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Abstract

We investigate the slow passage through a pitchfork bifurcation in a spatially extended system,

when the onset of instability is slowly varying in space. We focus here on the critical parameter

scaling, when the instability locus propagates with speed c „ ε1{3, where ε is a small parameter that

measures the gradient of the parameter ramp. Our results establish how the instability is mediated

by a front traveling with the speed of the parameter ramp, and demonstrate scalings for a delay

or advance of the instability relative to the bifurcation locus depending on the sign of c, that is on

the direction of propagation of the parameter ramp through the pitchfork bifurcation. The results

also include a generalization of the classical Hastings-McLeod solution of the Painlevé–II equation

to Painlevé-II equations with a drift term.
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1 Introduction

Directional quenching mechanisms have proven to be useful tools in mediating and controlling the

formation of coherent structures in various types of physical systems. Here, some sort of external

mechanism travels across the medium, progressively rendering it unstable, and subsequently a selected

front or patterned state invades the unstable state. Thus, by controlling the quenching process, one

hopes to control the specific pattern that is formed, and to suppress the common defect formation

observed when small fluctuations excite a homogeneous unstable state; see [8] for a general review.

This work is motivated by quenching processes which vary slowly in space. Such quenches have found

relevance in fluid dynamics [3, 13, 25, 26], biology [11], and more generally in nonlinear systems [9,

14, 17, 19, 20]. When viewed as a spatial dynamics system, slowly-ramped quenches lead to dynamic

bifurcations or “slow passage” problems.
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Motivated by these phenomena, we are interested in slow passage through a pitchfork bifurcation in a

spatially extended system

ut “ uxx ` cux ` µu ´ u3. (1.1)

We think of the pitchfork as driven by a slowly varying parameter µ “ µpεxq, with µpεxqx ă 0,

0 ă ε ! 1, and spatial coupling through diffusion and drift with speed c. In the lab frame, this

corresponds to a parameter ramp moving with speed c. This scenario was recently analyzed in the

case of c fixed with 0 ă c ă 2 and in the case of c “ 0, [7]. There, it was shown that, for the specific

equation with µpεxq “ ´ tanhpεxq,

ut “ uxx ` cux ´ tanhpεxqu ´ u3, (1.2)

and for small enough ε, the system supports stable fronts u˚pxq with u˚pxq Ñ 0 for x Ñ 8 and

u˚pxq Ñ 1 for x Ñ ´8.

Interestingly, for each 0 ă c ă 2 fixed, the front exhibits a spatio-temporal delay of instability:

u˚pxq „ 0 when µpεxq ă c2{4 ` a1ε
2{3 ` Opε ln εq,

u˚pxq „
a

µpεxq when µpεxq ą c2{4 ` a1ε
2{3 ` Opε ln εq, (1.3)

where a1 “ Ω0

`

1 ´ c4{16
˘2{3

and Ω0 is the smallest positive zero of the following linear combination

of Bessel functions of the first kind, J´1{3p2z3{2{3q ` J1{3p2z3{2{3q; see Theorem 1.1 of [7]. Therefore,

in the case of 0 ă c ă 2 fixed, there is an Opε´1q region in space where the stable front is close to an

unstable state, since the trivial state destabilizes at µ “ 0 but the solution stays near the trivial state

until just beyond µ “ c2{4. It turns out that in most of this region, up to µ “ c2{4, this instability is

only convective, justifying much of this large delay, yet leaving still an Opε´1{3q wide region where the

front is near an absolutely unstable state.

On the other hand, in the case c “ 0, there is no such delay. Instead, the front interface exhibits a

diffusive spillover of the state with u ą 0 into the stable region x ą 0, as shown in Theorem 1.2 of [7].

This article presents the more delicate asymptotic analysis in the transition regime in parameter space

to connect these two regimes and to describe the transition from a spill-over of the instability to a

delay of instability. We therefore focus on the situation where c „ 0 is small, yet allow c ă 0 for a

more complete understanding. Keys to the analysis of the case c “ 0 are first a good understanding of

an inner expansion and second an intricate matching of this inner expansion with the outer solution.

The latter is accomplished using geometric desingularization and heteroclinic gluing methods. In this

work, we focus on the former part for c „ 0.

We are interested in the case where a transition from u „ 0 to u „
?
µ happens in a region near the

origin, where |µ| ! 1 and hence tanhpεxq „ εx. Therefore, we are interested in

ut “ uxx ` cux ´ εxu ´ u3.

This equation possesses a natural scaling

u “ ε1{3ũ, x “ ε´1{3x̃, c “ ε1{3c̃, t “ ε´2{3t̃, (1.4)

which leads to

ũt̃ “ ũx̃x̃ ` c̃ũx̃ ´ x̃ũ ´ ũ3.
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In fact, we showed in [7] that the cases c " ε1{3 (c̃ " 1) and c ! ε1{3 (c̃ ! 1) can be understood as

small perturbations of the cases c “ Op1q and c “ 0, respectively. For notational simplicity, we drop

the tildes throughout Sections 2 - 6, considering the equation

ut “ uxx ` cux ´ xu ´ u3. (1.5)

This work focuses on existence, uniqueness, monotonicity, quantitative asymptotics, and qualitative

properties of stationary solutions to (1.5). Our first main result is the following:

Theorem 1.1 (Existence and Uniqueness of Quenched Fronts). For any c P R, the equation (1.5) has

a unique monotonically decreasing stationary solution u˚px; cq with the properties that

lim
xÑ´8

`

u˚px; cq ´
?

´x
˘

“ 0, lim
xÑ8

u˚px; cq “ 0. (1.6)

We also derive asymptotics and qualitative properties for the solutions u˚px : cq, as follows.

Definition 1.2. A stationary solution upx; cq of (1.5) is said to be an admissible solution if u has

limits as in (1.6) and Bxupx; cq ă 0 for all x.

Let u0px; cq denote an admissble solution. Define the operator

Lcu :“ uxx ` cux ´ xu ´ 3u20u. (1.7)

We consider Lc both as a closed operator on L2pRq, but also on other function spaces, and simply

as applied in a pointwise sense later on. The qualitative information is summarized in the following

proposition.

Proposition 1.3 (Qualitative Properties of Quenched Fronts). The solution u˚ of Theorem 1.1 has

the following properties:

(A) transversality and stability: u˚ is transverse for all c in the sense that Lc has a bounded inverse

on L2; in fact, we have Re pspecLcq ă 0 when Lc is considered as a closed, densely defined

operator on L2;

(B) monotonicity in c: Bcu˚px; cq ă 0 for all x, c P R;

(C) fast quench: For sufficiently large c ą 0, the front position, xδpcq “ suptx : u˚px; cq ą δu satisfies

ˇ

ˇ

ˇ

ˇ

ˇ

xδpcq ´

˜

´c2{4 ´ Ω0

ˆ

15

16

˙2{3
¸ˇ

ˇ

ˇ

ˇ

ˇ

ď Kc´1, (1.8)

for some constant K ą 0 independent of c and some fixed δ ą 0 small and independent of c.

