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Abstract

In applications, solitary-wave solutions of semilinear elliptic equations
Au + g(u,Vu) =0 (z,y) € RxQ

in infinite cylinders frequently arise as travelling waves of parabolic equations. As
such, their bifurcations are an interesting issue. Interpreting elliptic equations on
infinite cylinders as dynamical systems in « has proved very useful. Still, there
are major obstacles in obtaining, for instance, bifurcation results similar to those
for ordinary differential equations. In this article, persistence and continuation of
exponential dichotomies for linear elliptic equations is proved. With this technique
at hands, Lyapunov-Schmidt reduction near solitary waves can be applied. As an
example, existence of shift dynamics near solitary waves is shown if a perturbation

wh(z,u, Vu) periodic in  is added.
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1 Introduction

In this article, semilinear elliptic equations
Uge + Ayu + g(y, u, ug, Vyu) =0 (z,y) € R xQ, (1.1)

in infinite cylinders IR x €2 are investigated. Here, €2 is an open and bounded subset of IR",
and boundary conditions on IR x 92 should be added. Solitary waves are localized solutions
u(z,y) of (1.1) satisfying

lim u(z,y) =0

|x| =00
uniformly for y € Q. In applications, they frequently arise as travelling waves u(z — ct,y)

for parabolic equations
Up = Uggy + Ayu + 9(y, u, ug, Vyu) — ClUg (z,y) € IR x Q. (1.2)

As such, their bifurcations to periodic waves or IN-solitary waves resembling N copies of
a primary solitary wave are interesting issues. Of importance is also the question of their
stability with respect to the parabolic equation (1.2). Another aspect is the numerical
computation of solitary-wave solutions since it is in general impossible to obtain explicit
expressions. Typical applications include problems in structural mechanics like rods and
struts, chemical kinetics, combustion, and nerve impulses, see, for instance, [30] and the
comprehensive bibliography there. Existence of solitary waves or fronts has been proven for
many equations of the form (1.1), see again [30, Section 1.6.6] for references. Thus, in this

paper, we will assume that a solitary wave of (1.1) exists, and shall study its bifurcations.

In order to investigate elliptic equations in cylinders IR x €2, it has proved very useful to
consider them a dynamical system in the unbounded variable z. Properties like dissipativ-
ity, reversibility, Hamiltonian structure, and zero numbers have been exploited in order to
describe bounded solutions of such equations, see, for example, [4, 8, 16, 19, 21, 28]. The
main technique has been reduction to local center or global essential manifolds containing
some or all bounded solutions of (1.1). For instance, Mielke derived bifurcation equations

close to stationary [19] and periodic [7, Chapter 4] solutions on a center manifold.

However, the use of geometric reductions like local center or global essential manifolds

is limited. Finite-dimensional essential or inertial manifolds are only C' smooth. Also,



the reduction requires spectral gaps and works only for particular nonlinearities, see [20,
21]. On the other hand, finite-dimensional smooth local center manifolds exist only in
the neighborhood of small solutions. Using analytical methods like Lyapunov-Schmidt

reduction near solutions of (1.1) with large amplitudes resolves some of these problems.

Therefore, rather than studying the set of all bounded solutions of (1.1), we shall only
investigate solutions close to solitary waves hoping to get a more detailed picture of the
nearby dynamics. Interpreting the variable x as time, we write (1.1) as the first order

system
Ug 0 id U 0
_ _ : (1.3)
Vg -A, 0 v 9(y,u,v, Vyu)
Here, for each fixed z € IR, (u,v)(z) is a function of y € Q contained in some func-
tion space depending on the boundary conditions on 0f2. A solitary wave of (1.1) cor-

responds to a homoclinic orbit of (1.3), that is to a solution (¢(z),¢.(x)) of (1.3) with

limyy|,00(¢(), gz (7)) — 0 in the underlying function space.

There are two different techniques available for investigating homoclinic solutions. The
first approach is to consider Poincaré maps. However, (1.3) is still ill-posed and will not
generate a semiflow. Thus it is not even possible to define a Poincaré map. The second ap-
proach, which is adopted in this article, is entirely analytic and based on Lyapunov-Schmidt
reductions. The heart of this technique are exponential dichotomies for the linearization of
(1.3)
Ug 0 id i
= (1.4)
Vg —Ay — Dyg — Dy,ugVy Dy,g v
along the solitary wave (q(z), g, (x)). Here, derivatives of g are evaluated at (y, ¢, ¢z, Vyq).
Exponential dichotomies are projections onto z-dependent stable and unstable subspaces,
say E*(r) and E"(z), such that solutions (u,v)(z) of (1.4) associated with initial values
(u,v)(zo) in the stable space E*(x() exist for > x¢ and decay exponentially for x — 0o.
In contrast, solutions (u,v)(z) associated with initial values (u,v)(z¢) in the unstable space
E"(z) satisfy (1.4) in backward z-direction z < x( and decay exponentially for decreasing
z. Existence of exponential dichotomies for ordinary, parabolic or functional differential
equations is well known, see, for instance, [5, 14, 11]. However, the proofs known thus far

rely on the existence of a semiflow. Even though in [25] a functional-analytic framework for



the existence on time intervals [7, 00) for large 7 has been developed, the global extension to
the half line IR™ has been carried out using semiflows. In the context of elliptic equations,
stable and unstable subspaces will both be infinite-dimensional and the semiflow on the
unstable subspace defined for backward z-direction cannot be inverted. Hence, (1.4) will

not define a semiflow.

