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Abstract

We establish sharp nonlinear stability results for fronts that describe the creation of a periodic pattern
through the invasion of an unstable state. The fronts we consider are critical, in the sense that they are
expected to mediate pattern selection from compactly supported or steep initial data. We focus on pulled
fronts, that is, on fronts whose propagation speed is determined by the linearization about the unstable
state in the leading edge, only. We present our analysis in the specific setting of the FitzHugh-Nagumo
system, where pattern-forming uniformly translating fronts have recently been constructed rigorously [18],
but our methods can be used to establish nonlinear stability of pulled pattern-forming fronts in general
reaction-diffusion systems. This is the first stability result of critical pattern-selecting fronts and provides
a rigorous foundation for heuristic, universal wave number selection laws in growth processes based on a
marginal stability conjecture. The main technical challenge is to describe the interaction between two
separate modes of marginal stability, one associated with the spreading process in the leading edge, and
one associated with the pattern in the wake. We develop tools based on far-field/core decompositions
to characterize, and eventually control, the interaction between these two different types of diffusive
modes. Linear decay rates are insufficient to close a nonlinear stability argument and we therefore need
a sharper description of the relaxation in the wake of the front using a phase modulation ansatz. We
control regularity in the resulting quasilinear equation for the modulated perturbation using nonlinear
damping estimates.
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1 Introduction

Invasion into unstable states plays an important role in the development of complex coherent structures in
many physical systems. Unstable states can be observed as a transient for instance after a change in system
parameters, or after the introduction of a novel external agent to which the system is unstable. In spatially
extended systems, one expects localized fluctuations of the now unstable background state to grow and
spread, leaving a new stable state in the wake of a propagating invasion front. A fundamental problem then
is to predict the speed of propagation of the invasion process as well as the new state selected in its wake.

Predictions for invasion speeds in the mathematical literature have historically been restricted to systems
with comparison principles. Since comparison principles are incompatible with complex pattern formation,
invasion fronts in these systems typically select a new spatially homogeneous equilibrium in their wake.
On the other hand, many interesting invasion phenomena have been observed in experiments, simulations,
and formal analyses in pattern-forming models describing a large variety of physical systems; see [75] for a
comprehensive review. Pattern-forming systems usually admit families of periodic patterns, parameterized
by the wave number. An invasion process spreading into an unstable state typically selects one distinguished
pattern and wave number out of this family; see [24]. This wave number selection mechanism has been
observed in many experiments across the sciences [75], and has promising applications to nanoscale
manufacturing technologies [10, 56]. However, beyond the heuristics [24] and matched asymptotics [73],
there do not appear to be mathematical results or techniques that describe these phenomena.

In a first approach, one would hope to make such predictions rigorous by finding a unique speed and wave
number for which there is a stable traveling front solution connecting the unstable state to a periodic
pattern in the wake. Existence of pattern-forming fronts has been rigorously established near the onset of a
Turing instability [20, 25, 29, 37] and in phase separation problems [68, 69]. However, such fronts typically
exist and are stable for a continuum of speeds and associated wave numbers, so that this simple approach
does not predict which of these speed-wave number pairs are selected by localized initial data.

The marginal stability conjecture [9, 15, 16, 21, 24, 74, 75] asserts that speeds and associated wave numbers
are determined by the distinguished front solutions which are marginally spectrally stable in an appropriate
sense. There are two distinct scenarios for marginal spectral stability: the marginal stability may arise from
marginal pointwise stability of the unstable state in the leading edge in a distinguished moving frame, or
from marginally stable point spectrum of the invasion front itself. The former case is referred to as pulled,
or linearly determined, propagation, while the latter case is referred to as pushed, or nonlinearly determined,
propagation. Because the associated spectrum is marginally stable, or critical, selected fronts are sometimes
referred to as critical fronts. By contrast, faster-traveling supercritical fronts arise for a continuum of speeds
and associated wave numbers, and are often stable against restricted classes of perturbations. Stability of
these supercritical fronts has been shown rigorously in some pattern-forming systems [27, 28], but they do
not appear to be relevant to selection and propagation from compactly supported or steep initial data.

The marginal stability conjecture was recently established for systems of parabolic equations [2, 9] based
on a novel, conceptual approach that does not rely on comparison principles, thus providing a promising
avenue towards the analysis of pattern-forming systems that inherently do not possess ordering properties.
The analysis there does however assume that the marginally stable front selects a spatially constant,
exponentially attracting state in its wake, rather than a periodic pattern.

The results in [2, 9] demonstrate that the key ingredient to establishing the marginal stability conjecture is
a sharp theory for nonlinear stability of invasion fronts against perturbations that do not alter the decay
in the leading edge of the front. These sharp stability results predict the characteristic log-shift of the
front position when starting from compactly supported or steep initial data and allow to close the matched
asymptotics arguments in [73]. Our main result, informally stated below as Theorem 1.2, provides precisely
these sharp stability estimates in the case of a uniformly translating, pulled front that creates a pattern in
its wake.
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Figure 1: Left and center: Space-time plot of u from direct simulations of (1.2) with initial condition v = w = 0 perturbed
by small white noise (left) and a small perturbation on the left end (center); a = 0.4,y = 0.1,e = 0.005. Insets show the
u-component at time ¢ = 1000. Right: schematic of first component uf. (red) and ub, (blue) of invasion fronts u;r/ e({) in the
co-moving frame, together with the dynamics of perturbations (black) in the leading edge and in the wake. Perturbations
in the leading edge decay with improved rate =3/ 2 while perturbations in the wake are transported outward by the group
velocity and decay with diffusive rate t~'/2. Note also that the patterns in the wake are large amplitude, highly nonlinear
structures which do not resemble a pure cosine wave.

To be concrete, we present our analysis in the setting of the FitzHugh-Nagumo system,

Ut = Ugy +u(u+a)(l —u—a) —w,

(1.1)

wy = &(u —yw),

which we write abstractly as a system for u = (u,w)"
B ‘ (10 ' _fuu+a)(l—u—a)—w
w; = Dug, + F(u;a,7v,6), D= (0 0) , F(wa,y,e) = ( (1 — ) ) : (1.2)

The FitzHugh-Nagumo system (1.2) models excitable and oscillatory media far from equilibrium and is
ubiquitous across the sciences as both a phenomenological model and as a more rigorous simplification of
more complex descriptions. It arose in this latter fashion first as a simplification of the Hodgkin-Huxley
equations for signal propagation in nerve fibers and, together with variations and adaptions, has since
been used to model, for instance, the onset of turbulence in fluids [12], carbon monoxide oxidation on
platinum surfaces [11, 53|, and cardiac arrhythmias [51]. Mathematically, (1.2) is a scalar reaction-diffusion
equation coupled to a linear ODE and, thus, one of the simplest models which could, and does exhibit
spatio-temporal pattern formation.

Existence of pulled fronts. We consider (1.1) in the oscillatory regime, 0 < a < %, and 0 < vy < 4, with
0 < e < 1. In this regime, u = (0,0) is the unique spatially constant equilibrium, but is unstable with
perturbations growing in any translationally invariant norm. Linearizing at this unstable equilibrium, one
finds a linear spreading speed cjin(a,v,e) = 2v/a(l — a) + O(e) together with a characteristic exponential
decay rate —min(a,, €), at which the hnear equatlon is marglnally stable; see [18, Lemma 2.1] or Lemma 3.2
below for details, as well as [39] for background on linear spreading speeds. In addition to this spatially
constant solution, (1.1) admits stable time-periodic, z-independent solutions, commonly referred to as
relaxation oscillations, and spatially periodic modulations of these oscillations, which are traveling waves
u(z,t) = uwt(r — ct) satisfying uy(€) = uwt(§ + L) for some L > 0. These periodic traveling waves, or
wave trains, exist for a range of periods L, < L < oo with speeds ¢ = ¢(L). Traveling front solutions
u(z,t) = u(z — ct) that connect u = (0,0) to a wave train uy have been constructed in [18, Theorem 1.2]
using dynamical systems techniques, in particular geometric singular perturbation theory.

Theorem 1.1 (Existence of pulled pattern-forming fronts [18, Theorem 1.2]). Fiz (3 — v/6)/6 < a < 1
and 0 < vy < 4. There exists €9 > 0 such for all 0 < e < gg (1.2) admits two pulled pattern-forming front



solutions u(x,t) = uf(r — cint) and u(z,t) = ul(x — cunt), which satisfy

ul/" (&) = [ug/ri +ul" bg/rué/r} e M€ L Qe ity ¢ 5 o0, (1.3)

and
ug(€) = ul (6) + O(™), € —oo, (1.4)
for some VYT € R, n >0, ug/r € R2\ {0}, and uﬁ/r € R2, where ufv/tr is a wave train solution with selected

period L > 0 and wavenumber %’T, Clin s the linear spreading speed, and nyuy s the characteristic exponential
decay rate. Both fronts select the same wave trains, ufvt(ﬁ) = ul, (£ + &o) for some & € R but have opposite
monotonicity in the leading edge, uf =-uj, j=0,1

See Figure 1 for a schematic of the fronts. We shall discuss below results that establish that both fronts
up, and ufr are marginally stable due to marginal stability in the leading edge, that is, they are pulled
fronts. We emphasize that the wave trains generated in the wake are “far-from-equilibrium patterns”, in the
sense that they posses large amplitude and are highly nonlinear, in contrast to the low-amplitude, weakly
nonlinear patterns selected by fronts near a Turing instability [20, 29, 37].

Nonlinear stability of pulled fronts — main result. To study stability of the front solutions
established in Theorem 1.1, we consider the frame £ = = — ¢}t moving with the speed ¢y, in which (1.2)
reads

w; = Duge + aindeu + F(u;a,7,¢), (1.5)
so that the front is a stationary solution to (1.5). Our main result may be informally stated as follows.

Theorem 1.2. Let ug be a uniformly translating pattern-forming front solution to (1.2), as established in
Theorem 1.1. Assume that ug satisfies the following marginal spectral stability assumptions:

e The wave train generated by the front is diffusively spectrally stable, that is, its spectrum touches the
origin in a single parabolic tangency and is otherwise stable;

e The group velocity of the wave train points to the left, away from the front interface;

o The linearization of (1.5) about ug possesses no unstable point spectrum, and no embedded eigenvalue
at A =0.

Then, ug is nonlinearly stable as a stationary solution to (1.5) against sufficiently localized perturbations,
and perturbations decay pointwise in time with sharp diffusive rate t=Y2, and with enhanced rate t=3/% in
the leading edge of the front.

Before we prepare a more precise statement of this result in the next section (see Theorem 2.1), where we
will also point out the conceptual nature of our methods with potential broader applicability, we mention
some subtleties.

The assumptions in Theorem 1.2 are made precise in Hypotheses 1 through 3 below and are established
for (1.2) in natural parameter ranges in the companion papers [3, 4]. The assumptions guarantee that the
fronts studied here are pulled fronts, since they propagate at the linear spreading speed and do not possess
marginally stable or unstable point spectrum. The diffusive spectral stability that we require for the wave
trains in the wake is generic for wave trains in reaction-diffusion systems and a standard assumption for
their nonlinear stability analysis [46, 66, 72]. The group velocity of the wave train describes the direction of
transport of small perturbations; see [26] for further background. We assume that the group velocity points
away from the front interface so that the front naturally acts as a source of patterns in the sense of [63].



Spreading at the linear spreading speed guarantees diffusive decay in exponentially weighted spaces in the
leading edge; see Figure 1.

We reiterate that the fronts studied here are uniformly translating, i.e. equilibria in a comoving frame. In
particular, they are not time-periodic in a comoving frame (or modulated) as is the case for many other
pattern-forming fronts. Such modulated fronts have been constructed in the wake of a Turing instability [20]
but also for large amplitudes in spinodal decomposition [69]. We do not treat such modulated fronts in this
paper, but we expect that our methods and proofs can be adapted to this case; see also [14, 62] for stability
results of modulated waves in the presence of essential spectrum. In this context, it is worth noting the
stability result in the complex Ginzburg-Landau equation in [8], which does give sharp stability estimates
towards a front that describes pattern formation near a Turing instability, albeit in an amplitude equation
setting that averages oscillations so that the front is in fact uniformly translating, and which allows for
coordinate choices that are not available in more general situations, in particular the present one.

The u-component of both fronts in Theorem 1.1 are monotone in the leading edge: for left fronts, ufr is
increasing and for right fronts uj, is decreasing. Both fronts select the same state in the wake (up to a
phase shift of the wave train), a curious phenomenon not observed in order-preserving systems. Initial
conditions will converge to left or to right fronts depending on their behavior in the leading edge. One
indeed observes this selected wave number in simulations when the unstable state is perturbed by “shot”
noise, locally in space. In contrast, spatially distributed white noise perturbations lead to long-wavelength
modulations of spatially homogeneous oscillations with a slow coarsening process toward synchrony. In
this sense, the fronts studied here mediate a rapid frequency synchronization in an otherwise disorganized
system; see Figure 1. This work can be seen as a first instance where this rapid frequency synchronization
through growth is mathematically corroborated.

Finally, we point out that the asymptotic estimate (1.3), while not explicitly stated in [18], follows from an
extension of the analysis of [1, Section 4]; for a detailed proof, see for instance [5, Appendix A] in the context
of the Fisher-KPP equation. The estimate (1.4) follows directly from the existence construction in [18]
which finds the pattern-forming front in the unstable manifold of a hyperbolic periodic orbit representing
the wave train in the corresponding traveling wave formulation.

2 Overview, challenges, setup, and main result

A standard approach to studying nonlinear stability of a given coherent structure u,, say in a reaction-
diffusion system u; = Duge+cug+ f(u), is to derive an equation for the perturbation w(&,t) = u(¢,t) —u.(§),
of the form

Wi = AW+N(W)7

where A is the linearization about u, and A is the resulting quadratic nonlinear remainder. One then
studies the behavior of w by analyzing the associated variation of constants formula

w(t) = eMwg + /t A=) N (w(s))ds,
0

where wo(€) = u(&,0) — u,(€) is the initial perturbation, and e is a strongly continuous semigroup
generated by A. In general, one needs to prove that 4 indeed generates a suitable semigroup, although this
is automatic by standard results if, for instance, A is elliptic. One then hopes to establish decay of w(t) by
combining decay estimates on e with a contraction mapping or iterative argument on the variation of
constants formula. Hence, the key first step is to obtain sharp linear decay estimates on the associated
semigroup e“**. In Sections 2.1 and 2.2, we explain challenges to obtaining suitable linear and nonlinear
estimates to close a nonlinear iteration argument in our present context, before setting up and precisely
formulating our main result in Sections 2.3 through 2.5.



2.1 Linear diffusive stability

Classical semigroup estimates. If the spectrum of the linearization A is strictly contained in the left
half-plane and a spectral mapping theorem holds, solutions to the linearized equation decay exponentially
in time yielding nonlinear stability by classical arguments. If the spectrum is stable except for some discrete
eigenvalues at the origin, typically related to translation invariance or other symmetries of the original
equation, then one can define spectral projections which separate these neutral modes and recover nonlinear
stability of the family of underlying traveling waves; see [38, 48] and references therein. In some cases when
the essential spectrum is unstable or marginally stable, exponential weights can be used to push the essential
spectrum into the left half-plane and return to a setting where classical arguments give stability [67].

Exponential weights. In our case, the essential spectrum of the linearization about ug is unstable in
L?(R, C?) due to the instability of the background state u = 0 to which ug, converges at £ = +o00. Since the
front is critical, traveling with the linear spreading speed, the essential spectrum cannot be fully stabilized
with an exponential weight. The optimal choice of weight renders the spectrum marginally stable, touching
the imaginary axis at the origin but otherwise contained in the left half-plane. To make this precise, we let

Agp = D@g + cinO¢ + F'(ug)

denote the linearization of (1.5) about the invasion front ug, and define a smooth, positive, monotonically
increasing weight function w satisfying

. B ]_7 f < 07
WE07:8) = | et £ > 1.

We will from now on suppress the dependence of w and n;, on a, v and €. We will restrict to perturbations
w of ug for which ww € L?(R). The spectral problem for perturbations of this type is equivalent to the
spectral problem for the conjugate operator

Ly = (A).Afrwil, (2.1)

acting on L?(R). Here and everywhere after, w™! denotes the function & —L_ not the inverse of the

w(§)’
function & — w(¢).

Critical diffusive modes. The essential spectrum of Lg touches the imaginary axis at the origin in two
different ways: one curve of essential spectrum is associated to the dynamics at +00, and has the expansion

A (ik) = —Dik* + O(K?), (2.2)
while the other is associated to dynamics near the wave train at —oco, and has the expansion
Awt (ik) = —icgk — DYFE? + O(k%), (2.3)

where D;}E, D¥t > 0, and ¢, < 0. The expansion of the first curve naturally arises from marginal pointwise
stability in the leading edge, which characterizes the linear spreading speed. The second expansion follows
from standard diffusive spectral stability of the wave train in the wake with negative group velocity ¢, in a
frame moving with the linear spreading speed; see Figure 2, middle panel, for a depiction of these critical
curves. These two curves, though both marginally stable, are quite different in that the first has a branch
point at the origin while the second does not. We refer to the dynamics associated to the first curve as a
branched diffusive mode, and those associated to the second as an outgoing diffusive mode. The fact that
cg < 0 means that perturbations to the wave train in the wake are, at least on the linear level, transported
to the left, away from the front interface [26], which is why we refer to these modes as outgoing.
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Figure 2: Spectrum of the unweighted linearization A (left) and the weighted linearization Lg (middle). The purple and blue
curves denote the essential spectrum of the limiting operators at +oo, respectively. These curves are the Fredholm borders of
A /L: in the shaded regions, the operator is Fredholm but with index -1 (light grey) or -2 (darker grey), with the index
changing across the Fredholm borders. Top right: spatial Floquet exponents of Lyt. Bottom right: spatial eigenvalues of £ ;
the box indicates a double spatial eigenvalue at the origin. See Section 3 for details about spatial Floquet exponents and
eigenvalues.

Branched diffusive modes occur naturally in the stability of pulled invasion fronts [2, 7, 9, 31, 32|, and
also of stationary periodic patterns [71, 72], degenerate viscous shock waves [40], layer solutions in phase
separation models [42], and contact defects [63, 64]. Outgoing diffusive modes arise naturally in the study
of the stability of undercompressive shock waves [77], traveling periodic waves [26, 45, 46], and source
defects [13, 63].

The curve (2.2) of essential spectrum associated to the branched diffusive mode cannot be stabilized with
an exponential weight, since a stable and an unstable spatial eigenvalue must collide at the branch point; in
the language of [61], there is absolute spectrum at the origin. See Section 3 for further details on spatial
eigenvalues and their relation to essential spectrum. At the linear level, the curve (2.3) of essential spectrum
associated to the outgoing diffusive mode can be moved into the left half-plane with exponential weights,
but these weights turn out to be incompatible with a nonlinear argument due to the outgoing group velocity.
Indeed, conjugating the equation with an exponential weight which stabilizes this spectral curve introduces
coeflicients in the nonlinearity which grow exponentially as £ — —o0o, and so one is not able to control the
nonlinearity with this approach. One therefore has no choice but to address a stability problem where
continuous curves of essential spectrum touch the imaginary axis, and, as a result, work with algebraic
decay of perturbations in the chosen function space.

When the underlying coherent structure is a purely periodic wave train, one can represent the corresponding
semigroup via the Bloch wave transform, analogous to the Fourier representation of the heat semigroup,
and use this representation to obtain algebraic time decay estimates for perturbations in the linearized
equation [44, 45, 46, 71, 72]. This approach does not work for front solutions connecting two different end
states, since no analogue of the Bloch or Fourier transform is available. An exception is in the study of
supercritical pattern-forming fronts, that is, fronts traveling faster than the selected speed predicted by
the marginal stability conjecture. In this case, the dynamics associated to the front tail and interface are
exponentially stable, and the stability problem can be reduced to the stability of the periodic pattern in
the wake [27, 28]. We emphasize that these supercritical fronts are not observed when invasion originates
from highly localized initial conditions, and the methods of [27, 28] do not appear to generalize to critical
invasion fronts.

Pointwise semigroup estimates. Originally developed to analyze stability of undercompressive viscous
shock waves [77], pointwise semigroup methods are a powerful tool for establishing linear and nonlinear



stability of front-like solutions in the presence of critical diffusive modes. Since the obstruction to obtaining
linear stability estimates via a classical approach is the essential spectrum near the origin, the idea is to
closely analyze the behavior of the resolvent operator near the critical essential spectrum. The hope is
that with detailed enough information on this resolvent, one can deform the inverse Laplace integration
contours arbitrarily close to or even into the essential spectrum, and recover algebraic decay estimates. In
the now-seminal pointwise semigroup approach, the resolvent is analyzed by constructing its integral kernel
(or spatial Green’s function) G (z,y), which solves

(L= XNGa(z,y) =d(z —y)I, (2.4)

where L is the linearization about the coherent structure of interest, ¢ is the Dirac delta function, and I is
the identity. The solution to the linearized equation u; = Lu, with initial data ug, is then represented by

u(e,t) = [ G,y Oun(y)dy,

where G(x,y,t) is the temporal Green’s function, expressed through the inverse Laplace transform

G(‘Tayat) = _L

2mi

/Fe/\tG,\(:v, y)dA, (2.5)

and I' is some contour initially lying to the right of the spectrum of £. Of course, the resolvent operator
(£ — \)~! is singular near the spectrum of £. However, if all critical modes are outward diffusive modes,
then the resolvent kernel G (x,y) remains analytic or at least meromorphic in A for fixed x and y even
as A passes into the essential spectrum. The loss of analyticity of the resolvent is due to a loss of spatial
localization of G (x,y), so that the resolvent is no longer a bounded operator between fixed function spaces.
Such a loss of spatial localization can be repaired by conjugating with an exponential weight and, thus,
G (x,y) remains pointwise, that is, for fixed z,y, analytic. Consequently, the integration contour I' in (2.5)
may be deformed into the essential spectrum of £. Sharp linear decay estimates can then be obtained by
deforming to pointwise contours I'; , ;, conveniently chosen for each combination of z,y, and ¢, to extract
spatio-temporal behavior of the inverse Laplace integral (2.5), using sharp estimates on the resolvent kernel
G (z,y). Estimates on the resolvent kernel are typically established by solving (2.4) via a construction of
the spatial Green’s function through exponential dichotomies [77].

In the presence of branched diffusive modes, the resolvent kernel G (x,y) itself has a branch point at
A =0 for each fixed x,y € R, and so integration contours can no longer be deformed past this singularity.
Nonetheless, pointwise semigroup methods have been successfully adapted to problems with branched
diffusive modes, using pointwise defined contours which pass near the essential spectrum but remain to the
right of the branch point [31, 32, 40, 42, 43].

From this perspective, our results rely on a linear problem with outgoing and branched modes as in [43],
albeit in a context where both the linear and the nonlinear argument are considerably more delicate as
we shall explain in the remainder of this introduction. Closer to the problems that we encounter here are
results on the stability of invasion fronts in the real Ginzburg-Landau equation [8, 17, 30]. The pulled front
there is special in the sense that, although it selects a spatially constant state rather than a periodic pattern,
the selected constant state is only diffusively stable instead of exponentially stable. This relates to the fact
that the real Ginzburg-Landau equation is a universal modulation equation for pattern-forming systems
near a Turing instability, and the pulled front inherits spectral properties of pattern-forming invasion fronts.
In [8], the stability of fronts and the interaction of branched and outgoing modes on the linear level are
handled by a far-field/core decomposition of the resolvent, a technique that we rely on here as well, and
that we describe next.

Linear estimates via resolvent decompositions. As an alternative to pointwise estimates, we rely on
a somewhat more direct and efficient functional analytic approach to stability problems developed in [7, 8].



Following the strategy outlined above based on an inverse Laplace transform, we carefully analyze the
behavior of the resolvent near the origin, and then deform contours close to the essential spectrum to
extract temporal decay. We do not however construct the very detailed and at times cumbersome pointwise
integral kernel G (x,y) and associated temporal Green’s function, but rather solve the resolvent equation

('Cfr - A)u =g (2'6)

by decomposing both the data g and the solution u using a partition of unity, into two far-field parts which
are supported on the wake and on the leading-edge of the front, and a core part which is strongly localized.
We then rely on somewhat straightforward Fredholm properties in exponentially localized spaces rather
than the more subtle constructions based on for instance the Gap Lemma [35, 49]; see for instance [65] for
comparisons.

We naturally arrive at an explicit spatial decomposition of the solution to the resolvent equation (2.6),
in which some terms only “see” the outgoing diffusive mode, some terms “see” the branched diffusive
mode, and another, crucial term encodes their interaction. We can then adapt our integration contours
specifically to each term in this decomposition, using classical pointwise semigroup contours for the terms
which only see the outgoing mode, contours adapted to branched modes as in [7, 9] for the branched mode,
and contours adapted to the interaction terms. Somewhat more explicitly, the decomposition of the linear
semigroup e“t* that we obtain is of the form

[e“g](€) = uk (€)[Sp(1)g](€) + [Se(t)g] (€) + [Se(t)g](€), (2.7)

where, roughly speaking, we have

1Sp(®)glle ~ (L+D72,  [|SeB)glie ~ (14D, [1Se(B)gllroe ~ e (2.8)

for some p > 0. We refer to Theorem 7.1 for precise linear estimates. For now, we point out that the first
term in (2.7) is the slowest decaying, with diffusive rate (1 +¢)~/2, and is in fact supported on the wake of
the front, £ < 0, only.

2.2 Nonlinear diffusive stability

To study the nonlinear stability of the pulled pattern-forming front us, we analyze the dynamics of a
perturbed solution to (1.5) of the form u(&,t) = ug (&) +w(§, t), with sufficiently localized initial perturbation
w(&,0) = wo(&). To enforce the exponential localization needed to stabilize the unstable state in the leading
edge, we define the weighted perturbation v(§,t) = w(§)w(¢,t), with induced equation

Vi = Lpv + N(F), (2.9)
where the nonlinearity N is given through
N =wN (w9),  N(w)=F(up+w) - F(ug) - F'(ug)w.

A standard approach to nonlinear stability is to attempt to close an iteration argument based on a
variation-of-constants formula for the perturbation equation (2.9).

From (2.8), we see that the decay rates exhibited by the full semigroup e~

are diffusive, that is, they
coincide with the decay rates of the heat semigroup %" On the other hand, one finds that the nonlinearity
N (V) in (2.9) contains quadratic terms in v which in general does not allow one to close a nonlinear
argument, as is well known for instance in the case of the nonlinear heat equation u; = uy; + u? where all
nonnegative nontrivial initial data blow up in finite time [34]. This difficulty does not arise in the stability

of viscous shocks [43] since quadratic terms involve derivatives that induce stronger decay. It also does not
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arise when establishing nonlinear stability of pulled fronts with an exponegltially stable state in the wake
since the linear diffusive decay in the leading edge is stronger, with rate ¢t~ 2, sufficient to close a nonlinear
stability argument; see [7]. The improved decay results from the fact that the front interface provides an
absorption mechanism similar to an absorbing boundary condition for the heat equation on the half line.

