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Abstract

We propose a conceptual analysis of stationary reaction-diffusion patterns with geomet-

ric spatial scaling laws as observed in Liesegang patterns. We give necessary and sufficient

conditions for such patterns to occur in a robust fashion. Main ingredients are a skew-

product structure in the kinetics, caused by irreversible chemical reactions, the existence

of localized spikes, and slowly decaying boundary layers. The proofs invoke the analysis

of homoclinic orbits in orbit-flip position for the spatial dynamics. In particular, we show

that there exists a manifold of initial conditions that do not converge to the equilibrium

but to the homoclinic orbit as a set.
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1 Introduction and main results

1.1 Phenomenology and models

While Turing predicted periodic patterns in 1954, it took almost 40 years to realize these

structures experimentally in a chemical reaction. A century before, stable patterned states

were observed by Liesegang [19]. Liesegang patterns (or rings) are formed as a result of a simple

reaction, typically in gels, when the reaction product precipitates in a recurrent fashion; see

Figure 1.1, below. Liesegang patterns can be observed in experimental setups, in numerical

Figure 1.1: Liesegang patterns from [24], left, and [7], right. In the left picture, reactants are NaOH

and MgCl2, with deposit Mg(OH)
2
. In the right picture, reactants are H3PO4 and CaCl2 with deposit

Ca3(PO
4
)2 (two tubes on the left) and KF and Pb(NO

3
)2 with deposit PbF2 (two tubes on the right).

simulations, as well as in natural patterns. We refer to [6, 8] for recent reviews on experimental

and modeling aspects of Liesegang patterns, to [16] for a comparison with natural patterns,

and to [1, 5, 6, 33] for potential applications towards a self-organized patterned deposition in

the fabrication of materials at the sub-micron scale. In most situations, Liesegang patterns

arise as the result of a simple autocatalytic reaction, where two chemical species A and B

react to form the product C, which then precipitates into a final product E. Patterns are

formed at the interface of regions where A and B meet and react. One observes that spatially

localized deposits of E are formed at distinct locations xi > 0. The distances δxi = xi+1 − xi

often obey a characteristic spatial scaling law [20],

δxi+1/δxi → η, for i→ ∞, (1.1)

where typically η > 1. In addition, one observes a temporal asymptotic scaling law, where the

time instance ti of the formation of the deposits xi obeys the scaling ti+1/ti → 2η, for i→ ∞,

so that the overall spread is diffusive, x2
i /ti is asymptotically constant. In many situations, one

also observes an increase in width wi of the spatially localized deposits, following roughly an

exponential law. However, experimental data on such width laws appears to be varying much

stronger than comparable data on distance spacing; see [7], and the discussion in Sections 1.2

and 7.
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Modeling Liesegang patterns typically involves an irreversible reaction between the chemical

species A and B, diffusing with diffusivities dA and dB , and precipitation kinetics for the

products C and E. Typical for the precipitation kinetics is a threshold behavior: precipitation

is initiated for large C or non-zero E, only. Model equations are cast in x ≥ 0 and are of the

form

at = daaxx − ab, ct = dccxx + ab− f(c, e), (1.2)

bt = dbbxx − ab, et = deexx + f(c, e), (1.3)

where a, b, c, e denote the concentrations of the chemical species A,B,C,E, respectively, dj

are diffusivities, and f models threshold dynamics for the precipitation process; we refer to

[10, 14, 15, 21] and [4, 6, 9, 18] for more specific and more general models of Liesegang pattern

formation. In the first set of references, the reaction between A and B is assumed to be

simply bi-molecular and fast in a certain scaling, while dB is assumed to vanish. Under these

assumptions, one finds a diffusive spread of the reactive interface between A and B in the

singular limit [11, 12]. Substituting this diffusive spread into the precipitation kinetics, one

obtains temporal scaling laws in the specific precipitation kinetics considered.

In the next section, we outline our approach and sketch our main result and its limitations.

1.2 Our main result — a first sketch

In this article, we suggest a complementary, conceptual approach to the understanding of

Liesegang patterns, which strives to elucidate the connection between Liesegang and Turing

pattern formation. Our approach focuses on the existence of the final Liesegang pattern,

that is, a stationary (time-independent) solution to a reaction-diffusion system posed on the

positive half line, rather than the successive temporal formation of a finite number of spikes.

The following “Theorem” sketches our main result. The precise result is stated in Theorem 2.

Theorem 1 (Sketch of main result) Consider the class of reaction-diffusion systems ut =

Duxx + f(u) ∈ R
N , posed on x ∈ R

+. Assume a skew-product structure induced by an ir-

reversible chemical reaction, separating reactants u1 (a, b in (1.3) and products u2 (c, e in

(1.3). Then there exists an open set of boundary conditions at x = 0, reaction kinetics and

parameters f , and diffusion constants D, such that there exists a stationary solution of the

reaction-diffusion system, that satisfy the boundary conditions and exhibit a sequence of pre-

cipitation spikes spaced at geometrically increasing distances.

The proof is actually constructive: the stationary solution, which we refer to as a Liesegang

pattern, is built from two ingredients: we assume that the system would support simple

stationary solutions: a stationary boundary layer for the u1 part of the system, and a Turing

spot (or precipitation spike1 for the u2-part of the system. The boundary layer is assumed

1We use the name Turing spot as a place holder for any self-organized, spatially localized, temporally

stationary pattern. In a reaction-diffusion system, such a pattern corresponds to a solution u(x) for the system

posed on the real line, with u(x) → u∞ for |x| → ∞. In the case of Liesegang patterns, such spots are formed

by threshold effects in the precipitation mechanism; see Section 6.
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to be exponentially localized near the boundary and constant elsewhere. The Turing spot is

supposed to be a solution on all of R, exponentially localized on a constant background (in

fact any such solution would work). We then superimpose the boundary layer and an infinite

number of Turing spots and control errors.

Besides these two “simple” stationary solutions, we need a number of technical assumptions,

which are satisfied for an open dense set of parameter values. Two assumptions, however

appear to be necessary but non-generic:

• the skew-product structure of the kinetics induced by the ireversibility of a chemical

reaction; see Section 1.3.1.

• the strong exponential localization of Turing spots (or precipitation spikes) compared

to the weak exponential decay of the boundary layer, and a “glide-interaction balance”;

see Sections 1.3.4 and 1.4, below.

We remark here that irreversibility is non-generic in the sense that it restricts to kinetics in

a subset of possibly high codimension. One may think for instance of setting all reaction

constants for reverse reactions to zero. On the other hand, the second set of conditions is

merely a sign condition, distinguishing between two open sets of parameter values.

In summary, we give sufficient (and almost necessary) conditions for the existence of Liesegang

patterns in a suitable open class of reaction-diffusion systems. As a byproduct, our main result,

Theorem 2, predicts asymptotic spatial scaling laws. It also connects Liesegang patterns to

multi-spot patterns, consisting of only finitely many spots, and Turing patterns, where spots

are spaced equidistantly at x = ∞.

Of course, our approach leaves open a number of important questions, some of which will be

subject to future work.

• Temporal law. Our approach does not yield any information on the temporal scaling in

the formation of Liesegang patterns.

• Stability. An intermediate step towards temporal behavior would be the study of sta-

bility of Liesegang patterns with respect to localized, small perturbations in the initial

condition. One would expect stable Liesegang patterns to exist whenever boundary

layers are stable and interaction of Turing spots is repulsive; see Section 1.3.4 for a def-

inition of Turing spot interaction. We intend to pursue this question further in future

work.

• Width law. Our analysis predicts Liesegang patterns with precipitation spikes of fixed

width. Conceptually, precipitation spikes are formed by two weakly interacting inter-

faces, rather than a fixed-width spot. We intend to adapt our analysis to this scenario

in future work; see also Section 7

At this stage, our approach does not yield any information on the temporal scaling in the

formation of Liesegang patterns.
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1.3 A conceptual approach: ingredients

In the following, we specify a number of properties of our reaction-diffusion system that will

guarantee the robust occurrence of Liesegang patterns. Our main result, stated in Section 1.4,

will make this robustness precise. We will discuss our assumptions and consequences thereof

in the following sections. In particular, we will argue that all those assumptions are in some

sense necessary ingredients to Liesegang patterns.

We consider reaction-diffusion systems

ut = Duxx + f(u), x ∈ R+, u ∈ R
N , (1.4)

with boundary conditions B(u, ux) = 0 ∈ R
N , at x = 0. We assume that D+DT > 0, and that

f : R
N → R

N and B : R
2N → R

N are smooth. Moreover, we assume that the derivative of B

has maximal rank everywhere, so that the zero set of B defines an N -dimensional immersed

manifold in R
2N . In most experimental scenarios, the diffusion matrix will be diagonal. Much

of our analysis would allow some vanishing diffusion coefficients, and we focus on the strictly

positive case for ease of notation. Moreover, our considerations are mostly robust in the limit

of vanishing diffusivities.

We think of the boundary conditions as mimicking a more complicated interfacial region, where

reactants are fed into the domain. In this region, mixing and different domain geometries likely

would require a much more complicated setup than the simple one-dimensional reaction-

diffusion process, and we therefore choose to absorb this interfacial region into a general

nonlinear boundary condition.

In the following, we will make several assumptions on the reaction diffusion system. The

assumptions can be thought of as explicit and implicit conditions on D, f , and B.