In this article, we present a proof of the existence of dichotomies for equation (1.4). The
proof employs a functional-analytic framework combining ideas from [25] and [28]. In the
former work, exponential dichotomies for parabolic equations have been investigated us-
ing only integral equations. In [28], an integral-equation based approach has been given
for elliptic equations. We will derive an integral equation, see equation (3.1), satisfied by
exponential dichotomies. In contrast to previous works on ordinary and parabolic differen-
tial equations, we cannot use semiflows or the Gronwall lemma for the reasons explained
above. Also, the integrands arising in the integral formulation are not small preventing us
from using contraction mapping principles. Instead, Fredholm’s alternative is employed for
proving existence of dichotomies on arbitrary subintervals of IRT. The advantage of this
approach is that it preserves the symmetry between stable and unstable subspaces in the

definition of dichotomies and does not a priori distinguish a time direction.

As a result, all bounded solutions of the nonlinear equation (1.3) staying close to the solitary
wave for all values of = are accessible using Lyapunov-Schmidt reduction. For illustration,
and as a first application, Melnikov’s method for intersections of stable and unstable mani-
folds is extended to semilinear elliptic equations. Main result is the embedding of a shift on
N symbols, with positive topological entropy, into the dynamical system generated by the
shift of bounded solutions close to the solitary wave, provided a small generic perturbation

ph(z,y,u, uy, Vyu) periodic in z is added to (1.1).

In a forthcoming paper, we will give other applications. In particular, bifurcations to
periodic waves as well as to N-solitary waves close to a primary solitary wave will be
investigated using techniques developed in [17] and [25]. Moreover, algorithms for the
numerical computation of homoclinic or heteroclinic orbits of elliptic equations introduced

in [12, 13] will be justified by stability and convergence proofs.

We hope that the methods introduced here can be used to investigate stability of solitary

waves with respect to the parabolic equation (1.2) using an extension of the Evans function.



Also, it may be possible to use this method to study elliptic equations for 2 = IR" provided
the solitary wave is localized in the = and y variable, see the remark at the end of Section 2.1.
Note that in this case essential manifolds will not exist due to the presence of continuous

spectrum.

This article is organized as follows. In Section 2, the main results on existence of exponential
dichotomies for abstract linear equations are presented. They are proved in Section 3.
Smoothing properties for abstract linear and nonlinear equations are addressed in Section 4.
In Section 5, the effect of small non-autonomous perturbations of an abstract autonomous
equation is investigated. Finally, Section 6 is devoted to applications to semilinear elliptic

equations, and an example on the infinite cylinder IR x (0, 7)™ is presented.
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2 Exponential Dichotomies

2.1 A class of abstract differential equations

Let X be a reflexive Banach space, and A : D(A) C X — X be a closed, possibly unbounded
operator such that its domain D(A) is dense in X. Then X! := D(A) is a Banach space
when equipped with the norm |u|x1 = |u|x + |Au|x. Let Z be some Banach space such

that there are continuous embeddings
X' Z— X

Later, Z is chosen as an interpolation space between X' and X. Moreover, let B €
C%J,L(Z,X)) be a continuous family of operators where J C IR is some closed interval.

We will be mainly interested in J = IR, J = IR* or J = IR™.

Consider the differential equation
= (A+ B(t))z. (2.1)

A function z(t) defined on a closed interval J C IR is called a solution of (2.1) if



(i) z() € CY%int J, X') N Ct(int J, X),
(ii) z() € C°(J, 2),
(iii) x(-) satisfies equation (2.1) on int J with values in X.

We are particularly interested in solutions with some prescribed exponential behavior.

Throughout, range and kernel of an operator L are denoted R(L) and N(L), respectively.

Definition (Ezponential Dichotomy)

Equation (2.1) is said to possess an exponential dichotomy in Z on the interval J C IR if

there exists a family of projections P(t) for t € J such that
P(t) € L(Z), P%(t) = P(t), P(:)z € C°(J,Z) for any z € Z
and there exist constants K,n > 0 with the following properties.

o Stability. For any T € J and z € Z, there exists a unique solution x*(t; 7, z) of (2.1)
defined for t > 7 in J with °(1;71,2) = P(7)z and

|2 (t; 7, 2)|z < Ke M1z,
forall t > 7 with t € J.

o Instability. For any 7 € J and z € Z, there exists a unique solution " (t;7,z) of

(2.1) defined fort <7 in J with *(1;7,z) = (id —P(7))z and
(b7, 2)| 2 < K e |z,
forall t < 7 witht € J.
e Invariance. The solutions z°(t;7,z) and x“(t;7,2) satisfy
z°(t;7,2) € R(P(t)) forall t> 7 witht,7€J

x“(t;7,2) € N(P(t)) forall t<7 witht,7€J.

In other words, if an exponential dichotomy exists, we can solve equation (2.1) for ¢ > 7 for
any initial value z € R(P(7)). The solution is then given by z°(t, 7; 2) with z°(7, 7;2) = z.

In addition, the solution is decaying exponentially in £. Moreover, the stable subspaces



R(P(t)) satisfy R(x*(t,7;-)) C R(P(t)). An analogous statement holds for z"“(t,7;z2).
Therefore, the spaces R(P(t)) can be thought of as the time-slices of the stable manifold of

the linear non-autonomous equation (2.1), while z°(¢, 7; -) is the evolution operator mapping

the time-slice R(P(7)) into R(P(t)) for t > 7.
First, we give sufficient conditions such that the equation
T = Az, (2.2)

that is (2.1) with B(¢) = 0, has an exponential dichotomy on IR in X. These conditions are
not necessary for the existence of dichotomies, but will be used later in deriving the main

perturbation and continuation result.

