. It
follows that vy — Gz is analytic from a neighborhood of the origin into L*(R). Young’s
convolution inequality then implies that convolution with G}; is analytic in v as a
family of bounded operators on L?(R), and so in particular

(G = G5) *gllee . <G} —Go) *gllzz < Chylllgllzz < Clylllgllzz,

For the other term, we use the fact that for v small with 2 to the right of the essential
spectrum, we have Re v~ () <0, and so for > 0

lev” (T _ 1] < Clv™(y)]|z| < Clyl|x],

14
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389

590
591

592
39%
595

596

597

598

and similarly for z < 0
e 1] < Clut(y)||2] < Chl 2],

using the estimate |e* — 1| < C|[z] for Re 2 < 0. This estimate together with the fact
that the maps v — PCS/C“('y) are analytic in v in a neighborhood of the origin imply
that

|G5(2) = Gi(2)] < Clylfa].

The function space estimate in (2.26) then follows from the Cauchy-Schwarz inequality
— see the proof of Proposition 2.1 below. The proof of (2.27) is similar, simply requiring
Taylor expanding the exponential to higher order. 0

The behavior of the heat resolvent improves when acting on odd functions g,
compared to a generic function with the same localization. Restricting to odd functions
in the resolvent equation (0., — v?)u = g is equivalent to posing the problem on a
half-line with a homogeneous Dirichlet boundary condition. The improved properties
of the resolvent in this context have been exploited in [22] to establish expansions
for resolvents of Schréodinger operators on the half-line. As in [22], we write for a
sufficiently localized odd function g,

G’};eat % g(z) = ,bgéﬂ/ ngd(x,y)g(y) dy,
0
where

(2.28) G (2, y) = 1 (efuow\wfyl _ e—mlm+y|) .
Y

We collect the properties of Gf’ydd in the following lemma, whose proof follows from
careful but elementary computation, similar to the proof of Lemma 2.4.

LEMMA 2.6. There exists a constant C' > 0 such that for all v with Re v > 0, we
have

G5 (2 y) — 200 mine,y)| < Cl () {y).
0,633 (2,) — 2000, min(z, )| < Cl{z)y),

and

|G (2, y) — 2w min(z,y) + 2yvv52y| < Cly* (2)?(y)?,
102(G (@, y) — 200 min(z, y) + 2y152y)| < Cly* () (y)*.

Proof of Proposition 2.1. Since G € HZ"'(R) for v? to the right of the essential

loc
spectrum, for any integer 1 < k < 2m — 1, we may write

ok /R Gz — y)gly) dy = /R 0,G(x — y)gly) dy = /R 3G (= — y)g(y) dy.

Now that we have used regularity of Gj to replace the derivatives with only the
regularized parts, we split Gjy‘ into its components as in (2.20),

/ FEG (x — y)g(y) dy = [ (GR™ + GE — G 1 G< 1 GM)] % g(a).
R

15
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630
631

632

639
640
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660
661
662

663
664

665

666
667
668
669
670

By Lemma 2.3 we have

185(GS, — G1oat)] # g(x)| < Ch| / & — yllg(w)| dy < Ch / max((z), (5))|g()| dy.
R R

For g € L%(R), we use the Cauchy-Schwarz inequality to obtain

I03(G5 = G5 * gllzz . < Chyllgl

1/2
} o, ([ (e () daay)
: R
Splitting this integral into integrals over regions |y| < |z| and |z| < |y|, one finds that
the integral is finite for r > 3/2, and one thereby obtains

103(G5 = GA) *gllee . < Chlllgllzz,-

Hence this term is O(7), and can be absorbed into the error term. In proving (2.2),
one instead uses the estimate in Lemma 2.4, which gives an expansion of this term to
second order in 7.

Expansions for (i’j(@f/ + G) are already given in Lemma 2.5, so it only remains
to obtain expansions for 5’;(?26“ acting on odd functions g. For k = 0 or 1 these
expansions follows immediately from the estimates in Lemma 2.6. For k& > 2, the
estimates are actually simpler, and can be seen directly from Ggeat rather than using
the odd extension, since taking derivatives in z introduces extra factors of «. This
completes the proof of Proposition 2.1. 0

We conclude this section by observing that our spectral assumptions imply that
(L_ —~?)7! is analytic in 2.
LEMMA 2.7. Forn > 0 sufficiently small, the operator (L_ —~*)71: L2 (R) —

exp,n
Hg)g;;} (R) is analytic in v in a neighborhood of the origin.

Proof. By standard spectral theory, this amounts to saying that 0 is in the resolvent
set of the operator £_, which follows directly from Hypothesis 2, and the fact that
the Fredholm borders in the exponentially weighted space depend continuously on the
parameter 7. ]

3. Full resolvent estimates.

3.1. Far-field/core decomposition and leading order estimates. We now
extend the resolvent estimates of Proposition 2.1 to the full resolvent operator (£ —
2 71 . . . oy . . .
%)™, in the following sense. Note that we only require additional algebraic localization

on the right.

PROPOSITION 3.1. Let r > 3/2. There are constants C > 0 and § > 0 such that
for any g € L2(R), the solution to (L — v?)u = g satisfies

(3.1) [u(y) = w(0)[[ g2m—1 < ClrlligllL2

for all v € B(0,6) with v* to the right of ¥\ .

If this proposition holds, we write (£ —~2)~! = Ry+0(y) in B(L2(R), H*" 1(R)).
The aim of our approach is to first solve on the left and on the right with the asymptotic
operators by decomposing the data and the solution appropriately, leaving an equation
on the center (£ — v?)u® = § with exponentially localized data. We then solve this
equation with a far-field/core decomposition as in [34] to obtain our estimates.

16
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Specifically, we let (x—, X¢, X+) be a partition of unity on R, with x4 satisfying
(1.26) and x—_(x) = x+(—=x), so that x. is compactly supported. We use this partition
of unity to decompose our data g into a “left piece”, a “center piece”, and a “right
piece” by writing

9=X-9+ X9+ X+9=:9- +ge+ g+

We would like to decompose our solution accordingly into u = u™ + u¢ + u™, with u™
and ut solving (L1 —7?)u® = g+, and with the remaining piece (£ —v)?u¢ = g, having
strongly localized data. However, we need to refine this decomposition slightly in order
to obtain sharp estimates. As we saw in Section 2, the behavior of (£; —~2)~! is much
improved when acting on odd functions. Therefore, we let ¢394(z) = g (z) — g4 (—2)

be the odd part of g4, and let u be the solution to
(3.2) (L4 =Pt = g2,
We let u~ be the solution to

(3.3) (Lo =7 =g

We decompose the solution u to (£ —~?)u = g as u = u~ +u+ x ut. The additional
cutoff function on u™ is so that we do not have to require algebraic localization on the
left when using Proposition 2.1. After a short computation, one finds that «® must
solve

(3.4) (L—~7")u =3(v),

where

(35)  G(7) =g+ O+ — X319 — Lo xJut + (L — L) (xqub) + (Lo — L)u™,

and [L4, x4] is the commutator

(L x4 Ju™ = Ly (xyu™) = x4 (Lu™).