1.3.1 Irreversible reactions and skew product dynamics

We assume a skew-product structure of the dynamics. More precisely, we assume that u =

(u1, u2) ∈ R
N1 × R

N2, and the reaction diffusion system can be written in the form

u1,t =D1u1,xx + f1(u1),

u2,t =D2u2,xx + f2(u1, u2). (1.5)

We assume a similar decoupling of the boundary conditions,

B(u, ux) = (B1(u1, u1,x), B2(u, ux)), (1.6)

with induced maximal rank conditions on the derivatives of (B1, B2). The assumption on a

decoupling is motivated by the model problems mentioned before. It reflects a more general

structural property of irreversibility in chemical reactions. Chemical species in u1 may react

and form products in u2. We however exclude the reversed reaction, where the u1-species

would be fed from a reaction involving the products u2. We will explain later why this type

of structural assumption appears to be a necessary condition for the robust occurrence of

Liesegang patterns.
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1.3.2 Boundary layers

We may consider the subsystem for u1 independently. We shall assume that there exists a

boundary layer solution u∗1(x), x ≥ 0 to the nonlinear equation with boundary condition, that

is,

0 = u∗1,xx + f1(u
∗
1), on x > 0 B1(u

∗
1(0), u

∗
1,x(0)) = 0.

Moreover, we assume that the boundary layer is exponentially localized, a typical assumption

as we shall see in Section 3,

u∗1(x) = u∗1,∞e−αx + O(e−(α+δ)x)

for some vector u∗1,∞ and positive constants α, δ. Moreover, we assume that α is the minimal

decay rate, that is, there are no non-trivial solutions to D1u1,xx + f1(u1) = 0 with u1 → 0 and

eαxu1 → ∞. Lastly, we assume that the linearization at the boundary layer,

Lblu = D1uxx + f ′1(u
∗
1)u, ∂1B1(u

∗
1(0), u

∗
1,x(0))u(0) + ∂2B1(u

∗
1(0), u

∗
1,x(0))ux(0) = 0,

is invertible.

One can think of the boundary layer acting as an effective parameter ramp in the system

for u2. Once the boundary layer has formed, the equation for u2 is driven by a spatially

inhomogeneous forcing term,

u2,t = D2u2,xx + f2(u
∗
1(x), u2), (1.7)

1.3.3 Turing spots

We next consider the second part of the system in the background state, that is, with u1 ≡ 0,

and x ∈ R,

u2,t = D2u2,xx + f2(0, u2). (1.8)

We assume that (1.8) possesses a Turing spot solution u∗2(x), x ∈ R such that u∗2(x) =

u∗2(−x) → 0 as |x| → ∞. Moreover we assume that the Turing spot is robust, that is,

we assume that the linearization at u∗2

Lu2 := D2u2,xx + ∂2f2(0, u
∗
2)u2, x ∈ R

is Fredholm of index 0 with an algebraically simple eigenvalue λ = 0, with eigenvector u∗2,x. We

refer to u∗2 as a Turing spot since it can be viewed as a reaction-diffusion driven, self-organized

pattern. Moreover, Turing spots naturally give rise to periodic patterns of large wavelength,

which one would refer to as Turing patterns; see Lemma 4.2.

Besides existence and spectral robustness, we assume monotone tails. More precisely, we

assume that u∗2(x) = u2,∞e−βx + O(e−(β+δ)x) as x→ ∞, for some positive constants β, δ and

u2,∞ ∈ R
N2. Moreover, we assume that β2 is simple and the smallest root of −D−1

2 f ′2(0, 0),

in the sense that all other roots β̃2 satisfy |Re β̃| > |Re β|. In addition, we assume generic

interaction, that is, we assume that L is invertible in exponentially weighted spaces L2
η with
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η = ±(β + δ), for δ > 0, sufficiently small. As a consequence, we obtain minimal decay for

the kernel ψ of the L2-adjoint L∗, ψ(x) = ±ψ∞e−β|x| + O(e−(β+δ)|x|) as x → ±∞, for some

nonzero ψ∞.

The assumption of monotone tails should not be viewed as being restrictive. Oscillatory decay,

β 6∈ R, would generically generate a plethora of multi-spot patterns. Intuitively, Turing spots

could be placed at arbitrary positions relative to each other such that periodic oscillations in

the tails lock, that is, allowed distances vary roughly by multiples of 2π/ Im β. It therefore

seems difficult to explain the robust occurrence of the specific geometric scaling in the distances

of Liesegang patterns with the assumption of oscillatory decay of Turing spots. On the other

hand, multiple eigenvalues β or decay with a stronger rate than the minimal eigenvalue should

be considered non-generic, so that our assumption covers the generic and interesting case.

1.3.4 Glide-interaction balance

The assumption in the previous section guarantees that there is precisely one “slow” degree

of freedom associated with each Turing spot, namely the motion by translation. This slow

mode is excited by two effects, the effective parameter ramp generated by the boundary layer,

and the interaction with neighboring Turing spots. Our last assumption for the existence of

Liesegang patterns requires that these two effects carry opposite signs. To be more precise,

we normalize the adjoint kernel ψ ∈ KerL∗ so that
∫

ψ · u∗2,x = 1. We say that the boundary

conditions are attractive if

Fbc :=

∫

ψ(x) · ∂1f2(0, u
∗
2(x))u

∗
1,∞e−αx < 0,

and we call the boundary conditions repulsive if Fbc > 0. We note here that the integrals

converge and boundary forces are well-defined only when α < β; see Remark 1.4.

In a similar fashion, we say that the interaction between Turing spots is attractive if

Fint := −2β(ψ∞,Du2,∞) < 0,

and repulsive if Fint > 0.

We assume that the influence of boundary conditions and interaction can be balanced, that

is,

FintFbc < 0. (1.9)

Remark 1.1 One can formally derive both forces fairly easily by constructing an approximate

solution and projecting the error on the kernel associated with an individual Turing spot. Tak-

ing for instance a pure Turing spot u∗2, the error stems from the contribution of the boundary

term, which at large values of x is given to leading order by ∂1f2(0, u
∗
2(x))u

∗
1,∞e−αx. This

motivates the definition of the boundary force. The interaction force can be explained with the

approximate solution u2(x) = u∗2(x−L), x ≥ 0, u2(x) = u∗2(x+L), x ≤ 0, which creates an er-

ror 2Du∗2,x(−L)δ(x). Integrating against the adjoint associated with the spot located at x = L

and expanding in L, we find that the induced motion is to the left (reflecting an attractive

interaction) for Fint < 0; see also Section 2.
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1.3.5 Non-resonance and spectral gap

In addition to the conceptual assumptions stated above, we will make use of a simplifying

assumption with no immediate physical interpretation.

Hypothesis 1.2 (Smooth linearization and reduction) We assume that the eigenvalues

of the ODE linearization are non-resonant to order K. More precisely, we write ν2
j , 1 ≤ j ≤

N , for the roots of −D−1
1 ∂1f1(0, 0) and −D−1

2 ∂2f2(0, 0), repeated with multiplicity, and we

normalize Re νj > 0. We then assume that
∑

j mjνj 6= νp for any p and any m ∈ N
N with

2 ≤
∑

j mj ≤ K.

Moreover, we assume that there is a strong spectral gap between leading and non-leading eigen-

values,

Re νj > 2β for all νj 6∈ {α, β}.

We will choose K sufficiently large in our main result. Note however that Hypothesis 1.2 is

satisfied for an open set of reaction-diffusion systems for any finite K.

We believe that, unlike the previous assumptions, this hypothesis is not necessary for the

existence of Liesegang patterns and could be substantially weakened, if not removed altogether.

It does however help to simplify proofs considerably.

1.4 Main result

In order to state our main result, we give a somewhat general definition of Liesegang-type

patterns. We call a stationary solution ums an ε-multi-spot pattern if there are locations

xj, 1 ≤ j ≤ J ≤ ∞, with x0 < x1 < x2 < . . ., so that ums is ε-close to a Turing spot on

intervals centered at xj and covering {x ≥ x0}. More precisely, define xj+1 − xj =: δxj ,

Ij = [(xj − δxj−1/2, xj + δxj/2] for 1 ≤ j ≤ J − 1, and IJ = [xJ − δxJ−1/2,∞) if J <∞. We

say ums is ε-close to Turing spots if

sup
Ij

|ums,2(x) − u∗2(x− xj)| < ε, for 1 ≤ j ≤ J.

We then distinguish the following particular cases of multi-spot patterns.

(i) We say ums is an n-spot pattern if n = J <∞.

(ii) We say ums is an asymptotic Turing pattern if J = ∞ and δxj → 2π/k for some

wavenumber k > 0.

(iii) We say ums is a Liesegang pattern if J = ∞ and δxj → ∞.

In cases (ii) and (iii), we make the definition independent of ε by requiring that for all ε > 0

there exists x0 so that ums is an ε-multispot pattern.
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Theorem 2 (Robust Liesegang patterns) There is an open nonempty class of reaction-

diffusion systems of skew-product type, Section 1.3.1, and boundary conditions (1.6), that

possesses stationary Liesegang pattern. More precisely, assume that the reaction-diffusion

system exhibits a boundary layer with decay rate α > 0, Section 1.3.2, Turing spots with decay

rate β > α > 0, Section 1.3.3, and that there is a glide-interaction balance, Section 1.3.4. In

addition, assume that Hypothesis 1.2 on smooth linearization and reduction holds for some

sufficiently large K. Then there exists an open non-empty set of boundary conditions such

that there exist Liesegang patterns.