The weak stability in the wake at rate #~3 does arise in the analysis of pulled fronts in the Ginzburg-Landau
equation [8, 17, 30]. In this situation, there is however an astute change of coordinates that exploits
the symmetry from the gauge invariance and exhibits gradients in the relevant parts of the nonlinearity.
Explicitly, after switching to polar coordinates, the linearization diagonalizes with the outgoing diffusive
mode only manifesting itself in the phase variable, and the associated nonlinearities at the relevant quadratic
and cubic order carry derivatives with stronger associated decay. Such an explicit transformation does not
seem to be available or convenient in our setting; see [70] for an analysis from this perspective of normal
forms.

Forward and backward modulation of perturbations. Motivated by the fact that the terms in (2.7)
with the slowest decay stem from the diffusively stable pattern in the wake of the front, we take inspiration
from the nonlinear stability analysis of wave trains, see e.g. [44, 45, 46, 66] and references therein. It
was observed in [26] that the most critical diffusive dynamics of perturbed wave trains can be captured
by a spatio-temporal phase modulation. Intuitively speaking, such a phase modulation accounts for the
translational invariance of the pattern, which causes spectrum to touch the imaginary axis at the origin.
Such a phase modulation has been incorporated in the nonlinear stability analysis of wave trains, see [45, 46],
by considering the inverse-modulated perturbation

V(&) = w(§) (u(€ —¥(&,1),1) —ue(E)). (2.10)

Here, the phase modulation function (t) is chosen a posteriori such that it accounts for the most critical
terms in the Duhamel formulation for v(¢). Our analysis shows that the ansatz (2.10) is also successful
in the case of pulled pattern-forming fronts to control the diffusive dynamics of the periodic pattern in
the wake. Key to this argument is the spatial decomposition (2.7) of the linearized dynamics, which
shows that the slowest decaying terms are supported only in the wake of the invasion front. The resulting
spatio-temporal modulation argument is then quite similar to that used for the nonlinear stability of pure
wave trains [44, 45, 46, 66].

A natural alternative to modulating the perturbed solution u(t) is to modulate the pattern-forming front
ug, itself which leads us to the forward-modulated perturbation

‘0’(57 t) = w(&) (u(éa t) - ufr(é + ¢(§a t))) :

It has recently been shown in [76] that the W*P-norms of the forward- and inverse-modulated perturbations
are equivalent up to controllable norms of 1)¢. Thus, one finds that the forward- and inverse-modulated
perturbations exhibit the same decay rates and it suffices to close a nonlinear argument for one of them.
Nevertheless, it turns out to be advantageous to use both the forward- and inverse-modulated perturbation
variables in the nonlinear argument. The reason is twofold. On the one hand, the equation for the
inverse-modulated perturbation is quasilinear, introducing an apparent loss of derivatives in the nonlinear
iteration scheme. On the other hand, the equation for the forward-modulated perturbation is semilinear, but
contains terms which are not sufficiently rapidly decaying to close a nonlinear argument through iterative
estimates on the associated Duhamel formulation, see [76, Section 5.2] for more details. We emphasize
that these observations do not rely on the fact that the underlying solution is a periodic wave train and
hold for any traveling wave, thus, in particular, for the pattern-forming fronts under consideration. Hence,
we follow the approach, as proposed in [76], of establishing sharp bounds through iterative estimates on
the Duhamel formula for the inverse-modulated perturbation v(t), while controlling regularity through
nonlinear damping estimates on ¥(t), thereby using the equivalence of W*P-norms of v(t) and ¥(¢) modulo
controllable errors.
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Nonlinear damping estimates. We use energy estimates to effectively control H*-norms of the
perturbation v(t) in terms of its L?-norm and the H¥-norm of its initial condition for k& > 0. Such
“nonlinear damping estimates” generally rely on damped high-frequency spectrum of the linearization.
In fact, the same linear terms in the FitzHugh-Nagumo system (1.5) that yield high-frequency resolvent
estimates in Appendix B are crucial for obtaining a nonlinear damping estimate. More concisely, high-
frequency resolvent bounds are equivalent to linear damping estimates, which readily yield associated
nonlinear damping estimates as long as solutions stay small; see for instance [59] for further discussion of
this principle in the setting of the St. Venant equations. Here, the nonlinear damping estimate for v(t) is
induced by the second derivative O¢cuy in the first component and the term —eyus in the second component
of (1.5). We remark that in reaction-diffusion systems of the form u; = Du,, + F'(u), with positive definite,
nondegenerate diffusion matrix D, damping comes from the highest-order derivative Du,,, allowing control
even of quasilinear terms so that, in that setting, one can directly obtain a nonlinear damping estimate for
the inverse-modulated perturbation and it is not necessary to consider the forward-modulated perturbation,
see [46].

2.3 Function spaces and notation

We introduce function spaces used in the analysis and in the precise statement of our main result.

Exponentially weighted spaces. Given n+ € R, we define a smooth positive weight function w,_,,
satisfying

en_£7 § S _17

en+£, £>1.

wy_ i, (§) = {

Given additionally non-negative integers k and m, a field F € {R,C}, and a real number 1 < p < oo, we

define a corresponding weighted Sobolev space Wek}ggm_m . (R,F™) through the norm

1 ke = llwn_ny Fllwns,

exp,n_,n4

where W*P(R,F™) is the standard Sobolev space with differentiability index & and integrability index p.

When p = 2, we write Wé‘ieﬁ,n, e (ROF™) = Hé:xp,n,,n . (R,F™). When domain and codomain can be readily
inferred, we write Wf){’gmﬂm (R,F™) = We’iég,n,,m- Finally, we write W&gmﬂm = L2 e
Given € R and 1 < p < oo, we define X? = LY (R,C?) and let

27 17
Yf = Wexﬁ),*%n(R’ C) X WeXI;%*nan(R’ C)

denote the domain of the linearization Ly, given by (2.1), on X}?’ , so that Lg : Y,f - Xf; — X}; is a closed
operator.

Algebraically weighted spaces. To exert finer control over the spatial localization of perturbations, we
also introduce algebraically weighted spaces. Given r1 € R, we define a smooth positive weight function

‘6|T7, 5 S _1a

pr,,m-(f) = {§|fr+7 g > 1.

As in the definition of exponentially weighted spaces, given additionally non-negative integers k and m, a
field F € {R,C}, and a real number 1 < p < oo, we define a corresponding algebraically weighted Sobolev
space Wffr . (R,F™) through the norm

Hf”wffu = Hprf,rJerWk,p-
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We again suppress the notation for the domain and codomain when clear in context, and we write
Op _— [P
Wb =L

rT—,r4 "

Additional function spaces. An additional technical challenge we must address is that the FitzHugh-
Nagumo system is not fully parabolic, so the linearization Lg is not a sectorial operator. Spectral mapping in
such contexts is not automatic. We will first prove spectral mapping properties for initial data ug € C2°(R),
and then extend the semigroup to larger function spaces. To carry out this extension, we consider spaces in
which such test functions are dense. Therefore, given non-negative integers k£ and m and a field F € {R, C},
we let CF(R,F™) denote the space of bounded continuous functions u : R — F™ satisfying
Jim [9gu(©)l =0

for ¢ = 0,1,...,k. Note that such functions (and their /-th derivatives) are automatically uniformly
continuous. We equip this space with the W% norm and recall the well-known fact that test functions are
dense in this space.

We will use a mix of Cy and L?-based spaces in our nonlinear argument, and therefore define the spaces
Z,(R,F™) := H*(R,F™) N C§(R,F™),

endowed with norm || - || gx + || - |[jyk.00, for any non-negative integers k and m and F € {R, C}.

Spaces involving time. Given an interval I C [0, 00) and a Banach space X, we let C*(I, X) denote
the space of k-continuously differentiable functions on I taking values in X.

Additional notation. We will sometimes abuse notation by writing a function u(¢,t) of space and time
as u(t), viewing it as a function of time taking values in a particular Banach space. Similarly, we may write
a function u(&; \) of a spectral parameter A as u(\). We also let (x—, xe, x+) be a partition of unity on R
such that

L, £21

x+(§) = {07 £<o0,

and x—(§) = x+(=§)-

Suppression of constants. Let S be a set, and let A, B: S — R. The expression “A(z) < B(z) for
x € 7, means that there exists a constant C' > 0, independent of z, such that A(z) < CB(z) holds for all
reS.

2.4 Spectral assumptions

We formulate spectral stability hypotheses that precisely describe pulled uniformly translating pattern-
forming fronts. We prove in [3, 4] that these conditions hold for the fronts ug constructed in Theorem 1.1
in open parameter ranges, and we expect these assumptions to hold in open classes of systems, generically
for pulled uniformly translating pattern-forming fronts.

We decompose the spectrum (L) of an operator £ as follows. We say that A € C is in the essential
spectrum Yegs(L) if either £ — A is not Fredholm, or it is Fredholm with nonzero index. We say A € C
is in the point spectrum X (L) if £ — A is Fredholm with index zero, but not invertible. The essential
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spectrum is invariant under compact perturbations. Thus, for the operator L, the essential spectrum may
be determined from the linearizations about the asymptotic end states at oo, which are

Ly =D(0 — Min)® + ciin(9e — min) + F(0), (2.11)

at £ = +o00, and
Ly = DOE + cind + F' (i (€)), (2.12)
at £ = —oo. The spectrum of £ is marginally stable, a fact that effectively characterizes the linear

spreading speed; see Lemma 3.2. We now state assumptions on the essential spectrum of Ly and on the
point spectrum of Lg,.

Essential spectrum of the wave train. The limiting operator Lt in the wake has coefficients which
are periodic in & with period L. By Floquet-Bloch theory (see for instance [58]), Ly is conjugate to a
family of Bloch operators

Loi(v) : HY(R/LZ,C) x H'(R/LZ,C) c L*(R/LZ,C?) — L*(R/LZ,C?)
given by
ﬁwt(”) = D(aﬁ + V)2 + Clin(85 + V) + F/(uwt(g))

for v purely imaginary, v € [—ikwt, ikwt), With kys = 7. In particular, we have

Y (L) = U  =(Lw).

ve [—ikwt 7ikwt)

We assume that Ly satisfies the following standard diffusive spectral stability assumptions for periodic
wave trains [46, 66, 72].

Hypothesis 1 (Diffusive spectral stability of the wave train). We assume that the following spectral stability
conditions hold for the operator Ly : H*(R,C) x HY(R,C) C L*(R,C?) — L*(R,C?) given by (2.12):

1. We have ¥(Lywt) C {A € C:ReX <0} U{0};
2. There exists 0 > 0 such that for any k € [—kyt, kwt), we have Re (L (ir)) < —0k%;

3. X =0 is an algebraically simple eigenvalue of ﬁwt(O).

We note that 0 is always in the spectrum of ﬁwt(O) with associated eigenfunction O¢uy¢ by translation
invariance of the wave train. The spectral information encoded in Hypothesis 1 is sufficient to establish
nonlinear stability of pure wave trains [46, 66|, for strictly parabolic systems. For degenerate systems such
as (1.2), one has to additionally control high frequency modes to obtain a spectral mapping estimate; see
Theorem 2.2. Since the Bloch operators [th(l/) depend analytically on the Floquet exponent v, Hypothesis 1
yields open neighborhoods U, V' C C of the origin and an analytic function Ayt: U — C with the expansion

At (V) = —cgv + D32 + O(1?), (2.13)

with ¢, € R and D% > 0 such that the spectrum of Ly () in V is given by the simple eigenvalue Ay (v)
for v € U, see [26]. Consequently, the spectrum of Ly in V' is given by the curve {Awt(ik) :ik €e U} NV
touching the origin in a quadratic tangency. The equation Aywt(v) = 0 is called the linear dispersion relation
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and the coefficient ¢, is the group velocity of the wave train (in the frame moving with the speed cjy).
With a standard Lyapunov-Schmidt reduction procedure [26] one obtains

Cqg = 2 <uada Da{guwt>L2(R/Lzyc2) + Clip = 2 <Uad,17 aﬁﬁuwt,l>L2(R/LZ£) =+ Clin, (214)

where u,q spans the kernel of the adjoint operator Ly (0)* normalized such that (Uaq, O¢tiys) 2(R/LZ,C?) = 1.

For pattern-forming fronts, it is important to characterize the group velocity of the wave train in the wake,
relative to the front speed, so that the front acts as a source of patterns [63]. Thinking of the invasion
process as a source of patterns, the group velocity of the wave train should be negative in the frame moving
with the spreading speed cj,. We make this precise as follows.

Hypothesis 2 (Outgoing group velocity for the wave train). Assuming, in accordance with Hypothesis 1,
that 0 is an algebraically simple eigenvalue of Ly(0), we require that the group velocity cg4, given by (2.14),
18 megative.

Hypothesis 2 implies that the critical diffusive mode associated to the dynamics near the wave train is an
outgoing diffusive mode, in the terminology of Section 2.1. The main result of [4] establishes that (1.2)
satisfies Hypotheses 1 and 2 for (3 —v/5)/6 < a < 1 and ¢ sufficiently small. It was shown in [18] that the
group velocity of the wave trains is negative in the frame moving with the front velocity, so Hypothesis 2
follows from the combination of Hypothesis 1 and [18].

Point spectrum. Hypothesis 1, together with the calculation of the linear spreading speed in Lemma 3.2
below, imply that the essential spectrum of Ly is marginally stable; see Proposition 3.5. We exclude
unstable point spectrum as follows.

Hypothesis 3 (No unstable point spectrum). We assume that the operator Lg.: H*(R,C) x H'(R,C) C
L*(R,C?) — L2(R,C?), given by (2.1) has no eigenvalues A\ with Re X > 0. Moreover, we assume that there
18 no nontrivial bounded solution u to the equation Lgu = 0.

A nontrivial bounded solution to Lgu = 0 would indicate that the fronts are not strictly pulled, but rather
at the boundary between pushed and pulled front propagation [6], and hence we exclude this possibility
here. Such a bounded solution is sometimes referred to as a resonance and would correspond to a zero of the
associated Evans function, appropriately extended into the essential spectrum via the gap lemma [35, 49].
The improved ¢—3/2 decay rate in the leading edge, when compared with diffusive decay in one dimension,
is associated to this lack of a resonance at A = 0 [7]. We establish Hypothesis 3 for (1.2) in a natural open
parameter range in [3].

2.5 Main result — precise statement

Having introduced the necessary notation, we are ready to formulate the precise statement of our main
result.

Theorem 2.1 (Nonlinear stability — precise formulation). Assume ug is a pulled front solution from
Theorem 1.1 which obeys Hypotheses 1 through 3. Then, there exist constants M,d > 0 such that if we
consider (1.5) with initial data ug = ug + wo, where wo € Lj (R, R?) N (Z3(R,R) x Z3(R,R)) satisfies

By = owolly + lwwol moscrrz < o, (2.15)
then there exist functions w : [0,00) x R — R? and v : [0,00) x R — R satisfying

ww € C ([0,00), Z3(R,R) x Zo(R,R)) N C" ([0, oo),Zl(R,RQ)) . eC™([0,00) xR,R)  (2.16)
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and
(-, t) € H(R,R),  t>0, k¢ Ny,

with initial conditions w(0) = wqg and ¥(0) = 0, such that u(t) = ug + w(t) is the unique global classical
solution of (1.5) with initial data uy, enjoying the following estimates

ME ME
loo (ut) = vl s gz + ()] 2 < (1+t(;31 lw (u(t) = up)llpoo + [[0@)] L~ < (1“(;; (2.17)
and
ME
Jeo (a(t) = s (- + B 0)) s+ 100 A | goepre € ——.
(1+1)1 (2.18)
ME
Jeo((®) = e (D) o+ W0, DO e < Ty
for all t > 0. Furthermore, the following refined estimate holds on the leading edge:
w(§) _ MEy
i’;l[l) Tte (u(&,t) —up(8))| < 7(1 Y (2.19)

for allt > 0. Finally, the phase modulation function is supported on the wake: we have supp(¢(-,t)) C
(—00,0] for allt > 0.

Rephrasing, Theorem 2.1 establishes the following:

1. The weighted, unmodulated perturbation to the front, w(u(t) — ug), decays in L>°(R) with diffusive
rate (1 + t)_l/ 2 provided the initial perturbation wyq is sufficiently small and localized.

2. The leading-order behavior of the perturbation is described by a spatio-temporal phase modulation
(&, t) of the pattern-forming front ug, where (-, ) is supported on (—oo, 0]. That is, we only need
to modulate the phase in the wake.

3. In the leading edge, £ > 1, the perturbation decays with an improved rate (1 + t)_3/ 2 characteristic of
pulled invasion fronts [2, 7, 9].

Choice of function spaces. We briefly explain the choices of function spaces we make in Theorem 2.1.
The additional algebraic localization of the initial data enforced by requiring wwq € Lé,l is needed to
obtain optimal linear decay rates for the pulled front dynamics in the leading edge [2, 7, 8]. A nonlinear
stability argument could then be closed measuring the solution only in L? based spaces, but we choose
to additionally measure in L*° in order to capture the sharp pointwise decay rate of the perturbation —
notice that the L decay rates in Theorem 2.1 are faster than the L? decay rates. On the other hand, even
if we are primarily interested in L* decay rates, we control regularity in the resulting quasilinear iteration
scheme through energy estimates, for which we must additionally measure the solution in L?-based spaces.
From the structure of the equation, it is natural to expect to require H? x H' regularity of the initial data,
and indeed if we were only interested in L? decay rates we could relax the regularity requirement in (2.15)
to wwo € H? x H'. However, in also controlling L™ decay rates, we lose a degree of regularity through the
embedding H' < L>, explaining the H® x H? requirement in (2.15).
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2.6 Nonlinear stability of pure wave trains

The periodic wave trains constructed in [18] and references therein are interesting objects of their own
right. We establish their spectral stability in the companion paper [4], but their nonlinear stability is not
quite included in general results on stability of wave trains in reaction-diffusion systems under spectral
assumptions [45, 46, 66], since the degenerate diffusion matrix in the FitzHugh-Nagumo system (1.2)
introduces additional technical difficulties in establishing spectral mapping properties of the linear semigroup
and controlling regularity in the nonlinear argument. One could attack these issues by proceeding as
in [36, 59|, that is, using a Bloch wave decomposition and the Gearhart-Priiss theorem to obtain high
frequency resolvent bounds and associated linear decay estimates on the semigroup. These techniques are
not available for the pattern-forming fronts, which are not purely periodic in space, preventing the use of
the Bloch wave decomposition. A simplified version of our proof of Theorem 2.1, simply ignoring parts
which have to do with dynamics in the leading edge, then gives an alternative proof of nonlinear stability of
the wave trains, formulated as follows.

Theorem 2.2 (Nonlinear stability of wave trains). Let uyt be a stationary periodic solution to (1.5) which
is spectrally stable in the sense of Hypothesis 1. Then, there exist constants M,d > 0 such that if we
consider (1.5) with initial data ug = Wy + Wo, where wog € L' (R, R?) N (Z3(R,R) x Z3(R,R)) satisfies

Eo == |lwollz + [wollgsxm2 <6,
then there exist functions w : [0,00) x R — R? and 1 : [0,00) x R — R satisfying
w € C([0,00), Z3(R,R) x Zy(R,R)) N C" ([o,oo), Zl(R,]R?)) . peCk ([0, oo),Hf(R,R))

for any k, £ € N, with w(0) = wq and 1(0) = 0 such that u(t) = uw + w(t) is the unique global solution
of (1.5) with initial data vy, and we have the following estimates

ME, M Ey
[ (t) — vwell oz + (@) 2 < T lu(t) — vt oo + 188 oo < T
and
ME,
[u(t) = e (- + 90t s o + (e (£), Db (8)) | s gz < (1+t(;
ME,
a(t) = -+ 6Dl + 1(e(0). Ob () o < 5
for allt > 0.

Since the proof of Theorem 2.2 is a simplified version of the proof of Theorem 2.1, we do not present it in
detail.

We note that it is possible to relax the regularity requirement on the initial data in Theorem 2.2, to
requiring smallness in L}(R,R?) N (W2 (R,R) x Wh>°(R,R)), only, by using an L'-L iteration scheme
and replacing the L? based nonlinear damping estimates with alternative arguments developed in [23, 36] to
control regularity of the modulated perturbation. It is more difficult to relax the regularity requirement on
the initial data for the nonlinear stability of the pattern-forming fronts in Theorem 2.1, since the alternative
argument for controlling regularity in the iteration scheme relies on obtaining estimates on the operator
94S,(t)0™, where S,(t) arises in the decomposition (2.7). In the pure wave train case, the leading-order
terms in the resolvent decomposition roughly have the structure of a convolution, so it is easy to integrate
by parts to pass derivatives from one side of S,(t) to another, while it is not trivial to obtain estimates
on Sy(t) composed with derivatives on the right through the far-field/core decomposition used here in the
linear analysis of the pattern-forming fronts. We expect that this technical issue could be overcome with
more effort, but do not pursue it further, instead focusing on the most interesting aspects of the dynamics.
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2.7 Outline of the paper

The remainder of the paper is organized as follows. In Section 3, we determine the essential spectrum of Lg
under Hypotheses 1 and 2 and explore related Fredholm properties. In Section 4, we use standard results
from semigroup theory to represent the semigroup e“t* via the inverse Laplace transform of the resolvent.
In Section 5, we state and prove some general linear estimates based on different possible types of behavior
of the resolvent near the essential spectrum at the origin. With these abstract estimates informing what
kind of behavior we want to extract from the resolvent, we perform a detailed analysis of the resolvent in
Section 6. In Section 7, we combine the resolvent analysis of Section 6 with the abstract linear estimates of
Section 5 to establish a detailed decomposition of the semigroup e“t*. In Section 8, we set up our nonlinear
iteration scheme and establish equivalence of the forward-modulated and inverse-modulated perturbations.
Finally, we close our nonlinear stability argument in Section 9, proving Theorem 2.1. We conclude in
Section 10 by discussing applications of our methods to related problems. Throughout, we relegate some
technical computations to the appendices.

3 Spectral and Fredholm properties

We compute the linear spreading speed and characterize the resulting essential spectrum and Fredholm
properties of L, under Hypotheses 1 and 2.

3.1 Essential spectrum in the wake

Recall that the limiting operator in the wake is the linearization Ly of (1.5) about the wave train uyg,
see (2.12). Hypotheses 1 and 2 yield that the spectrum of the operator Ly (on, for instance, L?(R)) is
bounded away from the imaginary axis, except for a quadratic touching at the origin. In a neighborhood
of the origin the spectrum of Ly is given by the curve k — Ayi(ik), where Ay is given by (2.13) with
cg < 0 and D¥ > 0. We consider the eigenvalue problem (Ly¢ — A)u = 0 as a first-order system of linear
differential equations with periodic coefficients. We call the Floquet exponents v associated to this system
the spatial Floguet exponents of Lyt — A. They arise by solving the linear dispersion relation Ayt (v) = 0.
An application of the implicit function theorem then readily yields the following result.

Proposition 3.1 (Configuration of spatial Floquet exponents). Assume Hypotheses 1 and 2. For X to
the right of ¥(Lwt), the operator Lyy — A has two unstable spatial Floguet exponents and one stable spatial
Floguet exponent, which are analytic in A in a neighborhood of the origin. As \ approaches the origin from
the right, one spatial Floquet exponent vyi(A) crosses the imaginary axis from right to left, with expansion

1 2 42 3 1 1 2 DW{%C
Ut (A) = Vg A — Vg A+ O(N°), g = ——> 0, 12, =-— Cg < 0.
g g

The other Floquet exponents remain uniformly bounded away from the imaginary axis for |\| small.

3.2 Essential spectrum in the leading edge

Recall that the limiting operator in the leading edge is given by the linearization £ of (1.5) about the rest
state 0, see (2.11). Since £, has constant coefficients, its spectrum (on, for instance, L?(IR)) can be readily
computed via the Fourier transform as

X(Ly)={r€C:d., (N ik —min) = 0 for some k € R},
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where, for a given speed ¢, d.: C x C — C is the linear dispersion relation given by
dc(\,v) = det (DI/2 +cvl + F'(0) — )\I) .

We determine the essential spectrum of £ in the following lemma, whose proof is a straightforward
computation; see also [18, §2] for some computational details.

Lemma 3.2. Fiz (3—6)/6 <a <3, 0<v <4, and e > 0 sufficiently small. Then the spreading speed
ain(a,v,€) and spatial decay rate mun(a,y,e) < 0 from Theorem 1.1 are smooth in all arguments and satisfy
the following.

1. (Simple double root) For X\ and v small, we have the expansion
e (A, v — Min) = —d1o + doav® + O3, X%, Av)
for some dyg, dgo € R with digdy > 0.
2. (Minimal critical spectrum) If d.,, (iw,ik — min) = 0 for some w,k € R, then w =k = 0.
3. (No unstable spectrum) de,, (A, ik —min) # 0 for any k € R, A\ € C with Re A > 0.

Remark 3.3. Lemma 3.2 together with [39] imply that the dynamics of the linearization in the leading
edge at the speed ciin, which we call the linear spreading speed, given by

u; = D@gu + clinOgu + F'(0)u,

are marginally pointwise stable, that is, neither exponentially growing nor decaying in time at any fizved &.
See [9, Section 1.2] for a concise explanation of how Lemma 3.2 relates to marginal pointwise stability, and
why this leads to a prediction for a selected front speed.

Lemma 3.2 implies that the spectrum of £, is stable and uniformly bounded away from the imaginary axis
except for a neighborhood of the origin, where it is given by the curve

At (ik) = DLk + O(K?),

where D:ﬂ = Z% > 0, as suggested in Section 2.1. In particular, the spectrum of £, is marginally stable,
and the critical spectral curve is associated to a branched diffusive mode, in the terminology of Section 2.1.

We will also need information on the spatial eigenvalues of L, — A, that is, the eigenvalues of the matrix
M(X) obtained from writing (£ — A\)u = 0 as a first-order system U = M(A\)U in U = (u1, Ogur, u2) '

Corollary 3.4. Assume a,~ and ¢ are such that Lemma 3.2 holds. Let o = \/\, with branch cut chosen
along the negative real azis. If o? is small, M(0?) has precisely two eigenvalues fo(a) in a neighborhood of
the origin, which are analytic in o and satisfy the expansions

Vi (0) = trgo +0(0?), (3.1)
where vk > 0. The spatial eigenvalues Vi (o) cross the imaginary azis precisely when \ = a2 crosses S(L4.).
The remaining third eigenvalue v3(c?) of M(c?) is analytic in o2, satisfies Revs(o?) > 0 for |o| small, and
is uniformly bounded away from the imaginary axis for |o| small.

2

Proof. The expansion (3.1) follows from Lemma 3.2 and the Newton polygon. The fact that Rewvs(o?) > 0
follows from a direct computation. O
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3.3 Essential spectrum and Fredholm properties of Ly,

Fredholm properties of the linearization about a traveling front may be determined through properties
of the asymptotic rest states through Palmer’s theorem [54]; see for instance any of [33, 48, 60] for a
review of spectral properties of traveling waves. Specifically, in our setting, the operator Lg : W2P(R, C) x
WLHP(R,C) C LP(R,C?) — LP(R,C?) is Fredholm if and only if the limiting rest states u = 0 and uy are
hyperbolic, that is, if and only if £; has no purely imaginary spatial eigenvalues and Ly has no purely
imaginary spatial Floquet exponents. If this is the case, then the Fredholm index of L, is

ind(Lg) = ing(Lot) — inr(L), (3.2)

where the asymptotic Morse indices ip7(Lywt) and ip7(L£4) measure the number of unstable spatial Floquet
exponents of Lyt and the number of unstable spatial eigenvalues of £, respectively.

