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Abstract

The Euler—Poisson equations for a cold, collisionless plasma supportion-acoustic solitary waves. We prove that these waves
are spectrally stable at low amplitude in one space-dimension and present numerical evidence that they destabilize at finite
amplitude before they develop singularities.
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1. Introduction

We investigate one-dimensional ion-acoustic solitary waves in a collisionless plasma, when the electron tem-
peratureT, is much higher then the ion temperatute Neglecting thermal pressure, we describe the ions by the
hydrodynamic equations only:

1 e
ny + (v), =0, v + (Ev2 + M(p>x =0,

wheren denotes the density of the ions,the velocity,¢ the electric potentialM the mass of ion, and the
elementary charge. We assume the electrons are distributed according to the Boltzmagr=layy e¢/ Te, and
close the system by the Poisson equations for the electric potential

Oxx+ de(n — nge?/Tey = 0.
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After an appropriate rescaling, we find the usual Euler—Poisson equations:
nt M)y =0, v+ G+ =0  pu—€+n=0 (1)

These equations are Galilean invariant and reversibl€gi.e +c, ¢)(x —ct, r) and, respectivelyn, v, ¢)(—x, —f)
are solutions, ifn, v, ¢)(x, t) is a solution. We refer tfiL5,21,29]and the references therein for more information
on the physical background of these equations.
A particular solution is found for constant density= 1, vanishing potentiad = 0, and constant velocity = vo;
hereug is arbitrary due to Galilean invariance. Linearizing about this spatially homogeneous state we find the linear
problem

n + vony + vy =0, v+ vovx +9x =0, px—¢+n=0 1.2)
with sinusoidal travelling-wave solution§% %9 wherew andk are related through the dispersion relation:
(0 — vok)?(k?> + 1) —k? = 0. (1.3)

Solving for the frequency, we find

w+(k) =k (vo + (1.4)

1
VK2 1) '
In particular, for supersonic speeg > 1, group velocities/, (k) are strictly positive. At sonic spee@, (0) =0
and for small wave numbers, we can expand

w_(k) = 3k + O(k>).

The cubic term together with Galilean invariance suggests that, in the long-wavelength tintandn, v ~ 1,

¢ ~ 0, a Korteweg—de Vries equation would govern the dynamics. A natural question then is how far the dynamics
of the Korteweg—de Vries equation can actually be found in this particular model for an ion-acoustic plasma. Up to
now, only formal derivations of the Korteweg—de Vries limit seem to be knjd®r82} we refer t0[16,9,30,4]for
validation of the long-wavelength limit in slightly different contexts.

One of the most striking phenomena in the Korteweg—de Vries equation—which largely motivated its discovery—
are solitary waves. In particular, solitary waves are among the most simple phenomena which necessitate a truly
nonlinear analysis, going beyond the linear dispersion relétigh). Existence of solitary waves has been proved in
many other physical systems exhibiting a similar cubic expansion of the dispersion relation at the origin. Methods
include calculus of variationi8], abstract fixed point arguments and implicit function theof&yhl], and spatial
dynamicg19,20] However, proofs of the stability of solitary waves rely almost exclusively on variational methods,
exploiting definiteness of the energy restricted to a fixed value of the impulse fundtgéilallhere does not seem
to be a single complete proof of stability for a solitary wave which does not satisfy the above criterion.

Opposed to these sufficient stability criteria, spectral investigations provide necessary conditions for stability.
Given a solitary wave solution, one investigates the linearization with spectral methods. Absence of spectrum in the
right complex half plane is necessary—though far from sufficient—for stability. The work of Pego and Weinstein
[25,26]provides an example where the linear, spectral information could be exploited to show asymptotic stability
of solitary waves, improving on orbital stability as concluded from energy methods.

A central tool for the study of spectral properties is the Evans function, first introdudé@]init allows for
a detection of eigenvalues inside and beyond the essential spectrum. Roughly speaking, the Evans function is
Wronskian-like complex function depending on the spectral pararhgtgrose zeroes coincide with the eigenvalues
of the linearized operator. Analyticity allows for counting eigenvalues in the point spectrum with their multiplicity
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in arobust way. Analytic extension of the Evans function across the essential spectrum then gives control on possible
unstable eigenvalues created by perturbations.

The plasma equations investigated in the present article, are easily shown to possess a family of solitary waves,
asymptotic tom = 1 andv = ¢ = 0, parameterized by the wave speed O (see als&ection 3. Our objective
here is to show that the linearization about these solitary waves does not possess any unstable eigenvalues, at leas
for sufficiently small amplitudes of the solitary wave. As a consequence, we show that the linearized system is
asymptotically stable in exponentially weighted spaces.

The Korteweg—de Vries equation as a universal model equation arises in many other physical systems in the
long-wavelength limit. The original example are free surface water-waves, where solitary waves have been found
for Froude number close to 1, both with strong and without surface tension. Pego and WgxT3teiaved spectral
stability of solitary waves for several Boussinesq model equations arising in this context. It does not come as a surprise
that their analysis in the small wavenumber regime is indeed very close to the analysis h&ec(sme6.2.

However, a major difference between the plasma system and model equations like the Korteweg—de Vries or
Boussinesq equations is that, for high wavenumbete system is not dispersive, but the dynamics is to leading
order governed by a system of quasilinear conservation laws. This introduces difficulties in the study of the eigenvalue
problem at high frequencies (s€ection 3.