Moreover, such Liesegang patterns persist for all nearby boundary conditions B, reaction ki-

netics f , and diffusion coefficients D, and enjoy the following properties:

• there is a spatial scaling law (1.1) with η = β/(β − α) where α, β are decay rates of

boundary layer and Turing spot, respectively;

• Liesegang patterns are the locally uniform limit of a family of stationary patterns that

exhibit n spots, n ≥ n0, for any ε > 0 with n0 = n0(ε);

• Liesegang patterns depend continuously in C2
loc on parameters in B,D, f that is, they

vary continuously as C2-functions in any finite window x ∈ [0, L].

Remark 1.3 The theorem includes two different types of robustness statements. First, it

states that given our set of assumptions, we can find an open set of boundary conditions so that

there are Liesegang patterns. As one can fairly easily see, the assumptions include a large, open

class of reaction-diffusion systems as we will see in the next two sections. The second statement

is a local robustness statement: one can vary boundary conditions and system parameters

away from values for a particular Liesegang pattern and still find Liesegang patterns, which

in addition depend continuously on parameters and boundary conditions. One can easily see

that the rate η also depends continuously on parameters. Since a small change in η implies a

large change in the pattern, when measured in a uniform supremum norm, we cannot expect

continuous dependence on parameters on the whole real line.

Remark 1.4 The above result is sharp in a certain sense. Neither Liesegang patterns nor

finite concatenations of Turing spots exist when

(i) in the absence of a skew-product decoupling, when typically α = β, see Section 5.9; or

(ii) when the boundary layer is rapidly decaying, β < α, see Proposition 5.13; or

(iii) when interaction and boundary forces are aligned, FintFbc > 0; see Proposition 5.12.

Outline: In Section 2, we describe a simple, intuitive mechanistic model that illustrates how

our assumptions may lead to the existence of Liesegang patterns. Section 3 is concerned with

boundary layers in the u1-system, their robustness and exponential decay behavior. Section 4

is concerned with Turing spots, their robustness and interaction. Section 5 contains the proof

of our main result, which involves an analysis of a homoclinic flip bifurcation. Section 6 shows

10



how the results presented here can be applied to some specific reaction-diffusion systems. We

conclude with a summary and outlook in Section 7.

Acknowledgments The author gratefully acknowledges support by the National Science

Foundation under grant NSF-DMS-0806614.

2 A simple mechanistic model

In this section, we describe a formal reduction of the dynamics of multiple Turing spots on a

parameter ramp and how this formal reduction suggests the existence of Liesegang patterns.

First, consider a collection of Turing spots placed at positions xi. We construct an al-

most solution by patching exact Turing spots at their tails, with mismatch in the deriva-

tive u2,x(−Lj) − u2,x(Lj) = 2u2,x(−Lj), where 2Lj = xj+1 − xj. The linearization at such

an almost-solution possesses an almost kernel spanned by the derivative of each individual

spot. Projections on the kernel are obtained by taking scalar products with the translates

of the adjoint kernel. Evaluating the mismatch on the right-hand side gives Dδ(x − (xj+1 −

xj)/2)(u2,x(−Lj) − u2,x(Lj)). With adjoint kernel given by ψ(x − xj), we arrive formally at

the following effective equation for the positions of Turing spots:

ẋj = 2Du2,x(−Lj)ψ(Lj) + 2Du2,x(−Lj−1)ψ(−Lj−1).

Substituting the exponential expansion for u2 and ψ we arrive at the leading order system

ẋj ∼ Fint ·
(

e−β(xj−xj−1) − e−β(xj+1−xj)
)

.

Since we are interested in patterns with increasing distances, the effective motion is determined

by the term coming from the left neighbor,

ẋj ∼ Finte
−β(xj−xj−1).

In addition to the interaction forces on the right-hand side, we have an effective force created

by the boundary condition. Formally projecting the perturbation created by the boundary

condition on the kernel gives

ẋj ∼ Fbce
−αxj + Finte

−β(xj−xj−1). (2.1)

In order for the right hand side to vanish, we need precisely the “force balance” sign condition

from Section 1.3.4. the resulting dynamics are schematically illustrated in Figure 2. We find

equilibria whenever

αxj = β(xj − xj−1) − log(−Fint/Fbc).

From here, we readily derive a geometric Matalon-Packter law xj+1−xj = β/(β−α)(xj−xj−1),

provided β > α. For α > β, we expect that the boundary force cannot be balanced with
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Figure 2.1: A schematic picture of the dynamics of Turing spots under forces Fbc = −V ′

bc
, exerted

by the boundary conditions, and mutual next-neighbor interaction, Fint. We see force balance in a

Liesegang pattern with repulsive interaction and attractive boundary in (a). The subsequent cases

illustrate attractive interaction and repulsive boundary. They show (b) a Liesegang pattern, (c) a 5-

spot pattern, and (d) a Turing pattern. Red arrows indicate forces exerted by the boundary conditions,

blue arrows indicate interaction forces, and the length of arrows indicates strength of forces.

interaction for large j, δxj → ∞, and (2.1) indeed does not possess stationary solutions with

δxj → ∞.

We emphasize that this exact computation is formal in many regards. One can now how-

ever “construct” multi-spots, Liesegang patterns, and Turing patterns using only signs and

monotonicity of forces. Fix for example a repulsive interaction and an attractive boundary.

Placing a single Turing spot at x1 ≫ 1 as initial condition and evolving it with the flow will

let the spot move towards the boundary until strong interaction with the boundary stops the

motion (a condition on the boundary). Placing a second spot far out would let this second

spot approach the first spot until the repulsive interaction balances the attractive force of

the boundary condition. One can then “fill in” more and more Turing spots until an infinite

number is placed — the Liesegang pattern. On the other hand, one can envision to instanta-

neously place an infinite number of Turing spots with fixed mutual distance in the medium,
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initially placed at a large distance from the boundary. The left-most spots would then move

towards the boundary, while the density at infinity would conceivably remain unchanged by

the time evolution.

Summarizing, this construction gives three types of stationary patterns with scaling laws:

multi-spot patterns, Liesegang patterns, and Turing patterns. There are however crucial gaps

in the argument, resulting from the effective change of the Turing pattern on a parameter ramp

which is relaxing at an exponential rate that is slower than the Turing spot. We were not able

to give an intuitive understanding for the possibly intricate interaction of those exponentially

small effects. As it turns out, our methods will show that the analog and the scaling are

correct, although the proof requires a more subtle understanding of the possible behavior in

the tails — and, at this point, the additional Hypothesis 1.2.

3 Boundary layers

We first concentrate on the patterns generated in the u1-subsystem. We will discuss robustness

of the assumptions in Section 1.3.1.

We can find stationary boundary layers as solutions to the ordinary differential equation

u1,x =v1

v1,x = −D−1
1 f1(u1). (3.1)

The boundary conditions define an N1-dimensional manifold at x = 0, which we refer to as

B1. We are interested in solutions that converge to zero as x→ ∞. We therefore analyze the

linearization at the equilibrium u1 = 0,

u1,x = v1, v1,x = −D−1
1 f ′1(0)u1,

with eigenvalues ν given by the square roots of eigenvalues ρ of −D−1
1 f ′1(0).

Since we assumed that the linearization at the boundary layer was invertible, hence Fredholm

of index zero, there are no bounded solutions to the linearized equation at ∞ (these would

contribute to essential spectrum at λ = 0, Lbl would not be Fredholm) and we can conclude

that all eigenvalues ν are off the imaginary axis. Hypothesis 1.2 actually guarantees that the

eigenvalues ρ are ordered 0 < α = ν1 < Re νj , and ν1 is algebraically simple. Our dynamical

system (3.1) therefore possesses an N -dimensional stable manifold to the origin which we refer

to as W s
1 . Inside of W s

1 , there is a comdimension-1, N − 1-dimensional strong stable manifold

W ss
1 , which contains precisely the solutions with strong exponential decay rate, O(e−(α+δ)x),

for some δ > 0. Our assumption on the existence of a boundary layer with minimal exponential

decay therefore translates into the following geometric statement.

Lemma 3.1 The intersection of W s
1 \W ss

1 and B1 is nontrivial and contains the boundary

layer u∗1.

The spectral assumption on invertibility of Lbl ensures that the intersection is transverse and

robust.
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Lemma 3.2 Boundary layers with the properties listed occur in open, non-empty classes of

reaction-diffusion systems.

Proof. First notice that the intersection of W s
1 \W

ss
1 and B1 is transverse. To see this, notice

that a tangency would yield a localized solution to the linearized equation which belongs to

the tangent space of the boundary manifold, hence a kernel of Lbl. By smooth dependence of

both manifolds and eigenvalue structure on the equation and boundary data, we can conclude

that localized boundary layers occur for open classes of reaction-diffusion systems. It remains

to show that the class is non-empty. A simple example for a transverse boundary layer is the

system uxx − u = 0, with boundary condition u = 1 and solution e−x.