Proposition 3.5. Assume a,~y, and € are such that Hypotheses 1 and 2 and Lemma 3.2 hold. Then the
essential spectrum of L is marginally stable, touching the imaginary axis only at the origin. In particular,
in a neighborhood of the origin the rightmost boundary of Yess(Le) coincides with 3 (Lyt).

Proof. This follows from a short computation using the formula (3.2), Proposition 3.1 and Lemma 3.2; see
the right panel of Figure 2 for a depiction of the configuration of spatial Floquet exponents and spatial
eigenvalues. O

We can also use Palmer’s theorem to determine Fredholm properties of Lg acting on exponentially weighted
spaces, as follows.

Proposition 3.6. Fiz n > 0 sufficiently small. Recall from Section 2.3 the notation X = Lgxm_nm(R, C?)
2, 1,
and VP = Wep 0 (R,C) x Wb (R, C). The operator

ﬁfrIanCXg—)X%’
1s Fredholm with index -2.

Proof. Conjugating with exponential weights and using Palmer’s theorem, one finds L is Fredholm on
these spaces, with index given by

ind(Le, : Y2 = XB) = in? (Lut) — i, (L),

where i,,'(Lyt) is the number of spatial Floquet exponents v of Ly with Rev > 7, and i,(£) is the
number of spatial eigenvalues v of £, with Rerv > —n. Using Corollary 3.4 and Proposition 3.1, we find

ind(Lg : V) = X)) =1-3=-2,

provided 1 > 0 is sufficiently small, as desired; again, see the right panel of Figure 2 for a depiction of the
configuration of spatial Floquet exponents and spatial eigenvalues. ]

Throughout the remainder of the paper, we assume that the parameters a,y, and ¢ are such that Hypotheses 1
through 3 together with Lemma 3.2 hold.
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4 Contour integral representation of semigroup

Standard results from semigroup theory (see e.g. [55]) imply that for any fixed non-negative integer k, Ly
generates a strongly continuous semigroup on Zi (R, C?).

Proposition 4.1. Fix a non-negative integer k. The operator
L Zp2(R,C) X Zp1 (R, C) = Zi (R, C?)

is closed and densely defined, and generates a strongly continuous semigroup e“&* on Z},(R, C2). Furthermore,
there exist constants M, p. > 0 such that ||e“¥t| 7,z < Met+t holds for t > 0.

For completeness, we give a proof in Appendix A. From now on we consider L, as an operator on Z (IR, C?)
for a fixed nonnegative integer k. Using another standard result, we can write the semigroup e“#* as the
inverse Laplace transform of the resolvent (L — A\)~1, at least for regular enough initial data.

Corollary 4.2 ([55, Chapter 1, Corollary 7.5]). There exists n > 0 such that for all test functions
ug € C°(R,C?), we have the representation

It 1 . n+iR At _1
e~ rfuy = —— lim / e (L — A) TupdA, t>0. (4.1)
2mi R—oo Jy—iR

We will eventually relax the restriction uyg € C°(R, C?) via an approximation argument using that test
functions are dense in Zj(R,C?). To extract decay from this contour integral representation, we would like
to shift the contour as far left as possible. As a first step, we show that we can shift to a contour which is
in the left half-plane except in a neighborhood of the origin. This allows us to extract exponential decay
from the high frequency parts of the semigroup.

Proposition 4.3. For ug € C°(R,R?) and t > 0, we have the representation

ebilug = 1 lim MLy — N) " Tugd),

27 R—o rL
where the contour F}% is depicted in the middle panel of Figure 3. Moreover, for each 1 < p < oo, there
exists a constant C' > 0 such that

< Ce™ g 1

R—o0 Ip

lim / M (La — A)lgdr
rpfury”

for allt >0 and g € CX(R,R?).

The main difficulty in proving Proposition 4.3 is in uniformly controlling the resolvent (Lg — A)~! for
[Im A| > 1. We do this by computing an expansion of the resolvent in this limit, identifying the first few
terms explicitly until we can truncate with an error integrable in A, an approach similar to [52]. Since the
main idea is intuitive but the details are fairly technical, we carry out this procedure in Appendix B.

Corollary 4.4. For ug € C°(R,R?) and t > 0, we have the representation

1
Loty — _ 1 s Mo )L 4.2
e = o A J, © (L — A)” updA, (4.2)

where the contour F% is depicted in the right panel of Figure 3. Moreover, for each 1 < p < oo there exist
constants C,r > 0 such that

< Ce gl (4.3)

lim / M (Le — N) " lgdA
rptur

2,4+ 2,—p1,—
') > ) >
R— int UFint FR

Lpr
for allt >0 and g € CZ°(R,R?).
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Figure 3: All three panels include the Fredholm borders of L, associated to essential spectrum at —oco (blue) and +oco (purple).
Left: the starting contour {Re A =5, |Im A\| < R} from Corollary 4.2. Middle: the contour '}, (dark red) of Proposition 4.3,
with high frequency parts shifted into the left half-plane. Right: the grey ball shows a neighborhood of the origin in which the
resolvent analysis of Section 6 holds; the contour T'% (dark red) is contained in the left half-plane apart from a segment I'j in
this ball.

Proof. By the spectral stability captured in Proposition 3.5 and Hypothesis 3, we can homotope F}% tol 2R
while remaining in the resolvent set of Ly, so (4.2) follows. The estimate (4.3) follows from Proposition 4.3
together with the fact that the compact portion F?I;:r U Fi;; is contained both in the left half-plane, bounded
away from the imaginary axis, and in the resolvent set of L. O

5 Abstract linear estimates and choice of contours near the origin

One observes from Corollary 4.4 that the only part of the semigroup which does not decay exponentially is
the contribution from I'Z. This is due to two curves of essential spectrum of L, touching the origin, one
associated to the branched diffusive mode in the leading edge, and the other associated to the outgoing
diffusive mode in the wake. In Section 6 we decompose the resolvent in a neighborhood of the origin,
identifying terms associated to the branched mode, terms associated to the outgoing mode, and terms
associated to the interaction of both modes. In this section, we choose integration contours which are
adapted to the expected behavior of these three type of terms and use these contours to prove abstract
linear decay estimates. We will combine these estimates with the resolvent analysis and decomposition,
carried out in Section 6, to establish sharp bounds on the semigroup e“#! in Section 7.

5.1 Regions of analyticity near the origin

We identify regions near the origin in which parts of the resolvent associated to the branched or outgoing
diffusive mode, or parts associated to their interaction, can be rendered analytic in A\. Our choice of
integration contours for the different type of terms arising in the resolvent decomposition will thus be
determined by these regions. Some critical parts of the resolvent can be represented as a convolution with a
suitable integral kernel (or spatial Green’s function), allowing one to consider the analyticity properties of
the integral kernel after swapping integrals.

We distinguish between regions of pointwise analyticity and regions of analyticity in a fixed function space
(typically L?- or L>-spaces). In regions where certain parts of the resolvent (or their associated integral
kernels) are pointwise analytic, but perhaps not analytic in fixed function spaces due to loss of spatial
localization, we can deform our integration contour pointwise and employ pointwise estimates. We explain
in Section 5.3 below the need for pointwise estimates, i.e., why normed estimates are insufficient to obtain
sharp bounds on certain parts of the resolvent.
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Figure 4: Far left: Fredholm borders of L (blue, purple) in a neighborhood B(0, ) (shaded, grey) of the origin. Middle left:
the region Qf;r’l (shaded, red) defined in (5.3) . Middle right: the region Q?’Q (shaded, red) defined in (5.2). Far right: the
region QY" (shaded, red) defined in (5.7).

Terms associated to branched diffusive modes. The essential spectrum in the leading edge gives
rise to branched diffusive modes, for which the associated parts of the resolvent are roughly of the form
wy (& 0) ~ ap o)y (§er 78,

where we denote o = v/\ with branch cut along the negative real axis, and ay (o) is some analytic function
of o defined on a neighborhood of the origin. We recall that y(§) is a smooth positive cutoff function
supported on {{ > 0}, and v, (o) is the spatial eigenvalue from Corollary 3.4, which is analytic in o on a
neighborhood of the origin. The obstructions to analyticity of uy are twofold:

1. Due to the branch point in (o) and vg (o) at A =0, uy(&; o) is only pointwise analytic in A = o2

away from the negative real axis.
2. Since Revy, (o) changes sign as A = o2 crosses ¥(L4), ut(&; o) loses spatial localization as A passes

through (L), and hence loses analyticity in a fixed function space.

The first obstruction prevents us, even in a pointwise sense, from using contours which pass through the
branch point at the origin. The second obstruction prevents us from passing (£ ) with our integration
contours when measuring in a fixed function space.

What contours we may use depends on what space we want to measure in. In our nonlinear argument, we
will bound the solution (and some derivatives) in both the L?- and L>-norms. Taking the L?-norm, we find

1 1
Rev;, (o) VReo

(5.1)

[us(50) g2 ~
v

To extract temporal decay, we want to move the contours as far left as possible. Since we can’t pass through
the branch point, here this means we want to shrink the contour into as small of a neighborhood of the
origin as possible. By (5.1), uy(-; ) blows up in L?(R) as o approaches zero. Nonetheless, if we restrict
A = o2 to a sector

Q?’2 = {rew 0<r<d, -ty <p< 90}, (5.2)

for some 6,60y > 0, then there exists a constant C' > 0 such that Reo > C|o| for all o € Qgr’Q; see Figure 4.
Then, for o € Qgr,z we can quantify the rate of blowup of the resolvent as

1 1
uy(50)[[2 ~ H = W
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Hence, when estimating branched diffusive modes in L?(R), we will use contours which remain in Qgr’Q, but
can now be shrunk arbitrarily small, since the blowup rate |A|~%/2 is integrable in .

On the other hand, we find that ||ut(;0)||z remains bounded all the way up to (L), at which point
Revg (o) becomes zero. If we measure in the even weaker Lg® ;-norm, then by Taylor expansion, one
sees that uy obeys the Lipschitz estimate [[ui(:;0) — uy(s; 0)"L8?,1 < |o| for o to the right of ¥(L£). We
demonstrate in Proposition 5.1 that such a Lipschitz estimate leads to faster decay compared to decay
estimates in norms in which uy (-, o) is merely bounded in o.

All in all, we will obtain the fastest decay estimates for branched modes when measuring in Lgf),l(R), and

o . : . . fr,2
when measuring in this space, we can use contours which pass into a larger region than Q4°, as long as we

remain to the right of ¥(£y). We therefore define the curve
K = [k IO ke RY.

Choosing C3 > 0 sufficiently large, we can guarantee that in a small enough neighborhood of the origin,
K1 lies to the right of the essential spectrum of £,. Thus, given § > 0, we define

Q"' = {A € B(0,8) : Alies to the right of K™}, (5.3)

see Figure 4. When measuring in L§®_; (R), we will use contours which remain in the larger region Q?’l.

Terms associated to the outgoing diffusive mode. The parts of the resolvent that are associated to
the outgoing diffusive mode only are either roughly of the form

Uout (6 1) ~ Gout (A) X (£)e"™ VS, (5-4)
or can be represented as a convolution with a suitable integral kernel and are then roughly of the form
ot (€53) ~ [ O (- (€ ~ Qe PEIQO)c, (5:5)

where aou(N) is some function which is analytic in A in a full neighborhood of the origin and Q(() is a
bounded function of (. We recall that xy_(z) is a smooth cutoff function supported on {z < 0} and ()
is the spatial Floquet exponent from Proposition 3.1, which is analytic in A in a neighborhood of the origin.
The only obstruction to analyticity is that x_(z)e*+(M? loses spatial localization as A crosses ¥(Lys), since
Re vyt (N) then changes sign by Proposition 3.1. After swapping the convolution integral with respect to
¢ with the complex line integral with respect to A in case of the representation (5.5), we may deform
integration contours pointwise, i.e., we may let the choice of integration contour depend on the values of £
and ¢ in case of (5.4) and on &, ¢, and ¢ in case of (5.5). Since this only requires pointwise analyticity, we
can pass through X(Lyy). Proceeding as in [52, 77], we make judicious choices for our pointwise integration
contours to extract sharp spatio-temporal localization of the inverse Laplace transform of (5.4) or of the
inverse Laplace transform of the integral kernel associated to (5.5), which eventually yields sharp normed
estimates on the corresponding parts of the semigroup.

Interaction terms. Terms which capture the interaction between the branched and outgoing modes are
roughly of the form

Wint (& 0) ~ it (o) x (€)™t (78, (5.6)

where aipt(0) is some analytic function of o = V' defined on a full neighborhood of the origin, which
satisfies aing (0) = 0 without loss of generality.! We cannot estimate these terms using the pointwise contours

Tf qing(0) does not vanish at o = 0, we can always subtract vin (O)X,(g)e"“’t("z)5 from (5.6), which is a term of the
form (5.4), associated to the outgoing mode only.
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of [52, 77]. Indeed, these contours pass through the origin which is not allowed here due to the branch point
of ajnt(0) at A = 0. Pointwise contours designed to estimate terms like (5.6), which thereby avoid passing
through the branch point, were developed in [41]. However, instead of using the delicate pointwise contours
of [41], we obtain linear estimates sufficient to establish sharp nonlinear decay rates by measuring ujy¢ in
norm using simple contours which remain to the right of X (Lyt). We therefore define a curve

K" = {ik—cwtk2 K GR}.

Provided C%' > 0 is sufficiently small, this curve lies to the right of ¥(Ly¢), in a small enough neighborhood
of the origin. Given § > 0 small, we then define the region

Q3" = {\ € B(0,8) : \ lies to the right of K™} (5.7)

We will restrict our contours to the region QY; see Figure 4. A risk of our approach is that normed estimates
do not always afford sharp bounds on terms associated to outgoing diffusive modes, as explained in §5.3
below. Nevertheless, the observation that (o) vanishes at o = 0 yields an additional factor ¢ in (5.6),
rendering additional temporal decay which we can exploit to compensate for the use of normed estimates.

5.2 Estimates for branched modes

Fix § > 0 small, and let Q') Q% and QY be defined by (5.3), (5.2), and (5.7), respectively. Moreover,
let A?’] be the image of Qf;r’] under the principal square root A — /X for j = 1,2. We start by establishing
normed estimates which will be used for parts of the resolvent associated to branched modes.

Proposition 5.1 (Normed estimates with sharp decay rates for branched modes). Let X be a Banach
space, and suppose that for some small 6 > 0, we have a function o — u(o) : Agr’l — X which is analytic

in o? on Qgr’l, and extends Lipschitz-continuously to o = 0 with constant L > 0 such that
[u(o) —u(0)|lx < Llo|, (5.8)
for o € Agr’l. Then, there exists a constant C' > 0 such that for allt > 0, we have
C

<.
x (1+1)2

/F % *tu(o)d(0?)

Proof. The proof is identical to [7, Proof of Proposition 4.1], but we sketch it here for completeness. We will
integrate in o rather than in A\ = 0. Using analyticity of o2 + u(o) on Q?’l and continuity up to o =0,
we can shift to an integration contour which runs tangent to the imaginary axis in the o-plane, given by

- ~fr,1 ~ir,1 ~fr,1
riot = pity piet g it

where
[ = (o(a) s a € [~anal},  ofa):=ia+ e, (59)

where co > 0 is chosen sufficiently large and a. > 0 is chosen sufficiently small so that the image I‘(f)r’l of f‘(f)r’l
under o — o2 lies within Q?’l, touching its boundary only at the origin. Let Fi’l be straight line segments
which connect the ends of Fgr’l to points on the boundary of B(0, ) which are in the left half-plane but to
the right of ¥(L¢). Let fi’l denote the images of I‘i’l under the map A — v/\. See Figure 5 for a depiction
of the integration contour ' = oty I‘Br’l U I‘fi’l in the A-plane.
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Figure 5: Far left: the original contour T3 (dark red) in a neighborhood B(0,d) (grey, shaded) of the origin. Middle left: the
contour '™ (dark red) used in the proof of Proposition 5.1. Middle right: the contour I used in the proof of Proposition 5.2.
Far right: the contour I't’* (dark red) used in the proof of Proposition 5.3.

Integrating in ¢ and deforming to this new contour, we then have
o2t 2\ _
/Fg e? 'u(o)d(c®) = /ff; . 0)20do + Z [fr ) 0)20do.

Since Fi’l lie in the left half-plane, and u(c) is uniformly bounded along these segments, the contributions
from these portions of the contour decay exponentially in time, so we focus on the first integral. We use (5.8)
to expand

0.2
/f(f)r ) 0)20do = 2/t e 0)odo + e e (u(o) — u(0))odo.

0

Since u(0) does not depend on o, we can change variables in the first integral to integrate again over o2,

with integrand analytic in ¢? in a full neighborhood of the origin, so that we may shift the integration
contour fully into the left half-plane and thereby extract exponential decay. For the second integral, we
use (5.9) to explicitly parameterize the integral as

Q5 .
/~f e (u(o) — u(0))odo = / elmaHHGaltied™ (y(iq + cya?) — u(0))(ia + c2a?) (i + 2c2a)da.
r.

—Qx

Using the estimate (5.8) and choosing a, sufficiently small, we arrive at
a2, 12
S [ et laPda s
Cas

for t > 0, where the last inequality follows from applying the change of variables z = ay/t for t > 1, whereas
for t € [0,1] we use that |a[2e™""/2 < a2 for a € (—as, as). O

3
2

s € (o) = u(0)rdo
ry’

(1+1)

We will only be able to obtain the estimate (5.8) and the associated ¢~3/2 decay rate when measuring in
fairly weak norms. When measuring in L?(R), as needed for our nonlinear argument, the resolvent will
instead blowup at ¢ = 0 as explained in §5.1, but with a quantified rate in the region Q?’Q. The next
estimate is adapted to precisely this scenario.

Proposition 5.2 (Estimates for branched modes in stronger norms). Let X be a Banach space, and suppose
that for some § > 0 small, we have a map o — u(0o) : Agr,z — X, which is analytic in o® on Q(fsr’Q, and there
exist r € [0,2) and K > 0 such that the blowup estimate

K

lo|”

lu(o)l] <

(5.10)
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holds for o € Agm. Then, there exists a constant C' > 0 such that for all t > 0, we have

C

o2t 2
/F *tu()d(0?) =

2
0

Proof. This is a standard argument, but we sketch a proof here for completeness. Using analyticity of
0%+ u(o) on Qgr’Q, for any fixed t > 0, we can deform the integration contour from I'Z to the t-dependent
integration contour I'"? = I y péire Y T~ Jying in Q(f;’Q, where I'™* are line segments connecting the
ends of F?r’f to points se*ifo—) /(1 +1), where § > 0 is chosen such that the extension of Fﬁr’i passes
through the origin. We note here that ¢ only depends on F?r’lzt and is thus independent of ¢. Finally, T'{*¢ is

the circle segment
FCirC:{(S eiG'QE[—Qo-I-SQO_S]}.
t 1+t ’ ’

see Figure 5. Note that if 02 € T'$, then we have |o|? = %th and Reo? <

the fact that ['{™ has length bounded by 276/(1 + t), we establish

1_r
< exp (‘”) <5) * < Lﬂ
~ 1+¢t) \1+¢ N+

for ¢t > 0. On the other hand, explicitly parameterizing the line segment F,{r’Jr which lies in the open left
half-plane and using (5.10) we obtain

for ¢ > 0, where the last inequality follows for ¢ > 1 from the change of variables z = st and the fact
that the integral [°e%27"/2dz is bounded for a > 0 and r € [0,2), whereas for ¢ € [0,1] we use

exp(cos(fy — 0)st) < 1. The integral over F?’_ is estimated analogously. O

%th‘ Hence, using (5.10) and

/ & tu(a)d(0?)
F%lrc

X

s
5/ exp (cos(By — 8)st) |s|"2ds < ———,
X %-s-t ( ) (1—|—t)1_2

/F . e tu(o)d(0?)

5.3 Estimates for the outgoing mode

For estimating those parts of the resolvent associated to outgoing diffusive modes only, we may use either
pointwise contours which pass fully into the essential spectrum, or contours which remain in the region Q¥*.
The latter turn out to give sharp estimates only in certain norms; see the discussion below. Nonetheless, for
terms in the resolvent decomposition which capture the interaction between outgoing and branched modes,
we must use contours which remain in Q" as pointed out in §5.1. We capture decay using contours of this
type in the following result.

Proposition 5.3 (Normed estimates for outgoing modes). Let X be a Banach space, and suppose that for
some & > 0 small, we have an analytic function X\ — u(X) : Q¥ — X, and there exists r > —1 such that

[u(N)]x < CIA["
for all X € QY. Then, there exists a constant C > 0 such that for all t > 0,
C

< —0.
x (1+t)27z2

/ eMu(N)dA
F2

0
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Proof. Estimates of this type have been established and used in [8, 41, 47], but we sketch a proof for
completeness. Estimates for small times may be obtained using the fixed contour '3 which remains to the
right of the spectrum, so we focus on ¢ > 1. Using analyticity of A\ — u()\) on Qgr’2, for any fixed ¢t > 1, we
can deform the integration contour from T'2 to the ¢-dependent integration contour I'¥'* = I}~ urP* ury"*
lying in QF* with

)
Y™ = {t—i—ia—da2 ta € [—a*,a*]},

for some some t-independent constants as,d > 0. Here, a, > 0 is chosen sufficiently small and d > 0
sufficiently large such that the the contours I'}* lie in B(0, ) and their end-points are in the open left
half-plane for any ¢ > 1. Moreover, we let I'7""= be the line segments connecting the ends of TP to T2
see Figure 5. Since the contours Fyt’i are contained in the left half-plane and are ¢t-uniformly bounded
away from the imaginary axis, their contributions are exponentially decaying in time. So, we focus on the
integral over I'Y™. For a point A = % +ia — da® € TP* with a € [—ax, a.], we have |A\|” < [Im A|" = |a|” in
case r € (—1,0). On the other hand, in case r > 0, there exists a ¢- and a-independent constant C' > 0 such
that we have |A|” < ((6/t — da®)? +a®)"/? < C(t™" + |a|") for a € [~ax,a,] and t > 1. Thus, we arrive at

for t > 1, where the last inequality follows from applying the change of variables z = a+/t. O

o [ )5

At
eMu(N)dA T
/Ffar ( ) X —ax t%+§7

Need for pointwise estimates. We claim that Proposition 5.3 gives estimates with sharp decay rates
when we measure the solution in L°°(R), but not when we measure it, for instance, in L?(R). To see this
heuristically, recall from §2.1 that a good model for the dynamics in the wake is the advection-diffusion
equation u; = Deguge + cqug with Deg > 0 and ¢, < 0. Since advection does not affect decay rates in
translation invariant norms, we have for this equation the well-known diffusive decay estimates, i.e., for
k € Ny and p € [1, 00| the solution u(t) with initial condition u(0) = ug obeys the bound

1
& vl (5.11)
$t272p T2

0o u(®)l|ze <

for t > 0. On the other hand, the resolvent kernel (or spatial Green’s function) G for this equation, which
solves (Deffag + ¢g0¢ — A)G\ = —do, resembles

GA(€) ~ x—(§)em VS,
cf. §3.1. By simple scaling, we obtain, at best,?

[ (M)[*

kG <(C————F——
|| 13 >\||Lp = ’Rvet(A)P/p’

for some A-independent constant C' > 0. Along the parabolic contours used in Proposition 5.3, we find
[rwt (V)| ~ || and |Re vyt (N)| ~ |A|%; see Proposition 3.1. Using these bounds one arrives at the estimate

k—2
10£GallLe < N7,

for points A\ on these contours. Hence, if @()) solves the resolvent equation (Deﬁ‘ag +¢g0¢ — A\)u = g, then
using Young’s convolution inequality, we find the estimate

AN | < NP7
[0ga(N)[[r S A" 29l L1,

2The ¢-derivatives may fall on y— (€) instead of on eVt (NV¢ but terms where this happens are better behaved since x'_ is
compactly supported.
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for points A on these contours. Using Proposition 5.3, this then yields, for each k € Ny and p € [1, o],

[0Fu(-, )| Lr S , (5.12)

vl

1
2t

D=

for t > 0. When p = oo, these estlmates agree with the sharp estimates of (5.11), but when p < oo the

decay rates are worse by a factor of tP %. The reason is that when we measure in LP(R) for p < oo,
we must control spatial localization of the resolvent kernel GG). This spatial localization is controlled by
Revgi(\) ~ Re A, but along the parabolic contours used in Proposition 5.3 we have Re A ~ (Im )2, which
ultimately leads to the discrepancy in decay rates. To close a nonlinear argument, we will need sharp bounds
on the solution in the wake at least in LP(R) for some p < oo, in order to leverage spatial localization of
quadratic terms in the nonlinearity (in our nonlinear argument we choose p = 2). We will therefore rely on
pointwise estimates for this particular aspect to prove sharp bounds on the solution in L?(R).

Pointwise estimates. The estimates we need were essentially proven in [77, Section 8], with an updated
statement closer to our exact needs given in [52, Section 7, example 2]. We give an adapted exposition of
the proof from [52] in Appendix D for completeness.

Proposition 5.4 (P01ntw1se estimates for outgoing diffusive modes). Suppose & > 0 is small. Let \g
denote the point at which Fmt intersects B(0,9), and let N denote its complex conjugate; see Figure 5. Let
g: R? x B(0,0) — C? be a function such that

A= g(-, - A) : B(0,8) — L>°(R?,C?)

is analytic and there exist a constant C' > 0 and an integer m > 0 such that ||g(-,-, A)||Lee < C|A|™. Then,
for each j,t € Ny, there exist a function G7*™: [0,00) x R — R and a constant Cjem > 0 such that, for
each (&,¢,t) € R? x [0,00), there exists a contour T¢ 4 lying in B(0,68), which connects N to Xo, satisfying

[ APl ) feRe Qe E Dl g6, € N) - (€ = AN < G (2,€ = Q) (5.13)
€.Cot
and
m Ciem i 0m Cjtm
”GM’ ) < W, HGM’ (t, ) < W7

which immediately yields the interpolated estimate

, Ciy
IG7E™ (E, ) v < Wz
(1+0)2 %2

forp € [1,00].

We note that the pointwise estimates in Proposition 5.4 are tailored to pointwise analytic terms in the
resolvent decomposition of the form (5.5) which can be represented as a convolution with a suitable integral
kernel. However, fixing ( = 0 and working with a function g that does not depend on ¢ in Proposition 5.4,
the result can also be applied to those terms in the resolvent decomposition of the form (5.4) which are
pointwise analytic in A, but are not necessarily of convolution type.