Note that g(v) is exponentially localized on the right, so that we may solve this
equation using a far-field/core decomposition, taking advantage of the fact that £ is a
Fredholm operator on exponentially weighted spaces with small weights. The right
hand side § depends on 7 through u™ and u~, and we use the estimates in Section 2
to characterize this dependence in the following lemma.

LEMMA 3.2. Letr > 3/2, and let 1 > 0 be small. For v small with v to the right
of 2 | we have §(v) € L2, (R), and

7 exp,n

(3.6) 19(v) =30)llzz,, , < CllllgllLz-

Proof. The terms g. and (x4+ — x3)g in (3.5) are independent of v and are
compactly supported by construction. The commutator [L£,x4] is a differential
operator of order 2m — 1 with smooth compactly supported coefficients, since x4 is
constant outside a compact set, so [£, x4 ]uT is also compactly supported. Similarly,
(L4 — L)(x+-) is a differential operator of order 2m — 1 whose coefficients converge to

17
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zero exponentially quickly as x — oo, and are identically zero for = negative. Hence, if
7 is sufficiently small,

llwon (=1L x4] + (L = L)x4) (@ (7) = w022 < Cll (™ (7) = w (0) gr2m—r
< Clga™ N cz,

< Chlllgllzz,

by Proposition 2.1. Similarly,

llwn (£ = L)(u™(7) = u (0)l|zz < Chllg-| 2

exp,n

< Chlllgl

by Lemma 2.7, using the fact that g_ is supported only on the left, so the exponential
weight on the right can be replaced by an algebraic weight. 0

2
Lz,

We now solve (£ —y?)u’ = § by making the far-field/core ansatz
(3.7) w(z) = w(z) + axs (@),

where w € Hggm(R) is exponentially localized, a € C is a complex parameter,
and v~ () is the spatial eigenvalue given in (2.12). With this ansatz, the equation

(£ — ~v?)u = § becomes
(3.8) F(w,a;7) := Lw+ al <X+e”_(7)'> — 2 (w+axye’ ) =g,

with the goal of solving for w and a with § and « as variables. By Hypothesis 1 and
Palmer’s theorem, £ : HZ" (R) € L2 (R) — L2, (R) is a Fredholm operator
with index -1. The addition of the extra parameter a makes (w,a) — F(w,a;7y) a
Fredholm operator with index 0 for v small, by the Fredholm bordering lemma [39,
Lemma 4.4]. The parameter a is introduced in a manner which precisely captures the
far-field behavior of £ at x = oo, which ultimately allows us to recover invertibility of

L in this sense in a neighborhood of v = 0.

LEMMA 3.3. There exists § > 0 such that the map F : HZZ | (R) x C x B(0,0) —

L2, ,(R) is well-defined and (w, a) — F(w, ;) is invertible. We denote the solutions

(w,a) to (3.8) by w(;v) =T(v)g and a(y) = A(y)g. The maps
v T(y): B(0,6) = B (L2, (R), HZ  (R))

exp,n exp,n

and

v = A(y) : B(0,8) = B (L2, (R),C)

exp,1)
are analytic in 7.

Proof. The fact that F' is well-defined and maps into Lgxpm(R) follows from writing

(L =) (xs€”" ) = x4 (L= Ly)e” O (L, xi]er O,

using (L4 — ’}/2)6”7(7)1 = 0. The commutator [£,x] has compactly supported
coefficients, and the coefficients of £ — £ decay exponentially as  — oo, so both of
these terms are exponentially localized uniformly in v, and so F' maps into L2, , (R).

Note next that v +— F(-, ;) is analytic in 7 as a family of bounded operators. This

is formally clear from the fact that v~ () is analytic in ~; for a rigorous justification,
18
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see the proof of Proposition 5.11 in [34]. Since we have already observed that (w, a) —
F(w,a;7) is Fredholm with index 0 for v € B(0,d) for some ¢ small, to prove the
lemma it suffices by the analytic Fredholm theorem to check that (w,a) — F(w,a;0)
is invertible. Since (w,a) — F(w,a;0) is Fredholm index 0, we only need to check
that F(w,a;0) has no kernel. Suppose that there is a kernel. Then, from (3.8), we

have L(w + axy) = 0 for some w € HZ (R), a € C. The function w + ax; is

bounded, so this implies £ has a resonance at 0, contradicting Hypothesis 4. Hence
(w,a) — F(w,a;0) is invertible, and the lemma follows from the analytic Fredholm
theorem. ]

Proof of Proposition 3.1. By the above, the solution to (£ — v?)u = g can be
decomposed as © = u~ + u¢ + x1u', where v, u™, and u® solve (3.3), (3.2) and
(3.4) respectively. Lemma 2.7 and Proposition 2.1 imply the desired estimates for
u~ and u™, so we only need to estimate the vy dependence of u¢. By Lemma 3.3, for
v € B(0,6), u® is given by

u(v) = T(MF) + Agy)xre” O,
and so
3.9) u®(y) = uO)] gzm—r < T ()g(v) = T(0)3(0) || g2
+ [ AMI X O = A0)FO) x4 | gr2m—
For the first term, we write

T(v)g(v) —T(0)g(0) = (T'(v) — 17(0))g(~v) + T(0)(g(v) — §(0)),

and then estimate, using Lemma 3.3 to expand T'(y) and Lemma 3.2 to control g(v),

(T () = TO)gD g2m—r < CNT(v) = T(0)g(Wm2g , < ClAlgI Iz, ,
< Chlllgllzz-

Similarly, we obtain

ITO)(G(v) = GO gz < CIT(0)(G(7) = G(0))l| a2y

exp,n

<Cllgv) = g0)zz,, ,
< Clllgllzz,

and so [|[T(7)g(v) — T(0)g(0) | grzm—1 < Clyll|gllz2. For the second term in (3.9), we
have

IAMG)xre” O = A)FO)x+ ]z < lle” OV x1(A(3)F(7) = A(0)F(0)) | gm s
T 1AOF(O0)x4 (1~ ¢ ) gams.
Using Lemmas 3.2 and 3.3, we obtain an estimate
(3.10) [A(v)g(v) = A(0)g(0)] < Clrlligll zz-

Since e~ (7 is a bounded function for 72 to the right of the essential spectrum, and
constants are controlled in L? . for r > 1/2, by (3.10) we conclude that

le” X+ (AMG() = A0)G(O) gzm—+ < Chlllgll 2.
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For the second term, we use the fact that |1 —e¥” (%] < Clv~(y)]|z| < Cly||z| for 2
to the right of the essential spectrum. This term is controlled in L? . for r > 3/2, so
we have

1A0)7(0)x+ (1 =€ )| 2 < Chlliglze.