4 Turing spots

In this section, we discuss our hypothesis on the existence of Turing spots and some conse-

quences. We therefore set u1 = 0 in the system for u2 and ignore the boundary conditions

at x = 0 for the time being. The system then can be rewritten as an ordinary differential

equation

u2,x =v2

v2,x = −D−1
2 f2(0, u2). (4.1)

This equation is reversible, that is (u2, v2)(x) is a solution if and only if R(u2, v2)(−x) is a

solution, where the involution R simply reflects v, R(u, v) = (u,−v). Reversible dynamical

systems enjoy a number of properties that are reminiscent of Hamiltonian dynamics (which

we would find if the reaction-diffusion system was a – in this context atypical – gradient flow).

We refer to [2, 17] for reviews of reversible dynamics and more references to the literature.

Our assumption on the existence of a Turing spot u∗2(x) guarantees the existence of a homo-

clinic orbit (u∗2, v
∗
2) → 0 for |x| → ∞, of (4.1).

Lemma 4.1 Turing spots with the properties described in Section 1.3.2 occur in open and

nonempty classes of reaction-diffusion systems.

Proof. Robustness of Turing spots follows immediately from invertibility of the linearization

in spaces of bounded, uniformly continuous, even functions. The single zero-eigenvalue is

robust as it is pinned to the origin, generated by translation symmetry. It remains to show

robustness of the exponential decay property. Again, we involve the ODE picture. Similarly

to the u1-subsystem, we find here that u2 = v2 = 0 is hyperbolic with stable manifold W s
2 and

strong stable manifold W ss
2 . The homoclinic orbit is generated by an intersection of W s

2 \W
ss
2

and the Neumann subspace v2 = 0. The intersection is transverse since the linearization

in spaces of even functions is invertible. The intersection therefore depends continuously on

perturbations and remains in the open complement of W ss
2 inside W s

2 . A simple example is

the localized (albeit unstable) solution to uxx − u+ u2 = 0.
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Turing spots are accompanied by long-wavelength Turing patterns.

Lemma 4.2 The homoclinic orbit q∗(x) = (u∗2(x), v
∗
2(x)) is accompanied by a unique family

of periodic orbits qL(x) := (uL
2 , v

L
2 )(x), L ≥ L0 for some L0, with the following properties:

(i) Even: qL(x) = qL(−x);

(ii) Periodic: qL(x) = qL(x+ L) for all x;

(iii) qL converges to q∗ in C1
loc.

The periodic orbits are stable for repulsive interaction Fint > 0 and unstable for attractive

interaction Fint < 0.

Proof. The assumptions on the spectrum of the linearization guarantee that the homoclinic

is formed by a transverse intersection of the stable manifold of the origin and the reversibility

plane v = 0. We can then apply [34] and conclude the existence of a family of periodic orbits.

Stability and instability have been shown in [26, Cor. 5.2].

Combining the dynamic information from the boundary layer and the Turing spots, we find a

more complicated dynamical picture. The flow to the ODE

u1,x =v1 u2,x =v2

v1,x = −D−1
1 f1(u1) v2,x = −D−1

2 f2(u1, u2) (4.2)

possesses an 2N2-dimensional invariant subspace given by u1 = v1 = 0. Inside this subspace,

there is a reversible homoclinic orbit (u∗2, u
∗
2,x), which is accompanied by a family of periodic

orbits. The homoclinic orbit is in generic position inside this subspace, that is, stable and

unstable manifolds intersect the reversibility (Neumann) subspace v2 = 0 transversely, and

the intersection between stable and unstable manifold is of codimension one. The homoclinic

approaches the equilibrium along the eigenvector with the weakest decay rate, and the bounded

solution to the adjoint equation (which spans the normal to the sum of tangent spaces of stable

and unstable manifolds) approaches the adjoint eigenvector to the eigenvalue with the slowest

decay rate. This is a structurally stable scenario and homoclinic bifurcation results guarantee

that in this typical situation there are no other bounded solutions near the homoclinic orbit.

We are interested in solutions approaching the origin, the homoclinic orbit, or the periodic or-

bits near the homoclinic. We therefore need to analyze the dynamics in the full 2N -dimensional

ODE. The main ingredient to dynamics near homoclinic orbits are the eigenvalues near the

equilibrium. Our assumption that the eigenvalue β inside the (u2, v2)-subspace is larger in

modulus than the decay rate of the boundary layer amounts to the statement that the ho-

moclinic orbit is in orbit-flip position, that is, it approaches the origin inside a strong stable

manifold, a non-generic scenario for the full (u, v)-system; see also Figure 5.1, below. Pertur-

bations that do not respect the skew-product structure of our kinetics would change the decay

rate of the homoclinic orbit to e−α|x|!
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5 Dynamics near reversible orbit flip homoclinics

This section is concerned with orbits of the spatial dynamics (4.2) that correspond to multi-

spot patterns. The main result, Theorem 3, is presented in section 5.1. It describes orbits

that stay close to the homoclinic for all forward times. Theorem 2 follows from Theorem 3

in a rather straightforward fashion as we shall see in the remainder of Section 5.1. We shall

then proof Theorem 3. The goal is to analyze the flow in a tubular neighborhood of the

homoclinic orbit. We therefore first change coordinates in a neighborhood of the equilibrium

so that the local flow in this neighborhood is in normal form and actually integrable, Section

5.2, and then use a global reduction theorem to reduce the flow near the homoclinic to a

3-dimensional invariant manifold, Section 5.3. We next construct a return map to a local

Poincaré section near the homoclinic, Section 5.4. The core result is an invariant manifold

result for this return map, Section 5.5, which we prove in Section 5.6. Section 5.7 shows how

to conclude Theorem 3 from this invariant manifold result on a Poincaré section. Section 5.8

relates the sign of interaction and boundary forces to the sign of a crucial coefficient in the

Poincaré map. Section 5.9 discusses cases where Liesegang patterns do not exist, establishing

the necessity of some of our assumptions.

5.1 Invariant manifolds of multi-spot patterns

In this next step, we analyze the solutions in the first-order differential equation

u1,x =v1 u2,x =v2

v1,x = −D−1
1 f1(u1) v2,x = −D−1

2 f2(u1, u2) (5.1)

We are interested in solutions that converge towards the homoclinic orbit (u1, v1) = 0,

(u2, v2) = (u∗2, u
∗
2,x) in phase space R

2N . We can use the flow to this equation to trans-

port the boundary conditions B from x = 0 to x = x0 ≫ 1, so that we can assume that the

Liesegang pattern actually is close to a neighborhood of the homoclinic for all x > 0. The

following theorem describes solutions that stay close to the homoclinic orbit for all x > 0. We

will find our main result, Theorem 2 as a simple corollary to this geometric statement on the

dynamics near an orbit-flip homoclinic orbit.

Theorem 3 (Liesegang manifold) Suppose that α < β and assume force balance. Then

there are the following three types of solutions that stay in a sufficiently small neighborhood of

the homoclinic for all x > 0:

(i) n-spot: the solution lies in the stable manifold of the origin and experiences n loops

along the homoclinic before remaining in a small neighborhood of the origin; the set of

such solutions forms a smooth N -dimensional manifold for any n large, arbitrary;

(ii) Turing: the solution converges exponentially to a periodic orbit; the set of such solutions

forms a smooth N -dimensional manifold for each fixed periodic orbit;
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(iii) Liesegang: the solution converges to the homoclinic as a set; the set of such solutions

forms an N -dimensional C1-manifold with a continuous limit at the equilibrium.

All manifolds depend continuously on parameters. In the last case, the times Tn spent between

excursions along the homoclinic increase geometrically,

Tn+1/Tn →
β

β − α
,

The manifold in (iii) is the C1-limit of the manifolds in (i) as n→ ∞.

Remark 5.1 It seems plausible that the manifolds in (ii) also limit on the manifold in (iii),

that is, that Liesegang patterns are the locally uniform limit of a continuous family of Turing

patterns with boundary layers and selected wavenumber 0 < k ≤ k0. Investigating this limit of

zero-wavenumber Turing patterns however seems to be a more subtle problem.

Figure 5.1, below, shows a schematic picture of the spatial dynamics in phase space that create

Liesegang patterns.

Liesegang heteroclinic

homoclinic

periodics

u2

u2,x

u1

boundary condition

Figure 5.1: A schematic picture of phase space with the invariant u2-subspace containing a reversible

homoclinic orbit with accompanying periodic orbits, and a Liesegang orbit approaching the homoclinic

as a set.

Proof. [Theorem 2] We show that Theorem 3 implies Theorem 2. It is therefore sufficient to

choose an N -dimensional C1-manifold that is

• transverse to the Liesegang manifold in Theorem 3, (iii);

• can be represented in the form B(u, ux) = 0.

Indeed, such a transverse intersection would be robust and yield Liesegang patterns as stated

in Theorem 2. Of course, transverse manifolds do exist and can be written as the zero set
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of a rank-N function B. We need to show however that we can achieve to write B in the

specific skew-product form. We therefore write Uj = (uj , uj,x), j = 1, 2, and U = (u, ux).

The Liesegang manifold, projected on the first component U1 is simply given by the stable

manifold of the origin inside the u1-subsystem. We parametrize the tangent space to the

Liesegang manifold in the form U = Sw, w ∈ R
N and write BU = 0 ∈ R

N for the linearized

boundary conditions. Due to the skew-product structure, we have the specific form

S =

(

S11 0

S21 S22

)

, B =

(

B11 0

B21 B22

)

, Sij : R
Nj → R

2Ni , Bij : R
2Nj → R

Ni .