Returning to the simple example u; = Deguge + cque, we find for large times that the solution u(t) with
initial condition u(0) = up behaves as

ofulet) ~ [ [ (ne)Re e E g C)andc,
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for k € Ny, £ € R and t > 0. Using Proposition 5.4 and Young’s convolution inequality, we find, for each
p € [1,00], that the sharp decay estimate

0gu(, ) e S NG lLelluoll S [[uoll 1,

1
_%4’_

NES

~+~
N~—
=] =

holds for ¢ > 0, thus recovering (5.11).

Estimates for interaction terms. Recall from our discussion in §5.1 that we cannot use the contours
of Proposition 5.4 for estimating terms involving the interaction between branched and outgoing modes,
since these contours pass through the branch point. To handle these terms, which are roughly of the form

2
uint(f; U) ~ aint(U)X— (S)GVM(U )57

where ain(0) is analytic in ¢ = v/ in a full neighborhood of the origin and satisfies iy (0) = 0, we turn

to Proposition 5.3. The fact that au(0) = O(0), yields an extra decaying factor of ¢~'/4. Returning to

the model problem u; = Deguge + cque, and (heuristically) giving this extra factor of decay to the model

estimate (5.12), we find

|0kl )l < -
t4

)

TES M

RS

for t > 0. This agrees with the sharp model estimate (5.11) when p = 2. These estimates are sufficient to
close a nonlinear stability argument.

6 Resolvent analysis near the origin

We analyze the resolvent near the origin with a far-field/core decomposition, aiming to identify terms
associated to the branched diffusive modes, terms associated to the outgoing diffusive mode, and interaction
terms. We start by considering the asymptotic contributions from & = 4oc0.

6.1 Resolvent analysis for the wave train in the wake

In this section, we will use Floquet theory to study the resolvent (L — A)~! of the linearization about the
wave train uyg, near A = 0. To begin, we transform the resolvent equation

(Lwt —A) <Z> =g, (6.1)

for g = (g1,92) " € CX(R,C?) to the first-order system
(0 — A(§, U =G, (6.2)

where U = (u,ug,v)" and G = (0,g)". For translating between the original formulation and the first-order
formulation, we define the linear operators I3 : C> — C2 and A; : C? — C? by

U u p 0
I3 | ue =<>, A1<1>= g1
v v g2 .

The matrix A(§, \) is periodic in £ and analytic in A, and so by standard Floquet theory we have the
following result.
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Lemma 6.1 (Floquet theory). Let 1 < p < oo. For § > 0 sufficiently small, there exists a change of
coordinates Q: R x B(0,8) — C3*3 which is smooth and periodic in its first component and analytic in
its second component and an analytic map B: B(0,5) — C3*3 such that, if we have G € LP(R,C3) and
U(-,\) € WHP(R,C3) is a solution of (6.2), then V(-,\) = Q(-, \U(-,\) € WIP(R, C3) solves

(@ — BO)V = QG. (6.3)

For A € B(0,9) \ (L) we solve (6.3) by constructing the matrix Green’s function T)\"* which solves
(9 = BO)TX" = dol,
and is given by

PNVEPL (N, €20,

T;vt(f) = {_eB(A)gpvtvlt()\), £ <0,

where P35 (\) and Py, ()\) are the spectral projections onto the stable and unstable subspaces of B(\),
respectively. Eigenvalues of B(\) are spatial Floquet exponents of L. It follows from Proposition 3.1 that
for [A| small, the only eigenvalue of B(\) near the imaginary axis is

Vwt(A) = Vvlvt/\ — ngt)\ + O(/\g), (6.4)

where v, v2, > 0. Thus, for |A| small, vy(A) stays bounded away from the other eigenvalues of B(\) and,

wtr “wt
if Re A > 0, this eigenvalue has positive real part. We can therefore separate Pu(\) as

BN = P (M) + P (V),

for A € B(0,6) with Re A > 0, where PS{(\) is the spectral projection onto the eigenspace associated to
vwi(A). Note that, since the eigenvalues of B()) stay separated, the spectral projections Py (), Pei'()),
and PS{()) are defined for all X in a full neighborhood of the origin. We may write

TY(€) = =™ NP (N Lecoy — " MEPR (N gecoy + " NVEPL (N1 ey,

for £ € R and A € B(0,6) with ReA > 0. We now modify this decomposition slightly, using the cutoff
function x_, which is supported on (—o0, 0], to write

T;Vt (&) = —eVWt()\)ﬁp‘%l()\)X, ) + el/wt(A)SPV%‘tl(/\) (x—(&) — 1{§<0}) — eB(A)fpx};()\)l{£<0}
+ PNVEPL (N e
_. _euwt(/\)épvcvltl()\)x_(g) + T5(8).

Note that 7§ € L'(R,C?) is in fact analytic in A in a full neighborhood of the origin due to its uniform
exponential localization. We then decompose the solution to the resolvent equation (6.1) as

S (e(6) = MaQ(E ) [ TH(E — QU N Ag(O)dC. (6.6)

We further modify the decomposition by expanding PS¥(A), Q(&, \), and Q(&, )1 in A in order to separate
the most critical modes from those with improved algebraic decay in time, so that we may finally write

(ZE? i;) = Q0™ /RGV“(A)(&_C)%(& — OP0)Q(C,0)A1g(C)dC + 5 (Vg + 5 (e,
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with

S OVB(E) = Tha|Q(E0) ! [ —e WO (¢ = ORROIQC OMg(O)c
(6.7)
~QENT [ IEI (€= OPROQC M|,
and 5%%(\) given by (6.6).

Lemma 6.2. Fiz 1 < p < co. There exists § > 0 so that the map 5V¢: B(0,5) — B(LP(R,C?), LP(R,C?))
is analytic. Moreover, there exists a constant C' > 0 so that

155 (Mgllzr < Cliglle
for A € B(0,6) and g € LP(R,C?).

Proof. Analyticity follows readily from pointwise analyticity of Q(&, A) in A and analyticity of 7§ € LY(R, C3)
in A in a full neighborhood of the origin. O

Undoing the Floquet change of coordinates at A = 0, it follows that

~T13Q(£,0) 7" /R e NEOy (£ = O PH0)Q(C, 0)A18(¢)dC = Wy (€)55 (Mg (€),

where
S OB(E) = ¢ [ eI (€ - ORROIQC MO (6.9

and ¢: C* — C is some linear map.

We will use the following estimate in analyzing the center piece of the resolvent, which captures dynamics
near the front interface.

Lemma 6.3. For any n > 0 sufficiently small, there exist positive constants C and d and a bounded
limiting operator RY® : LY(R,C?) — WL®(R,C) x L®(R,C) such that the resolvent (Lys — \)~! is a
well-defined map on the exponentially weighted space L C2) for any \ € B(0,5). Moreover, for any
g € LY(R,C?) with supp(g) C (—o0,0], we have

le™x— ((Cor = V7" = BY*) gllwroexsoe < CRAllgl e (6.9)

eXP7777< )

for all X € B(0,9).

Proof. First, we observe that Proposition 3.1 yields that, for > 0 and § > 0 sufficient small, the eigenvalues
v of B(\) stay bounded away from the line Re (v) = —n for any A € B(0,0). Hence, the LeXp -spectrum of
the operator Ly does not intersect the ball B(0,¢), implying that the resolvent (L — )\)_i is well-defined
on the exponentially weighted space Ly, , ,(R,C?) for any X € B(0,0).

Upon defining RY*: L*(R,C?) — W1**(R,C) x L*®(R,C) by Ry'g(¢) = uwt(f)EXt(O)g(S) +57%(0)g(€), the
proof of estimate (6.9) is similar to [8, Lemma 3.6], but we sketch it for completeness. We focus only on the
most critical term in the resolvent, i.e. the one involving E;DVt()\)g, since obtaining the corresponding estimate
for the other terms is strictly easier. Since we are assuming g is supported on {¢ < 0}, the integrand in (6.8)

is nonzero only for £ < ¢ <0.

Now, suppose |14t(A)(§ — ¢)| < 1. Then, using the mean value theorem, Proposition 3.1 and the fact that
I¢] < [€], we establish

e[t M E=0) 1] < e |uye (V)€ — ¢| S e®|Al¢] S A-
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for £ < ¢ <0and A € B(0,9). Now, instead suppose |vwt(A)(§ — ()| > 1. Then, using that || < [£], we
establish, if |A| is sufficiently small relative to 7, that

ler MEO — 1] S e3¢ S eF (V) (€ = O S e JE] S -
for £ < ¢ <0and A € B(0,6). Hence, in either case we have

enéyeth(/\)(&{) —1 <A,

for £ < (¢ <0 and |\ sufficiently small, from which the result readily follows. O

6.2 Resolvent analysis in the leading edge

We analyze the behavior of the limiting resolvent in the leading edge (£, — 02)~! near ¢ = 0. A general
analysis in reaction-diffusion systems with non-degenerate diffusion was carried out in [2, Section 5], based
on the analysis for scalar parabolic equations in [7, 9]. So our main emphasis here is in explaining the
necessary modifications to handle the degenerate diffusion in (1.2).

As in the preceding section, we recast the resolvent equation

(£+.—-02)<Z> ::(32) (6.10)

as a first-order system in the variable U = (u, ug, v)T with G = (0,g)" and g = (g1,92) . This system
takes the form

(9 = M(e))U =G, (6.11)

where the matrix M(o?) € C3*3 is analytic in 02. From a short calculation, one sees that the eigenvalues of
M(c?) correspond precisely to roots (o) of the dispersion relation d,, (02, ), which we refer to as spatial
eigenvalues. Recall from Corollary 3.4 that when |o| is small, there are precisely two spatial eigenvalues
ijr[ (o) in a neighborhood of the origin, with expansion

Vi (o) = +vho + 0(0?), (6.12)

where v, > 0. In particular, v (o) has strictly positive real part and v (o) has strictly negative real part
for o2 € B(0, ) lying to the right of (£, ). We record the following result, adapted from [2, Lemma 5.1].

Lemma 6.4. Let P$"(0) and P$S(o) denote the spectral projections onto the eigenspaces of M(0?) associated
with v (o) and vy (o), respectively, which are one-dimensional provided o # 0. Then, PE%(c) and P (o)
are meromorphic in o in a neighborhood of the origin, with expansions

1 1
P (0) = = Pooie + O(1),  Pi(0) = —Poote + O(1)

for some matriz Pyole € C3%3,
Similar to Section 6.1, our strategy is to recover the solution to (6.10) from the first-order formulation,

which we solve via a (somewhat) explicit Green’s function. For o2 € B(0,6) \ £(£) the matrix Green’s
function T/ associated to the first-order formulation (6.11) solves

(8 — M(c®))TE = 801,
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so that the solution to (6.10) is given by

(zg Z;) - /RH“’T‘?@ ~ Qag(Q)d, (6.13)

where we recall the definition (6.5) of the linear operators II;3 and A;. Following the reasoning in [7,
Section 2] and using Corollary 3.4, we may decompose T as

TE(Q) = e PE(0) ey — (/P (0) + 1P (07)) 1yccay (6.14)

for 0% € B(0,0) to the right of (L), where P*(c?) is the spectral projection onto the strong unstable
subspace of M(0?) corresponding to the remaining third eigenvalue v3(0?) of M (0?), which resides in the
open right half-plane and remains bounded away from the imaginary axis for |o| small. The leading-order
temporal behavior of the solution to the linearization u; = £ u will be governed by those terms in (6.14)
which are most singular in . Standard spectral theory implies that P8(¢?) is analytic in o2 in a full
neighborhood of the origin. The only singularities then arise from the terms involving Ple, and so from
the point of view of the resulting temporal dynamics, we have

1 + -
T(fr(C) ~ ;Ppole (el/fr (U)Cl{<<0} + Vi (U)C1{<20}> ]
Using the expansion (6.12), we see that —v; (o) ~ vy, (0) = —vio, and hence

1
T7(¢) ~ o Y171 Poote =1 G5 (C) Pyote-
Note that, up to scaling, Ggeat is the Laplace transform of the fundamental solution of the heat equation.
The solution to the resolvent equation (6.10) is then given to leading order by

(“(55 “3) ~ sPpaels [ GE(E = Og(OAC. (6.15)
g R

To make this reasoning rigorous, we can follow the analysis of [7, Section 2], but for now ignoring estimates
on derivatives of the solution, to obtain the following description of the far-field resolvent for o € Agr’l,
where we recall that A?’l is the image of the set Qgr’l under the principal square root, see Figure 4 and (5.3).

Lemma 6.5. Fixr > 2. There exist positive constants C' and § and a bounded limiting operator R(J{ :
Lh(R, C?) — L (R, C?) such that for all odd functions g € Li (R, C?), we have

I(£s —o*) g~ Biglls, , <Clollgly,. 1Ly~ s~ Rigly < Clollgl: .

1,-1 —
fr,1
forall o € Ag.

The leading-order description (6.15) corresponds to the resolvent problem for the heat equation. For the
heat equation, restricting to odd initial data is equivalent to imposing the Dirichlet boundary condition
u =0 at £ = 0. Restricting to odd initial data g here models an effective absorption mechanism behind the
leading edge of the front, due to stability of the state in the wake. We will enforce this oddness for the
leading edge resolvent in our far-field/core decomposition in the next section.

In passing estimates to the full resolvent (Lg — 02) ™!, we will need to control commutators [£, x.+] applied
to the solution u™t of the leading edge resolvent equation (£, — o?)u™ = g,. These commutator terms will
involve derivatives applied to the first component of u™, but not the second component, and so we need to
upgrade Lemma 6.5 to control regularity in the first component.
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Proposition 6.6. Fiz r > 2. There exist positive constants C and § and a bounded limiting operator
R : Lil(R,Cz) — Wifo_l(R, C) x L= _1(R,C) such that for all odd functions g = (g1,92)" € Lil(R, C?),
we have

L+ — o)) 'g— Riglyre ypoe < Clolligllp .
—1,—-1%%+7,-1 1,1 (6 16)
(L4 —o*)7 g = Rigllyra . < Clolligllp

fr,1
forall o € Ag.

Proof. Using the first-order formulation in U = (u, ug, v) T, we see that, if (£, — 0?)u = g, then we have

fi
ug(§;0) = /}Rﬂsz(f - M (?;Eg) dg, where 1l ;; = fa.

Comparing with (6.13), the only difference between the expressions for (u, v)T and wg is that II;3 is replaced
by Ils, both of which are independent of o. Therefore, following the same reasoning, we readily find the
same estimates for u¢(§;0) as for u(&; o), which implies the desired result. O

We will use Proposition 6.6 to obtain the sharp t~%/2 decay when measuring the solution in Lg"_ ;. Indeed,

we saw in Proposition 5.1 how the Lipschitz estimate (6.16) leads to the t~3/2 decay rate. In closing a

nonlinear argument, however, we will also measure the solution in weaker norms, such as L*°(R) and
L?(R). In these spaces, we lose the Lipschitz expansion of the resolvent, but retain some boundedness or
quantifiable blowup for o € Af;r’z, where we recall that A(f;r’Q is the image of the set Q?’2 under the principal
square root; see Figure 4 and (5.2).

Lemma 6.7 (L™ estimate in the leading edge). There exist positive constants C' and ¢ such that for
o€ Af;r’z the following estimates hold.

o For all odd functions g € L(IM(]R,(CQ), we have

[Cs =78 o e < Clgllny,- (6.17)
e« For all odd functions g € L*(R,C?), we have

e (e =7, < el (6.18)

The estimate (6.17) will be used to estimate decay in the leading edge in L*°(R). The estimate (6.18) will
be used in controlling contributions to the center dynamics near the front interface. Finally, to estimate
decay in the leading edge in L?(R) we will rely on the following result.

Lemma 6.8 (L? estimate in the leading edge). There exist positive constants C and § such that for all odd
functions g € Lj (R, C?), we have

C
2\—1
I+ = o) slus < -l

fr,2
for all o € A,

We relegate the proofs of Lemmas 6.7 and 6.8 to Appendix C.
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6.3 Far-field/core decomposition

Our goal is to solve (Lg — 0?)u = g by using a far-field/core decomposition which takes advantage of
Fredholm properties of Lg on spaces of exponentially localized functions, captured in Proposition 3.6. To
do this, we must first reduce to a problem where the data g is exponentially localized. Thus, we first
decompose data g € L' (R, C?) N L>®°(R, C?) as

E=X-8t+t X8+ X+8=:8- T8t 8+,

where (x—, X¢, X4) is the partition of unity defined in Section 2.3. We then let g399(¢) = g (&) — g+ (—¢)
be the odd extension of g, in order to take advantage of the improved behavior of (£, — ¢%)~! when
acting on odd functions. We let u; solve

(L4 —o)uy =gy

By Proposition 6.6 we can solve this equation in L‘ioly_l(R), thus allowing for algebraic growth, by requiring
that g?rdd is algebraically localized, i.e. gj’_dd € L(lm(]R), and o? lies in the set Qgr’l, which lies to the right

of Yess(L£4). In addition, if o2 lies in the smaller set Qf;r’2, we obtain by Proposition 6.7 a solution u, in

L% _;(R) without requiring extra conditions on gﬂrdd.

We let u_ solve
(ﬁwt - 0_2)u_ =g—-

By Proposition 6.3, there exists § > 0 and 7 > 0 small, such that we can solve this equation uniquely for
any o2 € B(0,0) by allowing the solution u_ to grow exponentially on (—oc, 0] with rate .

We then decompose u as
u=x-u_+uc+ x4+uy,
and see that in order for u to solve (Lg — 02)u = g, the center correction u, must solve
(Li — 0*)u. = g(0), (6.19)
where

g(0) =g — (L — 0%)(x-u-) — (L — o) (x4 uy). (6.20)

The next result confirms that the above procedure has led to a reduced problem (6.19) in which the data g
is indeed exponentially localized. In addition, it provides control on the data g in terms of the original data
g and the spectral parameter o.

Lemma 6.9 (Control on center data). Fiz 1 <p < oco. There exist § > 0 and n > 0 small such that, for
any g € L'(R,C?), the map §: Af;r’l — XP given by (6.20) is well-defined and analytic. Moreover, there
exists a constant C > 0 such that

1. for all any g € L(l)’l(R,(C2) the map & extends Lipschitz continuously to o = 0, i.e., for all o € A?’l
we have

|&(0) ~ &(O)llx < Clollgls . 1&O)] < Cllgllzs (6.21)

2. forallo € Agm and any g € L*'(R, C?) we have
18(0)llxy < Cligllr; (6.22)
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3. forallo € A(f;”2 and for any g € LY(R,C%) N L=(R,C?) we have

18(o)llxz < C(llgller + llgllze<) (6.23)

for all 1 < p < oo.

Proof. We rewrite g(o) as

(Lt = 02)(x-u-) = (Lir = L) (x-u-) = (L4 — o) (x4us) = (L — L) (x+uy)
X-8— = X+8+ — [Lwt, x—|u- = (Lir — Lwt) (x—u-) — [L4, x+]uy (6.24)
(Lo — L) (X+uq),

g(o)

g_
g_

where we have used the facts that y4+(L+ — o?)uy = x1899 = x1 g4, and x— (Lt — 0?)u_ = x_g— by
construction.

We first prove (6.21). The dependence of g on o enters through the terms involving u_ and uy. Using that
the derivatives X/, are compactly supported and the coefficients of L converge to their limits exponentially
quickly as & — +o00, we see that all coefficients of uy in (6.24) are exponentially localized with rate ng > 0
independent of 0. Note also that all commutator terms only involve derivatives in the first component.
Hence, choosing 1 < ", we have by Proposition 6.6 and Holder’s inequality,

124 x4 (9) = w(O)llxg < [Je™ #Hws(o) = urp (O], + e ¥ M0 (w4 (0) — i (0))

< lollig e, < lolligly

Lp

for o € Agr’l, where IT; (u,v) T = u. By the same argument relying on exponential localization, we obtain
(£ — £+ (we(0) — e O)]lxy < lolllglzg

for o € Agr’l. The argument controlling the terms involving u_ is analogous, with Lemma 6.3 replacing
Proposition 6.6. Note that Lemma 6.3 only controls a localized L> norm, not the L' norm, but here the
integral can be absorbed by the uniform exponential factor so that the L estimate is sufficient even in the
case p = 1.

The proof of the estimate (6.22) is similar: after exploiting uniform exponential localization and the structure
of the commutators, control on the terms involving u, is obtained using Lemma 6.7, while Lemma 6.3 still
suffices for control on the terms involving u_. The proof of (6.23) is again similar, the only difference being
that the term ||g||L~ is needed on the right hand side to control ||g — x—g— — x+&+|[z» from the point of
view of spatial regularity. O

With control on the exponentially localized right-hand side g in hand, we now aim to solve (6.19) for u,
using a far-field/core decomposition. To understand the solvability properties of (6.19) on the space X of
exponentially localized functions we can look at the Fredholm index of L., which is —2 by Proposition 3.6.
Thus, the problem (6.19) cannot be solved for exponentially localized u, as we need to allow for two
additional degrees of freedom. This leads us to consider the following two neutral modes.

Lemma 6.10 (Neutral mode on the left). For § > 0 sufficiently small, there exists a solution e_(&, ) to
(Lwt — N)u =0 given by

e_(&,\) = q(& N)errtME

where q: R x B(0,8) — C? is smooth and periodic in its first argument and analytic in its second argument.
Moreover, we have q(-,0) = Uyt.
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Proof. This follows readily from Lemma 6.1 and Proposition 3.1. O

Lemma 6.11 (Neutral mode on the right). For 6 > 0 sufficiently small, there exists a solution ey (&, o) to
(Ly —a®)u =0 given by

e1(6,0) = v, ()" @,
where v4: B(0,V6) — C? and vy, : B(0,V$§) — C are analytic, with v, (o) given in Corollary 3.4.
Proof. This follows readily from Corollary 3.4. O

Motivated by the previous Fredholm analysis, we make the ansatz
(6 ) = a_x—(€)e(€,0%) + W(E) + asxs (e (€ o).
Inserting this ansatz into (6.19) leads to an equation
G(w,a—,aq;0) = g(0),
where
G(w,a_,a1;0) = (Lx —0?) [a_x_e_(0%) + W+ ayxie(,0)].
Lemma 6.12. Fiz 1 <p < oco. There exist constants n > 0 and § > 0 sufficiently small so that the map
G:foCxCxB(O,\/S)%Xg
is well defined and analytic in o.

Proof. This follows from the fact that e+ solve the equations in the far-field (see Lemmas 6.10 and 6.11),
together with exponential convergence of the coefficients of Lg and localization of commutator terms.
Analyticity in o follows as in [57, Proposition 5.11] or [9, Lemma 3.9]. O

Note that G is linear in w, a—, and ay. Although D,,G = Lg is Fredholm with index —2 by Proposition 3.6,
provided n > 0 is sufficiently small, the Fredholm bordering lemma and continuity of the Fredholm index
imply that, for each fixed |o| small, the map (w,a_,ay) — G(w,a_,a4;0) is Fredholm with index 0.
Hence, the two additional degrees of freedom in the ansatz for u., represented by the coefficients a4 of the
neutral modes, led to a problem which can potentially be inverted. The next result shows that this is in
fact the case.

Proposition 6.13. Fix 1 < p < oco. There exist constants n > 0 and 6 > 0 sufficiently small so that for
each o € B(0,V/3), the map

(w,a—,aq) = Gw,a—,a4;0) VP xCx C— XP
is invertible. We denote the solution to G(wW,a_,ay;0) =g by
(w,asa1) = (T(0)g, A— (o), A1 (0)g).
Moreover, the inverse maps
T(o): XP—=YP, Ai(o): X) —C

are analytic in o in B(0,V/3).
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Proof. The result will follow from the implicit function theorem provided we can verify invertibility at
o = 0. Since (w,a_,ay) — G(w,a_,a4;0) is Fredholm with index 0, this map is invertible if and only if
it has trivial kernel. Since e_(&,0) and ey (&, 0) are bounded on the real line, a nontrivial kernel of this map
would correspond to a nontrivial bounded solution to Lsu = 0, which is excluded by Hypothesis 3. O

We have constructed a solution to (L, — 0?)u = g given by
u(&;0) = x-(§)u-(§0°) + a—(0)x-(§)e—(& 0) + W(&; 0) + s (0)x+()e+ (& 0) + x+(§)ur (& 0),
where
a(o) =A(0)g(0), w(;0)=T(0)g(0), ar(0)=Ar(0)g(0).

Our goal is now to isolate the terms which correspond to the leading-order temporal dynamics. Thus, we
decompose the solution as

u(é) = x-(§u-(&0°) +a-(0)x-(§)e-(&0%) + Ru(&;0), (6.25)

where

R (§50) = x+(§)uy(§50) +T(0)g(0) + at(o)x+(§)e+(§;0)

captures contributions from the branched mode in the leading edge. To estimate time decay rates of the
branched mode in various norms, we use the following estimates on R (€;0). The first corresponds to the
sharp t73/2 pointwise decay rate, which is observed when measuring in sufficiently weak norms. The next
two correspond to slower decay rates when measuring in stronger norms.

Lemma 6.14 (Expansion for branched mode in L§®_;). There exist positive constants C and § such that
for any g € Lj (R, C?), we have the estimate

[ (50) = Ree (55 0)l[ e, < Clolllellry

fr,1
forall o € Ay

Proof. This follows by combining Corollary 3.4, Proposition 6.6, Lemma 6.9, and Proposition 6.13, and
Taylor expanding the exponential in e (z;0). O

Lemma 6.15 (Blowup of the branched mode in L?). There exist positive constants C and & such that for
any g € Léyl(R,CQ) N L®(R, C?), we have the estimate

C
[ R (5502 < W”gHLé,lﬂL”

for all o such that o € Agrg,

Lemma 6.16 (Boundedness of the branched mode in L*°). There exist positive constants C' and ¢ such
that for any g € L, (R,C?*) N L>(R,C?), we have the estimate

1B (5 0)l[Le < Cligllzy are

for all o such that o € Agr,z'
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Lemmas 6.15 and 6.16 readily follow from the control on the leading edge resolvent (£, — 02)~! in
Lemmas 6.8 and 6.7, control on v, (¢) and e (-,0) from Corollary 3.4 and Lemma 6.11, and control on
T(0)g(o) and A4 (0)g(o) from Proposition 6.13 and Lemma 6.9.

We now analyze the terms y_(£)u_(¢;02) and a_(0)x—(£)e_(&;02) in (6.25), which correspond to the
leading-order temporal dynamics. We begin with the term y_(£)u_(&;0?). By the resolvent decomposition
for the wave train in the wake, performed in Section 6.1, this contribution can be expressed as

X-(§)u-(&0%) = x— (g (€)[55"(0%)g-1(€) + x-(&)[52" (0*)g-1(€) - + x—(©)[5¢" (07)g-1(),

where 53, 5% and 57" are defined in (6.8), (6.7) and (6.6), respectively. Since we are interested in the

stability of the pattern-forming front ug, it is more natural to identify the leading-order dynamics with uf,
rather than u,. We can make this replacement up to a manageable error, writing

X= (O (O[5 (0)g-1(€) = x—()un (O[5, (0*)g-1(€) + x— () (e (&) — u(€))[5, " (0?)g-](§)-
Since x_(uj — uf,) is uniformly exponentially localized in space, contributions from this term can be seen

to decay much faster in time.