The same problems arise in the full water-wave problem, both for zero and large surface tension. The methods
developed if14] show that in both cases spectral stability holds in bounded regions of the complex plane, with a
subtlety in the case of large surface tension, Weber numbef./3. The present work is to our knowledge the first
proof of linear stability for a quasilinear system of Hamiltonian equations exhibiting solitary waves.

Solitary waves exist for speed ¢ ¢ < cmax ~ 1.5852. Atc = cmax the second derivative blows up at the
maximum of the solitary wave. Stability at finite amplitude with respect to one-dimensional perturbations is central
for understanding of the plasma turbulence, but is not known. Computing numerically the dependence of the impulse
on the wave speed, we derive numerical evidence that the solitary wavessaadlefor cqrit < ¢ < cmax Where
cerit ~ 1.52603.

The paper is organized as follows. We briefly review the existence pr&sdtion 2and present our main results
in Section 3 The main tools used in the spectral analysis are introduc&kation 4 The stability proof then
proceeds in two steps, excluding unstable eigenvalues with high and finite but non-zero-frequerigdiish §
and with small frequencySection § then. InSection 7we review the Hamiltonian formulation and the criterion on
instability, based on the second derivative of the Evans function and the impulse. We then present numerical results
on the instability forc > cgyit.-

2. Existence of solitary waves

We review some properties of the solitary waves and refg22pfor a detailed proof of existence.
We look for travelling-wave solutions {d.1) of the form(1+ 7, v, ¢)(x — ct) with speed:, which decay to zero
asé = x — ct — Fo0. Such solutions satisfy the system (we write agafor &):

—cii + (A4 =0, —Cu+ (3 +9) =0 po— & +14+7i=0. (2.1)

We integrate the first two equations and set the constant of integration to zero, schanfdw as functions ofp,
and arrive at

2
c—+cc—=2 / c
fl:—z (p7 V=~¢C— 62_2907 ¢XX:e¢——2

—2<p'
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Fig. 1. The shape of the-component of the solitary wave for= 1.3 andc = cmax-

Solitary waves exist for supersonic speeds 1. For slightly supersonic speed= /1 + u, 1 > 0, we can expand
oxx = 1 — @7 + Ollp| (Il + 1p1?).
A solitary wave is a homoclinic solution to the origin of this equation which we develop as
0u(x3 ) = u@s(Jix) + uPR(J1ix) (2.2)
with R(y) < C exp(—|y|/2), uniformly iny € R andu > 0 small. The leading order term, solves
o/ =, — D2
and is explicitly given a®..(y) = 3/2 secl(y/2). For the full system, the solution is readily expanded as
(s, Vs, 9 (0) = u o (Vi) (L, 1, 1) + p?R(Jpex) (2.3)

and againk(y) < C exp(—|y|/2), uniformly iny € R andu > 0 small.

This solution exists for values of the wave speedntil the maximum of the solitary wave reaches the branch
point of the square rogfc2 — 2¢. This occurs atmax ~ 1.5852, the solution of the equation &xp/2) = 1+ ¢2.
Close to the maximum, at = 0, the solitary wave fot = cmax Scales like

1/3
1.2 4/3 ( 81 2/3
90()6) ~ ?Cmax_ |)C| / (32) Cmax-

We included plots of (x) for ¢ = 1.3 andc = cmax (SeeFig. 1) .
Note also that the solutiot,, v., ¢.)(x) above is an even function, and that we have in fact a one-parameter
family of solitary waves, for each speeddue to the invariance of the system under spatial translations.

3. Spectral and linear stability—main results

In this section we formulate the linearized problem and state the main results on spectral and linear stability.
Linearizing the Euler—Poissaquations (1.1about the solitary wave solutid@.3)in a frame moving with the
speed: = /1+ p > 1 of the solitary wave, we find the system

Ny — CNe + vy + (4 (X)V)x + (Ve(x)n)x =0, Vr — Cux + @x + (V(X)V)x =0,
oxtn—eWp =0. (3.1)

Sincedyx — €™ is a small, bounded perturbation &f; — id, we can solve the last equation for= ¢[n].
Substituting the result into the second equation, we find

%(Z)=£*<M)<Z) (3.2)
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with

n CNy — vy — (M (X)V)x — (Vi(x)n)y
b = ) 3.3
" (v) < cvx — @[nly — (V£(x)V), ) (3.3)

We consider, () as a closed operator gh= L2(R) x H1(R), with domain of definitionk* = H(R) x H2(R).
We say thai € C is in theessential spectrurspeg L. (1), if the operaton id — L. (u) is not Fredholm with
index zero. We say that ¢ spegL+«(1) is in thepoint spectrunspeg,tﬁ*(u), if Aid — L, (w) is not invertible.
The main result in this paper is the following theorem on the spectrufh. @f), which shows that the solitary
waves are spectrally stable at small amplitudes.

Theorem 1 (SpectralL2-stability). There isug > 0 such that for all0 < u < uo, the spectra ofC,(x) in
X = L%(R) x H(R) satisfy

spegedle (i) = iR, SpeqLy(n) = 0.

We considetZ, (i) on exponentially weighted spaces next. Define
Ly®) = {u € LigeR): Jul 2 < o0}
with
lulf> = / Jux) & 7dx.
" R
Analogously, we define
Hy(R) = {u € HigoR): |l = luxl 2 + lul 2 < 00},

We note that similar weighted spaces have been used by Pego and WdiP8temtheir proof of asymptotic
stability of solitary waves for the Korteweg—de Vries equation.