Here S11 has the maximal rank N1, since it parametrizes the stable manifold in the U1-system,

and we imposed thatB11 has rankN1. Moreover, S22 has rankN2 since S has rankN . We need

to choose B such that BS is invertible on R
N , which is equivalent to both B11S11 and B22S22

being invertible. Choosing B = B0 such that the Bjj are the orthogonal projections onto the

range of Sjj is one possible choice that guarantees invertibility. Therefore, B0(U − Uli) = 0

defines an affine subspace, which is transverse to the Liesegang manifold.

5.2 Local normal form

We first recall the structure of the flow to the system (5.1). The system possesses a homoclinic

orbit to the origin, accompanied by periodic orbits in a flow-invariant linear subspace. The

linearization at the origin possesses eigenvalues ±α,±β, and ±νj with Re νj > β > α > 0.

Due to the non-resonance conditions, there is a C3-change of coordinates such that the vector

field in a vicinity of the origin is in Poincaré normal form. More precisely, there are coordinates

ũ = Φ(u), Φ ∈ C3 and continuously depending on the vector field, such that the vector field

in new coordinates is given by

ũx = Lũ+ ũP (ũ), (5.2)

where P is a vector polynomial function of the resonant monomials u2j−1u2j, only. The linear

part L is (complex) diagonal,

L(u1, . . . , u2N )T = (λ1u
1,−λ1u

2, . . . , λNu
2N−1,−λNu

2N )T .

Reversibility acts through u2j 7→ u2j−1, u2j−1 7→ −u2j , so that P is actually a constant

of motion. The existence of a reversibility-preserving change of coordinates that puts the

local vector field into normal form is shown in [28, Thm 2]. Continuous (and even smooth)

dependence on parameters can be shown as in [22, 29].

5.3 Global reduction

We can restrict the dynamics to the values of (u1, u1,x) in the stable manifold of the origin

inside the u1-subsystem. Note that in our local normal form coordinates, this manifold is given

by u2j−1 = 0 for those j corresponding to the first component u1. Within this N1 + 2N2-

dimensional manifold, we have the following result on the existence of a 3-dimensional invariant

manifold.
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Proposition 5.2 There is ι > 0 so that the system (5.1) possesses a 3-dimensional locally

invariant manifold Mhom, with the following properties:

• Mhom contains the homoclinic orbit and all bounded solutions in a neighborhood of the

homoclinic;

• Mhom is C2,ι, diffeomorphic to a solid torus S1 ×B2 and carries a C2,ι local flow;

• Mhom depends on parameters in the system in a C2,ι-fashion;

• Mhom is normally hyperbolic and possesses a C2,ι-strong stable foliation, which also

depends on parameters in a C2,ι-fashion.

Proof. Existence and smoothness of the center manifold with the first three properties listed

are a consequence of the center-manifold theorem in [25]. Existence of smooth foliations can

be proved as in [13], as a consequence of normal hyperbolicity and the fact that the manifold

is overflowing after a suitable modification of the flow. We need to verify the assumptions of

the results in [25]. First, we need to show transversality of certain bundles in the linearization.

One therefore constructs the subspaces

Ess
+ : solutions with |u(x)| ≤ Ce−(β+δ)x, x→ ∞ of dimension N1 +N2 − 2;

Ecs
+ : solutions with |u(x)| ≤ Ce(β+δ)x, x→ ∞ of dimension N1 +N2 + 1;

Euu
− : solutions with |u(x)| ≤ Ce(β+δ)x, x→ −∞ of dimension N2 − 1;

Ecu
− : solutions with |u(x)| ≤ Ce−(β+δ)x, x→ −∞ of dimension N2 + 2;

The assumptions on the existence of a homoclinic center manifold require that the intersections

Ess
+ ∩Ecu

− and Ecs
+ ∩Euu

− are trivial, that is, the intersections are transverse. First notice that

a nontrivial intersection cannot be contained in the subspace u1 = 0, since this would yield

a kernel to L in the exponentially weighted spaces L2
η, which we excluded in Section 1.3.3

assuming generic interaction. Suppose therefore that there was an intersection outside of the

u2-subspace. We then can integrate the linearized evolution in the u1-subspace and find the

linearized u1-component explicitly, independently of u2. This u1-component, proportional to

e−αx, however does not belong to either of the intersections.This establishes transversality and

shows existence of a global center manifold. The smoothness of the manifold is a consequence

of the strong spectral gap between the eigenvalues −α,±β, and the remainder of the spectrum

of the linearization at the origin, Hypothesis 1.2. This concludes the proof of the theorem.

We note that without the assumption of a strong spectral gap, the manifold would only be of

class C1,ι, which would limit the subsequent analysis. Normal hyperbolicity implies that the

the global center-manifold Mhom is tangent to the eigenspace associated with the eigenvalues

−α,±β, at the origin.

Corollary 5.3 The Turing patterns generated by the Turing spots, Lemma 4.2, possess smooth

N -dimensional manifolds, each.
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Proof. The Turing patterns are hyperbolic outside of the homoclinic center manifold by

reversibility and normal hyperbolicity of Mhom. They therefore possess N − 1-dimensional

strong stable fibers, whose union is the desired stable manifold.

5.4 Construction of a Poincaré map

We can now construct a return map in the neighborhood of the homoclinic orbit. Consider

therefore first the flow in the vicinity of the origin. We can parametrize the 3-dimensional

invariant manifold by coordinates vss, vuu, and vs in the linear eigenspace corresponding to

the eigenvalues −β, β,−α, respectively. The latter corresponds to the u1-system and carries a

trivial linear flow, since, in the normal form, nonlinearities always carry products of unstable

and stable coordinates. We obtain the vector field induced on the center eigenspace by eval-

uating the vector field on the center manifold and then projecting onto the center direction.

The dynamics can then be written in the form

v̇ss = − βvss + g̃ss(v)

v̇uu =βvuu + g̃uu(v)

v̇s = − αvs.

Since after our normal form transformation the stable manifold is given by vuu = 0, we conclude

that this two-dimensional submanifold is invariant, which leads to g̃uu(v) = βvuuguu(vuu, vss).

Together with reversibility, we therefore find the simplified normal form

v̇ss = − β(1 + g(vss, vuu))vss

v̇uu =β(1 + g(vuu, vss))vuu

v̇s = − αvs,

and g(v) = O(2). Moreover, since g arises from terms of the form u2ju2j−1 in (5.2), g is a

constant of motion.

We next rescale so that the normalizing coordinate change covers the region |vj | ≤ 1 and

introduce Poincaré sections Σin = {vss = 1} and Σout = {vuu = 1}, so that the homoclinic

orbit intersects Σin at vuu = vs = 0 and Σout at vss = vs = 0; see Figure 5.2.

Using the time-reversed normalized flow, we can construct a first-hit map from Σout to Σin.

Since the arguments of g are conserved quantities under the time evolution, we can write

g = g(v(0)) = O(|v(0)|2). This gives the linear flow

vss(x) = vss(0)e
β(1+g0(vss(0)))x.

For the time of flight from Σout to Σin, this gives

T = −
log vout

ss

β(1 + g0(vout
ss ))

. (5.3)

Substituting into the linear evolution for vs, we find

vin
s =

(

vout
ss

)−γ
S0(v

out
ss )vout

s ,
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Σinin

Σout

vss

vuuvs

Ψglobglob

Ψloc

u1

u1,x

u2

Figure 5.2: The flow near the homoclinic with Poincaré sections and first hit maps.

where γ = α/β < 1 and S0 is C2,ι in v, log v with S0(v) = 1 + O(v2 log v). Together with the

trivial flow in the strong stable and unstable directions, we find the complete local first-hit

map Ψloc,

vin
uu = vout

ss , vin
s =

(

vout
ss

)−γ
S0(v

out
ss )vout

s . (5.4)

Composing the change of coordinates with the time-reversed global flow along the homoclinic,

we also find a C2-global first-hit map Ψglob from Σin to Σout, which can be expanded as

vout
ss =vin

uu + φ1
uuv

in
s +R1(v

in
s , v

in
uu),

vout
s =φ1

sv
in
s +R2(v

in
s , v

in
uu). (5.5)

Here, the functions Rj are of class C2, given by the smoothness of the coordinate change, and

satisfy

Rj(0, ·) = 0, ∂1Rj(0, 0) = 0. (5.6)

In the first expansion of (5.5), we used the fact that the periodic orbits give fixed points in

vs = 0, and in the second equation we used the fact that the system with vs = 0 is flow-invariant

due to the skew-product structure.

Composing local and global first-hit maps, we find an expansion for the Poincaré map

Ψ0 := Ψloc ◦ Ψglob : Σin → Σin,

whenever the composition is defined.

For ease of notation, we henceforth write p = vin
uu, and q = vin

s , and find

p′ =p+ φuu
1 q +R1(q, p)

q′ = (φs
1q +R2(q, p)) (p+ φuu

1 q +R1(q, p))
−γ S0(p+ φuu

1 q +R1(q, p)), (5.7)

where γ = α/β < 1.

Proposition 5.4 Due to the assumptions on the repulsive nature of the boundary layer, Sec-

tion 1.3.2, we have φuu
1 > 0. Moreover, φs

1 > 0.

We will relegate the proof of this proposition to Section 5.8.
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5.5 Analysis of the Poincaré map — scaling and invariant manifolds

For the remainder of the analysis, we rescale p and q to achieve that φuu
1 = 1 and φs

1 = 1, so

that

p′ =p+ q +R1(q, p)

q′ = (q +R2(q, p)) (p+ q +R1(q, p))
−γ S0(p+ q +R1(q, p)). (5.8)

Note that the stable manifold of the origin is given by p = 0. Under forward iteration with our

map (which corresponds to backward transport with the flow), we find a preimage, q ∼ p1−γ .