The estimates on the derivatives in this term are easier, since taking derivatives gains
factors of «, and we can control e¥~ () in L?, for r > 1/2. This completes the proof
of the proposition. ]

3.2. Higher order expansions and asymptotics of the Green’s function.
The regularity of the resolvent obtained in Proposition 3.1 is sufficient to prove
Theorem 1, but in order to obtain the asymptotic description of the solution in
Theorem 2, we need to expand the resolvent to higher order, in spaces of higher
algebraic localization. Integrating along the contour that we will choose in Section 4
will reveal that the part of the semigroup associated to the term Ry in the expansion
(L —~?)"!' = Ry 4+ yR1 + O(y?) decays exponentially in time, and so the t~3/2 decay
stems from the term ~vR;. Hence, to identify the asymptotics of the solution, we both
need to expand to higher order and identify the operator R;. The first task proceeds
as in Section 3.1, simply keeping track of higher order v dependence using the relevant
results from Section 2, so we state these results without proof. To characterize Ry,
we adapt our far-field/core approach to solve (£ —~%)G. = —§,, constructing the
resolvent kernel G, and expanding it in -y to determine R;.

LEMMA 3.4. Letr > 5/2, and let 1 > 0 be small. For ~y small with v? to the right
of 2 | we have §(v) € L2, (R), and

e exp,n

13(v) =791 = §(O)lzz,, , < ClyPllglre

exp,n

for some g1 € L2, (R).

Using Lemma 3.4, we obtain the following refinement of Proposition 3.1
PROPOSITION 3.5. Let r > 5/2. There are constants C > 0 and § > 0 and

an operator Ry : L2(R) — H*™ Y(R) such that for any g € L2(R), the solution to
(L —~v?)u = g satisfies

(3.11) lu(y) = yu' = w(0)ll y2m—s < Chyllgllz2,

where u* = Ryg, for all v € B(0,5) with v? to the right DIngp

To construct the resolvent kernel G, with our far-field/core decomposition, we
must view F defined by (3.8) as a map F : HZ% H(R) x C x B(0,6) — Hzl, (R).
First we show that £ retains Fredholm properties when acting on these spaces.

LEMMA 3.6. We can extend L to an operator from HZ" L(R) to H L , (R), and

exp,1 exp,1
this operator is Fredholm with index -1.

Proof. First define £ : H2" (R) — L2_  (R) by

exp,n exp,n
L=LA+0,+1)7 L, 0, +1].

Using the fact that all derivatives of the coefficients of £ are exponentially localized,

one finds that (9, +1)~'[£, 8, +1] is a compact operator from H2"  (R) to L2, , (R),
20
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and so L is Fredholm with index —1 as a compact perturbation of £. We then define
L: Hggzl(R) — He;%m(]R) by

L= (0y +1)L(Dy + 1)1,

One may readily verify that if u € HZZ  (R), then Lu = Lu, and hence £ is an

extension of £. Since the operator d, + 1 : HE , (R) — Hi ! (R) is invertible, L

is Fredholm with index -1, and so we have produced the desired extension. We now

write £ = L, understanding that we are using this extension of L. O

Repeating the argument of Lemma 3.3 in these spaces, we find a solution to
(L —~?)G., = =6, with the form

(3.12) G (2,y) = w(z,y;7) + aly,7)x+ (@)’ 7,

where w(-;y,v) € Hol ' (R) for some 7 > 0 small, and both w and a are analytic in

v. We therefore write G, = G + vG* 4+ O(~?), for fixed z and y. Since G depends
analytically on v, G must solve the equation (£ —+?)G, = —§, at order -, which is

(3.13) LG (5y) = 0.

Expanding the right hand side of (3.12) in -, one finds that G* is linearly growing at
00, and localized on the left. As noted in Section 1.2, there is only one solution, up to
a constant multiple, to Lu = 0 which is linearly growing at co and localized on the
left. We denote this solution by v, fixing the normalization by requiring

lim M

=00 I

(3.14) =1.

Since G* solves (3.13), we conclude that G must be proportional to 1, but with
constant allowed to depend on the parameter y, so we have

(3.15) G'(x;9) = Y(x)g' (y)

for some function g*(y). Altogether, since the expansion obtained in Proposition 3.5
and the solution given by integration against the resolvent kernel must agree for 42 to
the right of Xf | we obtain the following lemma.

LeEMMA 3.7. The operator Ry in the expansion
(£L=7*)7" = Ro+7R1 +0(y?)
in B(L2(R), H*""Y(R)) for r > 5/2 guaranteed by Proposition 3.5 is given by

Rig(z) = ¥(x) / 9 @)9(y) dy.

R

If (1.24) holds, then as noted in Section 1.2 we must have ¥ (x) = wy, (z)q,(x).
We can achieve the normalization condition (3.14) for instance by translating g.
appropriately, without loss of generality.
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4. Linear semigroup estimates. We now use the regularity of the resolvent
obtained in Section 3 in order to prove that the linear semigroup et has the desired
t=3/2 decay, the essential step in proving Theorem 1. Since £ is sectorial [31], it
generates an analytic semigroup through the contour integral

(41) e = [ L) i)

2mi Jr
for a suitably chosen contour I'. By Hypothesis 4, £ has no unstable point spectrum,
so the essential spectrum is the only obstacle to shifting the integration contour.
Hypothesis 1 guarantees that in ~, the Fredholm border which touches the origin may
be parametrized as

(4.2) y(a) = iv1a + y2a* + O(a®)

for some real constants 71, y2. To obtain optimal decay rates, we use the regularity
of the resolvent near the origin to integrate along a contour which is tangent to the
essential spectrum, which reveals the ¢t=3/2 decay rate.