(H1) Suppose that there is a constant C' such that

C
L+ |

for all p € R. Assume that there is a projection P. € L(X) such that A™' and P_

(A = i) ™Ml x) <

commute. Furthermore, there exists a 6 > 0 such that Re A < —d for any A € o(AP_) and
ReA >0 for any A € o(A(id —P-)).

Sufficient conditions for the existence of the projection P_ have been given in [3] and [10].
We also refer to the explicit construction of the projections for semilinear elliptic equations

in Section 6.1.
Define P, =id—P_and A_ = —-P_A, A, = P A, andlet X_ = R(P_) and X} = R(P}).
By Hypothesis (H1), the operators A_ and A, are sectorial with their spectrum contained

in the right half plane. Thus, they generate analytic semigroups

1
At = _,/ NMA—A) LAy, t<0
2mi Jrg,
1
e~ At = —,/ M — A)7Hd), t>0
27 Jr_
on X, and X_, respectively. Here, the curve I'y is asymptotic to ret? as r — oo for
some fixed ¢ € (0,%), and I'_ = —I';.. We should point out that the semigroups e+! and
e -t are contained in L(X,) and L(X_), respectively. However, the products e+!P, and

e~A-'P_ are defined on X. With the constant § appearing in Hypothesis (H1), eA+!P,

and e~4-'P_ satisfy the estimate
le= =P |lpx) + e+ Pyllpx) < Ce™™

6



for some constant C' and all £ > 0.

Finally, we define the interpolation spaces X¢ = D(A%) and X¢ = D(A%) for a > 0, see
[14] or [31], and set X% = X¢ x X2. The projection P_ obtained in Lemma 2.1 is then in

A

L(X®) for any o < 1, and the semigroups e 4+* and e~ 4-* satisfy

le™ P || (x,xa) + le” Py [ x, xoy £ Cmax(1,t7%)e™"

for some constant C' and all ¢ > 0.

We summarize the above discussion in the following lemma.

Lemma 2.1 Assume that Hypothesis (H1) is met. Equation (2.2) has then an exponential
dichotomy on IR in X. The projections P(t) = P_ € L(X) do not depend on t and commute
with A on D(A). Moreover, —P_A and (id —P_)A are sectorial operators such that their

domains are dense in R(P_) and N(P_), respectively.

From now on, we consider the intervals J = IR, J = IR", or J = IR™. The perturbation B(t)
appearing in (2.1) should satisfy the following hypothesis. The constant € > 0 appearing

in (H2) is small and will be specified in the statement of the main theorem below.

(H2) There exist a € [0,1), 9 > 0, t, > 0, and S,K € C%(J,L(X®, X)) with B(t) =
S(t) + K (t) such that [|S(t)||p(x« x) < € fort € J, and K(t) =0 for all t € J with [t| > t..

Hypothesis (H2) requires that B(t) is small for all sufficiently large |t|. Such an assumption
is needed as can be seen in the case that B(t) = B is independent of ¢ and Hypothesis
(H1) is met for the operator A. Indeed, the perturbed equation & = (A + B)z has then
an exponential dichotomy on IR™ or IR™ if, and only if, the spectrum of A 4+ B is bounded

away from the imaginary axis which can only be guaranteed if || B||(x« x) is small.

As mentioned in the introduction, some compactness properties will be needed later on.

We assume that either A has compact resolvent:
(H3) Suppose that the inverse A~' is a compact operator in L(X).
or else the operators K(t) appearing in (H2) are compact:

(H4) Suppose that there exists a Banach space Y C X with compact inclusion such that
K € C%(J,L(X*Y)). In addition, the restriction of A toY is a closed operator A :



D(A) CY — Y with domain dense in'Y which satisfies Hypothesis (H1) with X replaced
by Y.

Hypothesis (H4) may be useful when considering semilinear elliptic equations on IR x IR"
with localized solutions u(x,y) such that |u(z,y)| < Ce ¥ for some 6 > 0 uniformly in z.
Then B is a differential operator with coefficients decaying exponentially in y, and Y can

be chosen as a function space with exponential weights.

Finally, we assume forward and backward uniqueness of solutions of equation (2.1) on
the interval J. This hypothesis seems to be necessary for the continuation of exponential
dichotomies from a strict subinterval J of J to J. For instance, backward uniqueness of
solutions has been used in the context of parabolic or functional differential equations, see
[14] and [11], respectively. There, forward uniqueness is met automatically. For elliptic
equations, however, we also have to require forward uniqueness. Of course, for ordinary

differential equations, forward and backward uniqueness are always satisfied.

(H5) The only bounded solution x(t) of (2.1) or its adjoint equation on the interval J with
x(0) = 0 is the trivial solution x(t) = 0.

Here, the adjoint equation is given by

E=—(A"+B(t)")¢, ¢eX™. (2.3)

Note that the adjoint operators A* and B(t)* considered with range in X™* satisfy (H2),
(H3) and (H4) whenever A and B(t) do since X is reflexive, see [23, Section 1.10], [14,
Section 7.3], and [15, Chapter III].

2.2 Perturbation and continuation of exponential dichotomies

The following theorem, which is the main result of this paper, is stated for the interval

J=R".

Theorem 1 Suppose that Hypothesis (H1) is satisfied. Let J = IRT. Choose 1 such that
0 <n <0 where ¢ appears in Hypothesis (H1). There are then constants ey > 0 and C > 0
with the following properties. Assume that Hypotheses (H2), (H5) and either (H3) or (H4)



are met for some € < €y. Equation (2.1) has then an exponential dichotomy in X< on the

interval J = IR™ with rate 1.