Furthermore, for fixed δ̃ ą 0, for any continuous function xpcq

lim
cÑ8

u˚pxpcq; cq “ 0 when xpcq ą ´c2{4 ` δ̃, (1.9)

and

lim
cÑ8

pu˚pxpcq; cq ´
a

´xpcqq “ 0 when xpcq ă ´c2{4 ´ δ̃; (1.10)
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(D) fast reverse quench: For fixed δ ą 0 small, let xδpcq “ suptx : u˚px; cq ą δu. Then

lim
cÑ´8

xδpcq ´
?

´c “ 0. (1.11)

(E) For c ě 0, u˚px; cq intersects the curve
?

´x in a unique point on p´8, 0q.

Figure 1 gives numerical results supporting these statements, plotting admissible solutions u˚px; cq of

(1.5) for a range of the scaled c values. For c ą 0, we observe that the front interface locus xδpcq

decreases proportional to ´c2{4 as c increases. Then, for c ă 0, we observe that as c decreases, the tail

of the front spills over into x ą 0, so xδpcq increases, while the region where u „
?

´x recedes to the

left. See Section 7 for more description of the numerical methods used to obtain these plots.

Figure 1: Top: Sample profiles for c “ ´200,´10, 1, 0, 1, 10 of admissible solutions upx; cq of (1.5) computed using

AUTO07p. This illustrates the transition from fronts with diffusive spill-over (for c ď 0) to fronts which exhibit significant

delays in the onset of the instability past the pitchfork bifurcation point (for c ą 0). Bottom left: The value up0; cq plotted

as a function of p´cq
1{4 for c ă 0 (blue) along with linear fit (orange), of data for large c values. Here, the slope of the fit

line was found to be 0.7527, within 0.0016 of the predicted π´1{4; see (4.6). Bottom center: Value of the invasion point

xδpcq defined by upxδpcq; cq “ δ with δ “ 0.1. Bottom right: numerically measured crossover point x0 ă 0 from Lemma

6.4 for a range of positive c values. For c larger, the measured value was within machine precision, and we found that

xu ` u3
ă 0 for all grid points with x ă 0.

We observe that, in the case c “ 0, the equation for stationary solutions of (1.5) is known as the

Painlevé-II equation, and the solution we are interested in was studied in detail by Hastings and

McLeod in [10]. The results for c “ 0 in [7] rely on this earlier work while adding transversality and
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stability information. The results here can, in this regard, be viewed as an extension of the work in

[10] to the case c ‰ 0. Our approach does however rely on the stability argument in [7] and provides

an independent proof also of the existence of the front at c “ 0.

These results also characterize the inner solution for equilibrium fronts in the slowly ramped Allen-

Cahn equation (1.2) with hyperbolic tangent heterogeneity. Such inner heteroclinic solutions can be

used as organizing orbits on the singular blow-up sphere and we expect a heteroclinic analysis similar

to that of [7, §5] to give rigorous existence and asymptotics of the front solutions upx; cq in (1.2). See

Section 7 for numerics supporting this.

Outline of the proof. The proof consists of the following steps:

(i) show that, for all c, Lc is negative for any admissible u0px; cq;

(ii) prove that, for each c ! ´1, there exists a unique admissible solution;

(iii) prove that, for each c " 1, there exists a unique admissible solution;

(iv) demonstrate that, if each solution u0px; cq in a family of admissible solutions is monotone in x,

then the solutions are also monotone in c, that is, Bcupx; cq ă 0 for all x;

(v) prove that the set of c such that there exists a solution with Bxu˚px; cq ă 0 for all x is open;

(vi) prove that the set of c such that there exists a solution with Bxu˚px; cq ă 0 for all x is closed,

using a priori bounds, a compactness argument, and the second order structure.

Together, these steps will establish both Theorem 1.1 and Proposition 1.3.

This article is organized as follows. After gathering some results on asymptotics of solutions as x Ñ ˘8

in Section 2, step (i) is carried out in Section 3, the limits in (ii) and (iii) are analyzed in Sections 4

and 5, respectively, and steps (iv)-(vi) are performed in Section 6 to complete the proofs of Theorem

1.1 and Proposition 1.3. Further results from numerical simulations are presented in Section 7, and

Section 8 contains conclusions and discussion.

2 Asymptotics at x “ ˘8

Throughout this section, we fix an arbitrary value of the parameter c P R and analyze the asymptotics

of stationary solutions of (1.5) with the prescribed limits (1.6) as x Ñ 8 and as x Ñ ´8, beginning

with the former.

Lemma 2.1 (Stable manifold at `8). The set of initial conditions at x “ x0 for which stationary so-

lutions of (1.5) satisfy the limit (1.6) as x Ñ `8 forms a smooth one-dimensional manifold W s
`px0; cq

in the space pu, uxq. The asymptotics of solutions on this stable manifold in the limit x Ñ 8 are given

by

upxq “ α` exp

˜

´
2

3

ˆ

x `
c2

4

˙3{2

´
c

2
x

¸

x´1{4p1 ` Opx´1qq, (2.1)

where the coefficient α` depends smoothly on the point pu, uxq P W s
`px0; cq and the parameter.
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Proof. The asymptotics of solutions of the steady state equation of (1.5) linearized about u “ 0 are

readily obtained by considering wpxq “ expp c
2xqupxq which solves a shifted Airy equation w2 ´ px `

c2

4 qw “ 0. The asymptotics of the Airy function as x Ñ 8 are then used to obtain (2.1). (See, for

example formula 9.7.5 in [4] for the expansion of the Airy function.) Solutions to the nonlinear equation

are readily obtained by a fixed point argument, which also gives smoothness.

Remark 2.2. We opted to use the classical approach above to rigorously derive the asymptotics for

small upxq as x Ñ 8 in the proof of Lemma 2.1, since it is succinct. There is an alternate method

based on rewriting the vector field as a third-order autonomous system, effectively conpactifying the

independent variable, and using techniques from dynamical systems, including invariant manifold theory

and the method of geometric desingularization. We use this alternate method below in the proofs of

Lemmas 2.3 and 2.5, to rigorously derive the asymptotics for upxq „
?