Theorem 2 (Spectral stability in exponential weightsyhere are positive constanijso, HSE, such that for all
0 < u < poand0 < n < ngul2, there existss (, 1) > 0, such that the spectra in the exponentially weighted
spacesX, = L2(R) x H}(R) satisfy

spedsL« (1) C {A; Rer < —8(n, u) < 0}

and

spegiL« () N {A; Rex > =8(n, )} = {0}.

The eigenvalu® is of algebraic multiplicity2, with eigenfunction given by the derivative of the solitary wave
(n«, vs) With respect to x. A principal eigenvector is provided by the derivatie.ofv,) with respect to the wave
speed c

Moreover for ngu < n < ng,ul/z, we have uniform estimates of the resolvenRien. > —§(n, u) with a
1/x2-pole at the originand

rid — L, Yy oy, < ————
G B A

uniformly inReA > —&8(n, 1) and outside a neighborhood of the origin
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The proof of Theorem 2occupiesSections 5 and.@n the next section, we introduce the basic tools for the
analysis, prove the claims on essential spectra, and show hearem lis deduced fronTheorem 2

Animmediate consequencefieorem 2s linear asymptotic stability of the family of solitary waves in weighted
spaces. Since the double zero eigenvalue, generated by the tangent space of the two-parameter family of solitar
waves, belongs to the point spectrum, we can define a spectral proj@gtiony) onto the generalized eigenspace
forany 0< u < po and 0< n < nd u¥2.
Corollary 3.1 (Linear convective stability) There exist positive constants, nét, such that for all0 < u < uo
andng u < n < ng w2, the family of solitary waves is asymptotically linearly stableXipn= L2(R) x H}(R).
More preciselyinitial values (ng, vo)" € (1 — P)X, for (3.2) yield unique solutiongn (), v(t)){] ed-P)X,
which decay exponentially

I(n (), vl x, < C(n, w) €2 |[(ng, vo) |

with C, § > 0, independent afg, vo.

Proof. We first have to show thaf, (i) generates a strongly continuous semigroup. To see that, it is sufficient
to show thatD, = (¢ — v«(x))d, generates a semigroup drﬁ(R) and Hnl(R), since L. (u) can be viewed
componentwise as abounded perturbation of this operator. The opBgatid is dissipative, R€D,u, u)—(u, u) <

0, and therefore generates a contraction semigroup. Next, the uniform resolvent estimaiééanem 2then
ensures that a spectral mapping theorem holds for the linear semigrou,(pe®5). This proves asymptotic
stability as stated. O

4. Essential spectra, point spectra, and the Evans function

We introduce the basic tools for the spectral analysis in the succeeding sections and prove the statements on th
essential spectrum.

Instead of the operatat, (u), we consider the slightly more general operatQ(), obtained from rewriting
the eigenvalue problem for the full linearized problérl) as

A —Cny + vy + (14 (X)V)x + (V4 (X)) =0, A = Cvx + ¥ + (Vk(xX)v)x =0,
o — ¥ =0, Yy +n — e‘p*(X)@ =0 (4.1)

or, in short form(AB — L,(1))(n, v, ¢, ¥)T = 0, whereB = diag(id, id, 0, 0). The operatoL.(x) is considered
as a closed operator dif x H! x H x L? with domainH! x H? x H? x H' (from now on we write shortly
L? H', ... instead ofL?(R), HX(R), ...).
For thegeneralizectigenvalue probler(4.1), we define the algebraic multiplicity of thgeneralizeceigenvalue
Ain casewB — L. (u) is Fredholm with index zero as follows. Lei eRY 1< Jj < jobe abasis of the kernel and
let ué 2 < £ < ¢; be the longest possible generalized Jordan ctiath— L*(M))uf = Bul{;l, for2 < ¢ < ¢,
1 < j < jo. The algebraic multiplicity is then defined as the sum of the lengths of the generalized Jordan chains:

Jo
alg(r) = Ze j
j=1

The different spectra of the operatfy(x) are found by analyzing the operatoB — L..(1). More precisely, the
following statements hold.
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Lemma4.1. Assumeu is sufficiently small

(i) The operaton.B — L. (w) is invertible if and only ifA ¢ sped.(w).
(i) The operatoiB — L.(u) is Fredholm with index zero if and onlyif¢ speggdl. ().
(iii) The algebraic multiplicity ok as an eigenvalue df. () and the algebraic multiplicity of as a generalized
eigenvalue to.B — L, () coincide

The proofs follow easily from the definitions of these operators, using the invertibilityof €/; we refer to
[1,25] for similar statements.

As afirst step towards the proofstfieorems 1 and,2ve characterize essential spectra. Just lilg=iction 1 (1.3)
we compute the dispersion relation(th1) from the asymptotic equation at= +oo, settingn, = v, = ¢, = 0,
with the ansatzn, v, ¢, ¥) = (ng, vo, ¢o, Yo) €. We find

A—cv v 0 0

0 A—cv O 1 5 2 2

d(h,v) =det =A—-cv)(v°=1) +v°=0. (4.2)
0 0 v -1
1 0 -1 v

Proposition 4.2. For all 0 < u < po sufficiently small, and any > 0, the essential spectrum df, (1) in
exponentially weighted spacé% X Hnl is given by the set of € C such thatd(x, v) = 0 for somev € C with
Rev = —n.