One can formally check that further backwards iterates retain this scaling, which motivates

the blow-up type change of coordinates q = p1−γρ. In the new coordinates (p, ρ), we have

p′ =p(1 + ρp−γ) +R1,

ρ′ =(ρp1−γ +R2)
(

p(1 + ρp−γ) +R1

)−1
S0(p(1 + ρp−γ) +R1), (5.9)

where now Rj = Rj(ρp
1−γ , p). We shall denote this map in the scaled variables by Ψ. Note

that Ψ has a continuous extension into p = 0 near ρ = 1. In fact, in this extension, ρ = 1, p = 0

is a fixed point. In the following, we will construct an unstable manifold for Ψ near this fixed

point. This unstable manifold will be our desired manifold, which under the forward iterates

of the original map is invariant and contains points that converge to p = 0, ρ = 1, which in

turn exhibit precisely the asymptotics claimed for Liesegang patterns.

We therefore set ρ = 1 − ǫ so that Ψ becomes

p′ =p1−γ + p− ǫp1−γ +R1

ǫ′ =
(

pγ + pγ−1(R1 +R2)
) (

1 + pγ + ǫ+ pγ−1R1

)−1
S0(p(1 + (1 − ǫ)p−γ) +R1). (5.10)

Here, Rj = Rj((1 − ǫ)p1−γ , p), and the expansions (5.6) hold. Of course, this map now

possesses a fixed point in p = 0, ǫ = 0. One can moreover collect leading order terms near this

fixed point and find the map

p′ = p1−γ , ǫ′ = pγ .

This map is not differentiable, not even Lipshitz continuous at the origin, which precludes

the simple application of a stable manifold theorem. The map does however possess the

primary characteristics needed for the construction of an unstable manifold. For p small, the

linearization possesses approximate eigenspaces in the p-direction and in the ǫ-direction, with

expanding multiplier νu = p−γ and contracting multiplier νs = 0. In fact, this map possesses

the explicit invariant manifold ǫ = pγ/(1−γ), given as a graph over the unstable subspace

ǫ = 0. Note however that this manifold is not smooth, not even Lipshitz when γ < 1/2. In the

following, we exploit expansion and contraction properties in order to construct the desired

invariant manifold for perturbations of the leading-order part. The main result is as follows.

Proposition 5.5 The fixed point p = 0, ǫ = 0 of the map Ψ defined in (5.10) possesses a C1

unstable manifold, given as a graph over the linear unstable subspace ǫ ≡ 0.

The proof uses graph transform and follows the construction in [32, Ch. 5], with appropriate

modifications. It will be split up into several lemmas.
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5.6 Existence of unstable manifolds — a graph transform proof

We will look for invariant manifolds in the form of continuous graphs ǫ = h(p), p ∈ [0, δ],

for some δ small enough. We equip the space of graphs with the supremum norm |h|∞ :=

supp |h(p)|. The actual construction of h via a fixed point argument will be restricted to a

subset of continuous graphs Σ, which is defined as

Σ := {h; h ∈ C0([0, p]), h(0) = 0, |h|γ ≤M}, (5.11)

where M is a fixed, large enough constant, and the weighted Lipshitz norm |h|γ is defined

through

|h|γ := sup
p1>p2≥0

|h(p1) − h(p2)|

p1 − p2
· (p1 + p2)

µ, µ = max {0,
1 − 2γ

1 − γ
}. (5.12)

In particular, | · |γ denotes the usual Lipshitz norm for γ ≥ 1/2 and allows for power growth of

the Lipshitz constant near the origin for γ < 1/2. The following lemma collects a few useful

properties of Σ.

Lemma 5.6 Assume 0 < γ < 1. Then we have

(i) Σ is closed as a subset of C0.

(ii) If h ∈ Σ, |h(p)| ≤Mpγ/(1−γ).

(iii) h0(p) := pγ/(1−γ) ∈ Σ with M = 1.

(iv) If f, g ∈ Σ for some M , then f · g ∈ Σ for some M ′.

(v) If f ∈ Σ for some M and g is Lipshitz with g(0) = 0, then g ◦ f, f ◦ g ∈ Σ for some M ′.

Proof. The proof is trivial for γ ≥ 1/2. The case of γ < 1/2 is also straightforward. The

first assertion follows immediately from the definition of | · |γ . The second assertion follows by

setting p2 = 0 in the definition of | · |γ . For (iii), we write

h0(p1) − h0(p2) =

∫ 1

0
h′0(τp1 + (1 − τ)p2)dτ(p1 − p2),

so that

|h(p1) − h(p2)|

p1 − p2
· (p1 + p2)

1−2γ

1−γ =
γ

1 − γ

∫ 1

0
(τp1 + (1 − τ)p2)

2γ−1
γ−1 dτ(p2 + p1)

1−2γ

γ−1

=
γ

1 − γ

∫ 1

0

(

τ + (1 − τ)µ

1 + µ

)
2γ−1
γ−1

dτ

≤
γ

1 − γ

∫ 1

0
τ

2γ−1
γ−1

= 1,

where we set µ = p2/p1 ∈ [0, 1), and used monotonicity in µ in the inequality. The final two

assertions also follow directly from the definition.
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We can formally define a map Ψ# on graphs, induced by Ψ, via

Ψ(graph (h)) ∩ {[0, δ] × R} =: graph (Ψ#h).

For this to make sense, we need to show that the left-hand side is actually a graph over the

domain [0, δ]. Denote by P1 the projection on the first, p-component, write P2 = 1 − P1, and

PjΨ = Ψj, j = 1, 2. Then the above equation translates into the pointwise equality

Ψ(p, h(p)) = (p′, (Ψ#h)(p
′)). (5.13)

The following lemma treats the first component of this equation,

Ψ1(p, h(p)) = p′. (5.14)

Lemma 5.7 Given h ∈ Σ, the equation (5.14) can be inverted for every p′ ∈ [0, δ] with inverse

p = ϕ(p′) ∈ [0, δ]. Moreover, ϕ is of the form

ϕ(p′) = (p′ + r(p′))
1

1−γ ,

and r possesses a small Lipshitz constant. Moreover, given h1, h2 ∈ Σ, we have that

|rh1(p) − rh2(p)| ≤ C(min {|ϕh1(p)|, |ϕh2(p)|})
1−γ · |h1 − h2|∞,

for some C > 0.

Proof. We need to solve the equation

p′ = p1−γ + p− h(p)p1−γ +R1((1 + h(p))p1−γ , p).

We therefore substitute σ = p1−γ , which gives

p′ = σ + σ
1

1−γ − h(σ
1

1−γ )σ +R1((1 + h(σ
1

1−γ ))σ, σ
1

1−γ ).

The right-hand side of this equation is of the form id +T . We claim that the Lipshitz constant

of T is small for δ sufficiently small. We can then easily solve using the contraction mapping

principle and derive the conclusion of the lemma.

In order to estimate the Lipshitz constant of T , we need to estimate the three contributions.

The first term, σ
1

1−γ is clearly differentiable with small derivative in a vicinity of the origin,

The second term can be estimated for σ1 < σ2 as follows:

|σ1h(σ
1

1−γ

1 ) − σ2h(σ
1

1−γ

2 )| ≤ |σ1 − σ2||h|∞ + (σ1 + σ2)Liph · |σ
1

1−γ

1 − σ
1

1−γ

2 |

≤

(

|h|∞ + (σ1 + σ2)|h|γ(σ
1

1−γ

1 + σ
1

1−γ

2 )
2γ−1
1−γ (σ1 + σ2)

1
1−γ

)

|σ1 − σ2|

≤
(

|h|∞ + |h|γ(σ1 + σ2)
γ

(1−γ2)

)

|σ1 − σ2|,

and again we find a small Lipshitz constant since |h|∞ is small for δ small, Lemma 5.6, (ii), and

we can choose δ small while |h|γ ≤ M is fixed, so that the second term in the last inequality

is small. The estimates for the remainder R1 are somewhat tedious but easier.
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It remains to estimate the dependence of r on h. Subtracting the fixed point equations for h1

and h2 with equal p, we obtain

0 = σ1 − σ2 + σ
1

1−γ

1 − σ
1

1−γ

2 + h2(σ
1

1−γ

2 )σ2 − h1(σ
1

1−γ

1 )σ1 +R1|h1,σ1 −R1|h2,σ2 .

From here, assuming σ1 < σ2, we readily find the estimate

|σ1 − σ2| ≤ κ1|σ1 − σ2| + cσ1 · δh,

where κ1 ≪ 1, c > 0 is a constant that does not depend on δ, and

δh := |h2(σ
1

1−γ

2 ) − h1(σ
1

1−γ

2 )|.

From here, we immediately obtain

|rh1(p) − rh2(p)| ≤ c|σ1| · |h1 − h2|∞,

for some c > 0, as claimed. Substituting ϕ1−γ for σ, this proves the lemma.

Remark 5.8 In fact, we found that the Lipshitz constant of r is bounded by p
γ/(1−γ)
1 .