´x as x Ñ ´8, since it brings

out the dynamics and geometry of solutions along the unstable manifold

We now turn to the asymptotics for x Ñ ´8, considering separately the cases of c “ 0 and c ‰ 0.

Lemma 2.3 (c “ 0: Unstable manifold at ´8). For c “ 0, the set of initial conditions at x “ x0
for which the solutions of (1.5) satisfy (1.6) in the limit as x Ñ ´8 forms a smooth one-dimensional

manifold W u
´px0; c “ 0q in the space pu, uxq. The asymptotics of solutions on this unstable manifold in

the limit x Ñ ´8 are given by

upxq “ p´xq1{2

˜

1 ´
1

8p´xq3
` Opx´6q ` α´

e´ 2
?
2

3
p´xq3{2

p´xq3{4
` Ope´ 4

?
2

3
p´xq3{2

q

¸

, (2.2)

where the coefficient α´ depends smoothly on the initial condition in the one-dimensional manifold in

the sense that it depends continuously on the point pu, uxq P W s
`px0; c “ 0q.

Remark 2.4. The first terms in (2.2),
?

´x
`

1 ´ 1
8p´xq´3 ` Opp´xq´6q

˘

in the asymptotics for x Ñ

´8 are precisely the terms in the asymptotic expansion of the Hastings-McLeod solution uHM pxq of the

Painlevé-II equation. See for example formula (25) in [2], with N “ 3, where the Painlevé-II equation

is written in the form u2 ´ xu “ 2u3.

Proof. We perform a series of coordinate changes that exhibit a regular perturbation problem at

x “ ´8. First, we set β “ p´xq´1{2 to compactify the independent variable, and we find

ux “ v,

vx “ ´β´2u ` u3,

βx “
1

2
β3.

Then, scaling u “ β´1ũ, v “ β´2ṽ, and d
dx “ β´1 d

dy (which is a natural scaling obtained by using the

method of geometric desingularization to desingularize the vector field in the limit β Ñ 0), we find

ũy “ ṽ `
1

2
β3ũ,

ṽy “ ´ũ ` ũ3 ` β3ṽ,

βy “
1

2
β4,
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where y “ ´2
3p´xq3{2. Here, pũ, ṽ, βq “ p1, 0, 0q is the equilibrium that corresponds to the desired

asymptotic behavior.

Let ũ “ 1 ` ū and ṽ “ v̄, so that the fixed point is at the origin. Then, the system is

ūy “ v̄ `
1

2
β3 `

1

2
β3ū,

v̄y “ 2ū ` 3ū2 ` ū3 ` v̄β3, (2.3)

βy “
1

2
β4.

The linearization at p0, 0, 0q is hyperbolic in the pū, v̄q-plane and possesses a center direction along the

β axis. Standard invariant manifold theory then gives the existence and smoothness of the center-

unstable manifold of the origin. Indeed, the function whose graph is the center-unstable manifold has

the following expansion:

v̄ “ kpū, βq “
?
2ū`

1
?
2
ū2´

1

2
β3`

1

4
ūβ3´

1

8
ū2β3`

1

4
?
2
β6`Opū6, ū5β, ū4β2, ū3β3, ū2β4, ūβ5, β7q. (2.4)

(This is obtained using the invariance condition, and some of the coefficients on the higher order terms

vanish.) Hence, on the center-unstable manifold, the governing equation is

ūy “

ˆ

?
2 `

3

4
β3 ` Opβ6q

˙

ū `

ˆ

1
?
2

´
1

8
β3 ` Opβ6q

˙

ū2 ` Opū3q `
1

4
?
2
β6 ` Opβ9q, (2.5)

which is derived by substituting (2.4) for v̄ into the first equation of (2.3). This is the equation from

which we derive the asymptotics.

To derive the asymptotics, we first find the algebraic terms. In particular, the term 1
4

?
2
β6 in equation

(2.5) is the lowest order term that is independent of ū. Hence, to leading order, the solution ū is given

by
?
2ū ` 1

4
?
2
β6 “ 0, which is the dominant balance. That is, ū “ ´1

8β
6 “ ´ 1

18y
´2 “ ´1

8p´xq´3,

to leading order as β Ñ 0 and y, x Ñ ´8, respectively. Then, at higher order, one finds terms

proportional to higher powers of p´yq´2.

In addition to these algebraic terms involving the inverse powers, the regular perturbation expansion of

small solutions ū for y Ñ ´8 also contains exponential terms. Indeed, solving the truncated equation

ūy “ p
?
2 ´ 1

2y qū ` 1
9

?
2
y´2 (where we recall that β “

`

´3
2y

˘´1{3
), one finds

ūpyq “ c1e
2

?
yp´yq´1{2 ´

1

18
y´2. (2.6)

Finally, taking into account the higher order nonlinear terms in (2.5), and translating the solution

ūpyq and its expansion back to the original variables x and u (where we recall y “ ´2
3p´xq3{2 and

upxq “
?

´xp1 ` ūpxqq), one finds (2.2).

A similar, but less degenerate result holds for c ‰ 0, and we include an outline of the proof.

Lemma 2.5 (c ‰ 0: Unstable manifold at ´8). For c ‰ 0, the set of initial conditions at x “ x0
through which the solutions of (1.5) satisfy the limit (1.6) as x Ñ ´8 forms a smooth one-dimensional
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manifold W u
´px0; cq in the space pu, uxq. The asymptotics of solutions on this unstable manifold are

given by

upxq “

p´xq1{2

ˆ

1 `
c

2
?
2x2

` Opx´3q ` αc
´exp

ˆ

´
2
?
2

3
p´xq3{2 ´

cx

2
´

c2

4
?
2

p´xq1{2

˙

` Ope´ 4
?
2

3
p´xq3{2

q

˙

,

(2.7)

where αc
´ depends smoothly on the point pu, vq P W s

`px0; cq and the parameter.

Proof. We use the same coordinates as in the proof of Lemma 2.3; however, we observe that one does

not need to go to so high an order in the expansion as we did in the case c “ 0 in the previous lemma,

since the system with c ‰ 0 is less degenerate. Let ũ “ 1 ` ū and ṽ “ v̄, where we recall u “ β´1ũ,

v “ β´2ṽ, β “ p´xq´1{2, and d
dx “ β´1 d

dy . With c ‰ 0, the equation for stationary solutions of (1.5)

is equivalent to the system

ūy “ v̄ `
1

2
β3 `

1

2
β3ū,

v̄y “ ´cβv̄ ` 2ū ` 3ū2 ` ū3 ` v̄β3, (2.8)

βy “
1

2
β4.