Furthermore, the projections P(t) are Hélder continuous in t € J = IRT with values in

L(X®). The range E* of P(0) is uniquely determined and satisfies
z€ E°=R(P(0)) = z=P_z+ P.(So+ Kp)=

for some operators Sy and Ko in L(X®) with ||Sol|r(xe) < Ce and Ko compact. For any
closed complement E* of E* there exists a unique exponential dichotomy with R(P(0)) = E*
and N(P(0)) = E". In particular, closed complements of E* exist.

An analogous theorem is true for the interval J = IR™.

It is straightforward to generalize Theorem 1 in that perturbations of the non-autonomous
equation (2.1) instead of the autonomous equation (2.2) are considered. In that case, we
have to require that the solutions x*(¢;7, z) and z%(¢;7, 2) of (2.1) map X into X*t% for
some positive @ and are Holder continuous between these spaces. We will not state a result

but refer the reader to Section 4 where the necessary regularity properties are proved.

Theorem 1 shows that, up to factoring a finite-dimensional subspace of the stable subspace
E?, the range R(P(0)) = E* is close to the space R(P_). Hence, dimensions can be counted

on account of the compactness assumptions (H3) or (H4).

Corollary 1 Suppose that A and B(t) satisfy the assumptions of Theorem 1 on both inter-
vals, J = RY and J = IR™. Denote the projections of the associated exponential dichotomies
on RT and IR™ by P(t) and Q(t), respectively. The intersection R(P(0)) N R(Q(0)) is then

finite-dimensional.

If J = IRT and the perturbation B(t) tends to zero as t — oo, we expect the projection
P(t) of the exponential dichotomy on IR to converge to the spectral projection P_. This

is made precise in the following corollary.

Corollary 2 Suppose that A and B(t) satisfy the assumptions of Theorem 1 on the interval

J = IR" and, in addition,

IB®) |l pxe,x) < Ce t>0



for some constants C,0 > 0. The rate n appearing in Theorem 1 can then be chosen in the

range 0 < n < & and we have
IP(t) = P-|lp(xe) < Cle ™ +e7") t>0
for some constant C > 0. An analogous statement is true on the interval J = IR™.

Finally, we state a theorem characterizing equations having exponential dichotomies on the

real line IR.

Theorem 2 Suppose that the assumptions of Theorem 1 hold for both intervals J = IRT
and J =IR". Then, xz(-) = 0 is the only bounded solution of equation (2.1) ont € R if and

only if equation (2.1) has an exponential dichotomy on IR.

3 Proofs of the results in Section 2.2

We start with the proof of Theorem 1 which will occupy most of this section. The outline

of its proof is as follows.

First, we give a mild formulation of the problem, an integral equation which is satisfied
by the evolution operators z* (¢, 7; z) and z*(t,7;z). It is then shown that strong and mild
formulation are equivalent. Using the mild integral equation, we construct the subspace
E* = R(P(0)) consisting of bounded solutions of (2.1) on IR" using Fredholm’s alternative.
Then, for a fixed choice of E“, it is shown that the mild integral equation has a unique so-
lution (z°(-,7),z%(-, 7)) for any fixed 7 > 0 satisfying 2% (0, 7) € E". Finally, we verify that

these solutions are strongly continuous in 7 and that they satisfy the semigroup properties.

3.1 The integral formulation

We write z°(t; 7, 2) = 2°(t,7) and z%(¢; 7, 2) = 2%(¢, 7) whenever confusion is impossible.

10



The following mild formulation of equation (2.1) is the key.

e AN p 5 = 25(t,7) + e AP (0, 7) —|—/ +t=2)p, B(o)x* (0, 7) do
/te A-(t=0)p_B(g)a* (0, 7) do
—I—/ -t=9p_B(0)z"(c,7) do

t (.1)
eMl-Tp 5z = g tT) —A-tp_ g0, 7) /€A+t 0P+B( )zt (o, 7) do

Here, t > 7 > 0 in the first and 7 > ¢ > 0 in the second equation of (3.1). The pair
(xf,2%) is written z := (z°,2"). We will see that solutions of (3.1) are in fact the evolu-
tion operators arising in the definition of exponential dichotomies. In particular, we will
prove that the projections of the exponential dichotomy are given by P(t)z = z°(t;t, 2)
and (id —P(t))z = z"(t;t, z) for solutions z°(¢;7,z) and z%(¢; 7, z) of (3.1). The operator
z%(0;0,-) is determined by the choice of the complement E".

Notice that the integrands appearing in (3.1) are not small since B might have large norm.
Therefore, it is not possible to use the contraction mapping theorem for solving equa-

tion (3.1).

We have to show that the strong and the mild formulation are equivalent.

Lemma 3.1 Suppose that © = (x°,z") satisfies equation (3.1) for some z € X*. Then,
z%(-,7) and z"(-,7) satisfy (2.1) on the intervals J = [1,00) and J = [0,7], respectively.
Conversely, any two solutions x'(-), x2(-) of (2.1) on J; = [r,00) and Jy = [0,7] are
solutions of (3.1) with z°(t,7) = z'(t), z%(t,7) = 2%(t) and z = (1) + 2%(7).

Proof. Suppose z = (z°, z") satisfies equation (3.1). Then, by [14, Lemma 3.5.1], the inte-
gral operators are continuously differentiable in ¢ since the family B(t) is Holder continuous.

Thus, for t # 7, we can differentiate with respect to ¢ and obtain that

& (t,7) = (A+ B(t))z*(t,7) t>7
¥ (t,7) = (A+ B(t)z"(t,7) t<T.

Therefore, Az*(t,7) and Az"(¢,7) are continuous, too, and z*(¢,7) and z"%(¢,7) are solu-

tions.