We may now go ahead and define the graph transform

(Ψ#h)(p) = Ψ2(ϕ(p), h(ϕ(p))). (5.15)

Lemma 5.9 For M sufficiently large and δ sufficiently small, we have that Ψ#h ∈ Σ.

Proof. We can explicitly write Ψ#h in the form

(Ψ#h)(p) =
(

ϕγ(p) + ϕγ−1(p)(R1 +R2)
) (

1 + ϕγ(p) + h(ϕ(p)) + ϕγ−1(p)R1

)−1

· S0(ϕ(p)(1 + (1 − h(ϕ(p)))p−γ) +R1)

We will subsequently estimate the Lipshitz constants of all the terms in this expression.

Step 1: Estimates on |ϕγ |γ

Since ϕγ = (id + r)γ/(1−γ), with r(0) = 0 and r Lipshitz, this is a simple consequence of

Lemma 5.7, (iii),(v).

Step 2: Estimates on |ϕγ · h ◦ ϕ|γ

By Lemma 5.7, (iii),(v), it is sufficient to show that each factor belongs to Σ. The first factor

belongs to Σ as we saw in the previous step. Since h belongs to Σ and ϕ is Lipshitz and

vanishes at the origin, the second factor also belongs to Σ.

Step 3: Estimates on |ϕγ−1R1((1 + (h ◦ ϕ))ϕ1−γ , ·)|γ

It is only here that we actually need to exploit that R1 is of class C2. Since R1(0, p) = 0, we

can write R1(q, p) = qr1(q, p), with r1 of class C1, vanishing at the origin. We therefore find

ϕγ−1(p)R1((1 + (h(ϕ(p)))ϕ1−γ (p), p) = (1 + h(ϕ(p)))r1((1 + h(ϕ(p)))ϕ1−γ (p), p).
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Since r1 is of class C1 and hence Lipshitz, it is sufficient to show that the argument belongs

to Σ. For this, it is sufficient to show that ϕ1−γh ◦ ϕ belongs to Σ. Since ϕ1−γ is actually

Lipshitz, hence belongs to Σ for any γ, and h ◦ ϕ belongs to Σ by Lemma 5.7, (v), the claim

is a consequence of Lemma 5.7, (iv).

Since S0 is C1, it belongs to Σ because of the above estimates for its arguments. This completes

the proof of the lemma.

Remark 5.10 It is only in the estimates for the error terms that we actually use that the local

Poincaré map is of class C2. The rest of the analysis only requires C1-smoothness. Inspecting

the argument, one can presumably weaken the smoothness to a weighted Lipshitz estimate for

the derivative. One may hope to be able to derive such estimates when replacing linearization

with Ovsyannikov-Shilnikov coordinates [23, 31] and thus be able to drop the strong spectral

gap assumption.

Lemma 5.11 Under the assumptions of Lemma 5.9, there is a κ < 1 such that for all h1, h2 ∈

Σ, we have that

|Ψ#h1 − Ψ#h2|∞ ≤ κ|h1 − h2|.

In other words, Ψ# defines a contraction mapping on the closed set Σ.

Proof. From Lemma 5.7, we have an estimate for the dependence of ϕ on h. We can

therefore estimate

|ϕγ
h1

− ϕγ
h2
| ≤ |ϕ2γ−1

h1
+ ϕ2γ−1

h2
| · |ϕ1−γ

h1
− ϕ1−γ

h2
|

≤ C|ϕ2γ−1
h1

+ ϕ2γ−1
h2

| · |h1 − h2|∞min {ϕ1−γ
h1

, ϕ1−γ
h2

}

≤ c|h1 − h2|∞,

Similarly, one derives estimates for the terms involving h ◦ ϕ.

Proof. [Proposition 5.5] Lemma 5.11 establishes the existence of an invariant manifold as

a locally Lipshitz graph. In fact the manifold is C1, with estimates on the derivative |h′| ≤

Mp(1−2γ)/(1−γ) for γ < 1/2 and uniform bounds for γ ≥ 1/2. The proof of this fact follows

almost verbatim the exposition in [32, Ch. 5.II] and will be omitted, here. This then concludes

the proof of Proposition 5.5.

5.7 Proof of Theorem 3

We can now conclude the proof of our main geometric result. The invariant manifold that

we constructed as a fixed point of Ψ#, and its orbit under the continuous time-x evolution

lie inside the locally invariant homoclinic center-manifold Mhom, Proposition 5.2. The union

of its strong stable fibers forms an N -dimensional C1-manifold of solutions which converge

to the homoclinic orbit as a set, which establishes the existence of the stable manifold of the

homoclinic, Theorem 3. We can derive asymptotics of solutions inside this manifold as follows.
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Points in the unstable manifold converge to p = 0, ρ = 1 faster than exponentially. Since

the distance between spikes is given by T = − 1
β log p + O(1), and q = e−αx, we have that

qn+1/qn ∼ Cpγ
n. Since in particular, ρ → 1, we have qpγ−1 → 1, which gives pγ−1

n+1/p
−1
n → C,

or

pn+1 = Cp
1

1−γ
n (1 + on(1)),

and

Tn+1 =
1

1 − γ
Tn + O(1) =

β

β − α
Tn + O(1).

This establishes the asymptotics as stated in Theorem 3.

The n-spot manifolds in Theorem 3 are backward iterates of the stable manifold of the origin.

The first backward iterate is obtained by iterating the stable manifold p = 0 forward with Ψ,

which gives q ∼ p1−γ or ǫ ≡ 0; see (5.8), (5.10). In particular, the backward iterate defines the

trivial graph h ≡ 0 ∈ Σ, which converges towards the fixed point of the graph transform under

forward iteration. This establishes the convergence of the n-spot manifolds to the Liesegang

manifold.

5.8 Glide-interaction balance in the spatial Poincaré map

In this section, we prove Proposition 5.4. We first notice that the sign of φs
1 is positive since

q = 0 is invariant under the global flow and the sign of q alias vu is therefore preserved in

the Poincaré map. We need to relate the sign of φuu
1 to interaction of Turing spots and glide

forces. We restrict our attention to solutions of the linearized equation that lie in the center

bundle, that is, the tangent bundle of the homoclinic center manifold along the homoclinic

orbit. Inside the center bundle, there is a two-dimensional subspace of solutions that are

bounded as x → ∞. The derivative of the homoclinic orbit gives one solution inside of this

subspace. Another solution is found by solving the differential equation

Du′′2 + ∂2f2(0, u
∗
2)u2 = e−αx∂1f2(0, u

∗
2(x))u

∗
1,∞, (5.16)

so that u2 is bounded for x → +∞ and grows at most with rate e−βx for x → −∞. This

solution ubc
2 is unique up to scalar multiples and addition of multiples of the derivative of the

homoclinic.

The projection of this solution at time −L, L≫ 1, onto the unstable eigenspace gives the sign

of the coefficient φ1
uu. The projection is given by taking the scalar product with the bounded

solution of the adjoint variational equation,

〈(

ubc
2

(ubc
2 )′

)(

ϕ1

ϕ2

)〉

=

〈(

ubc
2

(ubc
2 )′

)(

−(Dψ)′

Dψ

)〉

= (Dψ, (ubc
2 )′)−((Dψ)′, ubc

2 ), (5.17)

all evaluated at some point x = L, with L large. Here, we also normalized the solution

ϕ = (ϕ1, ϕ2)
T to the first-order adjoint variational equation so that the second component is

given by Dψ, with ψ being the kernel to the second-order operator.
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On the other hand, we can compute the boundary force,

Fbc = (ψ(x), e−αx∂1f2(0, u
∗
2(x))u

∗
1,∞, )L2

= (ψ(x),D(ubc
2 )′′ + ∂2f2(0, u

∗
2)u

bc
2 )L2

= lim
x→−∞

[

−(Dψ, (ubc
2 )′) + (D(ψ)′, ubc

2 )
]

(5.18)

where we used partial integration and the fact that e∗ lies in the kernel of L∗ in the last

equality, so that only boundary terms are retained.

Together, (5.17) and (5.18) give us us the sign of φ1
uu, up to the orientation of ψ(−L) relative

to q′(L). More precisely, φ1
uu > 0 if Fbc > 0 and (ψ(−L), q′(L))) < 0, or if Fbc < 0 and

(ψ(−L), q′(L))) > 0. Expanding ψ(−L) = −ψ∞e−βL and q′(L) = q∞e−βL, this shows that

the sign of Φ1
uu is opposite to the product Fbc · Fint. This proves Proposition 5.4.

5.9 Non-existence of Liesegang patterns

In this section, we show that our two main ingredients, force balance and weakly decaying

boundary layers, are both necessary for the existence of Liesegang patterns.

Proposition 5.12 For aligned forces, there are no Liesegang patterns with geometric spacing

law.

Proof. The geometric spacing law requires that Tn+1/Tn → c > 1, which corresponds to

(p′)c/p → 1 for backwards iterates of our map Ψ in (5.7). Since however p′ = p + φ1
uuq + R1,

this is impossible for φ1
uu < 0 and q small. Indeed, for n large we would find p′ ≫ p and

therefore the contradiction 0 < p′ − p = −q +R1 < 0.

Proposition 5.13 For strongly localized boundary layers, β < α, there are no Liesegang

patterns.