The linearization at p0, 0, 0q is hyperbolic in the pū, v̄q-plane and possesses a center manifold in the

direction of β. The function whose graph is the center-unstable manifold has the following expansion:

v̄ “ kcpū, βq “
?
2ū`

1
?
2
ū2´

c

2
ūβ`

c

12
ū2β`

c2

8
?
2
ūβ2´

1

2
β3´

c

24
ū3β´

7
?
2c

288
ū2β2`

1

4
ūβ3`

c

2
?
2
β4`Op5q.

(2.9)

Hence, on the center-unstable manifold, the governing equation is

ūy “

ˆ

?
2 ´

c

2
β `

c2

8
?
2
β2 ` Opβ3q

˙

ū `

ˆ

1
?
2

`
c

12
β ` Opβ2q

˙

ū2 `
c

2
?
2
β4 ` Opū3, β5q. (2.10)

The asymptotic expansion of ūpyq as y Ñ ´8 consists of algebraically and exponentially decaying

terms, just as that for c “ 0. The algebraically decaying terms are

c

2
?
2

ˆ

´3y

2

˙´4{3

` O

˜

ˆ

´3y

2

˙´8{3
¸

,

by balancing the linear term with the inhomogeneous term. The exponentially decaying terms are

exp

«

?
2y `

c

2

ˆ

´3y

2

˙2{3

´
c

4
?
2

ˆ

´3y

2

˙1{3

` Op1q

ff

.

Finally, one translates this back to the original variables x and u to complete the proof of the lemma.
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3 The linearization at monotone solutions

In this section, we carry out step (i) in the proof, establishing that the operator Lc, which is obtained

by linearizing about a given admissible solution (recall definition (1.7)), and which is densely defined

on L2pRq, is bounded invertible, and in fact has spectrum with negative real part. Therefore, define

L2
1pRq “ tu P L2

loc |upxqp1 ` |x|q P L2u, }u}L2
1
:“ }up¨qp1 ` | ¨ |q}L2 .

Lemma 3.1. The operator Lc, considered on L2pRq with domain H2pRq X L2
1pRq is closed, densely

defined, and bounded invertible. Moreover, its spectrum is discrete and strictly negative.

Proof. As a first step, we consider the operator rLcu :“
`

ecx{2Lce
´cx{2

˘

u “ uxx ´ V pxqu, where the

potential is defined as V pxq :“ x ` c2{4 ` 3u20, and observe the asymptotic behavior

V pxq „ ´2x ` c2{4 for x Ñ ´8, V pxq „ x ` c2{4 for x Ñ `8,

induced by u0 „
?

´x, x Ñ ´8, and u0 „ 0, x Ñ `8, respectively. Standard results on Schrödinger

operators then imply that rLc is self-adjoint on L2pRq with domain H2pRq X L2
1pRq; see for instance

[12, §8.6]. Moreover, since V pxq is positive outside of a compact neighborhood of the origin, and

V pxq Ñ `8 as |x| Ñ `8, standard results on Schrödinger operators (see for example [24, Thm.

XIII.47]) then give that ĂLc has no continuous spectrum, so that the spectrum consists only of discrete

spectrum tλju
8
0 , which satisfies λ0 ě λ1 ě λ2 ě ¨ ¨ ¨ and limjÑ8 λj “ ´8. Furthermore, possibly after

shifting the operator by a finite constant, these results also give that the ground state eigenfunction

corresponding to the eigenvalue λ0 is strictly positive, i.e., ϕ0 ą 0. We claim that the spectrum is in

fact strictly negative. To see this, we argue by contradiction. Assume λ0 ě 0, and differentiate the

steady-state equation (1.5) in x to obtain LcBxu0 “ u0, and hence rLce
cx{2Bxu0 “ ecx{2u0. Then, we

calculate

λ0xϕ0, e
cx{2Bxu0yL2 “ xϕ0, rLce

cx{2Bxu0yL2 “ xϕ0, e
cx{2u0yL2 ą 0.

This is a contradiction, since ϕ0 ą 0, u0 ą 0, and Bxu0 ă 0 by the properties of an admissible solution.

This demonstrates that λ0 ă 0, as claimed.

It remains to conclude the desired properties of the unconjugated operator Lc from the properties of
rLc. Note that we cannot argue simply that the two operators are conjugate since we wish to establish

properties of Lc on L2 rather than the exponentially weighted space induced by the conjugation.

First note that the embedding H2 X L2
1 Ñ H1 is compact. This follows readily from the fact that the

embedding is the norm limit of truncated embeddings, where u is cut off at |x| “ R by a smooth cutoff

function. Convergence of these truncated embeddings in turn is seen readily by estimating u outside of

a small ball using }u}H1 À ε}u}H2 ` Cpεq}u}L2 , where the latter term is small due to control of decay

for u in L2
1. As a consequence we can view Lc as a relatively compact perturbation of rLc which is

thereby closed [16, §IV.1.3.1.11] with the same domain of definition. In particular, the spectrum of Lc

consists entirely of point spectrum. Inspecting the eigenvalue problem, one immediately finds Gaussian

decay for any potential eigenfunction, so that spectra of Lc and rLc in fact agree.

Remark 3.2. The analysis relies on the more generally valid fact that the eigenfunction to the ground

state of the Schrödinger operator is sign definite, and on the monotonicity of the parameter ramp.
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4 Existence and qualitative properties for c ! ´1

In this section, we analyze stationary solutions of (1.5) in the limit c ! ´1. We establish the existence,

uniqueness, monotonicity, and asymptotics of these solutions. This constitutes step (ii) in the proof.

Lemma 4.1. For each c ! ´1, there exists a unique admissible solution upx; cq of (1.5), i.e., a unique,

monotone decreasing, stationary solution ,which has the asymptotics u Ñ
?

´x as x Ñ ´8 and u Ñ 0

as x Ñ 8.

Proof. For stationary solutions of (1.5) in the regime c ! ´1, we scale y “ ´cx, u “ ´cũ, ε “ ´1{c3

and find

ũyy ´ ũy ´ εyũ ´ ũ3 “ 0. (4.1)

With ξ “ εy, so that ξ is a slowly varying dependent variable, the governing equation is equivalent to

the autonomous system

ũy “ ṽ

ṽy “ ṽ ` ξũ ` ũ3 (4.2)

ξy “ ε.