11



Conversely, suppose that z'(t) and z?(t) satisfy (2.1). As z'(-) are bounded for i = 1,2,

they are solutions of
s(t) = e AP (s +/ =) p_B(o)a (0)do
_/too A+ =0) P, B(o)e) (o) do
2(t) = e tP_a?(0) + M P (1) + / t eA+t=9) P, B(0)z%(0)do
+/ (-9 p_B(0)22(0)do,

by integration. Setting z = z!(7) + 2?(7), we obtain equation (3.1). [

3.2 Construction of the stable eigenspace

Here, we will determine those initial values for which we can solve (2.1) for ¢ € IRT such

that the associated solution is bounded on IR*. Therefore, we set 7 = 0 in (3.1) and obtain
e AP 2 = 2f(t) + e AP zY( +/ +=)p, B(o)z* (o) do

t
—/ e =9 p_B(0)z*(0) do
0 o0
Pz = Poz"(0)— / e A+7 P, B(0)a’ (o) do
0

for t > 0. Note that we have omitted the argument 7 = 0 in z° and z%. Since we are

interested in the initial values with z*(0; z) = z, we set “(0) = 0 and obtain the equation

e A-tP_y = +/ +t=9)p, B(o)z* () do
/0 A-(=9) p_B(0)2* (o) do (3.2)
Pz = —/0 e~ 7P B(o)z*(0) do.

We will solve this equation in the following spaces. For a fixed choice of 5 € [0, ), and for

fixed 7 > 0, let

x5 = {zeC%r,00),X%); |z|xs = SUPy>, e"'t*7‘|ac(t)|xa < oo} (3.3)
X’}'L = {:I" € CO([OaT]aXa); |$|X,’f = SupOStST en|t77‘|$(t)|X°‘ < OO}
equipped with the norms |- [ys and |- |y, respectively, and set X, = X7 x A,
For fixed z € X“, we shall then solve
(,502’ = Toa;"” (3.4)

12



for z° € A, where
- t o0
(Toz®)(t) = z°(t) — / e =9 p_B(0)z*(0) do + / e+t P B(0)z*(0) do
0 t

and (pgz)(t) = e A=tP_z for t > 0. Thus, equation (3.4) coincides with the first equation
in (3.2). It is straightforward to verify that ¢y : X¢ — A&} is bounded. We show next that

Tp is Fredholm with index zero on Xj.

Lemma 3.2 The operator Ty € L(X3) is Fredholm with index zero.

Proof. It is straightforward to show that Tp is a bounded operator from X into itself.

The operator Tj is of the form Ty = id +I; + I», where I; and I, are the integral operators
t
(La*)(t) = — / e A~ P B(0)4 (o) do
0

(La')(t) = /t A=) P, B(o)at (o) do.

We have to show that To = id+1; + I is Fredholm with index zero. It suffices to show
that the operators I; can be written as I; = S; + K for j = 1,2 such that S; has norm less
than i and K is compact for j = 1,2. Indeed, the operator id +S7 + S is then invertible,

and hence Fredholm with index zero. Adding a compact operator preserves this property.

For any t* > 0, we may decompose I; = S1 + K; according to

t
_/ efA—(tfo-)PiB(o')xs(O') do for t < ¢t*
(les)(t) = 0 e .
A1) / e A~ P_B(o)z*(0)do for t > ",
0
0 for t < t*

(S12°)(t) = t
—/ e A== p_B(0)z*(0)do  for t > t*.
t*

Since S1z® and K z*® are continuous at ¢t = t*, they map A{j into itself. Moreover, for large
t*, we have

[S1llL(xs) < CtS;ItP 1B(#)||L(xe,x) < Ce
by Hypothesis (H2). It remains to prove that K is compact. We restrict K;z* to the
interval [0,¢*]. The proof for compactness of K; then depends on whether Hypothesis (H3)
or (H4) is satisfied.

First, assume that Hypothesis (H3) is met. It follows that K; maps A continuously into

CY%([0, %], X**) for some small x > 0, see [14, Lemma 3.5.1]. Since A has compact
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resolvent, the inclusion X¢™" — X¢ is compact. Thus, by Arzéla’s theorem, the space

CY%([0, %], X***) is compactly embedded into C°([0,t*], X¢).

Next, assume that Hypothesis (H4) is met. The proof is then similar to the one above.
Note that B(t) = S(t) + K(t) with S small. Subsume the part of K; associated with the
operator S(t) into S;. The remaining term of K; associated with K(¢) is compact. Indeed,
it maps X§ continuously into C%%([0,#*],Y*) by applying the arguments given so far to the
restriction of A to Y. Finally, C%*([0,*],Y?®) is compactly embedded in C°([0,#*], X%).

Thus, K is a compact operator since it is the composition of the above restriction to [0, ¢, ]

with the bounded multiplication operator associated with

id for 0<t<¢t*

e A-t-)p_ for ¢ <t.
The proof for I is similar. |
We denote the stable subspace at t = 0 by
E® := (Ty Y(R(%0)))(0) = {#z € X?; 3z* € X with 2°(0) = z and Tpz® = ¢oz}.  (3.5)

In other words, E° consists of all initial values yielding bounded solutions on IRT. Note

that E* is closed since T} is Fredholm, see Lemma 3.2, and R(@g) is closed.

Lemma 3.3 The equality
dim N(P_|ys) = dim N(Tp) = codim R(Tp) = codimy« P_E* = k*

holds for some k% < oo.

Proof. We start by showing the first equality. The mapping

N(Tg) = N(P,|Es)
z*(-) = °(0)
is well defined, continuous and one-to-one by the uniqueness assumption (H5). It is also

onto by construction of E*. This proves dim N (P_|gs) = dim N(Tp) = k < oo.