Proof. By Lemma 4.1it is enough to look at the operatoB — L. (). This operator is a differential operator with
asymptotically constant coefficients. By setting= v, = ¢, = 0, from L. (1) we find the asymptotic operator
Loo(p), atx = do0. SinceAB — L, (u) is a relatively small perturbation afB — L, (u), standard perturbation
theory implies that its essential spectrum coincides with the sesath that B — L, (1) is not Fredholm index
0. The spectrum of B — L (1) is easily analyzed via Fourier transform, which gives the proposition. O

Corollary 4.3. Forall 0 < . < uo sufficiently small, the essential spectrumfai) in L2 x H1 is precisely
the imaginary axis. In exponentially weighted spatésx< H, with 0 < n < nou'/?, the essential spectrum is
contained in the sdi; ReAr < —68(n, u) < 0}, for some positive constanisn, ) andng.

Proof. If d(A,ik) = O for somek € R, the result in(4.2) givesi = iw with

k
V2 +1

(seeFig. 2) . Similarly, in weighted spaces, frod(), ik — ) = 0 we find the two branches of the essential spectrum:

w = ck+

1
rrtk,p)=(Gk—n|ct ——=]. keR
V1—(ik —n)?
These values of have negative real part and are uniformly bounded away from the imaginary axis;-férand
n sufficiently small. In fact, to first order in we find

dw

= —— = —C
o}
Rev=0 dk

d(Rex))
dn

_ d(Re))
=0 d(—Rev)

_ddmp)
Rev—o  d(=IMv)
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[0} 27 Ima

k ReA

2

Fig. 2. To the left, the two branches @f(k) for ¢ = 1.1, and to the right, the essential spectrumZefu) in exponentially weighted spaces
L$ X Hnl, forc = 1L.1andy = 0.1.

i.e., the essential spectrum moves with the speed of the group velocity in the complex plang iwhmreased.

Forc¢ > 1, supersonic speed, all group velocities are positive, so the essential spectrum moves in the complex left
half plane and stabilizes (s€&y. 2). The uniform bound R& < —é&(n, ) is then obtained from the behavior for
largek where

im d(Rex)
k—+oo dn

(k,n) = —c. O

Remark 4.4. Atsonic speed = 1, the essential spectrum 6f () coincides with the imaginary axis it? x HZ,
and destabilizes in weighted spalc%ex H,ll, for any smally > 0, sincer_(0, ) = —p(1 — 1/4/1—1?) > 0.

To understand point spectra, it is sufficient to analyze the eigenvalue pr@Bléjand discuss existence of
nontrivial, bounded solutions. A very useful tool in this context is the Evans function. Solving the first two equations
for n, andv,, we find a four-dimensional non-autonomous differential equation:

Uy = A(x)u +AMx)u, 4.3)

where the matriced (x) - A, M(x) — My, are asymptotically constant.

The dynamics at = oo is described by the eigenvalues, j = 1,...,4 of A + M, Which solve the
dispersion relatiod (1, v;) = 0. In particular, for Re. > 0, there are precisely three eigenvalugs.), j =1, 2, 3
in the complex half plane Re > 0 and one eigenvalue with Rg < 0. For Re. = 0, two of these eigenvalues
reside on the imaginary axis, Re> = 0, and Res < 0 < Revs. For|Im | — +oo andu = 0, we can expand
the location of the eigenvalues according to

1 1
MN=AFxi4+0——), AMN=+1+0(— ).
VL) =A=it (IImM> vaah) =14 (umM)

In the origin, we can expand jm and find

v1200) =0,  v34(0) = £ /A(L+ O(u)).
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The 1:3-splitting, Rea(1) < —n~ (1) < —nt (1) < Rev;(1), j = 1, 2, 3, persists for an appropriate choice of
0 < n*(u) = O(u'/2) and for all Rer > —8(u), whens(u) > O is sufficiently small. Note that this property is
strongly related to the fact that far positive the essential spectrum in exponentially weighted spaces moves in the
complex left half planeGorollary 4.3.

For the non-autonomous differential equation, we can then construct a three-dimensional saligpasech
that for the solution:(x; A) to (4.3) with initial valueu (0; A) = ug, we have

ug € EY (W) = |u(x; )| < '™ forallx < 0.

Similarly, we construck?$ (1) as the one-dimensional subspace of initial conditions which lead to solutions which
decay with exponential ratg(i1), at least, onr > 0. Clearly, for Re. > 0, initial conditions which lead to bounded
solutions onx < 0 lie in EY (1) and those which lead to bounded solutionsros 0 lie in E5 (A). In particular,
point spectrum in Ré > 0 coincides with those values afsuch that" (1) and E$ (1) intersect nontrivially.
Choosing analytic bases in the two subspazémde;*, j =1, 2,3, we can detect nontrivial intersections as zeroes
of the Evans function:

E(; p) = det(e®, €7, €3, e3). (4.4)

The function€ is analytic inx, for ReA > —&(w), and smooth inu, for sufficiently smallyx. The zeroes of this
function coincide with the eigenvalues 6f.(1) and the order of the zero gives the algebraic multiplicity of the
eigenvalueg1,25]. The Evans function as constructed above is not unique and merely depends on the choice of
bases. However, the zeroes with multiplicity do not depend on that choice.

The above construction is independent of the introduction of small exponential weights, which immediately gives
the following lemma.

Lemma4.5. There exist positive constantg andng such that foral0 < 1 < uo, the point spectrain the unstable
complex half plan&®e’ > 0 of £, (x), considered inL? x H? or in the weighted spack2 x H;, coincide with
multiplicity for 0 < n < nou'/2. Moreover for 0 < 5 < 5’ < nou*/?, the point spectra in.2 x H} ande], X Hnl/
coincide with multiplicity in a regiolRex > —§(n, w), for §(n, ) > 0 sufficiently small

In particular, this lemma shows that, given the results on essential spedaratiary 4.3 Theorem 1is a
consequence dfheorem 2since the point spectrum df, (1) is symmetric with respect to the imaginary axis due
to reversibility (reflect — —f, x — —x, and use the fact that the solitary wave is an even function).