Similarly, using that e_(£,02) = q(f,az)el’wt("Q)f, and that q(¢,0?) is analytic in 02 in L(R), with
q(-,0) = ul, we have

a_(o)x—()e_ (& 0%) = a_ (o) x—(E)uh(E)e™ I 4 a_ (o) x—(€)e” W uf(€) — wly (6)]
+ a (0)x—(€)e™ T ul, (€) — a(&;02).

The first term contributes to the leading-order time dynamics, while the second term is faster decaying

since x_[uf, — ul] is uniformly exponentially localized. Since q(-;0?) = uly, + O(|o|?) € L>®(R) the last

term is also faster decaying in time.

In summary, we have obtained the resolvent decomposition

u(0) = (Ly — o) 'g = up (50 (0)g] + 5.(0)g + 5c(0)g, (6.26)

where
5 (0)g = x—5"(02)g + x—a— (o) ("), (6.27)
5e(0)g = Rix(;0) + a—(0)x—e ) ([uf, — wj] + [l — a(502)]) + x5t (0%)g (6.28)

+ x—(uly — uf,)5y (o),

Se(0)g = x-5."(0%)g.

In the next section we will extract temporal decay by combining the abstract linear estimates in Section 5
with bounds on 52(0), 5c(0) and 5.(0). We recall that control on s.(o) follows from Lemma 6.2. Moreover,
control on 5.(o) is provided by the estimates on R (+;0) in Lemmas 6.14, 6.15, and 6.16 in combination with
the control on vy (02), Q(+;02), P& (0?) and o (o), obtained in Propositions 3.1 and 6.13 and Lemmas 6.1
and 6.9, using the explicit expressions (6.7) and (6.8) of 57*(0) and 5)*(c). Finally, using again the explicit

fr

expressions (6.8) of 5)*(c), control on 51 (o) follows by control on vy(c®) in combination with the following

2
estimate on the interaction term y_a_(c)e"wt(e?)".

Lemma 6.17 (Estimate on interaction term). Fiz 1 < p < oco. There exist constants C,§ > 0 such that we
have the estimates

ja—(0) —a—(0)] < Clolligllzy »  la-(0)] < Cligllz (6.29)
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forall o € Agr’l and g € L§ (R, C?), and
_4
Il (@) = a- O)-e™ " | < Clof "+ gl (630
for all 0* € Q3" and g € Lj;(R,C?).

Proof. The first estimate (6.29) follows readily from Lemma 6.9 and Proposition 6.13. Noting that
QY C Q! (see Figure 4), we observe that estimate (6.29) holds for all 02 € Q¥ and g € Lj,(R,C?).

For proving the second estimate, we fix d > 0 and define the curve

I, =B(0,0)Nn{X(b) : bR},  A:(b) := & +ib— db?,

par
for each € > 0. By estimate (6.29) and a basic scaling argument, we obtain

o]

- UGN [P L
lla—(0) — a—(0)]x—e I 2 Re v (0277

lellzy (6.31)

for all g € Lj;(R,C?) and 0 € Q). Using the expansion (6.4), we see that along I'S, ., we have

par?
Re vyt (Ae(D)) = 118 — 198% + b*(—v1d + 12) + O((€ + b)?).

From this expansion, we observe that, upon taking d > 0 smaller if necessary, there are constants ki, ko > 0,
uniform in € > 0 sufficiently small, such that

Re vyt (A2(b)) > k1€ + kob?,

holds along I'%,,. Note that along I';, ., we have |o|? ~ v/£2 + b2, and so we have

par* par»
Re th(0'2) > k\o[4,

for o* € I'S,,,, where k > 0 is some constant independent of & and o. Combining this estimate and (6.31),

we obtain (6.30) for o2 € Ff)ar with constant C' > 0 independent of € and . If § > 0 is small, we can write

Q¥ as the union of all such P‘gar, parameterized over & > 0 sufficiently small, and so the result follows. [

7 Linear estimates

In this section, we will apply the general linear estimates of Section 5 to the resolvent description of Section 6
to establish a decomposition of the semigroup e“#* and corresponding estimates, which are suitable for
proving sharp nonlinear stability results. The outcome of our linear analysis may be summarized as follows.

Theorem 7.1 (Linear estimates). The semigroup e~  generated by L., may be extended to an operator

on LP(R,R?) for 1 < p < oo or on Co(R,R?). Moreover, et admits a decomposition

[e“g](€) = up(©)[sp()g](€) + [Sc(t)g](€) + [Se(g](€), £ €R, >0, (7.1)

with s,(0) = 0, and there exist constants C, > 0 such that the following estimates hold.

1. Estimates on exponentially damped part. For allt > 0 we have

1Se@ll2pz < G, [Se(®)llcyocy < Ce .
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2. Estimates on smoothing principal part. For each pair of non-negative integers m and £, there
exists a constant Cy, ¢ > 0 such that

||3fa£m5p(t)g||L2 < (l ) e HgHL
4
(1+ )C (7.2)
10607 sp ()l L= < lm glel,
(1+1)(z+
for all g € Lj (R, R?) and t > 0, where a A b= min{a, b}.
3. Estimates on residual part. We have
C C
Is:0gls < o (lelsy, +lle).  UScgle= < 7 (el +lilz~).
forall g € L}Ll(R,Rz) N Co(R,R?) and t > 0.
Moreover, we have the improved decay estimate in the leading edge,
C
Efrt oo o0
esete'gleg, < o (1gluy, + lglz). (7.3)

for all g € L, (R,R?) N Co(R,R?) and t > 0.

Fix 6 > 0 small enough so that the decomposition (6.26) of the resolvent holds in the ball B(0,d), which is
depicted in gray in the right panel of Figure 3. By Corollary 4.4, we may write the action of the semigroup
efrt on a test function g € C°(R, R?) via the inverse Laplace representation as

1
efilg = —— lim MLy — N lgd), (7.4)

2
271 R—oo s

where the contour F%% is depicted in the right panel of Figure 3. To prove Theorem 7.1, we will deform
the portion I'Z = I'%, N B(0,§) of the contour I'% near the origin in several different ways depending on
the behavior of the different terms arising in the decomposition (6.26) of the resolvent so that we can
subsequently apply the abstract linear estimates obtained in Section 5.

First, we identify the various terms in the decomposition (7.1). Recall by Corollary 4.4 that we can write
the semigroup e“#? via the inverse Laplace transform as
ﬁfr

1 “ B
~ T om Lg—N)'gdA
& 2ri R_”O /1 Turd-urzurgfurk +© e (La )" gdA,

lnt int
for g € C°(R,R?). The segments F}%i and Fmt of the contour are contained strictly in the left half-plane,
and so contribute to the exponentially decaying part of the semigroup, see Corollary 4.4. By Lemma 6.2 the
term 5¥¢(\) in the decomposition (6.26) of the resolvent is analytic in A in LP(IR) on the full ball B(0,4). As
a consequence, the integral over I'3 of this term is also exponentially decaying in time as the contour I'Z can
be deformed within B(0,d) so that it lies in the open left half-plane. Thus, collecting these exponentially
decaying terms, we define

__@ . Y’ _ 1 (t)/ Xt owt
Se(t)g = —5 - Jim S r2+ur1+ (L —A)gdA - o ge X-S¢ (A)g—dA

int int

(7.5)
+ (L —q(t) e“r'g,
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where ¢: [0,00) — R satisfies ¢(t) = 0 for t € [0,1] and ¢(t) = 1 for t € [2,00).> On the other hand,
we collected all terms, contributing to the leading-order temporal dynamics, in the term 55(0) in the
decomposition (6.26) of the resolvent. Thus, we define

sltig =50 [ i (o)gd(o?), (7.6)

27

for the principal part, which leaves only the algebraically decaying residual part

S.(t)g = _st) /F ) " !5,(0)gd(c?). (7.7)

2mi
Recall that expressions for s7¢(\), Eg(a), and 5.(o) are given in (6.6), (6.8), and (6.7), respectively.
Having identified the terms in the decomposition (7.1), we now estimate them one by one by choosing
appropriate integration contours based on the analysis in Section 5, thereby proving Theorem 7.1.

Lemma 7.2 (Estimates on exponentially damped part). The operator Se(t), defined by (7.5), extends to a
bounded linear operator on L*(R,R?) and on Co(R,R?) for each fized t > 0. Moreover, there exist constants
C, > 0 such that for all t > 0 we have

I1Se(®)llz2 2 < Ce™, [ISe(t)llco—co < Ce™.

Proof. The estimates on the first two terms in (7.5) follow for g € C°(R, R?) from Corollary 4.4 together with
analyticity in A of 3¥*(\) on the full ball B(0,§) obtained in Lemma 6.2. From the proof of Proposition 4.1,
it is clear that e“&! also generates a strongly continuous semigroup on L?(R,R?) or on Cp(R,R?). An
exponential decay estimate on the last term in (7.5) follows from these facts together with compact support
in time of 1 — ¢(¢). With these estimates in hand, we can then naturally extend S.(t) to the larger spaces
L?(R,R?) and Co(R,R?) by approximating with test functions. O

Lemma 7.3 (Estimates on smoothing principal part). Let s,(t) be defined by (7.6). For each pair of
non-negative integers ¢ and j, the operator Ofﬁgsp(t) extends to a bounded linear operator from Lé’l(R,R2)
into L*(R,R?) or from Lévl(R,RQ) into Co(R,R?). Moreover, there exists a constant Cje > 0 such that

Cie Cie

¢ o ¢ o)
t < —) t o < —m———— .
1082ty Ogles < el 108 Ogli S ey, (79
for allt >0 and g € L (R).
Proof. By (6.27), the action of s,(t) on a test function g € C2°(R, R?) decomposes as
_ §(t) At Zwt §(t) ot Uyt (02)- 2
sp(D)g = —%/Fge X-F (N dA — m/pge Y_a_ (o) q(a?). (7.9)

We start estimating the first integral. With the aid of (6.8) we rewrite this integral as

J

3The reason for introducing the temporal cut-off function is to assure that the critical diffusively decaying part of the
semigroup vanishes at ¢ = 0, that is, we have s,(0) = 0. This has the advantage that temporal derivatives of the phase
modulation function simplify in the nonlinear stability argument.

M-8 (Ng-1(e)dr = o ( /F M- (9) /R R <>P@%<O>Q(<,0>A1g_<<>d<dA> :

2
0 0
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Using that x_ (¢ — ()e rwit(M(E=C) s uniformly exponentially localized for A in the compact contour I'Z, we
swap the order of integration to obtain

[, eMhest el = (x-(é) [ PR0QC0Me-©) [
I2 R r

0

e (S <>dAd<>

Since the map A — eMT#wt(N(E=C) s analytic in A on the full ball B(0,d) for each fixed £,¢ € R and t > 0
by Proposition 3.1, we can deform the integration contour I'3 to the pointwise contour ¢ ¢+ obtained
in Proposition 5.4. Then, using Proposition 5.4 to estimate the resulting integral and applying Young’s
convolution inequality, we obtain

gl el
<G00, 2l Q- 0 1 < Bt o T8
L2 (1+t)7  (1+1t)1

At swt
/F%e X-5p (A)g—dA

and

gl Hg”Ll’
SNG0 ()= 1R, 0)g—ll 1 S T < L
. A+0F (140

for g € C°(R,R?) and ¢ > 0, which correspond to the estimates (7.8) for j = £ = 0. The estimate for j > 0
and ¢ = 0 follows in the same way: differentiating j times the factor e* produces a factor of M, and we then
can apply Proposition 5.4 with j > 0 to obtain the improved decay. Considering ¢ > 0, the £-derivatives
may fall on either y_ (£),e"tMNE=Q) or y_ (£ — ¢). If all £ derivatives fall on e**t(M(E=0) then the desired
estimate follows directly by applying Proposition 5.4 with ¢ > 0. If any derivatives fall on y_(§ — (), then
we use Proposition 3.1 and the fact that x’ is compactly supported to conclude that X\ — evwt(A) X is
analytic in A on B(0,6) in LP(R) for any 1 < p < oo, so that the contour integral can be shifted into the
left half-plane, implying exponential decay in time Similarly, if any derivatives fall on x_(£), then note
that the map (&,C) — X ()& (O)x— (€ — ) = X ()x—(C)x—(€ — Og(C) is supported on the compact set
{1 <& < (¢ <0}, so that we do not have to Worry about loss of spatial localization of e”*t(N(E=0 Hence,
the resulting integral is again analytic in A on B(0,0) in LP(R) in this case and we gain exponential decay
in time. This completes the estimates for the first term in (7.9) for g € C°(R, R?).

At Swt
/Fge X-5p (A)g—dA

Next, we analyze the second term in (7.9), which encodes the interaction between branched and outgoing
modes. We start by further decomposing this integral as

/e"ztxfozf(a)e”wt("z)’d(02):/ e ty_a (0)e”(*) 4(o?)
I3 g

] i (7.10)
+ [ e la (o) — as (@) d(o?),

The estimates (7.8) for the first integral in (7.10) with j = ¢ = 0 follow by applying the pointwise estimates
in Proposition 5.4 with ¢ = 0 fixed. Using Lemma 6.17 to estimate |a_(0)|, this leads to

for p € {2,000}, g € C°(R,R?) and ¢t > 0. This can be extended to positive j and ¢ by handling ¢- and
t-derivatives exactly as for the first integral in (7.9).

gl
SNGY0(t, ) || ela—(0)] § ——
Lp (1+1t)2 2

/ My _a_(0)e” N A
I3

We cannot use Proposition 5.4 for the second term in (7.10), since a_ (o) — a_(0) is not analytic in o2 in a

full neighborhood of the origin. Instead, by Lemma 6.17, we have

Ix-[o- (@) = a1 1 < lo P el = oG ey (7.11)
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for p = 2,00, 02 € Q¥ and g € C°(R,R?). Since % — % > —1 for p > %, we can apply Proposition 5.3 to
obtain

gl 1
, (7.12)

[t o (@) — o @) rae?)| <
r p (1 + t) 4 p

2
0

for g € C°(R,R?), t > 0 and p = 2,00, which leads to the estimates (7.8) for £ = j = 0. The same
argument applies to obtain faster decay rates for j > 0, since differentiating et with respect to ¢t produces
additional factors of |¢|?, which contribute to faster decay by Proposition 5.3. When ¢ > 0, if all derivatives
fall on evwt(o%): , then the same argument applies by Proposition 3.1. However, if some derivatives fall on
X_, then, since ¥’ is compactly supported, the function Gﬁx,ﬁﬁ_ke”wt(”2)' is analytic in 02 on B(0,0) in
LP(R) provided k > 1. Hence, if we define

u(0) = [a— (o) — a— ()]0 x_0f Fern(e),

then this analyticity together with the regularity of a_ (o) from Lemma 6.9 and Proposition 6.13 implies
that (o) is analytic in LP(R) in o2 on QI"'. Tt enjoys the estimate |u(c)||rr < lolllgll s for o € N
and g € C°(R,R?) by Lemma 6.17. Applying Proposition 5.1, we see that this term decays with rate
(1+1)73/2

Altogether, after using approximation with test functions, we have established (7.8) for any pair of
non-negative integers (¢, j), as desired. O

Lemma 7.4 (Estimates on smoothing residual part). Let S.(t) be defined by (7.7). The operator S.(t)
extends to a bounded linear operator from L(l)vl(R,]RQ) N Co(R,R?) into L*(R,R?) or from L(l)jl(]R,]RQ) N
Co(R,R?) into Co(R,R?). Moreover, there exists a constant C > 0 such that

C
1Se(t)gll 2 < lelicy nzes [1Se®)gll= < s lI8llzy are,

¢
(1+1)1 14t

for all g € Lj (R, R*) N Co(R,R?) and ¢ > 0.

Proof. Expanding 5.(c)g for a test function g € C°(R, R?) via the formula (6.28), we find

sg =50 [, R o) + [ e w2 og (o
+ e (o (o) — a0 O (ufy — (o)
0 (7.13)
+ [ e (g = ) (a-(0) + (0% ) d(o?)

0

+ [ Mo (onee @, — alio?)d(e?)).
0

For the first integral, applying Lemma 6.15 and Proposition 5.2, we obtain the estimate

< HgHL(l)’lﬁLOO
T (A4

)

/ e"QtRfr(a)d(az)
3

for g € C°(R,R?) and ¢ > 0. Similarly, using Lemma 6.16 instead of 6.15, we obtain

el e

I

/ eUQtRfr(a_)d(O_Q)
I

2 Y
0
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for g € C°(R,R?) and t > 0.

The desired estimates on the second integral in (7.13) follow exactly as those on the first integral in (7.9) in
the proof of Lemma 7.3, noting that each term in the formula (6.7) for s¥*(c) carries by Lemma 6.1 an
extra factor of A compared to E;Vt(A), which improves the temporal decay rate by a factor (1 + t)_l/ 2,
wt 2 in a full neighborhood of
the origin in LP(R) for any 1 < p < oo using Proposition 3.1 and the fact that y_(uf, —ul,) is exponentially
localized. Hence, the worst behavior in this term is in a_ (o) — @—(0), which can be bounded with the aid

of Lemma 6.17. Altogether, we can use Proposition 5.1 to obtain

For the third integral in (7.13), note that X_e”“V“("Q)'(u;r — ) is analytic in o

_ Dl

et (a_(o) — a_ _et ) (uf — o o’
€ 00— @O - u — wiuae?)| S S

3
2 2
0 2

for g € C°(R,R?) and t > 0, where X = L?(R) or X = L>°(R).

For the fourth integral in (7.13), we observe that the integrand is analytic in o2 in a full neighborhood

of the origin in LP(R) for any 1 < p < oo, where we use the expression (6.8) and the facts that vy (\) is
analytic in A by Proposition 3.1 and x_(uf — ul,) is exponentially localized. Thus, we gain exponential

decay in time in L?(R) and L°°(R) of the fourth integral.

The last integral in (7.13) can be estimated exactly as the second term in (7.9) in the proof of Lemma 7.3.
That is, we further decompose

/Fz o (0)y-e ) (ul, — q(0?)d(0?) = /F e o (0)x ") (uly, — q(50%))d(0?)

0

+ [, ¢ am(0) — as(O)x-e 7wy, — a(:0%)d(e?).

Lemma 6.10 then yields
[uge — a3 )= S 1AL (7.14)

for |A| sufficiently small. The desired estimates on the first term then follow by applying the pointwise
estimates of Proposition 5.4, using Lemma 6.17 to bound a_(0) and noting that we carry an extra factor of
|A| by estimate (7.14). Similarly, the second term carries an extra factor of |o|? compared to (7.12). Hence,
we obtain the desired estimates by combining Proposition 5.3 with the estimates (7.11) and (7.14).

Altogether, the result now follows by approximation with test functions. O

To complete the proof of Theorem 7.1, it only remains to establish the improved decay (7.3) in the leading
edge.

Lemma 7.5 (Improved decay in the leading edge). There exists a constant C > 0 such that for all
g e Léyl(R,RQ) N Co(R,R?) and all t > 0, we have the estimate

Lt

C
Ireleeline < — " lalloy e

(1+1)2

Proof. Using the inverse Laplace representation (7.4), we write

| 1
Lutg — _ 1 X (Lo — A) d)\——/ Ny (Lo — A)gd\,
8 = o A e e pt © X+ (L = A)7 gdA = o s © X+(Lr =)

int int
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For the first term, we apply Corollary 4.4 to find a constant r > 0 such that

Segle, (7.15)

oo
LO,fl

lim /F e gt My (L — A)TgdA
L :

1,4
R—o0 ur'p

int int

for all g € C°(R,R?) and ¢ > 0, where we use the continuous embedding L§®_ ; (R) < L>(R).

For the integral over I'Z, we find from the resolvent decomposition (6.26) that, for A = ¢ in a neighborhood
of the origin, we have

X+ Ly —0®)'g = x4 Re (- 0),
which satisfies the estimate

I+ [R(50) = Ree (5 0)llzge, < lolllgllrs

for all o € Afsr’l and g € C°(R,R?) by Lemma 6.14. Using Proposition 5.1, we therefore obtain

fort > 0 and g € C°(R,R?). Combining this with (7.15) completes the proof of the lemma by approximation
with test functions. O

gl
[ e —Ngdy|
I

~ 3
H 2

Ly, (1+1)

8 Nonlinear iteration scheme and nonlinear estimates

In this section we formulate a nonlinear iteration scheme and state associated nonlinear estimates. In the
next section we then prove our nonlinear stability result by closing an iterative argument based on this
scheme with the nonlinear estimates.

We are interested in the long-time dynamics of the perturbed solution u(¢) of (1.5) with initial condition
u(0) = ug + wo, where vg := wwy € Lj; (R,R?*) N (Z3(R,R) x Z(R,R)) is sufficiently small. The initial
perturbation w is L!-localized on (—o0,0] and exponentially localized on [0, 00). Recall that the latter is
necessary to marginally stabilize the essential spectrum associated with the leading edge of the front.

The perturbed solution can be written as u(t) = ug +w(t), where the perturbation w(t) has initial condition
w(0) = wo. Consequently, the weighted perturbation v(¢) = ww(t) with v(0) = vq satisfies

Vi = Lav+N©®), (8.1)
with continuously Fréchet-differentiable nonlinearity ': Z; (R, R2) — Z; (R, R2) given by
N@ =N (1), Nw) = Plug +w) = Flus) - F'(us)w.

As stated in Proposition 4.1, the linearization Lg generates a C°-semigroup on Z;(R,R?) with domain
Z3(R,R) x Z3(R,R). Hence, the following local well-posedness result follows from classical semigroup theory,
see e.g. [55, Theorem 6.1.5].

Proposition 8.1 (Local well-posedness of the unmodulated perturbation). There exists a mazximal time
Thax € (0,00] such that (8.1) possesses a unique solution

v € C([0, Tnax), Z3(R,R) x Z3(R,R)) N C*([0, Trax), Z1(R, R?)),
with initial condition v(0) = vo. Moreover, if Tyax < 00, then we have

Jim 90, = .
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First, we recall the discussion from Section 2.2 about the difficulties and overall strategy of the nonlinear
iteration argument. The principal difficulty is that the overall linear decay rate (1 + t)_l/ 2 of Theorem 7.1
is too slow to directly close a nonlinear iteration scheme. To overcome this, we draw on ideas from the
nonlinear stability of wave trains [26, 44, 45, 46, 66] and introduce the inverse-modulated perturbation

v(&,t) = w(§) (u(€ —¥(&, 1), 1) —uw(S)) - (8.2)

We will choose the spatio-temporal phase modulation v to capture the leading-order behavior of the solution,
crucially relying on the detailed semigroup decomposition of Theorem 7.1. Using this phase modulation, we
will obtain improved decay for v which will ultimately allow us to close a nonlinear iteration.

We then, however, encounter the additional difficulty that the coupled system for v and % is quasilinear,
and we need to overcome an apparent loss of regularity in our nonlinear iteration scheme. To control
regularity, we will introduce the forward-modulated perturbation,

‘o/(gv t) = w(g) (u(év t) - ufr(f + T/’(fv t))) : (83)

By putting the phase modulation in ug rather than the solution u itself, we ensure that the equation for
v remains semilinear, so that it is easier to control regularity for v. We rely on ideas recently developed
in [76] to show that decay rates for v and v are equivalent, so that we may enjoy improved temporal decay
of v while using nonlinear damping estimates on v to control regularity, ultimately closing a nonlinear
iteration argument to prove Theorem 2.1.

The rest of this section is structured as follows. First, we derive an equation for the inverse-modulated
perturbation v(¢) and establish estimates on the corresponding nonlinearity. We then choose the phase
modulation function ¢ (¢) in such a way that it accounts for supercritical terms in the Duhamel formula
for v(t). Subsequently, we consider the equation for the forward-modulated perturbation and derive
an associated nonlinear damping estimate, which yields regularity control for the inverse-modulated
perturbation by bounding the relevant norms of v(¢) in terms of those of v(¢) plus controllable error terms

in g (t).

8.1 The inverse-modulated perturbation

Using that both the perturbed solution u(t) and the pattern-forming front ug solve the FitzHugh-Nagumo
system (1.5), we derive an equation for the inverse-modulated perturbation (8.2) in Appendix E, which
reads

(O — L) [v + wuph] = N(v,9,00) + (0 — L) [ev] (8.4)

with nonlinearity A given by

NV, Y, ) =w <Q (:,d)) + 0cR (:&Z)Mﬁt)) ;

where
Oz, ) = (F(ufr +z) — F(ug) — F/(ufr)z) (1 =), (8.5)
is quadratic in z and
R(z,v) ==z (ctpe — ) + D (W + (z¢§)§> , (8.6)

contains all terms which are linear in z. We observe that equation (8.4) is quasilinear in v(¢). Using the
continuous embedding H'(R) < L*(R) and the fact that w(¢)~! is bounded and decays exponentially as
& — oo, we establish the relevant nonlinear estimate.
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Lemma 8.2 (Nonlinear estimates). There exists a constant C > 0 such that the inequality

IV (v 480l nzo < C (l0allZ + o (s ¥0)ll 7y, (V1] + bl ))

holds for each v = (v1,v2) € Zo(R) x Z1(R) and (¢, ¢) € Z3(R) x Z1(R) satisfying ||v1| o, |1l < &
and ||lw (e, ¥t) | 2yx 2, < o0

For the moment we assume that the phase modulation function v (¢) vanishes identically at ¢ = 0. Then,
the Duhamel formulation of (8.4) reads

v(t) + wufdp(t) = o + /Ot “rUIN (v(s), 9 (s), O (s))ds + e () v(2). (8.7)

We make a choice for ¢(¢) such that the linear term uf¢(¢f) compensates for the critical nonlinear
contributions on the right-hand side of equation (8.7). More precisely, motivated by the semigroup
decomposition (7.1), we make the implicit choice

00 = sp(Ovo + [ syt = INV(s), (), (o)), (55)

which, upon substitution in (8.7), leads to the integral equation

v(t) = (Se(t) + Se(t)) vo + /Ot (Se(t =) + Se(t = 5)) N(v(s),¥(s), O (s))ds + e (t)v (t), (8.9)

for the inverse-modulated perturbation, where we use that the identities (6.27) and (7.6) imply that ()
vanishes on [—1,00). We note that, due to the introduction of the temporal cut-off function ¢(t), we
have s,(0) = 0 and thus we have ¢(0) = 0. Moreover, we emphasize that, with this choice of (t), the
inverse-modulated perturbation exhibits, at least on the linear level, higher-order algebraic ]i)ointwise decay
at rate ¢!, see Theorem 7.1, whereas the phase-modulation 1 (¢) decays diffusively at rate ¢~ 2. Nevertheless,
the nonlinearity A in (8.8) and (8.9) only contains spatial and temporal derivatives of ¢, which satisfy

001 (t) = 0£0] sp(t)vo + /0 0015, (t — IN(¥(s), (), Bi(s))ds (8.10)

for ¢,j € Ny, where we use that s,(0) = 0. The estimates in Theorem 7.1 show that the linear terms
in (8.10) also decay pointwise at rate ¢t~ for £ + j > 1. These higher-order decay rates suggest that, as in
the stability analyses [45, 46] of periodic wave trains, an iteration scheme consisting of v(¢) and derivatives
of 1 (t) might close, which we indeed confirm in the next section. Note that we also need to address the loss
of derivatives in the quasilinear integral scheme (8.9)-(8.10), an issue we tackle in the next section through
nonlinear damping estimates on the forward-modulated perturbation (8.3).