For the frozen system (ε “ 0), we find for each ξ ą 0 a unique equilibrium at the origin p0, 0q in the pũ, ṽq

plane, and it is a saddle. The union of these saddles over all ξ ą δ, for some small δ ą 0, is a normally

hyperbolic invariant manifold, and it persists for sufficiently small 0 ă ε ! 1 by Fenichel theory [6] as

a slow invariant manifold, along which ξ slowly increases. Moreover, one can track solutions along this

slow manifold backward into a neighborhood of ξ “ 0. This slow manifold, along with the union of its

strong stable fibers, constitutes the stable manifold described in Lemma 2.1.

Then, for each ξ ă 0, there is a unique positive equilibrium given by ũ “
?

´ξ, which is also a saddle.

The union of these saddles over all ξ ă ´δ is a normally hyperbolic invariant manifold. This also

persists for 0 ă ε ! 1 by Fenichel theory, and one can track solutions along this slow manifold into the

neighborhood of the origin. The union of this slow manifold and its strong unstable fibers constitutes

the unstable manifold described in Lemmas 2.3 and 2.5.

In a vicinity of the origin, there is a two-dimensional center manifold which is the graph of ṽ “

hcpũ, ξ, εq “ ´ξũ ´ ũ3 ` h.o.t.. The dynamics on this center manifold are given to leading order by

ũy ` ξũ ` ũ3 “ 0, ξy “ ε. (4.3)

This is a one-fast one-slow system, and it exhibits slow passage through a pitchfork bifurcation. Analysis

of the slow passage through this pitchfork, following the general approach of [18], shows that there is

a unique solution with asymptotics ũ „
?

´ξ for y Ñ ´8 and ũ Ñ 0 for y Ñ 8. This unique solution

then lies in the transverse intersection of the unstable manifold at y “ ´8 and stable manifold at

y “ `8.

Additional information about the leading order asymptotics of this unique solution is obtained as

follows. Recall that ξ “ εy, so that system (4.3) may be written as a Bernoulli equation with power

three: εũξ`ξũ`ũ3 “ 0. Then, set w “ ũ´2. The new dependent variable w satisfies the nonautonomous

linear equation εwξ “ 2ξw ` 2, and the solution of interest is wpξq “
a

π
ε e

ξ2{ε
´

erf
´

ξ
?
ε

¯

` 1
¯

, where
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erfpxq “ 2?
π

şx
0 e

´t2dt. (Here, we integrated from ξ0 to ξ and then took the limit as ξ0 Ñ ´8, noting

that erfpξ0{
?
εq Ñ ´1 in this limit and that the homogeneous term vanishes due to the strong decay

of e´ξ20{ε.)

Translating this back from w to ũ, one finds

ũpξ; εq “
ε1{4e´

ξ2

2ε

π1{4
´

erf
´

ξ
?
ε

¯

` 1
¯1{2

. (4.4)

This solution decreases monotonically in ξ. It has the following asymptotics:

ũpξ; εq„0 as ξ Ñ 8,

ũpξ; εq„
a

´ξ

ˆ

1 ` Σ8
n“1p´1qn

p2n ´ 1q!!εn

2nξ2n

˙´1{2

as ξ Ñ ´8.
(4.5)

For the limit ξ Ñ 8, we used erfpξ{
?
εq Ñ 1; and, for the limit ξ Ñ ´8, we used erfp´xq “ ´erfpxq,

erfpxq “ 1 ´ erfcpxq, and erfcpxq “ e´x2

?
πx

”

1 ` Σ8
n“1p´1qn

p2n´1q!!
2nx2n

ı

as x Ñ 8. Hence, for each c ! ´1,

there exists a monotonically decreasing solution with the asymptotics (1.6), making it an admissible

solution.

The touch-down point of the solution, that is, the point where the solution enters a small fixed neigh-

borhood of ũ “ 0 is readily obtained from scaling,

ξ “ ´ε1{2, |y| „ ε´1{2 „ |c|3{2, x „ |c|1{2,

where we recall that ξ “ εy and y “ ´cx. This completes the proof of the lemma.

In the PDE dynamics, the region where the origin is stable expands with speed |c|, and the front

describes how this “reverse” quench annihilates the symmetry-breaking state u ą 0 with a delay

x „ |c|1{2.

Also, we observe that by translating formula (4.4) back to the original x and u variables, one finds that

to leading order

upx; cq “
p´cq

1
4 e

x2

2c

π
1
4

´

erf
´

x?
´c

¯

` 1
¯

1
2

.

(Here, we recall y “ ´cx, ξ “ εy, u “ ´cũ, and ε “ ´1{c3.) Hence, at the origin, one has to leading

order

up0; cq “
p´cq

1
4

π
1
4

. (4.6)

This is illustrated in the bottom left panel of Fig. 1.

5 Existence and qualitative properties for c " 1

In this section, we analyze stationary solutions of (1.5) in the limit c " 1. This is step (iii) in the

outline. To establish the existence, uniqueness, monotonicity, and asymtptotics of these solutions, we

scale y “ cx, u “ cũ, and ε “ 1{c3 and find

ũyy ` ũy ´ εyũ ´ ũ3 “ 0. (5.1)

11



The construction of the admissible solution now follows closely the construction used in the proof of

Theorem 1.1 in [7], with the value of c there set to one. Let ξ “ εy and write (5.1) as a system,

ũy “ ṽ

ṽy “ ´ṽ ` ξũ ` ũ3

ξy “ ε.

In the singular limit (ε “ 0), the equilibrium ũ “
?

´ξ, which exists for each ξ ă 0, is a saddle in the

pũ, ṽq plane, so that their union forms a curve of saddle fixed points. The origin ũ “ 0 is a stable spiral

for ξ ă ´1{4, a stable node for ´1{4 ă ξ ă 0, and a saddle for ξ ą 0. At ξ “ ´1{4 to leading order,

the solution follows a fast heteroclinic orbit connecting the curve ũ “
?

´ξ to the origin.

To obtain persistence of the unstable manifold coming from ξ “ ´8 for 0 ă ε ! 1, we once again

compactify in ξ by setting β “ p´ξq´1{2, ũ “ β´1ū, ṽ “ β´2v̄, d
dy “ β´1 d

dz for ξ ă 0, obtaining:

ūz “ v̄ `
ε

2
β3ū, (5.2)

v̄z “ ´ū ` ū3 ´ βv̄ ` εβ3ū, (5.3)

βz “
ε

2
β4. (5.4)

(The variable β here is different from that used in Section 2.) Now, for ε “ 0, the curve of saddle

equilibria, ũ “
?