In the succeeding sections, we prove the remaining claim$fiebrem 2on the point spectrum in exponentially
weighted spaces and the resolvent estimates.

5. Non-zero and high frequencies

We show that there are no eigenvalues in aregibm eo, Rer > —§(u, n), for sufficiently small, sufficiently
small weighty, and anysg > 0. Moreover we prove the resolvent estimates fiimeorem 2

We exclude eigenvalues in a regipr] > ¢9, ReA > —8(n, u) by inverting the operatok id — L, (u) in the
weighted space&(, = Lﬁ X Hnl. We do this by solving the system

A+ (—c + v (X)) (ny — nn) + (L + 1y (x)) (v — NV) + V()1 + 1l (x)v = fp,
AV + (—c + v (X)) (vy — V) + ¥ + v;(x)v = fu,
or—np—¥ =0,  Yy—ny+n—eDp=0 (5.1)



22 M. Haragus, A. Scheel/Physica D 170 (2002) 13-30

in L2 x H x H! x L?,for (f,, f,) € L? x HL. Estimates on the norms efandv will give the desired resolvent
estimates.

For smallu, the left hand side of5.1) defines a linear operator which is a relatively bounded perturbation of the
operator with constant coefficients,;at= 0. After a change of variables that we introduce now, the perturbation
becomes bounded in the operator norm.

We definet (x) through

E'(x) = (c — v ()7, £(0) = 0.

For 1 sufficiently small,£(x) gives a valid change of variable, inducing equivalédtnorms. The syster(b.1)
becomes (we write againinstead of)

An — (ny —nn) + (vx — V) + O(w) = fi, Av = (v — o) + ¥ + O(u) = fo,

@x —np — ¥ +0(w) =0, Yx =y +n—¢+ 0w =0, (5.2)
where Qu) denotes a small, bounded perturbation:

Li(u,n) :L? x H x HY x L2 - L? x HY x H' x L?, | L1(u, n)|l < Cp.

We first analyze the autonomous systenuat= 0, and then, by a perturbation argument, the full system, for
sufficiently smallx > 0. At « = 0 the left hand side i{5.2) defines a differential operatary (X, 1), with constant
coefficients, onL? x H! x H! x L? with domainH! x H? x H? x HL.

Lemma 5.1. For anyeg > 0 there are positive constantg and Cq such that for ally € (0, no) and all A with
Rex +1/2 > 0, || > &0, the operatorLg(x, ) has a bounded inverse it¥ x H! x H x L? with norm

~ Co
Lo(X, < =
[Lo(x, Ml < Rex + 1

Proof. We invertLo(, n) by solving the system

An— (ny —nn) + (vx — V) = fi, AV — (Ux — V) + ¥ = fo,
Ox — N — V¥ = fop, Ve =Y +n—9=fy (5.3)

in L2 x H! x H! x L2. By taking the Fourier transform inwe find a linear system that we can solve explicitly
and obtain

2 (k=m? . Ak
[()\+77 k) 1_(ik_n)2]n—(k+n 1K) fn — (k=) g,
VORI U2l ) PO Lt B
[(Mrn k) 1_(ik_n)2}v—(k+n 1k)gv 1—(ik—n)2f”’
S )
where

fo—Gk=mfy _ 1

&= fo+ 1 (k —n)?2
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For any|1| > g9, ReA + /2 > 0, and sufficiently smaly € (0, ng), we show that

(ik—m? |?

‘(,\ + 1 —ik)? - ToGi—np| = CeoRert DZ(L+ (Rex +n)” + (M1 — b)?). (5.4)

This lower bound together with the explicit formulas above proves the lemma.
We obtain(5.4)first in a region Re. > ¢1, and then for Imk > ¢4, for anye; > 0. A direct calculation gives

2

, ik —1n)?
‘(k + 1y —ik)? - % = (Rer 4+ m* + (Imx — k) 4+ 2(Rer + n)?(m x — k)% + b2
- -n
+2(Rex + 1)?by — 2(Im i — k)?by + 4b3 + 8(Rei + n)(Im i — k)by,
(5.5)
where
(kK> +n*)? +k* — n° n” kn
b1 = — 1], by = —c1n,
SR S e Rl [ g 2= A=t aey © e el
for some positive constant which does not depend upan
For Re)x > ¢1, the right hand side i(6.5)is bounded below by
2
(Rex +1)* + (Rex + (I — k)2 — 2(Rex + )27 L
-1
1 &4 4nt
> Z(Rer +n)* 4+ (Rer + n)2(Ima —k)? + 22 — ——— —12c29?,
_2( +m" + (Rea +m)~( )+4 Y 1

s0(5.4) holds for sufficiently smalk.
Assume nowlm A| > g1. For|lm A — k| < §, with § sufficiently small, we havg| > ¢1/2 andb1 > b1(e1) > O.
Then the right hand side i5.5)is bounded below by