PROPOSITION 4.1. Letr > 3/2. There is a constant C' > 0 such that the semigroup
eLt satisfies fort > 0

(4.3) e 2y pram—2 < e
Proof. For € > 0, we define our integration contour near the origin by
'Y = {y(a) = ia + c2a® + € : a € [—a.,a.]},
where a, > 0 is small, and ¢5 is chosen so that the limiting contour
(4.4) I = {y(a) = ia + cza® : a € [—a.,a.]}

is tangent to the essential spectrum in the v-plane, touching it only at v = 0 and
staying to the right of it otherwise. The existence of such a ¢ is guaranteed by (4.2).
We define these contours in the + plane, since it is natural to integrate in y = v/X in
order to use the regularity of the resolvent in 7. We then let I'F be continuations of T'?
out to infinity along straight lines in the left half A-plane: see Figure 2 for a depiction
of these contours. We let I'. denote the positively oriented concatenation of I'_,T'?,
and T'}. By Proposition (£ —~2)~! is continuous at v = 0 in B(L2(R), H*""*(R)).
Since it is also continuous on its resolvent set, and the limiting contour I'g touches the
spectrum of £ only at v = 0, this guarantees that (£ —~2)~! is continuous up to I'g.
Together with sectoriality of £ to control the behavior at large A, this guarantees that
the limit

1
lim ——‘/ ewzt(ﬁ—’yQ)A?vd’y
2 I,

exists in B(L2(R), H*™~1(R)). Since for every ¢ > 0 the contour I'. is in the resolvent
set of L, the value of this integral is independent of € > 0 by Cauchy’s integral theorem.
Hence we may write the semigroup using the integral over the limiting contour

1
= [ L)y dy
e To

1 2 1 2
_ 'yt£_2—1d_ e 'yt£_2—1 d~.
[ (L =) ydy éi”i/r(%e (L—77) vdy

e Fg

(4.5)
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F1c. 2. The Fredholm borders of L (magenta, red) together with our integration contours (blue),
for e >0 (left) and at the limit e = 0 (middle). The insets show the image of a neighborhood of the
origin under the map v = V. The rightmost inset shows the deformation of 1"8 to T'g, the contour
used in the proof of Proposition /.2.

The integrals over F(jf are exponentially decaying in time, since each 72 along
these contours is contained strictly in the left half plane and bounded away from the
spectrum of £. Using parabolic regularity [31, Theorem 3.2.2] to control the behavior
of (L —~?)7! for large v, we readily obtain

< Ce™Ht
i

1
*./ L — ) My dy
Ty

L2 —sH2m—1

for some constants C, > 0, which of course implies the same estimate in L2 — H2"~!,
We now focus on the integral over I'). We use Proposition 3.1 to write (£ —
72)~' = Ry + O() in B(L2(R), H*™!(R)) and explicitly parameterize the contour
by v(a) = ia + coa? for |a| < a. to obtain
ks Vg A2yl I R /
[ e vy = = [ 0@ R+ 0@ (@) (@) da

T Jro T J_a.

@’_‘

- [(;taﬂ) Ro+ev<a>2tEo<aw<a>v’<a>] da,

™ —a.

where we denote the O(a) terms by Eg(a). The first term is the integral of a total
derivative, so

1 - 1 (3 ev(a)2t) Roda = LERO (e“/(a*)Qt _ ev(—a*)t>
T _q, 2t “ 2mi t
— LlRoe(—a%cgai)t (ezz’cmit _ e—QiCQait)
2mi t

2
We choose a, small enough so that c3a} < % and hence

L e

—a,

C _ -
S ?e a*t/2‘|ROHL%*>H3771

<C’
= pe

(4) |

2 2m—1
LZ—H™"
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for ¢ > 0. In fact, this contribution is exponentially decaying for ¢ large. We now
estimate the second integral

2 2m—1
LZ2—H™

= H/ e(—a2+c§a4)t62icla3tEO(a),y(a),y/(a) da

H | o B (o) da

s 2
< C/ e~ =t al? da,

L2 g*m—1 —ax
o HZY

for a, small. Changing variables to z = %\/Z, we obtain

a2y g, O[T M, c
e 2% da = EYZ) e * z2dz < FEYOR
—a, t —ax\/t/2 t
which completes the proof of the proposition. 0

We now use the higher regularity of the resolvent obtained in Proposition 3.5 to
identify the leading order asymptotics of e“* as ¢t — oo by focusing on the term yR;
in the contour integral, since we have shown that the term associated to Ry decays
exponentially.

PROPOSITION 4.2. Let r > 5/2. Then the semigroup e~ has the asymptotic
expansion

R
C 2 /mt3/2
as t — oo, in B(L2(R), H*"~*(R)).

Proof. We proceed as in the proof of Proposition 4.1, using the same integration
contour I'y. Using Proposition 3.5 to expand the resolvent to higher order, we have

(4.7) ert +0(t72)

1 2 1 @ 2
— [ e HL—) T ydy=— e (Ry + y(a) Ry + O(a®))y(a)y'(a) da.

7 Jrg T,

The terms involving Ry and O(a?) decay at least as fast as t~2, by the same arguments
used in the proof of Proposition 4.1, so we focus on the term involving R;. We integrate
by parts to obtain

1 [ 2 11 [* 2

= v(a)“t / - - = v(a)“t

i | @R @ (@ da = S [ @a ) (@) Ry) da
11

Q x
- - - ~v(a)?t, 1 R: d O(e M
2m~t/_af 7(a)Rs da+ O(e™")
for some p > 0. The boundary terms are exponentially decaying since we choose a.
small enough so that Re y(za.) < 0. We recognize the remaining integral

/ﬂ* e/ (a) da

— s

S . 2 . 2, .
as a parameterization of the integral of e** over the contour I'. Since e** is an
entire function, we can deform this contour into another contour I'g consisting of three
straight line segments: one from z = —ia, + c3a? to z = —ia,, one along the imaginary
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axis from z = —ia, to z = ia,, and one from z = ia, to z = ia, + cya?. See the right
panel of Figure 2.

The contributions from the lower and upper pieces of 'y are both exponentially
decaying in time, since Re +? is negative along these pieces. Hence, the dominant
contribution is from the piece along the imaginary axis, and parameterizing this piece
as y(a) = ia, we have

11 [ 11 s 11 vt
= V(@ ()R, da = — — —a’t g :———/ v du.
27rit/a*6 V(@) Ryda=—o t/ ¢ METer) 400

The remaining integral attains its limit

a. vt 2 2
/ e v dw%/(f“’ dw =/
7(1*\/{ R

exponentially quickly as t — oo, so that altogether, we may write

1 2 1
= Vo, 2y—1 9
e eV L=~ ydy = —5- t3/2 VTR + O(t77),

completing the proof of the proposition. 0

5. Nonlinear stability — proof of Theorem 1. We write the nonlinear per-
turbation equation (1.11) in the weighted space, by defining p = wv, from which we
find

(5.1) pe = Lp+wN(g.,w 'p),
where
(5.2) N(gs,w™'p) = flgs +w ™ 'p) = flax) = f'(g:)w™ .