´ξ for ξ ă 0, corresponds to ū “ 1 for β ě 0. We denote the union of this curve with

the corresponding one-dimensional fast unstable manifolds as W u
0 . Then, for 0 ă ε ! 1, Fenichel theory

[6] gives that W u
0 persists as the unstable manifold, W u

ε , of the equilibrium pū, v̄, βq “ p1, 0, 0q. The

curve of equilibria persists as a one-dimensional slow unstable manifold emanating from the equilibrium,

and the union of the one-dimensional fast unstable manifolds for ε “ 0 persists as a smooth strong

unstable foliation ofW u
ε , with base points on the slow unstable manifold. Having established persistence

of the unstable manifold for 0 ă ε ! 1, one can convert back into the y-variable, and track its fast

fibers into a neighborhood of the origin in the pũ, ṽq plane.

Then, for all 0 ă ε ! 1, Theorem 1.1 of [7] establishes that the front is located at εy “ ´1
4 ´

Ω0p1516q2{3ε2{3 `Opε lnpεqq. Translating this to the original variables, one finds that the front is located

at x „ ´ c2

4 ´ Ω0p1516q2{3, where here c " 1. This establishes the first statement in Proposition 1.3 (C).

The convergence as ε Ñ 0 of the slow manifolds onto the critical equilibria ū “ 1 for β ě 0 and ū “ 0

for β ă 0 establishes the second statement in Proposition 1.3 (C). Finally, by desingularizing the origin,

one finds that the critical transition happens at a SNIC (saddle-node on an invariant circle) bifurcation

induced by a double eigenvalue in the singular circle. Also, this construction of the front solution in

the transverse intersection of invariant manifolds for c " 1 shows that it crosses the curve
?

´x in a

unique point x0 ă 0. In sum, we have the following lemma:

Lemma 5.1. For each c " 1, there exists a unique admissible solution upx; cq of (1.5).

6 Existence and monotonicity for all c: continuation analysis

Having established existence and uniqueness of admissible solutions for large |c| in Lemmas 4.1 and

5.1, we now address steps (iv)–(vi) of the proof of Theorem 1.1 and Proposition 1.3.
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Lemma 6.1 (Existence for open sets of c). The set of c such that there exists an admissible solution to

(1.5) is open. Moreover, near each c0 with an admissible solution, there exist a δpc0q ą 0 and a family

of admissible solutions that is smooth in c for |c ´ c0| ă δpc0q.

Proof. Let u0 be the admissible solution at c “ c0. We set u “ u0 `w for a solution at a nearby value

c and find the equation

F0pw; cq “ Lc0w ` pc ´ c0qwx ` pc ´ c0qu0,x ´ 3u0w
2 ´ w3 “ 0. (6.1)

We recall that the linear operator is defined by (1.7) and its spectrum characterized in Lemma 3.1. We

then invert Lc0 and find

F pw; cq “ w ` L´1
c0

`

pc ´ c0qwx ` pc ´ c0qu0,x ´ 3u0w
2 ´ w3

˘

“ 0, (6.2)

which we consider as an equation on H1. By definition, F p0; c0q “ 0, and BwF p0; c0q is bounded

invertible. Moreover, since DpLcq Ă H1 , L´1
c is bounded from L2 Ñ H1, and we readily find that

F : H1pRq ˆ R Ñ H1pRq is smooth. The implicit function theorem then gives the desired family of

solutions with the prescribed limits.

It remains to verify that for |c ´ c0| sufficiently small, the solution is monotone. Monotonicity in

compact intervals follows from continuity in c and the fact that wx ă 0. For monotonicity as x Ñ ˘8,

first recall that the asymptotic stable (Lem. 2.1) and unstable manifolds (Lem. 2.3 or 2.5), are smooth

in the parameter c and solutions contained in them have asymptotic expansions which also depend

smoothly on c and are monotonic in x for each fixed c. For admissible solutions considered here,

continuity in c in compact x-intervals thus implies continuity of the coefficients in their asymptotic

expansions as follows. The asymptotic expansions guarantee that for any α´ P R and α` ą 0, there

are neighborhoods of infinity, x ă ´M and x ą M , respectively, uniform in |α´α˘| ă δ for some δ ą 0

so that u is strictly decreasing. Since also α` “ 0 implies upxq “ 0 for all x and is hence excluded, we

may conclude monotonicity for all c near c0.

Lemma 6.2 (Monotonicity in c). For any family of admissible solutions upx; cq of (1.5), we have

Bcupx; cq ă 0 for all x, c P R.

Proof. By taking the derivative of the equation for stationary solutions of (1.5) with respect to c, one

finds LcBcu “ ´ux. Hence,

Bcu “ ´L´1
c Bxu.

Now, since the Sturm-Liouville operator ´Lc is strictly positive, it is also resolvent positive, that is,

the associated Green’s function Kcpx, yq is positive. In particular, we observe that ´Lc is self-adjoint

in a weighted L2 space with weight wpxq “ ecx{2 (recall that f P L2pwq if wf P L2), with positive

ground-state eigenvalue. Also, the evolution e´Lct is positivity preserving for all c. Hence, Theorem

XIII.44 of [24] gives positivity of the resolvent.

In turn, this establishes that, for all c,

Bcupx; cq “

ż

R
Kcpx, yqBxupyqdy ă 0,

completing the proof of the lemma.

13



Lemma 6.3 (Existence for closed sets of c). The set of values of c for which there exists an admissible

solution is closed.

Proof. Given a sequence tcku for which ck Ñ c8 for some c8 P R and given an admissible solution

upx; ckq for each ck, we wish to extract a convergent subsequence. Therefore, notice that upx;´Mq ą

upx; ckq ą upx;Mq for M sufficiently large. Regularity then immediately gives compactness in the local

topology, so that there exists a solution ūpxq on which the sequence limits, upx; ckℓq Ñ ūpxq, locally

uniformly. As a consequence, ūpxq is a stationary solution of (1.5) at c “ c8. We need to show that it

is in fact admissible.

First, we observe that, by monotonicity in c (recall Lemma 6.2), there exists an M ą 0 sufficiently

large and admissible solutions upx;´Mq and upx;Mq such that upx;´Mq ą ūpxq ą upx;Mq for all x.

This guarantees that ūpxq has the asymptotic behavior required of an admissible solution.

To show monotonicity in x, namely Bxūpxq ă 0, we argue by contradiction. That is, we assume there

exists an x0 at which Bxūpx0q “ 0; this suffices due to the asymptotics as x Ñ ˘8. Since the solutions

upx; ckℓq in the approximating sequence are monotone, it must be that Bxxūpx0q “ 0 and Bxxxūpx0q ą 0

(where the latter is derived by taking the derivative of equation (1.5)). Substituting the two equalities

into the equation for stationary solutions of (1.5), we find that x0ūpx0q ` ū3px0q “ 0, which implies

x0 ă 0. Furthermore, the inequality implies that Bxxū ą 0 for x ą x0 and close to x0.