(Rex + n)* + (Rex + n)2(Im i — k)2 + b2 + 2(Rex + n)?by — 25%by — 12b3
> (Rex 4+ n)* + (Rei + n)2(IM A — k)? + 2b1(s1) (Rex + n)?
+ 3b1(b1(e1) — 48%) + F(ba(e1)? — 24cin?)
and(5.4) holds for sufficiently smalh andé(e1).
If ImA — k| > 8(e1), we consider firstk| > k,n. Then the right hand side i(%.5) is bounded below by
(Rer +n)* + (Rex + m2(Im & — k)% + 2(ReA + n)%by — 12b3
> (Rer + * + (Rex +m2(m i — k)2 + 1 (n?)by — 1263,
For k, large enough we have B% < b1n?, and(5.4)follows since|lm A — k| > 8(e1). Next, if [k| < k., we find
the lower bound
(Rer +m* + (Imr — k)% + (Rex + n)2(Im 1 — k)? + 2(Rei + 1)?by — 2(Im & — k)%by — 12b3
> (Rer+n*+ J(Rer + n)2(Imx — k) + 3(Reh + n)*(8(e1)® + 4b1)
+3(ma — k)28 (e1)? — 4by) + 38(e1)* — 12022

from which we obtair(5.4), for sufficiently smally, since|b1| < c2n?, for |k| < k. This completes the proof of
the inequality(5.4). |
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Coroallary 5.2. For all g9 > 0 there exists)gp > 0 and up > 0 such that, for ally € (0, no), u € (0, uon) and
|A] > €0, ReA > —n/2 the operatori id — L, (x) has a bounded inverse in the weighted spige= L% X Hnl.
Moreover, we have the estimate on the resolvent

Aid — £ oy <
I 0% % = Rey gy

for some positive constant C depending upgn

Proof. By Lemma 5.1we can choosg sufficiently small such that
ILoG, ;) La(u, )l < 2CoCho < 3

and we conclude that the operaias(x, n) + L1(u, n) is invertible, sok id — £, () is invertible as well. O

This corollary, together withemma 4.5 proves the statements theorem 2 outside any neighborhood of the
origin |A| < o.

6. Thezero-frequency limit and the Korteweg—de Vries scaling

The goal of this section is to analyze the linearization in a neighborhodd-00. In a suitable scaling, we find,
at the lowest order ip, the Korteweg—de Vries equation, for which the spectra in an exponentially weighted space
is exactly known. Critical and unstable spectrum consists precisely of one double eigenvalue in the origin. Since
this double eigenvalue is induced by spatial translation and the Galilean invariance, it is robust and cannot create
instabilities after perturbation. The analysis in this section is very much reminiscfg,a¥]

The outline of this section is as follows. 8ection 6.1we review the dispersion relation in a small neighborhood
of ., = v = 0. We then expand the linearized system in the perturbation parameted transform variables
to find the Jordan normal form at = 0. In Section 6.2 we scale variables to find the linearization about the
Korteweg—de Vries soliton to leading order as a subsystem of our four-dimensional linear equation. We compute
the Evans function of the full system and show that it is robust with respect to higher order perturbations. In the last
paragraphSection 6.3we finally justify the Korteweg—de Vries scaling proving absence of eigenvalues in a small
neighborhood of the origin, outside this scaling.

6.1. Expanding the linearization near= 0

The dispersion relation at the asymptotic state of the solitary wave was computed a5 = (A — cv)2(v2 —1)
+v2 = 0 with¢? = 1+ p. Forpu = 0, we find a quadruple rost= 0 ata = 0, which unfolds like

vo=3A4+0(A3),  viz2z=—-0Y34+O(r).

The three eigenvalues » 3 stem from the Korteweg—de Vries limit, whereasintroduces an additional root of
the dispersion relation, with a non-zero group velocity.

Foru > 0 and Re. > 0, we find three roots in the right half plane Re- 0 and one root in the left half plane
Rev < 0. This fact will allow us to construct an Evans function in a robust way.

Remark 6.1. Surprisingly enough, the fourth eigenvahligseems to appear in all known examples, where solitary
waves have been found in a Korteweg—de Vries limit of a physically realistic system. The group velocity associated
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with this root can however be positive as well as negative. Within the Korteweg—de Vries scaling, transport is
always unidirectional—the central observatior{25,26] which allowed for a proof of asymptotic stability using
exponentially weighted spaces. The transport induced by the fourth eigenvalue happens to be in the same direction
in the plasma model, as well as in model equations for water-w@z@r the full water-wave problem without
surface tensiofiL4]. However, for gravity surface waves in the presence of large surface tension, the group velocities
from the additional branch of the dispersion relation have the opposite sign! As a consequence, the proof of stability
in [14] is, in consequence, much more subtle.

We expand the linearized systdrh1)in a neighborhood of the origin, solving fax andv,:

ny = An 4 vln 4+ Av 4 (V) + i) v+ ¥+ (= nc+ 2009 4+ O((Aw] + 1Y) (1n] + [v]) + w2y ),
Ve = A0+ VLo + ¥+ (=34 vy + Ol + 12D o] + 1ly)),
Oy = Iﬁ, wx =¢—n-+ (e‘p* - 1)90 (6-1)

and transform variables to put the linear pariiat A = 0 into Jordan normal form. We set
n=ai, v =ag+ai, ¢ = a1+ azs, ¥ =ap.