The nonlinearity is extremely well behaved — formally Taylor expanding, one sees

1"

N(q*,w p) f ( )w71p2+0( -2 3)

In particular, the entire nonlinearity carries a factor of w™!, and hence is exponentally
localized, so we may use strong decay estimates on the nonlinear term in the variation
of constants formula. The main difficulty has therefore already been resolved in proving
sharp linear estimates in Proposition 4.1, and so we complete the proof of Theorem 1
in this section using a direct, classical argument, as used for instance in the proof of
Theorem 1 of [8].

The nonlinear equation (5.1) is locally well-posed in H}(R) for any r € R, by
classical theory of semilinear parabolic equations [19]: for initial data po with ||pol| 1
sufficiently small, there exists a maximal existence time T} € (0, 00] and a solution
p(t) to (5.1) defined up to time T, with T\ depending only on ||pg|z:. We rewrite
(5.1) in mild form via the variation of constants formula

t
(5.3) p(t) = e“ipy + / E9) N (g, w0 p(s)) ds.
0
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Since the original nonlinearity f in (1.2) is smooth, and H!(R) is a Banach algebra, it
follows from Taylor’s theorem that for any s,r € R, there is a nondecreasing function
K :R; — R, such that

(5.4) [wN (g, w™"p)|

1 < K(R)|pll7s,

if ||w™!pl|z= < R. Here, the extra factor of w™! in the Taylor expansion of the
nonlinearity is used to control the algebraic weights.
We now fix r > 3/2 and define

(5.5) O(t) = sup (1+5)*2|p(s)| 1 -

0<s<t

We prove Theorem 1 by obtaining global control of ©. In the proof, we will need to
use the estimate

(5.6) le“*poll a2 < Cllpoll sz

for 0 < ¢t < 1, which holds for any fixed r € R and follows from classical semigroup
theory [19, Section 1.4].

PROPOSITION 5.1. There exist constants Cy,Ca > 0 such that the function O(t)
from (5.5) satisfies

(5.7) O(t) < Cillpollm; + C2K (o O(1))O(1)?
for all t € [0,T*), where poo = ||prw ™| Lo
Proof. First assume 0 < ¢t < 1. Then by (5.6), we have

(L+ 02" pollr < Cllpoll s, < Cllpollay-

For the nonlinearity, we have, again using (5.6) and also (5.4)

t
/eﬁ(t_s)wN(q*,w_lp(s))ds
0

t
<C [ JoN(gw o)y ds
H! 0

t
< [ Kl p(o) =) o)
<t sup K(Jw ™ p()ll=)Ip(s)]:
0<s<t -
<COW? sup K(|w 'p(s)]1~).
0<s<t

Using the embedding of H!(R) into L (R), we have

COW? sup K (I~ p(3)1~) < COUPK (o sup lo-rp(o)le- )

0<s<t
< CO(t)?’K (poo sup |p(3)”H1T>
0<s<t
< CO)’K (pO(t)).

Altogether, using the fact that ¢t — ©(¢) is non-decreasing, we obtain (5.7) for 0 < ¢ < 1.
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Now we let t > 1. For the linear evolution, we have by Proposition 4.1

1+t 3/2
(5.8) (1+ >l e“ pollm, < C(tTgllpollH; < Cllpo]

H-
For the nonlinearity, again using Proposition 4.1, we have

C
L(t—s) -1 )
”6 O‘)N(Q*7w p)||H7T < (t*S)?’/Q‘

\wN(q*,w_lp)HH; ds.
But by (5.6), we also have
le“ P ON (ge,w™ )| 1, < CllwN(ge,w™'p) a2

for (t — s) < 1. Tt follows that, also using the quadratic estimate on the nonlinearity
as above,

t t
s _ 1 _
‘ /0 el )wN(q*,w 1p)ds o < C/o 7(1+t_3)3/2||wN(q*,w 1p)|\H; ds
< CK(pss©(1))O(t)? /t ! L s
= Poc o (1+t—5)3/2(1+s)3

By splitting the integral into integrals from 0 to ¢/2 and ¢/2 to t and estimating each
piece separately, it can be readily shown that

/t 1 L e C
o (L+t—s)P32 (14937 = Q+t)32

Hence we obtain
(5.9) (141)%/? < CK (ps©(t))O(t)?

t
/ eﬁ(t_s)wN(q*,w_lp) ds
H!

0

for t > 1. Together with (5.8), this shows that (5.7) holds for ¢ > 1, completing the
proof of the proposition. 0

Proof of Theorem 1. Let ||polz1 be sufficiently small so that
(510) 201”])0”}[; <1 and 40102[((,000)”]70”}[} < 1.

We claim that ©(t) < 2C1([po|lmpw) < 1 for all ¢ € [0,T%). Since ©(0) = [[po|l a1 ®) <
lpoll 2 (ry < 2C1|poll 1 (w) (choosing C1 > 1/2 if necessary), continuity of © guarantees
that ©(t) < 2C1||pol|m: () for sufficiently small . Now suppose there is some time 7'
at which ©(T") = 2C1||pol| 1 (r). Then, by (5.7) and the fact that K is non-decreasing,
we have

1 <4C1CoK (poo)|lpoll 2 5

contradicting (5.10). Hence ©(t) < 2C1||poll 1 (r) < 1 for all ¢ € [0,7%). In particular,
we have uniform control over ||p(t)||g1 , which implies that we have global existence

in H! (R), and

o0, < sl
p)llar = 1+ 1)3/2 PollH}
for all t > 0. This completes the proof of Theorem 1, recalling that v = w™!p. 0
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6. Asymptotics of solution profile - proof of Theorem 2. In this section
we prove Theorem 2, establishing an asymptotic description of the perturbation. As
in the proof of Theorem 1, the main difficulty has already been overcome by obtaining
a detailed description of the asymptotics of the linear semiflow in Proposition 4.2.
We handle the nonlinearity via a direct argument, which is essentially the same as
that used in [15] in the context of diffusive stability of time-periodic solutions to
reaction-diffusion systems.