We end this section by establishing local well-posedness of the phase modulation and the inverse-modulated
perturbation. To that end, we note that we can express the inverse-modulated perturbation as

v(&1) = V(§ = ¢(&, 1), 1) + w(§) (up (€ — (&, 1) —uw(S)), (8.11)

and recall that local well-posedness of the unmodulated perturbation v(¢) has been established in
Proposition 8.1. Thus, the integral equation (8.8) forms a closed system in ¢ for which a standard
contraction mapping argument yields local well-posedness.

Proposition 8.3 (Local well-posedness of the phase modulation). Let Tiax and V(t) be as in Proposition 8.1.
Then, there exists a mazimal time Tmax € (0, Tmax] such that (8.8), with v given by (8.11), has a unique
solution

¥ € C([0, Tmax), H*(R)) N C*([0, Tmax), H*(R)).
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In addition, if Tmax < Tmax, then we have

Hm |4 (2), Orp ()| gra g2 = 00

t /( Tmax

Finally, we have ¥(0) = 0 and 1(t) vanishes on [—1,00) for each t € [0, Tmax)-

For the sake of completeness we provide a proof of Proposition 8.3 in Appendix F.

Local well-posedness of the inverse-modulated perturbation (8.11) now follows by Propositions 8.1 and 8.3
using the mean value theorem and the continuous embedding H'(R) < L>(R).

Corollary 8.4 (Local well-posedness of the inverse-modulated perturbation). Let v(t) be the unmodulated
perturbation from Proposition 8.1 and let ¥(t) and Tmax be as in Proposition 8.3. Then, the inverse-
modulated perturbation, defined by (8.11), satisfies v.= (v1,v2) € C([0, Tmax), Z2(R) x Z1(R)). Moreover,
the Duhamel formulation (8.7) holds for all t € [0, Tmax)-

8.2 The forward-modulated perturbation

In this section we derive a nonlinear damping estimate for the forward-modulated perturbation v(¢) in
order to control regularity in the quasilinear iteration scheme (8.9)-(8.10). That is, we derive an energy
estimate controlling the (H® x H?)-norm of V(¢) in terms of its L2-norm and the (H® x H?)-norm of the
initial condition vyg.

We start by establishing local well-posedness of the forward-modulated perturbation, which readily follows
by combining Propositions 8.1 and 8.3 and applying the mean value theorem.

Corollary 8.5 (Local well-posedness of the forward-modulated perturbation). Let v(t) be the unmodulated
perturbation from Proposition 8.1 and let ¥(t) and Tmax be as in Proposition 8.3. Then, the forward-
modulated perturbation, defined by (8.3), satisfies v € C([0, Tmax), H>(R) x H2(R)) N C*([0, Tmax), H* (R)).

Using that both the perturbed solution u(t) and the pattern-forming front ug solve the FitzHugh-Nagumo
system (1.5), we find that the forward-modulated perturbation v(¢) satisfies the equation

v
\oft = _D\O/'Eg + C\Df;;‘ + w (F <w + ﬁfr,()) - F(lolfr,()))
+ w (ce + ) g1 + wD (Ve + Ve (Ve + 2) py2)

where we denote g (&, 1) = (8§ufr) (E+ (&, 1)).

We emphasize that, in contrast to the equation (8.4) for the inverse-modulated perturbation v(t), the
equation (8.12) is semilinear in v, which implies that all nonlinear terms in (8.12) can be controlled by linear
damping terms. As mentioned before, the linear damping terms in (8.12) are O¢e01 in the first component
and —ey0o in the second component. Using these observations we establish the following nonlinear damping
estimate for the forward-modulated perturbation.

(8.12)

Proposition 8.6 (Nonlinear damping estimate for the forward-modulated perturbation). Let v(t) be as in
Proposition 8.5 and ¥ (t) and Tmax as in Proposition 8.3. Fix R > 0. There exist constants C,u > 0 such
that the forward-modulated perturbation v(t) satisfies the nonlinear damping estimate

o _ o 2
()12 < © ( vl g2 + [9(8) 22

¢ (8.13)
+ / =) (5() 32 + e ()| + 10526(5) 12 ds) ,

for each t € [0, Tmax) with

sup ([[01(s)[lwree + [[Ye(s)[wre) < R. (8.14)
0<s<t
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Proof. Our aim is to infer an estimate for the energy

2
L2

2
L2’

_ Lygss L2,
B(t) = 5 ||ogano)| , + o |920:(1)
In order to be able to differentiate E(t) with respect to ¢, we restrict ourselves for the moment to initial
conditions vo € Z5(R)x Z4(R). One then obtains, using the same reasoning as in the proofs of Propositions 8.1
and 8.3, analogous local well-posedness statements with two additional degrees of regularity. That is, we
have v € C([0, Trmax), Z5(R) x Z4(R)) NC*([0, Trnax), Z3(R)), ¥ € C([0, Timax), H?(R)) NC([0, Tinax ), H3(R))
and, thus, v € C([0, Tmax), H>(R) x H*(R)) N C([0, Tmax), H3(R)).

Fix a constant R > 0. Let ¢t € [0, Tmax) be such that (8.14) holds. Differentiating E(s) and integrating by
parts we establish a t-independent constant C' > 0 such that

50 < - ot~ ot + ot ] o8t (8o, o

+ 51172 + () g + |0201(5)]| , + |02 (s)]

L2

) (1) o + 10501 42) ) -

for s € [0,t], where we used the embedding H'(R) < L>°(R) and the fact that 1(s) vanishes on [—1, 00) by
Proposition 8.3. Next, we apply Young’s inequality to the above estimate to yield a ¢t-independent constant
C > 0 such that

Lilaae o2 Lilaze o2 .
E'(s) < ——|[0g01(s)|| | — = [0202(s)|| ., + C (I () T + e (s)l1 s + 105(5) 1372 ) -
4 L 4 L

Subsequently, we use Sobolev interpolation to obtain ¢t-independent constants C, u > 0 such that
E'(s) < —pE(s) + C (I9()[32 + ()13 + 10u0() 32

for s € [0,t]. Integrating the above inequality we arrive at

t
B(t) < BO) +C [ e (9ol + [Ve(s) s + 10:0(3) ) s,

Finally, using Sobolev interpolation again, we establish a ¢-independent constant C' > 0 such that (8.13)
holds.

For the case vo € Z3(R) x Z2(R), we approximate vo in (Z3 X Za)-norm by a sequence (von), oy in
Z5(R) x Z4(R). By continuity with respect to initial data, see [19, Proposition 4.3.7], we obtain sequences
of solutions v,,(t) of (8.1) with v,,(0) = v 5, and of solutions 1), (t) of (8.8) (with vq replaced by vg,) such
that v,,(t) converges to v(t) in Z3(R) x Z(R), 1, (t) converges to 1 (t) in H*(R) and 91, (t) converges
to Oy (t) in H?(R). Since (8.13) only depends on the (H? x H?)-norm of ¥(t) = v(t) + i, — ug, on the
H*-norm of v(t) and on the H2-norm of d;1(¢), the desired result follows by approximation. O

As long as the phase modulation (¢) and its spatial derivative stay sufficiently small, one can express the
forward- and inverse-modulated perturbation in terms of each other by inverting the function £ — £ —v (¢, t).
With the aid of the mean value theorem, one then establishes that the W#*P-norms of the forward- and
inverse-modulated perturbations are equivalent modulo controllable norms of 1)¢. This has been established
in [76, Corollary 5.3| for the case without exponential weight. For the sake of completeness, we obtain this
equivalence for the relevant norms in the current setting in the following lemma.

Lemma 8.7 (Equivalence of the forward- and inverse-modulated Perturbations). Let v(t) be as in
Corollary 8.4, v(t) as in Corollary 8.5 and (t) and Tmax as in Proposition 8.3. Then, there exists
a constant C' > 0 such that

IVl zoxzs < C VWO zoxz1 + [Pe(®)]|z2) (8.15)
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and

W@)llzee < C (vl + 1e(@llL=) s (¥ llwree < C(VEwree + [[Pe(®)]L>)
WOz < C v L2 + 1 @) ]lz~) ¥l < CUvOla + 1ve(@)l2)

for any t € [0, Tmax) with || (t)|lz, < %

(8.16)

Proof. Let t € [0, Tumax) with [|1(¢)||z, < 4. Since we have [|1p¢(t)||z < 1, the function hy: R — R given by

hi(€) = €—1p(€, t) is strictly increasing and invertible. Moreover, using &€ = hy(h; 1(€)) = hy 1(€) = (h; 1 (), 1)
and [|9(t)||p < 3, we find |€ — h; 1(€)] < & for all £ € R

Substituting (8.3) into (8.2) we obtain

V(€ —v(& 1))

(e, t) =w(©) (eI o (- w60+ (€ - vl 0.0) — unl©))

= ‘0,(5 - w(éat)vt) + ug (€ - ¢(§7t) + w(f - ¢<£7t)’t)) - ufr(£)7

where the second equality follows from the facts that for &€ < —1 we have £ —(£,t) < —1+ ||9h(t)| 1 < —3,
for £ < 0 we have w(§) = 1 and for £ > —1 we have ¥ (&, t) = 0 by Proposition 8.3. Taking spatial derivatives

yields

Ve(&it) = Ve(§ = (& 1), 1) (1 — (&, 1)) — ug (S
t

)
U (€= D(E 1) + V(€ — B(E1),1)) (1= We(&,1) + (€ — B(&,1),8) (1= Yel&,1)),
Vee(6,t) = Vee(§ — (&, 1),1) (1= e(6,1))” — ufh(€) — Ve(€ — (€, ), )tbee (&, 1)
U (€ = V(€ 1) + V(€ — B(E1),1) (1= e(&,1) + (€ — B(&,1),1) (1 = Ye(&,1))°
g (€= D(E 1) + D€ — (& 1),1)) (€ — B(&,1),1) (1 - Ye(&,1))”
— ee(6,1) (1 + (€ — V(€ 1),1))) -

Using the mean value theorem twice we estimate

[(9us) (6 = w(€t) + $(E = (& 0),1) = Dun(©)| < [0 |,

o @] o [9(E D] -

for j = 0,1,2 and £ € R. In addition, using [|1)¢(t)| pe < % and applying the substitution y = hy(§), we
bound

(- 2 _ _ 2 3¢ _ |f(y)|2 2
176 = v 0)le = [ - e P ae= [ - i < I

for f € L*(R). With the aid of the latter two estimates and using the continuous embedding H!(R) < L*(R)
and the fact that [|¢(t)]z, < 3, we thus establish (8.15).
Conversely, substituting (8.2) into (8.3), we obtain

~1
V(€ t) = w(é) (‘W

i) (h'(©)) =l + (&, t)))
=v (ht_l(g),t) “+ ug (ht_l(§>) - ufr(g —+ w(gvt))v

where we use that for ¢<—1 We have h; ' (¢) = §+ Y(h1(€),1) < — 3+ [[¥(t)|loo < 0, for £ < 0 we have
w(€) =1, for € > —1 we have h;1(¢) = E—i—w(ht 1©),t) > =2 — ||¥(®)||= > —1, and for £ > —1 we have
P(&,t) =0 by Proposmon 8.3. Taking spatial derivatives yields

Ve(6,t) = (ve (1 (©),1) +uh (7€) 9 (h'(9)) = uh(E + 0(& D)1+ ve(€:1)).
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First, the inverse function theorem implies

ve (hy '(€).1)
L=t (h'(),t)

O (h'(©)) =1+

for &€ € R. Next, recalling h; ' (€) = € + ¢ (h; }(€),t) and using the mean value theorem twice, we arrive at

‘(8211&) (ht_l(ﬁ)) - (8§> ug (€ +¢(57t))’ < Hagﬂufr

o @ e [ (1 ©).1)]

for j = 0,1 and £ € R. Lastly, using |[1¢(t)||ze < % and applying the substitution & = hy(y), we estimate

Jrose

; :/R‘f(ht’l(f))rdf:/R|f(y)|2(1+l/}y(yvt))dyS I1£1172,

for f € L?(R). With these these three observations, recalling the continuous embedding H*(R) < L>(R)
and the fact that [|1(t)]z, < 3, we have established (8.16). O

9 Nonlinear stability argument

In this section we prove our nonlinear stability result, Theorem 2.1 by applying the linear estimates,
obtained in Theorem 7.1, and the nonlinear estimates, obtained in Lemma 8.2 and Proposition 8.6, to the
nonlinear interaction scheme consisting of the integral equations (8.9) and (8.10) for the inverse-modulated
perturbation v(t) and the phase modulation (t), respectively.

Proof of Theorem 2.1. Set vo = wwg and let v(¢),v(t) and v(¢) be the associated unmodulated, inverse-
and forward-modulated perturbations, established in Proposition 8.1 and Corollaries 8.4 and 8.5. In
addition, let 1 (t) be the corresponding phase modulation, established in Proposition 8.3. It follows by
Propositions 8.1 and 8.3 and Corollary 8.4 that the functions n1,72: [0, Tmax) — R given by

are well-defined, continuous, positive and monotonically increasing. We will control terms that appear
in n1(¢t) by iterative estimates on their Duhamel formulas, whereas terms in 72(t) are controlled by the
nonlinear damping estimate stated in Proposition 8.6. This leads to different type of inequalities for 7; ()
and 72(t), which we eventually combine to an inequality for n(t) = n1(t) + n2(t). Next, recall that if
Tmax < Tmax O Tmax < 00, then we have

t/hTIEax n(t) = oo. (9.1)

As common in nonlinear iteration arguments, our aim is to establish a nonlinear inequality for the template
function 7(t), which, by continuity, implies that n(¢) must stay small and precludes (9.1), yielding global
existence. More specifically, our goal is to obtain a ¢-independent constant C' > 1 such that for any
t € [0, Tmax) with n(t) < % the inequality

n(t) < C (Eo+n(t)?) (9.2)
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holds. Then, upon taking § = 402, it follows from continuity, monotonicity and non-negativity of 7 that,
provided Ey € (0,0), we have n(t) < 2CFEy < ; for all ¢ € [0, Tiax). Indeed, for any given ¢ € [0, Tiax) With
n(s) < 2CEy for each s € [0,t], we conclude

n(t) < C (Bo +4C*E}) < 2CEy,

using (9.2). Therefore, once we have established (9.2) and, thus, n(t) < 2CEj for all ¢t € [0, Tax ), it follows
by (9.1) that necessarily Tmax = Tmax = 00. Consequently, one obtains that n(t) < 2CEy for all t > 0,
which then yields the desired estimates.

Thus, we start by showing the nonlinear inequality (9.2). In fact, we first obtain such an inequality for
71 (t), while using that both n;(¢) and n2(¢) are bounded. We stress that boundedness of 72(t) is required
here to apply the nonlinear damping estimate stated in Proposition 8.6 in order to control derivatives in the
nonlinearity N in (8.9) and (8.10). Subsequently, we bound 72(t) in terms of 7;(¢) using the same nonlinear
damping estimate. Finally, adding the inequalities for n;(¢) and 72(t) yields an estimate of the form (9.2).

Thus, let ¢ € [0, Timax) be such that n(t) < 1. Lemma 8.7 and the continuous embedding
H*(R) < Z,(R), ke N, (9.3)

yield the following bounds on the forward-modulated perturbation

t t
o) < =2 o) e s —20 (9.4
(I1+7)2 (1+7)2
for all 7 € [0,¢]. Thus, applying the nonlinear damping estimate in Proposition 8.6 and using (9.3) and (9.4),
while noting that n(t) < 1, we establish

E? t)?
< 20 J””(g) : (9.5)

2

H{’(S)Hﬁqstz ,SeiusEg — _|_/ —pu(s—7) n( ) <
1+3 (1+7)2 (1+s)

for all s € [0,t]. Hence, combining Lemma 8.7 with (9.5), recalling (9.3), and using Young’s inequality, we
arrive at
Eo +m(t)

V()| zoxz: < W? (9.6)

for each s € [0,¢]. Finally, combining the latter estimate with Lemma 8.2, using 7(t) < %, recalling (9.3)
and noting that 1 (s) vanishes on [—1,00) by Proposition 8.3, we obtain the nonlinear bound

< m(t) (Eo+m(t))

IV (V90 oDy iz, P S 0.7)

for each s € [0,¢].

We are now in the position to establish an inequality for 7;(¢) by iterative estimates on the Duhamel
formulas (8.9) and (8.10) for the inverse-modulated perturbation v(¢) and the phase modulation v (t),
respectively. Thus, we apply the linear estimates in Theorem 7.1 and the nonlinear bound in (9.7) to (8.9)
and establish

(D) < o tm®® |t mOE+m®) o /0 (1”1“)@0*’71“)) s < Botm®” g

(1414)7 0 ent=s)(1+s)2 tt—s)i(l+s)3 ~ (1+pi
and
E t)2 E, ¢ t)(F, t E, t)2
V() < o +m(t) N m(t)( 0+771(3)))dsJr n1(t)(Eo + m( ))3 ds < o+ ni(t) O 99)
1+t 0 erlt=5)(1+s)2 0 (L4+t—s)(1+s)2 1+t
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where we used 71(t) < 3. Slmllarly, we apply Theorem 7.1 and estimate (9.7) to (8.10) and obtain

t)(Eo + n Eo +m(t
ool 5 2 [ b m) g, 5 Pt m (9.10)
)2 2 (1+t—s)2 2p(1+s)§ (L+1¢t)2 2
and
E ¢ E E t)?
s 1+t)7»  Jo (1+t—3) (1+ )5 T+t
for p =2,00 and ¢, j € Ny with 1 < ¢+ 25 < 4, where we used n(t) < % Combining the estimates (9.8),
(9.9), (9.10), and (9.11), we establish a t-independent constant C; > 1 such that
771(t) <y (E() + 771(t) ) . (9.12)

Next, we obtain an inequality for 7, (¢). First, we express the unmodulated perturbation as

V(€,1) = V(& 1) + w(§) (ue(§ +¥(&,1) —ug(S)) = V(&) +ug (S + (&, 1) — up(§) (9-13)

where we use that w(§) =1 for £ < 0 and 1 (t) vanishes on [—1, 00) by Proposition 8.3. Thus, Lemma 8.7
and the mean value theorem yield

VOllze S TVONz + 10Dz S (vl z + 19Ol 21

where we use 7(t) < 2. Combining the latter with (9.6), while recalling (9.3), we establish the bounds
S Eo +m(t) Ey+m(t)
WOz < ——=  IIve(®)le~ < ——=.
(14 t) (141¢)3
Thus, we establish a t-independent constant Cy > 1 such that
n2(t) < Ca (Eo +m(t)). (9.14)

Finally, (9.12) and (9.14) afford the estimate
n(t) < CoEy + (14 Co)mu(t) < (Co + (14 Cy) Cy) Eg + (14 C2)Crmy (t)?,

which implies (9.2) for some t-independent constant C' > 1. As mentioned before, this yields Tmax = Tmax =
oo and n(t) < 2CEy for all t > 0. Hence, recalling Propositions 8.1 and 8.3, we readily establish (2.16).
Moreover, the mean value theorem, identity (9.13) and Lemma 8.7 yield the estimates

VO sz S VO ezl az, (V@2 S I¥V@) |z + 1) 2o,
IV (@)llzee S NV )lLee + [[Pe (8] oo,
for t > 0, where we use that 7(t) < 2CEp. All in all, combining the estimates (9.5), (9.10), (9.11) and (9.15)

with the fact that n(t) < 2CEp holds for all ¢t > 0, yields a t-independent constant M > 0 such that (2.17)
and (2.18) are satisfied.

(9.15)

It only remains to prove (2.19), that is, to transfer the improved linear decay estimate (7.3) in the leading
edge to the nonlinear level. Thus, we multiply the Duhamel formula (8.7) with x4 and recall that ()
vanishes on [—1,00) to arrive at

t
X+V(t) = x4 V(1) = xrefvo + /0 X+ UIN(v(s), 9 (s), Op(s))ds. (9.16)

Applying the linear bound (7.3) in Theorem 7.1 and the nonlinear bound (9.7) to (9.16), while using
n(t) < 2CEy, we obtain

o, [ @ Eotm®) (o Fo
1+t)s Jo (1+t—s)3(1+8)7 =~ (1+1)2

for t > 0. We conclude that there exists a t-independent constant M > 0 such that estimate (2.19) holds
for all ¢ > 0, which completes the proof. O

190, ~1X+V ()| oo S
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10 Discussion

We believe that the methods developed here can be useful for analyzing diffusive stability problems in many
contexts, and we conclude by discussing potential applications of our methods to several related problems.

Pushed pattern-forming fronts. The analysis in [18] also gives a rigorous construction of pushed
pattern-forming invasion fronts in the FitzHugh-Nagumo system (1.1) for 0 < a < % For pushed fronts,
the propagation is no longer driven by the dynamics in the leading edge, but instead by a localized mode
near the front interface. Hence, the essential spectrum in the leading edge may be fully stabilized by
introducing an exponential weight, but there is a resonance pole of the Evans function at A = 0. As a
result, the linearized dynamics exhibit a non-decaying mode associated to spatial translation. Key to the
dynamics then is the interaction of this non-decaying mode with the outgoing diffusive mode. We expect
that our approach to resolvent decompositions can still be used in this setting to give a precise description
of the linearized dynamics which could then be used to close a nonlinear stability argument. The stability
problem here is conceptually similar to the stability of source defects, which also focuses on the interaction
of non-decaying, translational modes with outgoing diffusive modes, and has been studied in the complex
Ginzburg-Landau equation in [13]. We emphasize that, for pushed pattern-forming fronts, proving nonlinear
stability against the natural class of perturbations readily yields selection from steep initial data, since the
exponential weights involved automatically allow one to consider perturbations which cut off the front tail.
This strongly contrasts to the case of pulled pattern-forming fronts, where substantial additional steps are
necessary to extend sharp nonlinear stability results, as presented in this work, to selection results (see
further discussion below).

Pulled pattern-forming fronts beyond the FitzHugh-Nagumo system. The essential feature
of the stability of pulled pattern-forming fronts is the interaction between the branched diffusive mode
associated with the linear spreading speed and the outgoing diffusive mode associated with the pattern
in the wake. The methods developed here should generally be successful in proving nonlinear stability
of pulled pattern-forming fronts also in other systems. A particular case of interest is front invasion in
the wake of a Turing instability, for instance in the Swift-Hohenberg equation or other reaction-diffusion
systems. The new challenge, compared to the FitzHugh-Nagumo fronts studied here, is that the invasion
dynamics in the leading edge are oscillatory in time, so that the pattern-forming fronts are modulated
traveling waves, which are time-periodic in the comoving frame, rather than stationary. We expect that
this can be overcome by combining the analysis here with ideas from [14], which develops a framework for
studying time-periodic diffusive stability problems via an inverse Laplace transform. We expect that this
approach can be used to establish a general result on nonlinear stability of pulled pattern-forming invasion
fronts in reaction-diffusion systems near a supercritical Turing instability.

Selection of pulled pattern-forming fronts from steep initial data. The challenge in establishing
selection of pulled pattern-forming fronts from steep initial data is that perturbations which cut off the front
tail induce a logarithmic delay —% logt in the position of the front. In this frame, perturbations in the
leading edge no longer decay at all, which has been overcome for fronts selecting constant states in [2, 9],
but presents substantial additional difficulties for pattern-forming fronts, since these non-decaying modes
interact with the outgoing diffusive dynamics in the wake. We are hopeful that combining the present
analysis with recent work on selection of pulled fronts [2, 9] and on stability of periodic wave trains against
nonlocalized perturbations [22], which also do not exhibit temporal decay, may make progress towards
establishing front selection in this context. In particular, the (1 + t)_3/ 2 decay for localized perturbations is
a key ingredient in closing the front selection argument in [2, 9], so the fact that we recover this decay rate
in the leading edge here is a promising sign for establishing selection of pulled pattern-forming fronts via
this program.
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A Generation of a C’-semigroup on Z;(R)

In this section we prove Proposition 4.1, showing that oLt generates a strongly continuous semigroup on

Zr(R,C?) for any fixed non-negative integer k. We rely on the following formulation of the Hille-Yosida
theorem.

Theorem A.1 ([55, Section 1.5, Theorem 5.3]). Let X be a Banach space. A linear operator A :
D(A) C X — X is the infinitesimal generator of a strongly continuous semigroup T(t) on X satisfying
1Tt x—>x < Me*t for some constants M > 0, p. € R if and only if:

1. A is closed and densely defined.

2. The resolvent set p(A) of A contains the interval (p«,00) and for all A € R with A\ > ., we have the
estimate

M
-\ < ———— . .
(A=) xox < oy "€ N (A1)

We will also use the following result on robustness of generators of C%-semigroups.

Proposition A.2 (Robustness of generation of C-semigroups under bounded perturbations, [55, Section
3.1, Theorem 1.1]). Let X be a Banach space and let Ay be the infinitesimal generator of a strongly
continuous semigroup T(t) on X, satisfying ||T(t)||xx < Me*t for some constants M > 0 and p. € R.
If Ay is a bounded linear operator on X, then Ag+ Ay is the infinitesimal generator of a CO-semigroup S(t)
on X, satisfying ||S(t)||x—x < Mel=tMlArlx-x)t,

Fix a non-negative integer k, and consider L as an operator
Lt Zp2(R,C) x Zp1(R,C) C Z(R,C?) — Zi(R,C?).

Standard computations verify that with this domain, L is a closed and densely defined operator. The
main work is then in identifying the principal part Ay and establishing the resolvent estimates (A.1).

Let u, denote the first component of ug and let ¢ = ¢j,. Consider the resolvent equation (L — A\)u = g,
which takes the form

uge + (¢ + a1)ug + apu + Fi (us)u — v — du = ¢4
cvg + eu — eyv — Av + bov = go,
where a;,b; are generated by conjugation with the exponential weight w, with the expressions
/

a1 = 2w(w™), ap=ww ™) +ww™, b =c(wt). (A.2)

Note that aj,b; are all smooth and bounded functions on R. We define operators

_ 8§§+(c+a1)85 0 _ F{(us) + ag -1
A0_< 0 Cag ’ A= 3 —5’7+b0 ’

so that Lg = Ag+ Ap. Notice that Ag : Zp42(R,C) x Zpy1(R,C) — Z (R, C?) is closed and densely defined,
and A; : Zi(R,C?) — Z1(R,C?) is bounded.

Lemma A.3. Fiz a non-negative integer k. The operator
Ao : Zpy2(R,C) x Zpy1(R,C) C Zi(R,C?) — Zi(R,C?)

generates a strongly continuous semigroup on Z (R, (C2).
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Proof. Since Ay — A is block diagonal, we may invert each component separately. By standard theory of
analytic semigroups (see e.g. [38, 50]), the operator Oge + (¢ + a1)0¢ : Zp42(R,C) C Z;(R,C) — Z,(R,C)
is sectorial, and hence generates an analytic semigroup. Analytic semigroups are in particular strongly
continuous [55], so by Theorem A.1, there exist M, u, > 0 so that

M

) neN, (A.3)

[(Oge + (¢ +a1)0 = A) " zp— 2, <

for all A € R with A > p..