The system fokag, a1, az, az) € C* becomes

aox = —hay — u¥?®Lao — 2u2®ar + n( — 20,)az + Ol + w>?)(laol + laal) + n?laz)),
a1.x = az + Mao + 2a1) + 2u®2® ag + 3u¥?PLag — n(1 — 30,)az
+O((IAul + 1> (laol + |as]) + p?|azl),
azx = az + u®y (a1 + az) + O(u?(lasl + las))).
az = —Mao + 2a1) — 2u®?®a0 — 3u®?DLa1 + (1 - 3b,)az
+O((Apl + %) (laol + lazl) + p?|azl), (6.2)

where we used that, K2.3),

(s, v, €7 — 1)(x) = u®u(Vx)(L, 1, 1) + O(u?).
6.2. The Korteweg—de Vries scaling

The natural scaling, suggested from the dispersion relation, is
x=ut%e a=p%%A,  ag=pbo, ar=b1y,  ap=pu"?by,  az=pbs.
The systeni{6.2) reads

bog = —Aby — 2®/b1 + (3 — 20,)bp + O(),  b1s =ba+O0(),  bag = bg+ Puby + O(),
bag = —2Aby — 3@ b1 + (1 - 3®.)b2 + O(). (6.3)

At u = 0, we find the linearization about the Korteweg—de Vries soliton
bigee = —2Ab1 + b1 — 2(Pyb1)e

decoupled from the equation fég.
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As a next step, we construct an Evans function, analyti¢ Bnd smooth in.. First, we analyze the dispersion
relation to(6.3) at the asymptotic staté,= +oo, andu = 0. Settingb; (§) = b;o€’%, we find

¢ A -3 0
dsca( A, ) = det 0 0 (03 — 9 + 2A) = ddkay (A %)
s = ge = — = , .
scal 0 0 9 _1 KdV
0 24 -1 9
The four eigenvalues;, satisfyingdsca(A, ¥;) = 0, are

=0, U2 =2A + O(4), U3 =1+ 0(4), s = —1+ 0O(A).

For sufficiently small Ret > —§p, they are separated by BRg < —7 < Red1 23, for somen; € (0,1). This
splitting persists for any sufficiently small, so we can construct an Evans funciggy(A; 1), analytic inA and
smooth inu (seeSection 3.

Lemma 6.2. For any constani/ > O there is§ > 0 such that foReA > —§ and|A| < M
EsclA; 0) = A%+ O(AB) asA—0
and
Esca(A;0) £0, if A#£0.
Proof. We compute an Evans function for the scaled syg@&Bjatu = 0. Atrivial solution of the equation fqr =

Ois given byb%(&) = (1, 0,0, 0)T. The equations faby, b», b3 are independent @ and consist of the linearization
about the Korteweg—de Vries soliton. They possess soluﬂp@)s(s; A), b,ﬂ’dlv (&; A), andbﬁ’dzv (&; A) such that

by (&; A)] < CeR% < ce Ml forg > 0, bty (€; A)| < CeRe¥E < el fore <0,
bgay (€; D)l < C R < &kl forg < 0. (6.4)

We defineSkqy (A) := det(bgy, (0; A), by, (0; A), b, (0; A)). From[25], we conclude thagkqy (A) # 0
for A # 0 andékav (A) = 4%+ O(A3), asA — 0. From the three solutiorig,,,,, we find solutions of the full
scaled syster(6.3), atu = 0, from simple integration of the equation . For ReA > 0, we set

&
b§(&; A) = / (— A kv (©) — 2L kay (©) — 2@ (0)D3 kay () AT + 3B qy (€).

§
byt(E; A) = / (— A gy (€) = 20L()bY gy (©) — 204(0)by ey (0)) At + 35T kqy (),

§
by2(E: A) = / (—AbY gy () — 20L(O)bY Rgy (©) — 20.(O)by gy (0)) At + 3BT R gy ().
—0oQ
Note that the integrals share the exponential decay estimates for the vb:@c]gr$6.4). The vectorsb:s’Ca =
(B3(0), by kv (00, b3 kg (0), b4 gy (ONT, With j = u, 1 or j = u,2, together with)® = (1,0,0,0) form a
basis of the unstable subspacg at 0 of the scaled system, ang., = (b5(0), binv (0), bgyKdV(O), bg,KdV on'
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spans the stable subspace. An Evans function for the scaled sysiem@tfor ReA > 0, is therefore found from

() S < () B (0)

0 b4L (0 B%2.(0) bS., 0
Escd4:0) 1= det( 00, b3, bk DR = det LRV TRV LKAV = v ().
0 bykav(@® bk (0 b3y (0)
0 b5kav© b3kav(©® b xav(©
The analyticity inA shows thatsca(A; 0) = Ekgv (A), for ReA > —§, which proves the lemma. O

Next, note thafsca(0; 1) = £'sca(0; 1) = 0 evenforu > 0, since an eigenvector and a generalized eigenfunction
are provided by the derivative of the solitary wave with respect to spacel speed, respectively. Continuity in
w and analyticity inA guarantee that no additional zeroes besides the double zero at the origin may emerge for
small .. This proves the absence of point spectrum in regjahss Mu%?, Rex > —5u%/?, besides the double
eigenvalue at the origin.