Proof. In this case, there exists a normally hyperbolic center manifold [13, 30, 25], which is

two-dimensional and the maximal invariant set consists of only the homoclinic and the periodic

orbits. A trajectory approaches the invariant manifold along strong stable foliations [13], so

that it either follows a periodic orbit with asymptotic phase, or it follows the homoclinic with

asymptotic phase. Since the homoclinic converges to the origin, any trajectory converging to

the homoclinic would also converge to the origin, which excludes Liesegang patterns.

We also remark that in the absence of a skew-product structure, one would expect a minimal

decay rate for the homoclinic for an open, dense set of reaction-diffusion systems. Again, one

would typically find a normally hyperbolic invariant manifold containing only the homoclinic

and periodic orbits, which exclude Liesegang and multi-spot patterns.
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6 Examples

6.1 A scalar model

We start with a scalar (unrealistic) model for both reaction and precipitation,

u1,t =u1,xx − α2u1 (6.1)

u2,t =u2,xx − β2u2 + u2
2 + u1 (6.2)

One readily checks that all the assumptions of our main theorem are satisfied in this system:

the first component exhibits boundary layers with decay rate α for Dirichlet boundary con-

ditions u1(x = 0) = b0, u
∗
1(x) = b0e

−αx, so that u∗1,∞ = b0. The second component exhibits

localized spots u∗2(x) > 0, with decay rate β. Since the linearization is self-adjoint, we have

that ψ(x) = u∗2,x(x)/|u
∗
2,x|

2. Since ψ(x) = −ψ(−x) > 0 for x < 0, we have signFbc = sign b0.

Similarly, Fint < 0 since D = id is scalar and the linearization is self-adjoint, so that there

exist Liesegang patterns for b0 > 0. We notice that all Liesegang patterns in this example are

strongly unstable since individual spots are unstable. This instability is weak when spots are

composed of widely separated layers, for instance in

u2,t = u2,xx − β2u2(1 − u2)(u2 −
1

2
+ δ) + u1, (6.3)

with δ > 0 small.

6.2 Boundary layers in A + B → C

Moving towards more realistic models, we discuss boundary layers in the specific bimolecular

reaction A+B → C, modeled by

at = daaxx − ab, bt = dbbxx − ab.

The system possesses equilibria b ≡ b∗, a ≡ 0 and a ≡ a∗, b ≡ 0. The stationary system is

ax = a1, a1,x = d−1
a ab, bx = b1, b1,x = d−1

b ab.

Linearization in a = a∗, b = 0 gives axx = (d−1
a a∗)b, bxx = (d−1

b a∗)b, with eigenvalues α2
1 = 0

and α2
2 = d−1

b a∗. The family of equilibria, parametrized by a∗ 6= 0, therefore possesses a

two-dimensional stable manifold, foliated by the strong stable manifolds of each individual

equilibrium. One can now find boundary layers by transverse intersections of the boundary

conditions B1 with this stable manifold. We note that in this case, the boundary layer actually

selects an equilibrium a∗. Of course, a trivial change of coordinates anew| := a − a∗ recovers

the asymptotic zero equilibrium state.

Conserved quantities of the form
∑

j κju
j = 0, here a−b = 0, are typical in closed reactors due

to stoichiometric constraints. The present example illustrates that our results carry over to

systems with conserved quantities, in the present case a−b, although assumptions on Fredholm

properties of the linearization and hyperbolicity in the spatial dynamics are violated: one can
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simply restrict the spatial dynamics to level sets of the conserved quantities and recover

hyperbolicity and transversality on these level sets.

In our specific example, one can actually give somewhat more information on the boundary

layer. Subtracting the two systems gives (daa − dbb)xx = 0, so that for bounded solutions

daa = dbb+µ for some constant µ. The equation for b then becomes bxx = d−1
a (b+ d−1

b µ)b, an

integrable planar Hamiltonian system. If we focus on solutions converging to b = 0, we have

µ = daa∗ > 0, and there is a unique positive solution b(x) > 0, b′(x) < 0, b → 0 for x → ∞.

Of course, a = d−1
a dbb+ a∗ is then also positive.

One can also find boundary layers in the case when a∗ = b∗ = 0, that is, when both reactants

are localized near the boundary. The boundary-layer system then simply becomes bxx = d−1
a b2,

with solution b(x) = 6da/(x − x0)
2, a(x) = 6db/(x − x0)

2, for some x0 > 0 depending on the

boundary conditions. However, our results on Liesegang patterns do not cover this case of an

algebraically decaying boundary layer.

6.3 Spikes and layers in precipitation

Precipitation is often modeled as a conversion process, where the sum of concentrations of

reaction product and precipitate is conserved. This leads to systems for u2 = (c, e) of the

form

ct = dccxx − g(c, e) + ab, et = deexx + g(c, e), (6.4)

where typically de ≪ dc. Again, stationary profiles at ab = 0 can be found “explicitly” after

eliminating one variable using dcc+ dee ≡ µ, which leads to

dccxx − g(c,
µ− dcc

de
) = 0.

Turing spots, or precipitation spikes, are here a common phenomenon for non-monotone, multi-

stable nonlinearities g0(c) := g(c, µ−dcc
de

). A typical model for precipitation would include some

type of threshold kinetics for c, in its simplest form given by g(c, e) = c(c − 1)(c − cth(e)),

with threshold value cth(e) ∈ (0, 1) and increasing with e. Both c = 1, undepleted reaction

product, and c = 0, completely precipitated reaction product, are stable states. For fixed e,

precipitation spreads when cth > 1/2. Since precipitation is enhanced by the presence of e,

we assume cth is increasing with e. The steady-state problem for c becomes

dccxx + g0(c) = 0, g0(c) = c(1 − c)(c− cth(
µ− dcc

de
)). (6.5)

This system is integrable and straightforward to analyze using phase plane methods. It pos-

sesses an energy
∫

(c2x +2G0(c)), where G′
0 = −g0. It possesses three equilibria c = 0 < c∗ < 1.

This can be readily seen solving the fixed point equation c = cth using monotonicity of cth
and the fact that cth ∈ (0, 1). The outer equilibria c = 0, 1 are saddles and there are homo-

clinic orbits (alias Turing spots) to c = 0 if G0(0) > G0(1) or to c = 1 if G0(0) < G0(1).

For G0(0) = G0(1), there is a stationary interface separating c = 0 from c = 1. Determin-

ing stability and interaction properties of spikes in the system (6.4) appears to be an open

question.
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Simpler examples of localized spots can of course be found in phenomenological models of

precipitation such as the Cahn-Hilliard equation [6] u2,t = −∂xx(∂xxu2 + u2 − u3
2 + ab), which

leads to the stationary problem u2,xx + u2 − u3
2 = µ, for spot solutions at ab = 0.

7 Summary and outlook

We presented a conceptual framework for the analysis of stationary Liesegang patterns in

reaction-diffusion systems. First ingredient are the localized precipitation zones, which corre-

spond to localized spike-type solutions in an idealized unbounded system. We argue that in

a reflection-symmetric system, such localized solutions typically simply repel or attract each

other so that stationary Liesegang patterns are not possible in a generic reaction-diffusion

system. We then argue that a skew-product structure caused by an irreversible chemical re-

action can account for Liesegang patterns in an open class of reaction-diffusion systems and

boundary conditions. The skew-product structure allows for a slowly decaying boundary layer

in the first reaction, which then acts as a parameter ramp for the strongly localized precipi-

tation spikes. Existence of a precipitation spike, a slowly decaying boundary layer, together

with a sign condition on boundary forces versus interaction forces are then shown to be suffi-

cient (and almost necessary) ingredients for the robust existence of Liesegang patterns. The

proofs exploit dynamical systems methods for the interaction of exponentially decaying tails

in boundary layers and precipitation spikes.

There are a number of open problems emerging from this conceptual approach. On the tech-

nical side, one would like to remove Hypothesis 1.2, at least partly. An interesting dynamical

question arises when one investigates the limit of asymptotic Turing patterns as k → 0: it

appears plausible, also from the simple mechanistic considerations in Section 2, that the stable

manifolds of the periodic orbits converge as smooth manifolds to the Liesgang manifold. As a

consequence one would find that robust Liesegang patterns enforce the existence of a family

of asymptotic Turing patterns with arbitrary large wavelength. More generally, one might

also be able to exclude the existence of solutions other than the family of multi-spots, the

Liesegang pattern, and the asymptotic Turing patterns.

An interesting particular case is when the Turing spot is actually formed by two layers, that

is, when the homoclinic orbit that represents the Turing spot in the u2 spatial dynamics is

actually a heteroclinic loop. An example is the system (6.5) when G0(0) = G0(1), or the

Cahn-Hilliard system with mass
∫

u = 0. One can then extend the present analysis and

attempt to recover spatial scaling laws predicted by the formal mechanistic model. One would

in particular wish to recover a spatial scaling law for the width of the precipitation spikes.

Beyond the mere existence of Liesegang patterns, the main open questions that arise are

concerned with the temporal dynamics of Liesegang patterns. One can envision the formation

as a diffusive front establishes the boundary layer while moving through x > 0. A stability

analysis would at first involve the interaction of Turing spots, with likely slow instabilities

such as in coarsening processes in Allen-Cahn or Cahn-Hilliard equations for Fint < 0. In

the Allen-Cahn equation, localized perturbations would then trigger a slow moving coarsening
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front [27], with speed exponentially slow in the distance between spots. More generally, there

appears to be little understanding of pattern formation in systems with conserved quantities

such as in the precipitation kinetics, and a more systematic analysis of coherent structures in

such systems will be subject of future work.
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