By explicitly computing the Green’s function for the operator cd¢ — A and computing its L' norm, we
readily obtain

1
1(cd = Nz, —2, < 3 (A4)

for all A > 0. Combining (A.3) and (A.4), we find that there are M,y > 0 such that

M
Ag— )" <——F N
(4o =N zsz € = mEN
for all A € R with A > p.. Hence, by Theorem A.1, Ay generates a strongly continuous semigroup on
Zr(R,C?), as desired. ]

Proof of Proposition 4.1. Since Ay : Zp(R,C?) — Z(R,C?) is bounded, this follows immediately from
Corollary A.3 and Proposition A.2. O

B Shifting the integration contour

We prove Proposition 4.3 in this section by carefully analyzing the high frequency behavior of the resolvent
(L — A)~L. The analysis of this section adapts some ideas from [52], although we use a different method
to obtain a description of the high frequency behavior of the resolvent. We again let u, denote the first
component of ug, and abbreviate ¢ = ¢, > 0. We have

_ Oee + (c+a1)0e + Fi(us) + ao -1
— 1_ [ Y% 1)%% 1
Lo =wApw™ = < £ cO¢ —ey+by)’

where a;,b; are given by (A.2). The key observations to retaining spectral mapping properties for the
operator Lg is damping induced by the second derivative in the first component and by the term —e~ in
the second component. In addition, since w is non-decreasing, by is non-positive and, thus, only contributes
to additional damping.

B.1 Resolvent decomposition for Im A > 1

Let 7 > 0 be as in Corollary 4.2 and fix 29 > 0. We consider the resolvent equation

(Lr =) (“) = (g;) (B.1)

for g = (g1,92) € C°(R,R?) and X € p(Lg) of the form A = b+ iQ, with b € [~3e7, 7] and 2 real with
| > Q. We set k = sign(Q), so that Q = k[€Q2|. We rescale equation (B.1) by defining X = /|Q|{ together
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with the rescaled functions

W =vix) IORY R VG A x|
v \/@ g2 \/ﬁ

and

U*<X>:u*<)|fm), AX) =0 <XQ|> AO(X>:%(X>, Bo<x>zb0( X )

so that (B.1) becomes

1Q|(0xx —ir) + /|Q|(c+ A1)0x + F{(Uy) — b+ Ag -1 Uy [(Gi
5 /[Qox —ey—b—ik|Q+Bo) \V )  \Gay)’

Setting U = (U, V)T, multiplying both sides by diag(|2|~", |Q|~/?) and setting u = |Q|~*/2, we obtain the
system

[Lo(12) + L1(p)]U = (’5&) : (B.2)

where

Lo (Oxx —in 0 7
o) = 0 c@X—bu—iﬁ”—F,uBo N0 L)

b=b+ev, ke {—1,1}, and

Loy = (P A% + 2 (F{(U) =b+ Ao) —p*) _ (Li'(w) Li*(n)
ha e o) \Ifw o )

The operator Ly(u) represents a principal part which is responsible for the damping, whereas L;(u) contains
higher-order corrections which do not interfere with the damping from Lo(p). In particular, we will see
that the precise form of U, does not matter, and the coefficients from the exponential weight are irrelevant
as long as By is non-positive.

Our strategy is to invert L(u) := Lo(p) + L1(p) by using the factorization

L(p) = [L+ La()Lo(p) ™ Lo(p),

inverting Lo(u) explicitly, and showing that [1 + L1 (u)Lo(x)~!] may be inverted via a Neumann series.
Since Lo(p) is diagonal, we can invert it by inverting each block separately. The first block may be inverted
by standard spectral theory, since +i is not in the spectrum of dxx on LP(R). For the second block, we
can use an integrating factor to write the inverse explicitly as

. 1 )
(cax — b — % + MBO> Go(X) = / ere X TGE (X, Y)Go (Y)Y,
R

where

bu(X=Y) u (¥
1™ o x B2 x vy

(B.3)
0, X >Y.

t _
G, (X)Y) = {
Exploiting the fact that By(Z) is non-positive, we readily obtain the following estimates.
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Lemma B.1. Let 1 < p < oco. There exists a constant C > 0 such that, for p > 0 sufficiently small, we
have the estimates

%
||

I(L6)  Horswee <O, LG (1) Lomsrr < (B.4)

We also readily obtain the following basic estimates on L (u).

Lemma B.2. Let 1 < p < oo. There exists a constant C > 0 such that, for p > 0 sufficiently small, we
have the estimates

1L (@) lwrospe < Clul, LWz < Clul?, LT (W)llzo—s e < Clul.

We may then invert [1 + L1(u)Lo(p)~!] via the Neumann series

o
n
1+ Li Lo 17" = 3 (L) Lo ™)
n=0
provided g > 0 is sufficiently small.
Lemma B.3. Let 1 < p < oo. The series
o0
> (=La(p)Lo(p) )"
n=0

converges in the space of bounded operators on LP(R), provided > 0 is sufficiently small. Hence, for p >0
sufficiently small, the operator [1 + Li(u)Lo(u)™1] is invertible on LP(R), with its inverse given by this
Neumann series. Moreover, there exists a constant C' > 0 such that

o0

> (=La(p) Lo(p)~h)"

n=3

< Cluf (B.5)

Lp—Lp

Proof. Combining Lemmas B.1 and B.2, we find that L;(u)Lo(2) "' may be written in the form

Li(p) Lo(w) ™" = (Zﬁiﬁﬁﬁ MBIO?(M)> ’

where B;;j(p) are operators on LP, which are p-uniformly bounded. Hence, there exists a p-independent
constant C' > 0 such that

L1 () Lo (1) 1" o0 < (CluD)™,

which implies that the series converges for |u| < %, and that the estimate (B.5) holds. O

Collecting relevant terms. In order to shift the integration contour in (4.1), we want to express the
solution to the resolvent equation (B.1) as an explicit leading-order part, plus a remainder which is integrable
in Q. From Lemma B.3, we can get an expansion of the solution to (B.1) in powers of p = |Q|~1/2. To get
an integrable remainder, we therefore need to explicitly capture all terms up to order u?, since p? = \Q|_3/ 2
is integrable near Q2] = co. Thus, we employ Lemma B.3 to express the solution to the rescaled resolvent
equation (B.2) as

L™ (‘;5) = o)™ S (~Lalo)Lalp) )" (‘;g ) . (B.6)
n=0
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By Lemmas B.1 and B.2, we see that

2
Lo(u)1~<(1) /ﬁl)’ L1(M)~<Z %)

which we can use to check the order in u of the terms in (B.6). The first term, corresponding to n = 0,

in (B.6), is
Uo(p)\ o (G 1 0 2 2
() = (i)~ (o) () - (1)

The next term, corresponding to n =1 in (B.6), is

Uy () 4 Uo(p) 10\ (n p*\ (4 I
4 _— L ~ - ~ .
<V1(u) AN A U AV AC AV
We denote this term by (U;,V;) " since it contains some higher-order terms which we will not compute
explicitly, and so we will later extract the principal contributions Uy, V;. The term corresponding to n = 2

in (B.6) is
Ua(p)\ _ . Ql(u) N 1 0 1 Iu2 /ﬂ N Iu3
<V2(,U)> = —Lo(p)L1(p) (W(u)) (O .U_1> (N 0) (#2> <N2> . (B.7)

The residual error from truncating the series at at n = 2 will then be of order 3 = Q=3/2.

Explicitly computing (Up, Vp), we find

U(X,n) _ L1 (HPGhY fRGP(X —Y)ulG(Y)dY
(VO(X, M)) = Lo(p) 1 (MG2> - (M Ja one X—Y)Gzr(Xy Y)GQ(Y)dY> ) (B.8)

where G}/ is given by (B.3), and

1 —Vik| X —
GP(X) = W Vis[ XY (B.9)

is the spatial Green’s function corresponding to the resolvent operator (dxx — ix)~!.

Translating back to the original coordinates u(§) and v(§), these leading-order terms are then given by

() = jm [ er (Vi - ) o (B.10)
w(©) = [ G O g (B.11)
where
GY(& Q) = {ieg(g‘_oei Jeme e < (B.12)
0, £>¢.

The next term is



Notice from (B.8) and (B.4) that |Upllyw2r < |pf?|Gillee for G1 € C2(R) and p > 0 sufficiently small.
Then, also applying Lemma B.2, we find

It (1)Ul v < 1P I Glle, (B.13)

for G = (G1,G2)" € C*(R,R?) and u > 0 sufficiently small. Hence we identify the leading-order

contributions as
U\ (12 (0xx —ik)~ Vo
Vi) \ —epLlg(w)~'Uo )’

while the term —(L§')~1Li(u)Uy is higher order. Returning to original coordinates u(¢) and v(&), we
obtain the corresponding expressions

() // *(VIRle - 0) [ oG 2)gnle)dan (B.14)
nie = [ G0t [ av (\i91¢ - 2)) mu(aadc, (B.15)

For the final explicit term, corresponding to n = 2 in (B.6), we only need to compute V5 explicitly, since
Uy = O(p?) as argued before. In X coordinates, following the formal calculation (B.7) while keeping track
of which entries are relevant, we have

Vo= —ep L)~ [(L6) 7 (L)~ G))] -

Note from Lemma B.1 that each factor of L3%(1)~! contributes a factor of ju~
order p? rather than p*. Reverting to ¢ coordinates, we obtain

Lin norm, so V4 is in fact of

)= —¢ / Gl (g, ¢)ele - )l |Q||g|_z))c?tr(z,w)elc<z ) g (w)dwd zdC. (B.16)

It follows from the proof of Lemma B.3 that all remaining terms in the Neumann series expansion are
O(p?), and so do not need to be computed explicitly. We now translate this remainder estimate into the
original coordinates.

Lemma B.4. There exist constants C,€g > 0 such that for each A = b+ iQQ € C with —%57 <b<n
and |Q| > Qo, the solution (u(&;N),v(€; X)) to the resolvent equation (B.1) with g = (g1,92)" € CX(R,R?)
_3
< O 2||gl|ze,

obeys the estimate
(““U‘@“Mv—G“”§—<‘)>
v ) vo(+5A) GICRY va(z3A) ) L,

where (ug, vo) are given by (B.10)-(B.11), (u1,v1) are given by (B.14)-(B.15), and vy is given by (B.16).

Proof. The remainder terms, in X coordinates introduced above, are given by

Ures(#) = (%::Eﬁ;) = *LO(N>_1 (L%I(SL)UO>
N2G1

+ PrLo(p0) (= L1 () Lo(p) 1) <#G2> + Lo(w) ™" Y (—La(p) Lo(p)™")" (lig;> ’

n=3

where Py (U, V)" = (U,0)" is the projection onto the first coordinate, with this term accounting for the fact
that we computed Vo but not Us explicitly.
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Figure 6: Far left: Fredholm borders of £ (blue, purple) and starting contour I'% (dark red) from Corollary 4.2. Left center:
the new contour I'y, (dark red). Right center: the closed contour I'g. Far right: the contour I'{"

Using the estimates of Lemmas B.1 and B.2, we have

for p > 0 sufficiently small and G = (G1,G2)" € C®(R,R?). Together with (B.13) and (B.5), we obtain
[Ures (5 )20 S 111Gl o,

for 4o > 0 sufficiently small and G = (GlaG2)—r € C*(R,R?). Hence, reverting to & coordinates with
ures(f; )\) = Ures(X; ,U), we arrive at

S P Gllze.

PuLo(u)~ (~ Lo (1) Zo(p) ™) (’;‘ng )

Lr

_3
[res (s ) lr S Q2|8 e s

for g € C2°(R,R?) and A = b+iQ € C with —3ey < b < 5 and || sufficiently large. Note that transforming
back to & coordinates yields a factor of | u!‘l/ P in the LP norm, but this factor is present on both sides of
the above estimate, and hence can be canceled. O

B.2 Shifting the integration contour

Let 7 > 0 be as in Corollary 4.2. Letting g1, g2 € C°(R) and

wy _ 1[5
o) e ()

1 n+iRk
eﬁfrt 91 — —— lim / e)\t u()‘) d,
92 271 R—co n—iR U()\)

for ¢ > 0. Our goal in this section is to use Lemma B.4 to shift this contour into the left half-plane, except
for a region bounded near the origin. To do this, we first fix {29 sufficiently large so that Lemma B.4 applies
for |©2| > Q. We then let T'%, I‘}_—i, and I'r be the contours depicted in Figure 6.

for A € p(Lg), we may write

Lemmas B.1 and B.4 show that the only term in the expansion of (u(-;\),v(;A))" that does not carry
a factor [Q2]~1/2 is the term (0,v(-;A))". However, this term also vanishes as |Q| — co by the Riemann-
Lebesgue lemma. We conclude that the contributions from the horizontal segments on the top and bottom
of T'p vanish in the limit R — oo, so that we have

. A [u(N) 1 - Ry u(A)
ngnoo Ty ¢ (v(k)) A = ngréo </1"% /p}q) (’U()\)) d.
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Since

im [ () qn
R—o0 F% U()\)

exists for g1, g2 € C°(R) by Corollary 4.2, we will have

im [ (")) an = tm [ (U aa
R—o0 Jr1, v(A) R—o0 J10, v(\) ’

with the limit on the left-hand side existing, provided

. At u(/\) _
i <U(A)> dA =0

But this integral is zero for each R > 0 by analyticity of (u()\),v())), where we use that the contour I'p lies
fully to the right of the spectrum of L ; see Figure 6. Hence we may write

1
ot <91> =5 lim [ eM(Lp— A7 (91> d,
92 2711 R—oo rL, g2

for g1, 92 € C°(R) and t > 0. The goal of the remainder of this section is to obtain the following estimate
on the integral over F}f U F}{, which will (together with the subsequent analysis of the resolvent near
the origin) allow us to extend the contour definition of the semigroup to g € LP(R,R?),1 < p < oo or
g € Cp(R,R?) and prove exponential decay estimates for the high frequency contributions.

Proposition B.5. Fizx 1 < p < 0o. Provided g is sufficiently large, there exists a constant C > 0 such
that

< Ce™ 1'||g]l 1
Lp

: X(po -1
Jim /F - eV (L — ) gdA
for allt >0 and g € C°(R,R?).

To prove this proposition, we split up (Lg — A)~!g into several terms according to the decomposition in
Lemma B.4 and estimate the integral for each term separately.

Lemma B.6 (ug estimates). Fiz 1 <p < co. Let ug be as in Lemma B.4. There exists a constant C > 0
such that

< Ce™1t|g|| v
Lpr

lim/ eMug(\)dA
rptury” o)

R—o0

for allt > 0 and for all g = (g1,92) " € CX(R,R?).

Proof. Recalling that the contour F}z’_ is the line segment connecting the point —e7y/2 —iR with —evy/2—iQ
and F}f joins —ey/2 4 iQy with —ey/2 + iR, we have by (B.10)

g ] 05 o o (- ) o

where we use the notation

—Qo 0o
[ rede=[ T+ [ reae
|2 >0 —00 Qo

64



that is, the orientation is consistent with the second panel of Figure 6.

Using the formula (B.9) for GP, we obtain

E’Yt

li / (N)dA] (€) "*/ im/ oY (¢)d¢dQ
e =1 2 [§] Ty —— .
R0 | RAAERNT) Rt o 1 122> R 2ViQ2 9

We swap the order of integration and rewrite the inner integral as

vy —\/@5 C‘de \flf C|d/\d
2 - —
3 [ 000 /|Q|>QO o e =e [ o /F s Sl

B.17

ey A e_\/x|£_g| ( )

R / 71(0) / M T andC,
R T,

2v/\

where for any 6 > 0 we denote by fg the right semi-circle centered at the origin with radius §, and by
Fgull the contour that joins this semi-circle to the vertical rays extending to +ico; see Figure 6. Since the
singularity A~1/2 is integrable, we find that

—VAlE=¢| o, e~ ViflE=|
lim [ R ip.v./ d%C 40 = 1,/ o le=ClP/at CiGheat (¢, € — (),
5—0+ Jpful 2v/\ R 2V £

recognizing the integral as the inverse Fourier transform (in time) of the Fourier representation of the heat
kernel. On the other hand, the value of the integral is independent of § > 0 since the integrand is analytic
away from the origin in the closed right half-plane. In particular, we obtain

At eiﬁ‘éiq : ~heat
/fwfull € Wd)\ = IG (t,é- — C)

Now to bound the integral over 1:‘?20 in (B.17) we use that the integrand is analytic away from the negative
real axis to deform f‘%o to a new contour

2 Rl 0 1
[?=TLuTg uTL

where 6y = <, I'! is the line segment joining —if)y with —idy, and f}r is the line segment joining idp with
iQ. There exist (e-, Qo- and y-dependent) constants C, o > 0 such that for A € I'? we have

‘)\’*1/2 ‘e*ﬁl&él‘ < Ce*a\ﬁfél’ (B.18)

while also |eM| < et Applying Young’s convolution inequality we obtain

—VAlE—¢|
A€
oo [t Lo e
X ¢

for t > 0 and g; € C°(R). Absorbing the slowly exponentially growing factor into the factor of e
from (B.17) gives the desired estimate for the second term

—VAe~] —VAe~¢]
i —%”/ / M T ANdC =i —%”/ / A T Aade,
le Rgl(C) f?zoe 2v/A (=t Rgl(C) fze 2v/\ ¢

n (B.17). Similarly, the estimate

€
Se gz,

Lp

e~ [ e -] S 16M ¢ ot lorlen S loaler S el

fort > 0and g = (g1,92)" € C*(R,R?), leads to the desired estimate for the remaining term in (B.17),
completing the proof. O
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Before estimating the other contributions identified in Lemma B.4, we first record some basic estimates on
G' which can be readily inferred from (B.12).

Lemma B.7 (G" estimates). Let G*(€,¢) be defined by (B.12). There exists a constant C > 0 such that

167 Migem <€ sup GG Ol < €

As a consequence, it follows by Minkowski’s integral inequality that for any 1 < p < oo and ga € CX(R), we
have

[ G 0m(0d
R

< <sup||@“(wé“)|!u> g2l < Cllg2|r-
r \(eR

Lemma B.8 (vg estimates). Fiz 1 <p < oo. Let vy be as in Lemma B.4. There exists a constant C' > 0

such that

< Ce™ ?'||g]lz
Lr

lim/ Mg (A)dA
rpfury” o)

R—o00
forallt >0 and all g = (g1,92) " € C(R,R?).

Proof. Here we must take advantage of the symmetry in the principal value integral. The indefinite integrals
here are all to be understood in the principal value sense. We have by (B.11)

£t

l Jim /F o © vo(/\)d)\] (€) = ie 3

where G (¢, ¢) is given in (B.12). Swapping the order of integration, we have

/ i / G (€, )t H €0 gy(¢)dcdn
|Q|>Qo R

/ Moy () =ieF [ (OG0 [ et hanac.
rptury” 12>
Note that
p.v./ el (E=Cren g = p.v./ el (ECrenqq el (E=CtengQ
‘Q‘>Qo R |Q‘§QO
= 2716(¢ — 4 ct) — / el (E=Cte g0
1£21<€0

Hence

l/H ,_ © UO(A)dA] (&) = e‘?t<2m/92(4)@“(€,C)5(§—<+ct)d<
FR’ UF R

- foEmeo [ @t ananac)

For the first term, we have

2mce” 2 ¢ /R 92(Q)GY(€,0)3(€ — ¢ + ct)d¢ = 2mee™ 7 Lga(€ + ct)GY(E, € + ct).

Measuring in LP(R), we obtain

2mee 5 [ (OG0~ C+etdd| S e F gl 6o S e F glon
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fort >0 and g = (g1,92)" € C2(R,R?). For the second term, we use Lemma B.7 to obtain

o Tt / 3(O)G7(€,0) / i ECteqnac
R [©2]<0Q0

< 200”2 g2 Ly (Sup ||étr(',OHL1>
o CeR

Se gl

for t >0 and g = (g1,92)" € C(R,R?), which concludes the proof of the desired estimate. O

Lemma B.9 (Estimates on u; and v1). Fiz 1 < p < co. Let u; and vy be as in Lemma B.J. There exists
a constant C' > 0 such that

lim My (VA < Cem T gl e,

R—o0 F};‘ UF;;_ e

and

lim My (NdA|| < Cem TH|g| 1,

R— F};‘ UF;;_ e

forallt >0 and all g = (g1,92) " € CX(R,R?).

Proof. We will prove the cases p = 1 and p = oo directly, the estimates for 1 < p < oo then following by
interpolation. Using (B.14) and swapping the order of integration, we have

lim / eMuy (V)| (€) = ie~ 3 / / G (¢, 2)ga(2) / eiﬂ(t+<_z>ﬂdﬂdzdg
R—oo I‘}?ﬁul“}%‘f ! ’ 92 |Q]>Q0 2\/@

As in the proof of Lemma B.6, we would like to close the integration contour so that we may recognize the
contour integral as an inverse Fourier transform. However, in this case we can only evaluate this inverse
Fourier transform provided t + C—ZC > 0, in which case we will obtain the heat kernel evaluated at time

t+ C%Z > 0. Since G (¢, z) is supported on {¢ < z}, the quantity  + C—;Z will be negative for some portions
of the overall integral, and so we estimate the integral over these portions separately. Defining the set

Et_{((,) eR?: t—i—cc >0}

and denoting by Ef its complement in R?, we write
. i . it =2) € o—ViQle—(¢|
th_I}(l)o /1“}%+UF}%‘€ ul()\)d)\l &) = = (/Et—i- Ef) [Gtr(ﬁ,z)gg(z) /|Q>Qoe (455 Wd&)dzdﬁ
For (¢, z) € E}, arguing as in the proof of Lemma B.6, we find
i/ eiQ(t+%)@dQ _ jheat <t " 4;275 B C) _/ e)\(t—i-C;z)wd)\'
192> 210 c 2 2v/A

Using Minkowski’s inequality and Lemma B.7 together with the estimates (B.18) and eXtH(C=2)/0)| < 0T
for A € T2, ¢t >0 and (¢, 2) € E; with ¢ < z, we obtain

§'—>/ G (¢, 2) (z)/ eiQ(t+<’z)ﬂdede
mo I f g, 2/i0

for t > 0 and g2 € C°(R). The exponentially growing factor may again be absorbed by the original factor
of e" 2L, By a similar argument, we obtain the desired control in L*>°(R) as well.

<SeTtga] L1,
Ll
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It remains to control the integral over Ef. For ((,z) € Ef, we again add an additional piece to close the
integration contour, writing

. iQ(t—&—(;z)e_m'E_Cl . _ )\(t_’_(;z)e_\/xlf_gl
i e c ) ————dQ = [ 3 e c )——dA
121> 2ViQ i Jry, 2v/A

Since Re A > 0 for A € f?lo and ¢+ C%Z < 0if (¢, z) € E, there exist t-, (-, z-, and &-independent constants
C,a > 0 such that

o\ o= VAIE(]
At+52) € A\l < Ce—alé=¢l
/f ¢ 2V/A = ’

0
Q0

for t > 0 and (¢, 2) € Ef, from which the desired estimates follow readily for this term via Minkowski’s
inequality. For fixed n > 0, the integral over F?;;l can be deformed to the contour Re A = n, since the
integrand is analytic away from the negative real axis and vanishes as Im A — oo, from which we obtain

o—VAlE~C]

N+ 52) T ) ) [ i) T
e c dA=e < Jp.v. e c ——df2.
Py 2vA o0 2v/n +1iQ

The remaining integral is uniformly bounded in 7 > 1, > 0,£ € R and ((, z) € Ef as a principal value
integral. Hence, sending  — oo, we conclude that the contribution from F?;;l vanishes. The proof of the

estimate involving v; proceeds analogously. O

Lemma B.10 (Estimate on v2). Fiz 1 < p < oo. Let vy be as in Lemma B.4. There exists a constant
C > 0 such that

< Ce™1!|g|| v
Lp

lim / eMug(N)dA
R—o0 F“Rewffupf}l;w’—
for allt >0 and g € C(R,R?).

Proof. The proof is analogous to that of Lemma B.9, except that it involves an additional convolution with
.Q

kernel e'c” G'. As a result we recognize the principal contribution, in the inverse Fourier transform, as the

heat kernel convolved twice with two separate Dirac delta distributions, leading to an integral of the form

— 1y Atr heat (,  §—C+tz—w
R (R

¢ — Z) G¥(z,w)go(w)dwd(dz.

Applying Lemma B.7 and estimating the innermost integral with the heat kernel scaling in a similar manner
to the proof of Lemma B.9 then gives the desired estimate. O

Having estimated the principal terms arising in the expansion of the resolvent we are now able to complete
the proof of Proposition B.5.

Proof of Proposition B.5. We decompose (Lg — A)~!g as in Lemma B.4. The estimates on terms involving

ug, Vg, U1, v1, and ve have already been established in Lemmas B.6-B.10. The remainder terms are controlled
in L?(R) by |Q|~%/? by Lemma B.4, which is integrable on || > wp, completing the proof. O
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C Estimates on the leading edge resolvent

From the analysis in Section 6.2, we know that for o2 to the right of Yes(L£4 ), we can write the leading
edge resolvent (L4 — 0?)~! as

(Ly —o?)'g(6) = /R I T8 (€ — ) Arg(¢)dC,

)T and

with g = (g1, 92
TE(C) = G (C) Poote + G(C) + [GS(C) — GE(C) Pyote) + G2(C),

where

1
Gt(¢) = —e ok,

c 1 v (o v, (o
GO_(C) e ; pole (e fr( )Cl{C<O} +e fr( )C]‘{CZO}) ,

~ . Poe vi(o cu Poe
G5(0) = o7 (Peeto) = 722 ) [ cnny = [oF¢ (P(e) + 222 |1,

Gh(¢) = —e" TP (6%) 1 (ccpy-

If g is odd, then we can rewrite

Gt agl€) = [ GE(E OBl (1)

for ¢ € R, where
1
Gl ¢) = - [efvflra\&q _ efuflra\&cq _

Note that G4(—¢,¢) = —G94(¢, (), so that GE*a x g is odd provided g is.
h

o)

In the following four lemmas we obtain bounds on G994, G¢, G¢ and G, which eventually lead to the

proofs of Lemmas 6.7 and 6.8.

Lemma C.1. There exist positive constants C' and § such that
(GSM(E, )] + 10:GEY (€, )] < C(¢he el
for all £,¢ >0 and o € B(0,V4) with Reo > 0.