We begin by decomposing the linear semigroup as

et = B0(1) + (1)

where

1 R

0 —

and ®%(t) is the remainder term from Proposition 4.2, which satisfies in particular

C
1 P(¢t 1 1 <
) 0 Ol o, < o

for t > 1 and r > 5/2. We use this decomposition to rewrite the variation of constants
formula as

(6.2) p(t) = ®°(t)po + ®*(t)po + /0 PO (t — s)wN(gs,w 'p)ds

t
—|—/ P (t — 8)wN (g, w 'p)ds.
0

Arguing as in the proof of Theorem 1, we readily see that the parts of the solution
associated with the flow under ®*%(¢) decay faster than t73/2 as stated in the following
lemma. For the remainder of this section, we let 7 > 5/2 and assume the hypotheses
of Theorem 2 hold.

LEMMA 6.1. Fort > 1, we have

(63) 9= Opollns, < g Il

and
t

00 || [ e senas e as| < i
0 o (1+1)? "

We now decompose the term in the nonlinearity involving ®° in order to identify
which parts of it contribute to the leading order asymptotics and which are faster
decaying. We write

(6.5) /0 PO (t — 8)wN (qu,w p(s)) ds = Ty (t) + Lo (t) + Is(t) + Lu(t),
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1132  where

t
1133 () = / ®Y(t — 8)wN(qu,w *p(s)) ds,
t/2
t)2
1134 To(t) = / (@t — 5) — B0 ())wN (qurwp(s)) ds,
0 (oo}
1135 I3(t) = <I>O(t)/ WN(q.,w p(s)) ds,
1136 0
1137 and
1138 T4(t) = —<I>0(t)/ WN(gs,w ™ p(s)) ds.
1139 t/2
1140
1141 LEMMA 6.2. The terms in the decomposition (6.5) satisfy for t > 1
i (66) 1L Ol < ——ll?
. 1 H! = 1+1)3 PollFys
s (67) IZOllr, < ez ol
144 RONHL = gy POl
1145 and
i (68) IZaOllir, < s ool
46 . 4 g S —75|Po 1.
1147 T (14)7/? i
1148 Proof. The proofs of (6.6) and (6.8) proceed similarly to the proof of Theorem 1,

1149  so we focus on the estimate for Z5(t). By the mean value theorem, we have
1159 732 = (t—s) 32 < Cs(t — 5) 77/,
1152 and so it follows, using (5.4) and Proposition 4.2, that

t/2
- 2 S 9 2 c 2

1155 for t > 1, completing the proof of the lemma. ]

6 Having identified which terms are irrelevant for the leading order time dynamics,
1157 we are now ready to prove Theorem 2.

1158 Proof of Theorem 2. Using Lemmas 6.1 and 6.2 to separate out the faster decaying
1159 terms in the variation of constants formula (6.2), we have

1160 (6.9) p(t) = ®O(t) <p0 + /000 wN(q*,w_lp(s))ds) +0(t72),

1162 where the O(t~2) terms are understood as being controlled in H' . by C(1+t)~2|Ipol| 2
1163 for t large. By the definition of ®° and Lemma 3.7, we have

oo
1164 ®0(t) (po + / WN (., w p(s)) ds) = i, t 73/,
0
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where % is the linearly growing solution to £ = 0 identified in the proof of Lemma
3.7, and « is given by

(6.10) 0. = 5= [ g @it do

where g'(y) is the function from the expansion of the Green’s function, G1(x,y) =

Y(x)g' (y), and

(6.11) B(y) = poly) + / T )N (e ()p(y, 5)) ds.

The asymptotic decomposition (6.9) is therefore exactly the statement of Theorem 2,
with this choice of a.. 0

7. Stability at lower localization — proofs of Theorems 3 and 4. We now
use the ideas developed in the proof of Theorem 1 to understand the behavior of e£*
when acting on initial data which is less strongly localized. The nonlinearity is still
strongly localized, by (5.4), so we only prove the linear estimates needed to prove
Theorems 3 and 4, as one may use exactly the same estimates on the nonlinearity as

used in the proof of Theorem 1, due to the extra exponentially decaying factor w=1.

7.1. Holder continuity of the resolvent — proof of Theorem 3. When
acting on functions in L(R) for 3 < r < 2, the resolvent (£ —~?)~! is no longer
Lipschitz in -, but instead has some Holder continuity. We exploit this Hoélder
continuity to obtain sharp time decay rates exactly as in the proof of the t~3/2 decay
for r > 3/2 in Proposition 4.1.

PROPOSITION 7.1. Let 3 < r < 2,

r—32+min (1,—3 — s). Then

s < r—2, and fix some o with 0 < «a <

(7.1) (£L—=7*)""=Ro+O(ly[*)

in B(L2(R), H?™~1(R)) for v small with v* to the right of the essential spectrum of L.

Using the far-field/core decomposition argument of Section 3.1, the proof of
this proposition reduces to obtaining the corresponding estimate for the asymptotic
resolvent (£, —~2)~!, acting on odd functions. This follows from explicit estimates
on the resolvent kernel Gj{‘ . As in Section 2, we decompose Gj as

Gh = Gh™ + (G5 - G + GS + Gl

The worst behaved pieces are Ggeat and GY, — Ggeat. We use the fact that we are
acting on odd data only to replace convolution with Gf‘/eat with integration against
G?Ydd (z,y) defined in (2.28). Using similar methods as in Section 2, we obtain the

following estimates on the parts of the resolvent kernel. We also make use of the fact
that for 8 > 0, (z)?(y)~# < (x — y)».

LEMMA 7.2. For 1> a > a > 0, the integral kernels ngd, G — G};eat, and C?,CY
satisfy the following estimates for v small with 4% to the right of the essential spectrum
of L,

(7.2) |G?,dd(x,y) — 2yp min(z, y)| < C|fy|f¥<x>a<y>1+o¢—a’
(73) |ny(gc — y) _ G}’;eat(x o y)| < C|’Y|a<x>a<y>1+0‘*a’
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and
(7.4) GS(x—y) — Gi(z —y)| < Cly|* |z —y|*

Together with the fact that convolution with Gf; is analytic in 72 as an operator on
L?(R), we obtain

(L+=79*)~" = Ro+O(1|%)

in B(L?,(R), H?7?~'(R)) for the values of r,s,a and v specified in Proposition 7.1.
Using this and repeating the far-field /core decomposition argument in Section 3.1, we
obtain Proposition 7.1. We use this regularity of the resolvent to prove the following
time decay estimate for the semigroup.