Next, we have dim N (Ty) = codim R(T}) since T is Fredholm with index zero.

14



In order to show the last equality, choose a complement V_ of P_E* in X%. By construction,
for any z € V_, the map t — e 4-!P_z is not contained in R(Tp). Thus the mapping
z2€V. e 4P z¢€ X; maps the complement V_ of P_E® in X one-to-one into a

complement of R(Tp) in Ag. This implies codimye P_E°® < codim R(Tp) = k.

We use the adjoint equation

§=—(A"+ B(t)")¢, §e(X7)” (3.6)

to show equality. Note that results obtained so far apply to the adjoint equation as well,
see the comments in Section 2.1. It is easy to see that

d

e, a(0) =0

for arbitrary solutions &(¢) and z(¢) of (3.6) and (2.1), respectively, where (-,-) denotes the

dual pairing. Since all bounded solutions x° satisfy the estimate
|25 (t)|xe < Ce "|2%(0)]|xa,

any bounded solution of the adjoint equation has to annihilate E° at ¢ = 0. Call E? the
subspace of (X™*)® consisting of initial values £(0) of bounded solutions for (3.6). Next, we
apply the arguments obtained thus far to the adjoint equation. The configuration space
(X*)® can be written as (X*)¢ x (X*)®. Therefore, using the arguments given so far, the
stable subspace satisfies
Hence, using that E; annihilates E°, we obtain
= dimN (Pil) < dim N (P )
— dim{(6,0) € (X*)® x (X*)2; (€,2.) = 0 Vo € P E*}
= codimxa (P_E*) < k.

Repeating the same argument for the adjoint system and using reflexivity of X, yields
k™ =dim N (P™|gs,) = k = dim N (P_|gs)

and

k= k** S COdim(X*)i PiE:: S k* S k,

where the strict inequality holds if and only if dim N(P_|gs) > codimye (P_E?). [ |
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3.3 Existence of z°(-,7; z) and 2°(-,7; z) for fixed T

In the next step, we construct solutions z*(-,7;2) and z*(-,7;2) for fixed 7. For this
purpose, we have to incorporate a fixed complement E* of the stable subspace E° into
the functional-analytic setting. Therefore, choose any closed complement E* of E® in X¢
subject to

codimye PrE* = dim N (Py[g) = k" < oo. (3.7)

To accomplish this, choose, for instance, closed complements E* of P_E® in X% and EY of
N(P_|gs) in X§. Note that these complements exist since P~ £° has finite codimension in
X% and N(P_|gs) is finite-dimensional, see Lemma 3.3. The space E* x EY C X% x X¢

is then a complement of E® in X¢ satisfying the above condition with £* = k*, since
dim N (P_|gs) = codimye P_E®* = k°
by Lemma 3.3. Other complements will be considered later.

For any closed subspace £ C X%, we define the closed subspace

XE = {(a°,0") € X x XY 2%(0) € )

of X8 x X,

For fixed 7 > 0, the right hand side of equation (3.1) defines an operator denoted T’

(Trx)*(t) = x°(t) + e - 'P_z™(0) + tooeA+(t_")P+B(a):rs(a)da
- /t e~ A=) p_B(0)z*(0) do + ’ e~ A== p_B(0)z"(0) do
. At b oA ) (38)
(T,2)5(t) = 2"(t) — e A~'P_g"(0) — / A+ P, B(0)a" (0) do

0.9

0
+ / e~ A (=0 P_B(e)a"(0) dor — / A+=9) P, B(0)2* (o) do,
t T
with ¢ > 7 in the first, and 7 > ¢ > 0 in the second equation. Similarly, the left hand side
of (3.1) defines a bounded operator ¢, : X¢ — XX+ by
(pr2)5(t) = e AT P 5 t>
(0 2)(t) = eAr TP, .

<
(A
o

v
<~
v
o

with bound independent of 7.

Proposition 1 For any fized 7 > 0, the operator T, defined by (3.8) is an isomorphism

, X
when considered as a map T, : XF" — X7 7.
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Proof. First, notice that T’; is well-defined and bounded independently of 7. Indeed, T’ is
bounded as an operator from X7 x X* into itself and its bound does not depend on 7. Also,
for any choice of E*, the range of T’ is included in X;X *, so T, is well-defined. Indeed, the
only term appearing in the equation for z¥ in (3.1) which does not belong to X is the

integral

0
/ ¢4~ (=9) p_B(0)2"(0) do.

t

However, this term vanishes at ¢t = 0.

We claim that
(i) N(T7) = {0} and
(ii) T is Fredholm with index zero for B = 0.

By arguments similar to those given in Lemma 3.2, we conclude from (ii) that 77 is Fredholm
with index zero for any perturbation B satisfying Hypothesis (H2) for € small enough. Note
that € can be chosen independent of 7 since it depends only on the norm of P_ and the
decay rates d and n. The first assertion then shows that T’ is one-to-one and thus, using
the second assertion (ii), onto. Therefore, by the closed graph theorem, T’ is continuously
invertible.
With a slight abuse of notation, but for the sake of clarity, we write elements (z*(-), z"(-)) €
X as (z°(-,7), 2" (-, 7)) indicating the domain of definition.
We first prove (i). Suppose that Tj(z*,z%) = 0 for some (z*,z%) € XF". This implies
x%(1,7) = —x*(7,7) by adding the two equations in (3.1). Thus, the function