Proof. We start with the estimate with no derivative. First, assume £ > ¢ > 0, so that |{ — (| =& — (.
Then, we have

1
GIH(E, Q) = S heleCl [1 - 2]

Using that there exists a constant C' > 0 such that |1 — e*| < C|z| for all z € C with Rez < 0, we have
[1 =247 S Jol|¢], and so

G (& O S [¢lewRerli=dl < (gyemaRerte=l,

for ¢ > ¢ > 0 and o € B(0,V/9) with Reo > 0.
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Now assume ¢ > & > 0, so that [ — (| = ( — £. Then we have
GOdd(g C) Vfro'\g q [ 2I/f1r0'f:| )

Since Re (—2vt0¢) <0, we have |1 — e_z”flr"sl < |ol|] for € > 0 and o € B(0,/8) with Reo > 0. Since in
the present regime, |£| < |¢| < (¢), we conclude

|GSY(E,¢)] S [ge el < (¢hemRecli=Cl,

for ¢ > ¢ > 0 and o € B(0,v/0) with Rec > 0, which completes the proof of the desired estimate for
GA(E, Q-

For the derivative estimates, note that
0eG (&, ¢) = —vhe w1 Clsign(¢ — () + e =1 Isign(& + (),

Since we are assuming £,( > 0, we have [ + (| > |{ — (|, so we readily obtain the stronger estimate
0:Go% (¢, )| < evaRedlé=Cl for ¢ ¢ > 0 and o € B(0,V/8) with Reo > 0. O

Lemma C.2. There exist positive constants C and § such that

[G5(C) = GE™(C) Pootel +10c(G5() = Ge* () Pyote) | < Clo][¢le™ 2"l
for all ¢ € R provided o € B(0,+/3) with Rea > 0.
Proof. We assume ¢ > 0; the case ¢ < 0 is similar. In this case, we have

Gﬁ(() Gheat(C) pole = @e_’/flrgC [eﬁf;(l’)( _ 1} 7
g

where 7, (0) = O(0?). First we assume |02¢| < 1, in which case, there exists by Taylor’s theorem a o- and
¢-independent constant C' > 0 such that [¢”=(®)¢ — 1| < C|o|?|¢|. So, we have

GE(C) — GE4(C) Poote| S |or][¢[eReele]

for ¢ > 0 and o € B(0,v/d) with Reo > 0 and |0%¢| < 1.
On the other hand, the expansion (6.12) yields

2
O' —
1GE(C) = G2 () Pyosel < 178N (@06 1 oot < o lo-3vbReeid],

o]

for ¢ > 0 and o € B(0,V¢) with Reo > 0 and |02¢| > 1. So we obtain the desired estimate in either case.
The estimate on the derivative is similar, in fact easier since we gain a factor of o after differentiating. [

Lemma C.3. There exist positive constants C' and 6 such that
IG5 (O] + 10 GE(Q)] < Cemzvifertel,
for all ¢ € R provided o € B(0,v/3) with Rea > 0.

Proof. This follows readily from the following facts: 1. Pg(o) — % and Pg" (o) + % are analytic in o in
a full neighborhood of the origin by Lemma 6.4; 2. we have Revy (0) < —3viReo and Revgf (o) > LvlReo

for o € B(0,v/4) with Reo > 0. O
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Lemma C.4. There exist positive constants C, 6§, and p such that
GHO| +10:GH(Q)] < Ce#i,

for all ¢ € R provided o € B(0,V/3).

Proof. This follows from the fact that the eigenvalue v3(0?) stays in the open right half-plane, uniformly
bounded away from the imaginary axis, for |o| small, which in turn follows from Corollary 3.4. O

We are now able to prove Lemmas 6.7 and 6.8, which provide control over the leading edge resolvent.

Proof of Lemma 6.7. Let u satisfy (£ — c?)u=g.
First we prove (6.17). Observe that there exists a constant i > 0 such that

—Reo < —jilo], (C.2)

for all o € Agr’2. Hence, combining Lemmas C.1 through C.4 and recalling (C.1) and the fact that we have
Godd(—¢,¢) = —God(¢,¢) for € € R and ¢ > 0, we obtain a constant x> 0 such that the estimate

(o) +[0eu(€ )| < [ eI lg(0)ldC (€3)
holds for o € Agﬂ and £ € R. Recalling that g is odd, we obtain
o) e < Nl

for o € Agr,z_ To upgrade to an W2 estimate in the first component, note that if u = (u, U)T, then we
also have

. _ T gl(C)
w€o) = [ ILTHE - O, <g2(<)> ac. (C4)

Hence we can apply the same argument to estimate u¢ in W1 and thereby get the desired W2 control
on u, which completes the proof of estimate (6.17).

To prove (6.18), note that G°4(¢,¢) = G°4(¢, €) and, thus, Lemma C.1 yields
1G24, 0)] < C(¢)eViRealE=C

for &, >0and o € Af;r’2. Then, combining the latter with Lemmas C.2 through C.4, while recalling (C.1)
and (C.2) and the fact that G999(—¢,¢) = —G244(¢, ¢) holds for £ € R and ¢ > 0, we establish

u(si0)] + (s )| 5 [ (€)1e(C)1dc

for o € Agm and £ € R. We can control x4 (£)(§) with the weight po —1(§) in the L§% ; norm, leading
readily to (6.18), again extending to higher regularity by examining u¢ through (C.4). O

Proof of Lemma 6.8. As above, combining Lemmas C.1 through C.4 gives the pointwise estimate (C.3).
Using Young’s convolution inequality we readily obtain
1

I o)lze % el e~ < el
| ~rlely

for o € Agr’z. O
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_1T2,— 1,— 0 1,+ 2,
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Figure 7: Fredholm borders of Lg (blue, purple), together with pointwise contours I'Y ., (dark red), in the cases where
N+(t,&,¢) > 0 (left) and where 7.(t,£,{) < 0 (right). Note that the figure is not to scale, since in particular we require

D Proof of pointwise estimates

In this appendix, we give a detailed exposition of a proof of Proposition 5.4. We emphasize that the proof we
give to a large extent rephrases arguments from [77, Section 8. Note that we only have to consider £ — ¢ < 0
due to the presence of the term x_ (& — () on the left-hand side of (5.13). Recall from Proposition 3.1 that
the critical Floquet exponent vyt (A) = v(A) occurring in (5.13) is analytic in A on B(0, §), has positive real
part for A € B(0,9) lying to the right of (L), and admits the expansion

v(\) = 1A — 1A% + O(N3), (D.1)

with coefficients v 5 > 0, where we have abbreviated v(\) = v (A) and 1.5 = v1? for simplicity of notation.
We further assume that ¢ > 1, since estimates for small times may be readily obtained using any fixed
contour in B(0,¢), which lies to the right of ¥(Lyt) and connects A§ to Ag. Indeed, for ¢ € [0,1], A in such
a contour, and £ < ¢ we have that Re (At + v(A)(€ — ()) is uniformly bounded, which readily leads to the
estimate (5.13) for ¢ € [0, 1].

Choice of pointwise contour. The basic idea is to choose a contour which approximately minimizes
the exponent Re (At + v(A)(€ — ¢)) in (5.13). We start by computing the minimum of the quadratic
approximation Re [At + (1A — 19A2) (€ — ()], restricting to A € R. From a simple calculation, we find that
the minimum is attained at A = Apin(§, ¢, t) with

_t+ur(§—-Q)
)\min<£7<—’t) - m

The objective is to integrate along a short segment of the line Re A = Anpin, which then approximately
minimizes the exponent Re (At + v(X)(€ — ().

We first fix ; > 0 small, and then fix §g, d > 0 such that §y + 62 < 67, and such that the points —dy + 01
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lie in B(0,9) to the right of Yess(Lwt). We define

)\mina p\min‘ S 507
T]*(tvé-vC) = 507 )\min > 507
_507 )\min < _60-

Let Fg,g,t be the straight line segment from 7, — id1 to n. + 1. Let F%’Z‘Lt be the line segment connecting

Nx + 161 to —dg + 1d1, and let I'>% be a fixed curve to the right of Yess(Lwt) which connects —dg + i1 to Ag.
Similarly, let Fé’gt be the line segment connecting 7, — id; to —dy — idy, and let I'>~ be a fixed curve to the
right of Yess(Lwt) which connects —dy —1id; to A§. Let

2,— 1,— 0 1,+ 2,+
Leco =T Ul Ul UT S UL

See Figure 7 for schematic of the contours. Note in particular that when 7, < 0, the contour I'¢ ¢ ; passes
into the essential spectrum of Lg,.

To prove Proposition 5.4, we estimate the contribution from each portion of the contour, breaking into the
cases [Amin| < o, and [Amin| > d9. Throughout, we will use the expansion

Rev(A) = viRe ) — vy [(Re A)? = (Im A)%| + O(AP), (D.2)

obtained by taking the real part of (D.1).
Case I: |Apin| < dp.

Lemma D.1. Fiz non-negative integers £ and j, and let g satisfy the assumptions of Proposition 5.4 for
some non-negative integer m. Suppose t > 1 and &, € R are such that £ < ¢ and [Amin(§,C,t)| < 0. Then,
there exist &-, (- and t-independent constants C, M > 0 such that

' _(& — (e—c+v 2
/Fo A [ () felte e E=D g (¢, ¢ N (€ = ¢) |dA] < CMe‘M%.
oot 2 )

Proof. For \ € Fg,c,w we have Re A = 7, so by (D.2) we have
Rev(A) = v1ms — von2 + o(Im A)2 + O(|A]?).
Noting that 7, = Amin in the regime, we find after some algebra

2 _ vi (€ — ¢ +vi't)?
Nst + 110 (§ — C) —van (€ — () = —va

and so we have

v (€= C+vi't)?
2 41§ — (|

The assumption |Apin| < d¢ implies that there exist t-, {- and (-independent constants Cy, Co > 0 such that

Re (A + vy (M)(€ = () = — +1(ImA)*(€ = ¢) + O(IAP) (€ — ¢).

C1(¢ =€) <t < Cr(¢C—¢), (D.3)
‘We obtain

(€ —C+v't)?
Mt

Re (At + vyt (M) (€ = () < — — p(Im A)%t + O(IAP)(€ = Q)
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for some A-, t-, &- and (-independent constants M, p; > 0. For \ € I‘£ ¢+ We have IAI2 =02+ (Im \)2. There
then exists a \-, t-, £&- and (-independent constant C3 > 0 such that |2 < C3[|n.|® + [Im A|?] for \ € F5 i
Hence, we arrive at

(€ — ¢+ 't)?
Mt

Re (M + s (A)(€ — ) < — i1 (Tm A2t + pJ [ 4+ [Tm APt

for some -, t-, &- and (-independent constant o > 0. Since Im \ is small, we can absorb pus|Im A%t into
—p1(Im \)?t at the cost of changing p;. Similarly, note that (D.3) yields

vt (€= ¢+ 't)?
4v3 t ‘

.|t < (D.4)

Then, since |n.| < dy, we can absorb the factor of us|n.|3¢ into the first term by adjusting M, provided
dg > 0 is sufficiently small. Altogether, we obtain

(—¢+vy )2

< o g~ m(Im At

oRe AH+2(N) (E-0))

for some A-, t-, &- and (-independent constants M, u; > 0.

For the contour integral over nggt, we use this together with (D.1) and the fact that, for any non-negative
integer k, there exists a \-, t-, &~ and (-independent constant Cy, > 0 such that |A[* < Cy(|n.|* + [Im A[¥)
for A € Fgw, to find a t-, &- and (-independent constant C > 0 such that

[y PPl feRe s OIED g6, ¢ ) (€ = ¢) A
€0t

L (e—c+vp?
< e / (el I A emm MR AL (D.5)

£,¢0t

Using (D.4) and writing z = (£ — { + Vl_lt)/\/i, we establish a -, &- and (-independent constant C' > 0
such that

L+j+m

(e—¢+vy )2 2 9
e - Mt /0 |,)7 |€+]+me p1(Im \)? ‘d)\’ < C’ L+]+m e~ ? /M g e —p1(Im A)?2 ’d/\|
£¢0t 2 £t
C 2 2
—z= /M e M Im \)“t
< =€ / 0 (Im ) |dA[,
2 Pec

upon adjusting the values of the constants C' and M to absorb the polynomially growing factor in the last
inequality. Now, for any non-negative integer k, we have the scaling estimate

Cr
1

t272

/ [Im A[Fe—m (MmN 4) < K / j¢[Femmetag <
e e

for some constants K, Cy, > 0, which are independent of £, ¢ and t. Using these two estimates in (D.5), we
obtain the desired result upon noting that ¢ > 1. O

Lemma D.2. Fiz non-negative integers £ and j, and let g satisfy the assumptions of Proposition 5.4 for
some non-negative integer m. Suppose t > 1 and &, € R are such that £ < ¢ and [Amin(§, ¢, t)| < 0. Then,
there exist -, (- and t-independent constants C, e > 0 such that

/ L AP )] feRe CrrrnNED g e ¢ M) [ (6 = ) |dA] < Cerater2l¢ly (€ - ().

£,
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Proof. For \ € Fé’?t, we have [Im A| = 61, and |Re A\| < max(d2,0p). Also, the assumption [Amin| < do
implies (D.3). If we assume that do and ¢ are sufficiently small relative to d1, we can, upon recalling (D.2),
control all terms in

Re (At + v(A)(€ =€) = Re At + miRe A€ — ¢) — va(Re A)*(€ — ) + v2(Im A)*(€ = ) + O(AP)(E ()
by —pu2(Im A\)2|€ — ¢| — p2(Im \)?¢, from which the desired result readily follows. O

Case II: |Apin| > do.

Lemma D.3. Fiz non-negative integers £ and j, and let g satisfy the assumptions of Proposition 5.4 for
some non-negative integer m. Suppose t > 1 and &, € R are such that £ < ¢ and [Amin(§, ¢, t)| > 0. Then,
there exist -, (- and t-independent constants C, > 0 such that

[, PPl feRe 0 ®ED g6, ¢ - (€ = ) [N < Ce ey (6= ¢). (D.6)
€00t

Proof. First, we assume Api, > &g, which implies
t < (¢ =& (1 —20012). (D.7)
For X\ € Pg,é,t in this regime, we have Re A = §p. Combining these two facts with (D.2), we find
Re (A + V(A€ = ©)) = dot +1o(€ — ) = 13R(€ = €) + va(lm M2(€ = ¢) + O(AP)(€ = )
< 00(¢ — &)1 — 200v2 — v1 + vado] — va(Im A)*(¢ — &) + O(|AP[€ — ¢|)
= —va0G|¢ = €] = va(Im A)*[C = €] + O(IAP[¢ = ¢])-

Since there exists a -, &-, (- and t-independent constant C3 > 0 such that [A]* < C3(|6|® + [Tm A[?) for
A€ Fg,g,t’ we can absorb the O(|A\[?) factor into the other two, obtaining

Re (At +v(A)(§ =€) < —m|¢ — €] = p2(Im X)?[¢ — €] < —pu|¢ €],

for some A-, &-, (- and t-independent constants pi1, g > 0. Note that (D.7) implies that there exists a &-, (-
and t-independent constant C' > 0 such that —|¢ — &| < —Ct, so that we may estimate

M1 U1 U1 = M1
Re (At +v(A)(E— ) <~ |0~ €[ = T~ ¢ < =T ¢~ ¢ - O,

from which we conclude the desired estimate (D.6) in the case Apin > do.

The argument for the case Ayin < —dp is similar. Specifically, the restriction (D.7) is replaced by

(C—€&<—0t

_ D.
vy + 20gvs’ (D-8)

which leads for A € T -, to an estimate

Re (At + v(A) (€ = () = —dot — 1180(& — () = 1205(& — ¢) + va(Im \)*(€ — () + O(AP) (€ = )
< ot (14 20 ) it ARG — €] + O(APIE — )
< =Mt — va(Tm A)2[¢ — & + O(IAP)[¢ = ¢,

for some A-, &-, (-, and t-independent constant M > 0. Since now in this regime there exists a ¢-, (- and
t-independent constant C' > 0 such that we have —t < —C|¢ — &| and we have |A|* < C3(|do|> + |Tm A%) for
A€ Fg’gt, we can extract a factor of —us|¢ — (| from the first term, and use this term together with the
—vo(Im \)?|¢ — £] term to control the O(|A]?) term, and thereby obtain

Re (At +v(A)(€ = () < —pat — ps|€ — ],
for some A-, &-, (- and t-independent constants pg, us > 0, from which the desired estimate (D.6) follows. [J
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Lemma D.4. Fiz non-negative integers £ and j, and let g satisfy the assumptions of Proposition 5.4 for
some non-negative integer m. Suppose t > 1 and &,( € R are such that & < ¢ and |Amin(§, (. t)| > dg. Then,
there exist -, (- and t-independent constants C,u > 0 such that

/ L AP ()feRe At NED g (e ¢ N [x— (€ = ) AN < Ce ey (¢ = ().
£,¢t

Proof. First, assume Amin > do, so that (D.7) holds. For X € Fé’zct, we have [Im A\|2 = 62. Using (D.2) we
arrive at

Re (At +v(A)(€ =€) = Re Mt + viRe A€ = ¢) — v2(Re A)*(€ =€) — v207€ — [+ O(IA)|¢ (]

for A € Fézct If Re A > 0, then the function ¢ — Re At is increasing, while if Re A < 0, then Re At < 0.
Combining this with (D.7), we obtain

Re (X + v(\)(€ — ) < max{0, Re Aé — Cl(m1 — 2092) — mRe € — ¢| + wa(Re A2[€ — | — mb2]€ —
+O(AP)IE ~ |
Since |Re A\| < max{dp, 2}, and we are assuming &y + do < 0%, we conclude
Re (At +v(A)(§ =€) < =O87[€ — (| < —pl€ — (| — ut,

for some A-, &-, ¢- and t-independent constants C,p > 0, using (D.7) to convert some of the —|¢ — (|
localization into —t decay.

Now assume Apin < —dp, so that instead (D.8) holds. Note that in this case, the contours Fé’?t are
contained strictly in the left half-plane. Since also [Re \| < [Im A|> = 6% for A € Fé’zct, we readily obtain

Re (At + (M) (£ =€) < Re Mt — COF[€ — (| < —pt — pf¢ — (],

for some A-, &-, (- and t-independent constants C, i > 0, which leads to the desired estimate. O

Having dealt with the contours Pg,c,t and Fé’éct in both the case [Amin| < 0o and |Ag| > do, all that remains

is to estimate the integral along the contours I'>®, where it is not necessary to distinguish between these
cases.

Lemma D.5. Fiz non-negative integers £ and j, and let g satisfy the assumptions of Proposition 5.4 for
some non-negative integer m. There exist constants C, us > 0 such that

[ APt feRe e EDig e, ¢ M- (€ = ¢) AN < CatlelECy_(€ — (),

2,

forallt>1 and &, € R.

Proof. The compact contours I'>* lie in the left half-plane but strictly to the right of Yess(Lywt), so eReA
contributes uniform exponential decay in time, while eRe¥M(E=C)y (£ — ¢) contributes uniform spatial

localization by Proposition 3.1, leading to the desired estimate. O

With the obtained control from Lemmas D.1 through D.5 on the integral on the left-hand side of (5.13)
along all the different portions of the contour I'¢ ¢ ; we are finally able to prove Proposition 5.4.
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Proof of Proposition 5.4. Combining Lemmas D.1 through D.5, we obtain constants C, u, M > 0 such that
the estimate

| P afee G OEODlg(e, ¢ N - (€ = ¢) A
&Gt

(6—¢+v 1?2

<Ox(6- e AT +e—ute—mf—<>

1

holds for all ¢t > 1 and &, ( € R. By a basic scaling argument, one readily finds that the right hand side
satisfies the desired LP estimates of Proposition 5.4. O

E Derivation of the equation for the inverse-modulated perturbation

Following the strategy in [46, Section 4.1], we derive an equation for the inverse-modulated perturbation
v(t) given by (8.2). First, inserting the solution ug in (1.5) and taking spatial derivatives yields

0= Dulf + cull + (g iy = Ag (). (£1)
NeXtv we set ﬁ(ga t) = u(£ - ¢(£7 t)7 t)a ug (fa t) = uﬁ(g - ¢(£a t)a t)a ﬁ2(£7 t) = ut(g _1/}(57 t)a t) and ﬁll(ga t) =
uge (€ — (&, t),t). Using that the perturbed solution u(t) solves (1.5), we obtain
— Duge — cig — F(u) = —wthy + D (Wrthee + U119e(2 — ¢)) + ctagde
=~ + Ugthe + D (Q1hee + Withe(1 — 1)) — F(@)ie
+ (Duyg + cuy + F(u) — ug)e
=~y + Ugthe + D(Withe)e — F(@)1)e.
On the other hand, recalling that ug solves (1.5) and applying (E.1), we compute
(at - Afr) [u%rw] = u;rwt - wA [u%r] - D (211%;1/)5 + uﬁﬂﬂéf) - Cu%rwf
= upty — (Dug + cufy + F(ug)) e + Fug)ie — D (uptoe + upibee)  (E.3)
= ugrwt -D (U;Iﬂb{)g + F(ufr)w'g'
Set z(t) := w~lv(t) = 6(t) — up. We establish
(O — Age) [zhe] = zetbe + 20 — D (20¢) e — ¢ (e) — F'(up)z. (E.4)

Next, we express the temporal and spatial derivatives of z(t) as

(E.2)

zt = U — U1y, ze = U1 (1 —¢) — up,
implying

(2 + up) o - (z¢ + up,) Ve
—_— u; —up —2¢ = WY = —— .
1_w£ f 13 3 1—%

Hence, with the aid of (E.2), (E.3) and (E.4) we obtain
— Duige — clig — F(0) = — (0 — Ap) [ugt] — (U1 — ug) oy + Wove + D (81 — ug) ve),
— (F(@) - Flug)) e
—(0r — Ag) [upt] — 2ghy — Withety + 240 + Widety

+D (W) — (F(ug +2) — F(ug)) P
~ e .

~ (9~ Au) [z — ] + ( (cve — ) + D (W e wof))
3

~ / ~
U — Up, — 2z = WYy =

- (F(ufr +2z) — F(ug) — (ufr) )¢§
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Therefore, using that ug solves (1.5), we establish
(815 - Afr) z = (8t - Afr) (ﬁ - ufr)
= (W — Duge — cug — F(u)) + (Dug. + cug, + F(ug)) + F(u) — F(uy) — F'(ug)z  (E5)
= (0r = Ap) [zbe — )] + Q(2z,¢) + 0cR(2, ),

where the nonlinearities Q(z,1) and R(z,1) are defined in (8.5) and (8.6), respectively. Finally, to
establish the equation (8.4) for the inverse-modulated perturbation we multiply (E.5) with w™! and recall
z(t) = wv(t).

F Local Well-Posedness of the Phase Modulation

We provide a proof for Proposition 8.3 yielding local well-posedness of the phase modulation. To this end,
we first prove the following preliminary result.

Lemma F.1. Let V(t) and Tyax be as in Proposition 8.1. The map V : H*(R) x [0, Trax) — H2(R) given
by

Vi, O)[E] = v (£ = ¢(£), 1) + up(§ — ¥(§)) — ux((),

is well-defined, continuous int, and locally Lipschitz continuous in v (uniformly int on compact subintervals

of [0, Tinax))-
Proof. Fix R > 0. The mean value theorem and the embedding H*(R) < L*(R) yields

IV (@1,8) = V(2 )l g2 S (IFellwzee + [[u[lyace) ¥1 = voll g2, (F.1)

for 112 € H?(R) with |91 2|z < R and t € [0, Tiax). Hence, using Proposition 8.1, we conclude that V is
locally Lipschitz continuous in ¢ (uniformly in ¢ on compact subintervals of [0, Tiyax)). Moreover, setting
o = 0in (F.1) and noting V(0,t) = v(t) € H%(R) by Proposition 8.1, shows that V is well-defined.

Using the mean value theorem and the embedding H!(R) < L°(R) again, we obtain

L2NL>

IV @, t) = Vb, 9)lle < Z (I[@9)¢ = ), = @) (- = v(), )] = [o%() - 9i(s)|

+ [Jofvw - o59)] ., ) (L 1llge)
S (1ve(t) = ve(s >szoo + 188 = () ) (1 + [l =)

for 1 € H?*(R) with [|1||z2 < R and s,t € [0, Tinax). Continuity of V' with respect to ¢ now follows from
Proposition 8.1. O

We are now in the position to establish local well-posedness of the phase modulation.

Proposition F.2. Let V(t) and Tinax be as in Proposition 8.1. Moreover, let V : H*(R) x [0, Tyax) — H?(R)
be as in Lemma F.1. Finally, denote by Y3 (R) the closed subspace {f € HF(R) : f(&) =0 for £ € [~1,00)}
of H*(R). Then, there exists a maximal time Tmax € (0, Tmax] such that the integral system

00 = sp(Ovo + [ syt = INCV (006, ), 6(5) () .
2

hi(t) = dsp(t)vo + /Ot Opsp(t = s)N(V(¥(s), ), ¥ (5), ¥u(s))ds

78



admits a unique maximally defined solution

(¢, 9) € C([0, Tmax), Ya(R) x Ya(R)). (F.3)
Moreover, Tmax < Tmax yields
ltlgl sup [| (¥, ¥e) | gra g2 = 00 (F.4)

Finally, v € C([0, Tmax), Y2(R)) is continuously differentiable with dpp(t) = ¢ (t) for t € [0, Tmax)-

Proof. The proof follows from a standard contraction mapping argument applied to the integral system (F.2).
We collect the relevant details. First, we observe that the identities (6.27) and (7.6) and the estimates
in Theorem 7.1 imply that the propagators sp(t): L(lu(]R) — Yi(R) and 0;sp(t): Léjl(]R) — Y5(R) are
well-defined and ¢-uniformly bounded. Second, we note that all terms in the nonlinearity N (v, v, 1), which
are nonlinear in v have the prefactor %, which is exponentially localized on [0, 00). Third, all terms in
N (v,1,1) which contain a factor ¢ or ¢, vanish on [—1,00) for (¢, ¢y) € Ya(R) x Y2(R). Hence, using
Lemma F.1, the continuous embedding H'(R) <+ L*(R) and the inequality ||wv| 1 < |Jwl|z2]||v] 2 for
w,v € L*(R), we conclude that the nonlinear map N : Y3(R) x Ya(R) X [0, Thax) — L§(R) given by

Av/(¢7 T/)t, t) = N (V(d)v t)a ’QD» T;Z)t)

is continuous in ¢ and locally Lipschitz continuous in (¢, ), uniformly in ¢t on compact subintervals of
[Oa Trnax) .

Using these observations, one readily obtains with standard arguments, see e.g. [19, Proposition 4.3.3]
or [55, Theorem 6.1.4], that the right-hand side of the integral system (F.2) induces a contraction mapping
on C([0, 7], B(R)) for some 7, R > 0, where B(R) is the ball of radius R in Y4(R) x Y2(R). By the Banach
fixed point theorem this yields a unique solution (¢,v¢:) € C([0,7],Ya(R) x Y2(R)) of (F.2). Letting
Tmax € (0, Timax] be the supremum of all such 7, we obtain a maximally defined solution (F.3).

The blow-up condition (F.4) can be derived by arguing by contradiction, that is, one assumes Tmax < Tmax
and (F.4) does not hold. Using a standard procedure, see [36, Proposition B.2], one then finds a constant
d > 0 such that the maximally defined solution can be extended to a larger interval [0, Tiax + 6], contradicting
the maximality of Tax.

Finally, by Theorem 7.1 we can differentiate the integral equation for ¢(t) with respect to t. Using s,(0) =0
we obtain 0y (t) = ¢(t) for t € [0, Tmax). This completes the proof. O
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