Then, recalling the asymptotics as x Ñ 8, it must be that ū has a maximum on the interval x ą x0 and

that the value of ū at the maximum is such that x̄ū ` ū3 ą 0. However, this gives a contradiction, by

the maximum principle. Hence, there cannot be such a point x0, and we have shown that Bxūpxq ă 0

for all x. This completes the demonstration that ū is admissible.

We are now ready to complete the proof of our main result.

Proof of Theorem 1.1 The set of c Ă R such that there exists an admissible solution is open and

closed by Lemmas 6.1 and 6.3. It is also nonempty since it includes values of |c| sufficiently large,

by Lemmas 4.1 and 5.1, and since it includes the Hastings-McLeod solution for c “ 0. Therefore,

admissible solutions exist for all c P R, because if solutions were to cease being admissible for some

finite value of c then the set could not be both open and closed.

It remains to show uniqueness. Lemmas 4.1 and 5.1 establish uniqueness in the limits |c| " 1. Now, if

there is more than one admissible solution for some finite value of c, then Lemma 6.1 guarantees that

the set of such values is open. Moreover, Lemma 6.3 would show that each of the solution branches

can be continued to a solution branch on all of R. However, since solution branches are isolated by

Lemma 6.1, this would imply the existence of multiple branches for large |c|, which is a contradiction.

Hence, for each c the solution is unique.

The proofs above establish Theorem 1.1, as well as properties (A)–(D) of Proposition 1.3. It remains to

establish property (E). This is done in the following lemma. We observe that this unique intersection

property for all c ě 0 is the natural extension of the known result for c “ 0, where the Hastings-

McLeod solution uHM “ u˚px; 0q is known (see [10]) to intersect the curve u “
?

´x in a unique point

on p´8, 0q. Moreover, this point is the unique inflection point of the Hastings-McLeod solution. Hence,

it is useful to establish the same unique intersection point property for the admissible solutions of the

Painlevé-II equation with drift term, i.e., for the fronts of (1.5) for any c ě 0.
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Lemma 6.4. For each c ě 0, the admissible solution u possesses precisely one value x0 ă 0 such that

x0upx0q ` upx0q3 “ 0.

Proof. The result is known for c “ 0, see Theorem 1 in [10], where it is shown that the Hastings-

McLeod solution uHM “ u˚px; 0q which is the unique admissible solution for c “ 0 has a unique inflection

point x0 ă 0 precisely where it crosses the curve
?

´x. Furthermore, this crossing is transverse, with
d
dx

?
´x|x0 “ ´1

2
?

´x0
ă Bxu˚px0; 0q ă 0.

Next, for each c " 1, inspection of the solution shows that there is exactly one point x0 where x0u`u3 “

0. Furthermore, for these c, the admissible solution u˚px; cq intersects the curve
?

´x at x0 transversely.

Hence, to prove the lemma, we need to show that the result holds for any finite c ą 0. We do this using

a proof by contradiction. We start by observing that, for there to be c value(s) for which the admissible

solution has more than one point of intersection, there must be some value of c for which the admissible

solution u˚px; cq has a point of tangency with the curve
?

´x. Hence, we set u˚px; cq “
?

´x ` vpxq

and assume that there exists a c1 ą 0 and a point x1 ă 0 such that, for u˚px; c1q, one has vpx1q “ 0

and v1px1q “ 0. Next, we calculate derivatives and find

0 “ v2 ` cv1 ´ xv ´ v3 ´ 3p´xqv ´ 3p´xq1{2v2 ´
1

4
p´xq´3{2 ´

c

2
p´xq´1{2. (6.3)

Hence, one sees that for c “ c1,

v2px1q “
1

4p´x1q3{2
`

c1
2
?

´x1
ą 0.

From this, it follows that

B2
xu˚px1; c1q “

d2

dx2
?

´x
ˇ

ˇ

ˇ

x1

` v2px1q “
c1

2
?

´x1
ą 0.

However, this is a contradiction, since B2
xu˚px1; c1q must be non-positive at any such point x1, i.e.,

v2px1q must be less than or equal to zero. In fact, the above calculation shows that there no value of

x ă 0 at which v can have a double root (v, v1 “ 0) where v2 ď 0.

Therefore, we have shown that the number of roots is constant unless the sign of the asymptotics of v

at 8 changes. However, from the x Ñ 8 asymptotics of admissible solutions with c ą 0 one sees that

this sign remains the same. Hence, there is a unique intersection, and the proof is complete.

7 Results from numerical simulations

In this section, we present results of numerical simulations that go beyond the basic phenomena shown

in Figure 1, to illustrate and extend the conclusions of Theorem 1.1 and Proposition 1.3.

Front solutions of the full PDE (1.2) with the hyperbolic tangent ramp function were computed using

AUTO07p [5], while admissible solutions of the PDE (1.5) with the linear ramp were computed using

natural parameter continuation in c̃ with fourth order finite differences, centered for B2
x̃ and with either

up-winding or down-winding for Bx̃ depending on whether c̃ ą 0 or c̃ ă 0, respectively. In the latter

case, the discretization size was dx̃ “ 0.01, while the domain-length was L̃ “ 300.
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Figure 2: Left: Comparison of front solutions of (1.2), upx; cq (solid colored lines) with scaled inner solutions given by

ε1{3ũpε´1{3xq (dashed black lines) for a range of un-scaled c values (see legend). Right: Comparison of the front interface

location xδpcq (blue solid) in (1.2) with the scaled front interface, x̃δpε´1{3cq (black dashed), for (1.5). Here, δ “ 0.1 and

ε “ 0.001 throughout.

The admissible solutions studied in this article accurately describe the “inner” dynamics of the Allen-

Cahn fronts when the ramp is the hyperbolic tangent function used here or a more general, step-like

function. We recall that the variables u, c, x denote the original unscaled variables in (1.2) and that the

variables ũ, c̃, x̃ represent the scaled variables given in (1.4) for the Painlevé-II with drift equation (1.5).

For |c| “ Opε1{3q, we find that appropriately-scaled admissible solutions of (1.5) provide accurate inner

solutions in |x| À ε´1{3 for traveling-waves in the original slowly-ramped Allen-Cahn equation (1.2)

with hyperbolic tangent heterogeneity. Equilibrium front solutions are depicted for both equations in

Figure 2 (left) for a range of c-values.