~ z4(t,7) for 0<t<T

—z5(t,7) for T<t<o0

is continuous. Using the definition (3.9) of ¢, we claim that Z°(¢,0) satisfies

To(2°,0) = ¢o(2°(0,0)) = ¢o(z*(0, 7)), (3.11)
that is,
e A-P_gu(0,7) = #(t,0) +/ +H-9)p. B(0)i*(0,0) do
—/0 (=9 p_B(0)#*(5,0) do t>0  (3.12)
P20, 7) S /0 ¥ =449 P, B(0)# (0, 0) do £=0.
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By assumption, (z*, z") satisfies (3.1) with z = 0, that is

0 = &5(t,7) +eA-tP_gu(0,7 +/ +1=9)p, B(0)2* (o, 7) do
—/te -(t=9)p_B(0)z*(o, T da-i-/ -(t=9)p_B(0)z"(0, 1) do
v (3.13)
0 = tT)—e_A tP:U(OT) / eA+t=o) p ' B(o)x"(0, T) do
-I—/ -t p_B(o)z"(o, T) da—/TooeA+(t”)P+B(U)a;s(a,7) do

for t > 7 and ¢t < 7, respectively. Using (3.10) and distinguishing the cases ¢t < 7 and t > 7,

it is seen that (3.12) and (3.13) are identical.

Thus #°(t,0) satisfies (3.11). However, z°(0,0) = z%(0,7) € E* and, at the same time,

belongs to E* as it is a bounded solution of (3.1) at 7 = 0. Therefore z*(0,0) = 0 vanishes

since E* N E* = {0}. By the uniqueness hypothesis (H5), we conclude z*(¢,0) = 0 for all

t > 0, which proves (i).

It remains to prove (ii). For B = 0, the equation T (z*,z%) = (¢°,g") € XX reads
P.z*(t,7) = Pyg*(t,7), P_2%(t,7) = P_g*(t,7) — e A-'P_z"(0,7) (3.14)
Pyx%(t,7) = Pyg“(t,7), P g%(t,7) = e A-tP 2%(0,7).

First, suppose that g = (¢°,¢%) = 0. Then, for any z“(0,7) € E" satistying z%(0,7) €

N(Py|gu), we get a unique solution of (3.14) in X*". Note that dim N(Py|g.) = k“

On the other hand, we can solve for any g provided P,g¢"(0,7) € P E" which defines a

subspace of XX* of codimension k*. This proves (ii) and thus the proposition. [ |

3.4 Proof of Theorem 1

Finally, we show the assertions of Theorem 1. We consider a similar set-up as in the

previous section.

Similar to (3.3), we define the function spaces

Xs = {zeC%D*X%; |z|ys = SUP(,rye s M=l |z(t, 7)| xa < 00}
Xv = {ze€C%D" XY; |z|yu:= SUp(;,ryepu M=z (t, 7)|xa < 00}
with
D* ={(t,7);t>7>0} and D“={(¢t,7); 7 >t>0},
and set

XE = {(2°,3") € X* x X% 2%(0,7) € E for all 7 > 0}
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for any closed subspace E of X®. As before, the left hand side of (3.1) defines a bounded
operator ¢ : X* — XX+ by

(p2)*(t,7) = e A--TpP_z (t,7) € D*

(p2)(t,7) = eA=TPp (t,7) € D"
Let T be the operator defined by the right hand side of (3.1). We shall solve Tz = ¢z. We
claim that T : X¥" — XX+ is an isomorphism. Notice that T is well-defined, see the proof
of Proposition 1, and continuous.
Assuming that © € N(T'), we get z(-,7) € N(T;) for any 7 > 0 whence z(-,7) = 0 by
Proposition 1. Thus N(T') = {0}.
It is more difficult to prove that 7" is onto. Due to Proposition 1, there exists a unique family
x(-,7) satisfying Tz (-, 7) = @,z for any fixed 7. This family satisfies Tz = ¢ provided
z(-,-) € XP". In particular, we have to show that z(-,7) is continuous in 7 and decays
exponentially uniformly in 7. Denoting the unique solution (z*, z") of T (z*,z") = @,z by

(x®(t;7,2), 2" (t; 7, 2)), we will prove the following.

(i) Invariance and semigroup properties.

2 (tyo,2% (037, 2)) = 25(t; 7, 2) t>o0>71
2 (t;o,2%(0;7,2)) =0 o<t,T
x%(t; o, (037, 2)) = 2%(t; 7, 2) t<o<rT
% (t;o,2%(0;7,2)) =0 o>t

(ii) Continuity.

z%(+;+, z) and z"(-;-, z) are continuous.

(iii) Exponential decay.

|2 (857, 2) [ xo < Ce 7 2] xe t>7

24 (t; 7, 2) | xa < CeM=71 |z xa t<T.
|z (; T,

First consider (i). Let o > 7, and define 2 := z°(0; 7, z) and

5(t) i=a2%(t;0,2) = 25(t; 0,25 (o 7, 2 t>o
v(0) = 2°(050,2) = (150,057, 2) 1o
y“(t) == a"(t;0,2) = z"(t; 0,2° (03 7, 2)) t<o.
By definition, (y*,y"*) = (x*, ") (+; 0, 2) satisfies T, (y*, y*) = ¢, 2, that is,
e APz = (T,(y%,y")*(2) t>o (3.16)
MNP = (T(yy") () t<o,



where (T,y)® and (T,y)" are the components of T,y in X = X2 x XL

On the other hand, using the definition 2 = z°(0; 7, z), we obtain
3 = e AP e TP g (057, 2) — / e A== P_B(p)z"(p; T, z) dp(3.17)
0

o0 g
- / e 7P P B(p)a (p; 7, 2) dp + / e =P B(p)z*(p; 7, 2) dp.
Substituting (3.17) into (3.16) yields

e A-0-1p_, = /0e*A—(t*p)P_B(p)mu(p;T,z)dp
- [ e AP By (i) dp
r (3.18)
+em A P_at (057, 2) + (To (y*, ™)) (1)

o0
0 = [ IR (i dp + (Tl y")" 1),
ag
for t > o and t < o, respectively. Regarding (y*,y") as unknowns, we can uniquely solve

(3.18) since Ty, is invertible. Thus the unique solution (y*,y") is given by (3.15). On the

other hand, it is straightforward to calculate that

yi(t) = z%(t;7,2) t>o
y“(t) = 0 t<o
satisfies (3.18) as well, proving two of the four identities in (i). The remaining two are

proved in a similar way, see also [25].