PROPOSITION 7.3. Let % <r < % and s < r—2. For any a with 0 < a <
r— % +min (17 -1 8), there is a constant C' > 0 such that the semigroup e“t satisfies

2
fort>0

C
t1+

(7.5) ||€£t||Lg_>H§m*1 <

[N)

Proof. We use the same contours as in the proof of Proposition 4.1, pictured in
Figure 2. We follow the proof of this proposition — again, the relevant part of the
contour is the piece I') which touches the origin. We use Proposition 7.1 to write

1 2 1 2
~ [ ey = = [ Re+ O an.

i Jro i

As in the proof of Proposition 4.1, we see that the integral associated to Ry decays
exponentially in time, and the remainder can be estimated by parametrizing the
contour with y(a) = ia + ca? and changing variables to z ~ av/t, which readily gives

1

L / (R + O(7]*))y dy
i Fg

<

2m—1
L2—H;

as desired. 0

Theorem 3 follows from applying Proposition 7.3 in a direct nonlinear stability
argument as in Section 5.

7.2. Blowup of the resolvent — proof of Theorem 4. The resolvent (£ —
7?)~! acting on L2(R) for r < 1/2 is no longer uniformly bounded for v small with
72 to the right of the essential spectrum. However, by again explicitly analyzing the
asymptotic operators and transferring these estimates to the full resolvent with a
far-field /core decomposition, we can quantify the blowup of the resolvent and thereby
obtain decay rates for the semigroup. The key result is the following blowup estimate.

PRroOPOSITION 7.4. Let —% <r< % and s <r —2. For any B with % —r<fg<
—5— %, there is a constant C' > 0 such that
C

(7.6) H(E_'YQ)_lnL;%—)Hf’”‘l < B

for v small with Re~y > 1|Im~y|.
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Fic. 3. Fredholm borders of L (red, magenta) together with the integration contour used in the
proof of Proposition 7.6, at a moderate time t > 1 (left) and a large time t > 1 (right).

As in the previous sections, we start by proving the corresponding result for the
asymptotic operator (£, — +?). This estimate follows from the explicit estimates on
the resolvent kernel that we collect in the following lemma.

LEMMA 7.5. For any 3 > 0, the integral kernels G°4, G — Ggeat, and éfy satisfy
the following estimates for v small with Rey > £[Im~|

G2 (2, )| < fw<x>ﬂ+l<y>—ﬂ,
GE (@ — ) — Gh(a — )| < fv,<x>ﬂ<y>-ﬁ,
and
c C —
G (o= < s )

Gf; is uniformly exponentially localized in space for v small, and so convolution

with GQ is uniformly bounded in ~ for « small between any two algebraically weighted
spaces. From this and Lemma 7.5, we obtain

<

(L4 — ’72)_1HL§’7,—>H§,’2’1 < BIE

for r, s, 8, and ~y as in Proposition 7.4. Again, using the far-field/core decomposition
in Section 3.1, we readily obtain Proposition 7.4 from this estimate.

We now use this control of the blowup of the resolvent to obtain time decay
estimates for the semigroup. Since the resolvent is blowing up at the origin, we can no
longer shift our integration contour all the way to the essential spectrum. Instead, we
use a classical semigroup theory argument, integrating along a circular arc as pictured
in Figure 3.

PROPOSITION 7.6. Let —% <r< % and s < r—2. For any 8 with % —r<fg<
-5 — %, there is a constant C > 0 such that the semigroup e satisfies for t > 1

(7.7) 1“1 2, grom—2 <
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Proof. We integrate over the contour I'y = T'; UTY UT} pictured in Figure 3. The
important piece is the circular arc I'Y, which we parameterize for ¢ > 1, fixed, as

co
F? = {)\(@) = 7061% P e (—<P0,900)}

with ¢g, and ¢y chosen appropriately so that T'? does not intersect the essential
spectrum of £ for t > 1, and so that Proposition 7.4 holds for 42 € I'Y for ¢ sufficiently
large. The contours I‘ti are rays connecting the I'Y to infinity, in the left half plane, as
pictured. The semigroup e“* may be written as

1
Fl=—— [ ML—-N"ta\
2w Jr,

The contributions to this integral from Fti are exponentially decaying in time, so we
focus only on the integral over I'Y. Here we change variables to £ = M, so that

-1
! ML - N = il/ et <£—§> de.
ry

2mi Jro omi t ¢

By Proposition 7.4, we have for ¢ large

(-5

/ ML —N)"hax
re

tﬁ/Q
< Cigpre

L2—H2m !
and so

1
211

C 1 C
< et d¢ < ,
Tt /rg| ||§|B/2 ‘= =%

as desired. O

2m—1
L2—Hj

Theorem 4 readily follows from Proposition 7.6 and a direct nonlinear stability
argument as in Section 5. Again, we emphasize that the nonlinearity is still expo-
nentially localized due to the extra factor of w™!, and so we may use strong decay
estimates on the nonlinearity to close this argument.

8. Examples and discussion.
Second order equations. The classical setting for studying invasion fronts is that
of second order scalar parabolic equations

(8.1) Up = Ugy + f(u).

It is well known that if, for instance, f(0) = f(1) = 0, f/(0) > 0, f’(1) < 0, and
f"(u) <0, then there exist monotone traveling fronts in this equation for all speeds
¢ > ciin = 24/ f(0), and that the linearization about the critical front, with ¢ = ¢y,
satisfies our spectral assumptions. In this case unstable point spectrum is ruled out
using Sturm-Liouville type arguments [40, Theorem 5.5]. A more detailed discussion
of conditions on f which guarantee the existence of monotone fronts above certain
speed thresholds is given in [17].

To put our spectral assumptions in the context of dichotomies between pushed
and pulled fronts, we consider a bistable nonlinearity with a parameter 0 < p < %

(8.2) Up = Uge +ulu+ p) (1 — p—u).
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This equations has three spatially uniform equilibria, of which u =1 — g and v = —p
are stable, while u = 0 is unstable. It is shown in [17] that if 1 < p < 3, then
there exist monotone fronts connecting 1 — p at —oco to 0 at +oo for all speeds
¢ > aim = 2y/u(l —p) — the fronts are pulled, in the sense that the minimal
propagation speed matches the linear spreading speed. In this case, our results apply
to the critical front with ¢ = ¢, (one may rescale the amplitude of u by (1 — )~ to
scale the stable state on the left to u = 1, if desired).

However, if 0 < p < %, then there exist monotone fronts connecting 1 — u to 0 only
for ¢ > cmin = H—; > ¢)n — the fronts are pushed, in that the minimal propagation
speed is greater than the linear spreading speed, due to amplifying effects of the
nonlinearity. In this case, there still exists a front with ¢ = ¢};,, but this front is not
monotone, and hence its linearization has an unstable eigenvalue by Sturm-Liouville
considerations, and our assumption on spectral stability, Hypothesis 4, no longer
applies. Since this front is unstable, the relevant question for the dynamics of this
system is the stability of the pushed front, with ¢ = ¢p,j,. This is more straightforward
than the stability of the pulled fronts considered here, as the essential spectrum can
be stabilized with exponential weights, leaving only a translational eigenvalue at the
origin. One then obtains orbital stability of the pushed front by projecting away the
effect of this translational eigenvalue, with exponential in time decay to a translate of
the front [41].