Next, in Figure 2 (right), we compare the measured front position x̃δpcq for (1.5), defined by ũpx̃δpc̃q; c̃q “

δ, for some fixed δ ą 0 small, with the corresponding front position xδpcq for (1.2), defined by

upxδpcq; cq “ ε1{3δ. We find excellent agreement between xδpcq and ε´1{3x̃δpε´1{3cq. We only find

divergence in the two solutions for Op1q c-values where the front interface xδpcq is outside the region

where ´ tanhpεxq „ ´εx.

We reiterate that these numerics confirm that the scaled solutions obtained in this work accurately

describe the inner solutions of the front solutions upx; cq in (1.2).

8 Conclusions

8.1 Summary of the main results

In this article, we studied the PDE (1.5) that arises as a model of spatial slow passage through a pitch-

fork bifurcation. We established the existence, uniqueness, monotonicity, quantitative asymptotics, and

qualitative properties of a class of front solutions (which we labeled as “admissible” solutions) of (1.5)

for all values of the parameter c P R. (Here, we recall that the tilde has been dropped in Sections 2–6,

so that the c in (1.5) is c̃, where the speed c of the quenching front in (1.2) has been scaled as c “ ε1{3c̃.)

The admissible solutions connect the state u “
?

´x as x Ñ ´8 to the state u “ 0 as x Ñ 8. The

spatial decay of these fronts toward the asymptotic states as x Ñ ˘8 is given by Lemmas 2.1-2.5. We

showed that, for each c P R, the fronts are monotone decreasing in x (Theorem 1.1), and that at each
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point in space, they are monotone decreasing in c (Lemma 6.2). In addition, precise asymptotics were

given in the limits c Ñ ´8 (Lemma 4.1) and c Ñ 8 (Lemma 5.1).

As c varies over all real numbers, it was shown that the unique monotone decreasing fronts make a

transition from exhibiting diffusive spill-over for c ď 0 to exhibiting a significant delay in the onset

of the instability post the pitchfork bifurcation, and hence that the front is located at a substantial

distance away from where the instability first occurs. The asymptotics of the front location (i.e., of

this delayed onset) for large c ą 0 are given in Property (C) of Proposition 1.3.

A variety of methods from classical asymptotic analysis, dynamical systems, invariant manifold theory,

spectral theory of Schrödinger operators, and functional analysis were used to establish the various

lemmas and the main theorem. We highlight the demonstrations that the set of parameter values c for

which admissible solutions exist is both open (Lemma 6.1) and closed (Lemma 6.3). These properties

were established by showing that key operators obtained from linearizing about admissible solutions are

bounded invertible (Lemma 3.1) and by using other functional analytic techniques. Therefore, because

there exist unique admissible solutions for each |c| " 1 and for c “ 0, it followed that admissible

solutions must exist for all c.

We also presented numerical simulations of the PDEs to confirm the theory and to illustrate the

quantitative asymptotics and properties of the fronts, especially the transition from diffusive spill-over

to delayed fronts. See Figures 1 and 2.

The PDE (1.5) arises as the inner problem for the PDE (1.2) and for other PDEs modeling quenching

with slow spatial ramps. It zooms in on the critical parameter regime c “ Opε1{3q in (1.2) about the

pitchfork bifurcation. In this respect, the analysis in this article complements our recent work [7].

There, the diffusive spill-over of fronts was established for c “ 0 in (1.2) (see Theorem 1.1 in [7]), and

the delayed onset of fronts was proven for Op1q values of c ą 0 (see Theorem 1.2 in [7]). The scaling

analyzed here pc “ ε1{3c̃) is precisely that in the critical transition regime between these two earlier

cases. Hence, it is useful for understanding the transition in this and related PDEs. Moreover, we have

analyzed system (1.5) for all c P R, so that we not only cover fully the inner domain, i.e., we link up

the case c “ 0 in (1.2) in the limit as c̃ Ñ 0` to the case c ą 0 and Op1q in the limit as c̃ Ñ 8, but we

also include the regime c ă 0 in (1.5) to present a full dynamical systems and unfolding analysis as c

passes through zero.

Besides being of interest for quenching problems with slow spatial ramps, the admissible solutions

studied here are also of interest for extending the Hastings-McLeod solution of the Painlevé-II equation

(which is the unique admissible solution for c “ 0) to Painlevé-II equations with a drift term, which

arise naturally here as the equation for stationary solutions of (1.5).

Finally, our results may be thought of as providing a PDE analogue to the temporal passage through a

pitchfork bifurcation in ODEs, where long, Op1q delays are expected when passing from a subcritical to

a supercritical parameter regime, but only small delays occur in the reverse transition, recall [18, 20].

8.2 Discussion and future directions

In this section, we discuss a number of avenues for future investigation.

Our methods contain a blend of geometric tools to describe asymptotics at spatial infinity, and a more

traditional functional analytic continuation argument based on the absence of saddle-nodes and a priori
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estimates. It would be interesting to understand the existence problem as a shooting problem in R3.

Alternatively, it seems plausible that a more direct argument based on a Leray-Schauder degree would

give existence for any fixed c. More PDE oriented methods based on sub- and super solutions may

also give additional insight into the shape of solutions, and possibly generalize well to more geometric

questions in higher space-dimensions.

Beyond the monotone ramps studied in this article, it would be interesting to study non-monotone

ramps and the possibility of creating non-monotone structures in the wake. We emphasize that mono-

tonicity enters crucially at several points in our proofs, in particular when ruling out saddle-node

bifurcations through establishing negativity of the linearization.

The pitchfork bifurcation studied in this article is just one of many prototypical examples of systems

with spatially varying ramps that have small gradients. One would clearly wish to have similarly

detailed descriptions of slow spatial passages through other elementary bifurcations, such as saddle-

node, transcritical, subcritical pitchfork, and Hopf bifurcations. Some of the relevant partial work

is summarized in [7]. Other interesting examples include pattern-forming bifurcations, such as, for

instance, a Swift-Hohenberg equation with a spatial ramp passing through a Turing, Eckhaus, or zigzag

instability. It would also be of interest how pattern-forming phenomena arising from slow spatial ramps

compare with those explored in temporally dynamic bifurcations; see for example [1, 15, 27].

The results here can be thought of as describing ramps in multiple space dimensions, when the ramp

itself simply does not depend on a second or third spatial direction. Fronts found here would then

also be stable against perturbations in this transverse direction. On the other hand, one could first

ask if more complex states can arise in the wake of such a one-dimensional parameter ramp when

observed in higher ambient space dimensions. For step-like parameter ramps, rather than slow ramps,

these questions were studied in [21, 22, 23], uncovering some peculiar constraints. Understanding more

generally the impact of the geometry of the quenching ramp on the possibility of complex patterns in

the wake of the quenching process appears to be a wide open question.
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