6.3. Justifying the Korteweg—de Vries scaling

We conclude the proof afFheorem Zhowing absence of eigenvalues in a small neighborhood of the origin. We
may therefore assume that= §|1|%/3, with § small. We may scale

&= |A|1/3x, ag = |k|2/3b0, a1 = by, a5 = |A|1/3b2, az = |A|2/3b3.
In scaled coordinates we find

bog = —€39%by +0(8]),  bre =ba+O(A¥3),  bas =bz+0O()),

bae = —26839p; + O(I5| + |1¥3).
Settingd = A = 0, we find an autonomous linear equation with eigenvalusatisfying

74 4 2d@945 — 0,

lo=0,  D3g,=—2€30%

Again, for arg. # 7, the eigenvalues are well separated by a spectralgapi < v;, j = 1, 2, 3. The eigenspaces

EY and Ef intersect trivially since the equation is autonomous. The intersection remains trivial when adding the
small perturbations ik andv. Exploiting exponential convergence of the coefficients of the non-autonomous terms,
we may even continue the unstable subspace across the autargin a robust way (sef 3,17,14). This implies,

that for all§ sufficiently small, we can exclude eigenvaluei a neighborhood of the origin. This completes the
proof of Theorems 1 and.2

7. Finiteamplitude instability of solitary waves

The plasmaquations (1.1possess a Hamiltonian structure with Hamiltonian function

1 1
H(n,v,(p):/ <—nv2+n<p——<p§—e‘p> dx
e \2 2



28 M. Haragus, A. Scheel/Physica D 170 (2002) 13-30

and (formal) degenerate symplectic structure

w((ny, v1, ¢1), (2, v2, ¥2)) = /R(Ulax_lf’lz + 1197 tvp) dx.

In this symplectic structure, spatial translations are generated by the impulse

J(n,v, @) =f nv.
R

Both, J and H are conserved quantities for the time evolution of the initial value problefh. 19
Solitary waves, as discussed in this article, are critical points of the conserved energy functional

I:I(na v, <p) = H(f’l+ 17 v, (p) —CJ(}’Z, v, (P)

(seeSection 2. Unfortunately, the Hamiltonian is strongly indefinite and does not give satisfactory information on
global existence or stability of solitary waves. For example, global existence for the initial value problem is not
known (local existence in time follows easily from the general resulfs8l). However, the Hamiltonian structure
is useful in understanding stability at finite amplitude. Heuristically, the family of solitary waves is parameterized by
the value of the impulse functiondl attained at the solitary wave, or by the speed of the waWhen the function
J (¢) attains an extremum along the family of the solitary waves, we typically find a saddle-node bifurcation due to
an additional eigenvalue crossing the origin, which renders the solitary wave unstable to one side of the extremum.
This type of instability has also been observed in water-wi@24,31]

This formal reasoning can be extended and made rigorous.

Theorem 3. The solitary wave solutions of the plasma equalffbri), described inSection 2 are unstable for
Corit < € < ¢y, if J'(c) > 0for ¢ < cgrit and J/(c) < O for cgrit < ¢ < cx.

The criterion gives the first instability through a real eigenvalue crossing the imaginary axis. We do not know, if
an oscillatory instability renders the solitary wave unstable:fer cyi;.

This criterion for instability is frequently used in the literature to prove instability of solitary wave$Z5e4,
and the references therein). Similar criteria are known for shock waves in conservati¢h3parsd pulse solutions
in dissipative system28].

Before the proof ofTheorem 3we illustrate the consequences by means of some numerical computations. We
computed/ (¢) numerically from

J(c) = / N4V / (c — ve2 = 2¢0.(x) ) /“PmaX(c) (c =/ c? — 2¢)?
Ve = 2¢.(x) \/2(0 —29)(€¥ + c\/c?2 — 29 —

where for the substitution of variables in the second equality, we used the identity

%(8x<0)2 —e& —c\J2—2p+1+c%=0,

which holds along the solitary wave. The maximum of the solitary ways is found from

efmax + ¢\ /2 — 2¢pmax = 1+ 2.

According toTheorem 3we found instability forcerit < ¢ < cmax all wave speeds beyond a critical valug;.
The graph of/ (¢) is shown inFig. 3.
We conclude this section with the proof tfieorem 3

do,
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1.1 1.3 1.5 -5 5

Fig. 3. To the left, the value of the impuldeof the solitary wave as a function of the wave speésiplotted. Solitary waves are unstable to the
right of the maximum. To the right, we show the shape ofgheomponent of the solitary wave at speeg ccrit.

Proof (Theorem 3. We first construct an analytic Evans functi; c¢) for the linearization around the solitary
waverB — L.(c), as found in(4.1), for all ReA > —6 andc < cmax. We then normalize it such th&(x; ¢) — 1

asA — oo. Sincea = 0 is at least algebraically double as an eigenvalue, if the second derigédti®ec) of the
Evans function is negative for some valuecpthen&(-; ¢) restricted to the positive real axis is negative for small

A and positive for large., which implies existence of an unstable eigenvalue on the positive real axis. For small
values ofc, we conclude fronTheorem 2hat&” (0, ¢) > 0.

The eigenvalue. = 0 is at least algebraically double, with kernel given by the derivative of the solitary wave
dx (4, Vs, @5, ¢2) (5 ¢) and generalized eigenvector given by the derivative with respeciiOn.., vs, ¢«, ¢5)(; ¢).
Since fori = 0, the first two equations can be solved to givandv as functions ofp, the kernel can be at most
one-dimensional. As a consequence, the eigenvalge0 is double if and only if theBd, (14, v«, @x, ©L) T (:; ©)
does not lie in the range df,(c). By Fredholm’s alternative, we therefore compute the scalar product with the
kernel of theL2-adjoint of L, (c), which is given by(—v,., —n, — ¢.,¢.)T, and find

M= _/ (V4 0cMy 4 M40 V) = _80/ Ny Vs = _J/(C)-
R R

Clearly,M vanishes precisely wheft (0, ¢) vanishes. Followin§5,7], one can proceed to show tid€” (0, ¢) #
0 for all values ofc. This proves the theorem. O
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