At the transition between pushed and pulled fronts, p = %, we have cpin = Clin,
and there is a monotone front connecting 1 — p to 0 with this speed. This front is
marginally spectrally stable, satisfying Hypotheses 1 and 2 with no unstable point
spectrum. However, in this case the front has strong exponential decay, q.(x) ~ e~
as x — 00, and so its derivative contributes to a resonance of the linearization in the
appropriate exponentially weighted space. Hence our analysis does not apply to this
threshold case, and to our knowledge, precise decay rates for perturbations to the
front have not been identified.

The extended Fisher-KPP equation. The extended Fisher-KPP equation

(83) Uy = _52uxx;wc + Ugy + f(u)

may be derived from reaction-diffusion systems as an amplitude equation near certain
co-dimension 2 bifurcation points [36]. If f is of Fisher-KPP type, e.g. f(1) = f(0) =
0, f'(0) >0, f(1) <0, and f”(u) <0 for u € (0,1), then this equation is a singular
perturbation of the Fisher-KPP equation, and using methods of geometric singular
perturbation theory, Rottschifer and Wayne established in [35] that, exactly as for
the Fisher-KPP equation, there is a linear spreading speed ¢jin(g) such that for all
speeds ¢ > ¢jin(€), there exist monotone front solutions connecting 1 at —oo to 0 at
4o00. In the same paper, Rottschifer and Wayne also considered stability of these
fronts using energy methods, establishing asymptotic stability but without identifying
the temporal decay rate.

Using functional analytic methods developed to study bifurcation of eigenvalues
near resonances in the essential spectrum [34] and to regularize singular perturbations
[16], one can view the analysis of the linearization about the critical front here as a
perturbation of the corresponding problem for the underlying Fisher-KPP equation,
and thereby show that for £ small the linearization has no unstable point spectrum and
no resonance at the origin [2]. Our results therefore apply in this case, extending the
stability results of [35] by giving a precise description of decay rates for perturbations.
We emphasize that here stability cannot be proven using comparison principles.
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Systems of equations. Our approach can be readily adapted to systems of parabolic
equations satisfying our assumptions. A version of Theorem 1 was recently proved
for pulled fronts in a diffusive Lotka-Volterra model by Faye and Holzer [9], using
the competitive structure of the system to exclude unstable eigenvalues with the
comparison principle. Using our methods, one should obtain an extension of this
result, removing the requirement for localization of perturbations on the left, as well
as versions of Theorems 2 through 4 in this setting.

Our next two examples highlight the importance of our assumption that the
linearization about the front is marginally spectrally stable in a fixed exponential
weight, with a focus on how this assumption relates to ensuring that the linear
spreading speed identified in Hypothesis 1 is the selected nonlinear propagation speed.
The first example gives a system in which this assumption on exponential weights is
both necessary and sufficient for nonlinear propagation at the linear spreading speed.
Consider the following system of equations

ut:um—ku—ug—kev

Uy = dew + g(’l)),

with d > 0, g(0) = 0, and ¢’(0) < 0. This system has a front solution (u(z,t),v(z,t)) =
(g«(z — 2t),0), where g, is the critical Fisher-KPP front in the first equation, with
g«(—o0) = 1 and g«(oc0) = 0. The linearized equations about (u,v) = (0,0), in the
co-moving frame with speed 2, are

Up = Ugg + 2Ug + u,
vy = dvge + 20, + g'(0)v.

In order to stabilize the essential spectrum in the first equation, we use a smooth
positive exponential weight

z >1
w(x):{e’ T=5

r < -1,

writing U = wu, V' = wv. The linearized equations for U and V about U =V = 0 for
x > 1 are then

Ut = Uza:a
Vi = dViy + (2 — 2d)V, + (d — 2+ ¢'(0))V.

In order to have marginal spectral stability in a fixed exponential weight, as required
by Hypothesis 4, we must have d < 2 — ¢’(0). Holzer demonstrated in [20] that if this
condition is violated, then the system exhibits anomalous spreading — the nonlinear
propagation is no longer determined by the condition in Hypothesis 1. In this case,
the assumption of marginal stability in a fixed exponential weight, which we use in
our analysis, is necessary and sufficient for nonlinear invasion at the linear spreading
speed. Our results should apply in this system for d < 2 — ¢’(0), using smallness of the
coupling coefficient € to obtain the spectral stability in Hypothesis 4 via a perturbative
argument.

If one modifies this system slightly, the situation becomes more subtle. The key
modification is to replace the linear coupling term v with quadratic coupling, as
considered by Faye et al. in [10]. The examples there are amplitude equations which
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can be derived from systems in which a homogeneous state undergoes a pitchfork
bifurcation simultaneously with a Turing bifurcation, and have the form

Ut = Ugpgy + U — u? + a1v2 + aguvz,

v = dvge — biv — bav®.

Such systems can be derived as amplitude equations from the class of scalar parabolic
equations we consider here, if f(u) = puu — u® and P is an 8th order even polynomial
satisfying

P(0) =¢?, P'(0) =0, P"(0)=2,
P(0) = —bie?, P'(i)=0, P"(i)=2d.

The linearization about the unstable state (u,v) = (0,0) is unchanged from the
previous example, and so d < 2 — by is still a necessary condition for the linearization
to have marginally stable essential spectrum in a fixed exponential weight. However,
because the coupling terms are all at least quadratic in v, unlike in the previous
example the linearization about the unstable state is still marginally pointwise stable
at ¢ = 2 even for d 2 2 — by, in the sense that solutions to

Ut = Ugpy + CUy + U,

vy = dUgy + CcUp — b1

with compactly supported initial data decay exponentially to zero, uniformly in space,
for ¢ > 2, but grow for ¢ < 2 [21]. Hence, if d is only slightly larger than 2 — by, the
linear spreading speed is still ¢ = 2, and Faye et al. show using pointwise semigroup
methods [11] that the pulled front traveling with this speed is nonlinearly stable. Hence
this example demonstrates that marginal stability in a fixed exponentially weighted
space is mot necessary for invasion at the linear spreading speed, although we have
used this assumption for our analysis here. For large values of d in this system, the
coupling does change the spreading speed to a “resonant spreading speed” which is still
linearly determined but not by a simple pinched double root criterion as in Hypothesis
1 [10].
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