Next, we prove (ii). This is achieved by comparing the solutions z(-,7 + h) and z(-,7) for
small h. First, we take h > 0 and fix z € X with |z|xo = 1. The case h < 0 is proved

similarly. Define

z*(t, 7+ h) t>17+h
ypt) =

z—a"(t, T+ h) T+h>t>T
yp(t) = z"(t, 7 + h) t<T.

Then, y, € X" since y; is continuous at ¢ = 7 + h. With an abuse of notation, we will

denote the norms |- |ye by || - || in this paragraph. We claim that the estimate
[ T7yn — Tra (-, T) < o(1) (L4 llyall) (3.19)

holds for some function o(1) satisfying o(1) — 0 as h tends to zero. Assume for the moment

that (3.19) is true. Since the inverse of T’ is continuous, we then have
lyn =2 ()l < CollTryn — Tra(, 7| < o)1+ [lynll) < o)A + lyn —2(,7) |+ llz(, 7))
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for some constant C; > 0 independent of h which we subsume into the o(1) term. Therefore,
we conclude that ||y, — z(-,7)|| = 0(1) — 0 as h tends to zero. Thus, in order to prove (ii),
it suffices to prove (3.19).

Note that, by definition, T ypz(-, 7 + h) = @;4. We compare Ty, with T pz(-, 7 + h).

Consider ¢ < 7 first. Using equation (3.1) and the definition of y, we obtain

(Tryn)"(t)

T+h
(Tsnalsr + W)@~ [ IR B(o)s 0,7 + ) do
T+h i
- / eA+=9) P, B(0) (2 — #*(0, 7 + 1)) do
=MD o(1) O (1 [lyal),

since the arguments in the integrals are bounded by ||z(-,7 + h)|| which is bounded by
1+ |lyn|l- Next, consider ¢ > 7 + h. Then

T+h
o)’ (0) = (Teanr,m+0)0) = [ 0P Bo)( (o, + 1) do
+ e~ A= p_B(o)z%(0, T + h) do
T+h
= ¢ TP 2+ 0(1) O(e T (1 + [lyal)

holds. It remains to consider 7 < ¢ < 7 + h.

(Tryn)®(t) = z-— T+hx( T+ h))"(t) - /Tt e A== P_B(0)(z — z"(0,7 + h)) do
+/ -0 p. B(or) zda+/ -0 p_B(o)a" (0, 7 + ) do
z—eMUTP 24 0(1) O(e T (1 lynl)-

Summarizing the above inequalities and using Trz(-, 7) = ¢,, we obtain

(Tryn)®(t) = (Tra(,7))°(t) =
e+ (=) (e=A+hp, — P )z + R5(t) t>7+h
7z —eM=T-Mp 5 eA-(=T)P_5 4 R5(t) T+h>t>T
(Tryn)"(t) — (Tra(,7)"(t) = e TP — =4 hP)z + RU(1) t<r
for some remainder term with norm ||R|| = o(1) (1 4 ||ys||). This completes the proof of

inequality (3.19).

It remains to show (iii). In order to prove uniform exponential decay for z*, it suffices
to consider t,7 > t* for some t* large. Indeed, as z°(t;7,2) = z%(¢;t*, 25(t"; 7, 2)) for
t > t* > 7, we can employ boundedness of z*(¢;7,2) on t,7 < t* and obtain the result in

full generality. Up to this point, we have investigated the operator 7" on the interval [0, c0).
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However, we may as well restrict to [t*,00). On this smaller interval, 7" is continuously
invertible as 7" = id +I for some integral operator I which is small in norm on [t*,00) as
B is small, see the proof of Lemma 3.2 or [25]. Thus the operators z*(¢; 7, -) have uniform
exponential bounds for t > 7 > t*. The arguments for % are similar. Note that, by
calculating the norm of I, the constant ¢y determining the largest admissible norm of B(t)

on [t*, 00) depends only on the choice of the exponent 7.

Thus, T" is onto and therefore continuously invertible. Finally, we construct the exponential
dichotomy. Let
P(t)z = z°(t:; t, 2).

By the semigroup property (i), P(t) is a projection. Moreover, P(t) is bounded as 7! is.
The invariance properties of R(P(t)) and N (P(t)) follow immediately from the invariance
property (i). The uniform exponential bounds can be obtained from the uniform bounds

on z* and x“.

Until now, we have only considered complements E* which meet (3.7). Exponential di-
chotomies actually exist for any complement E* of E® and not just for the ones satisfying
(3.7). Indeed, let z® and z* be the evolution operators for some complement satisfying
(3.7) and denote the associated projections by P(t). Choose an arbitrary complement E“
of E* and let L : R(id —P(0)) — R(P(0)) be a bounded operator such that graph L = E".
Define

P(t) = P(t) —2°(£;0,-) Lz"(0;t,-) t>0
P(t;r,) = z5(t;7,-) P(1) t>7>0 (3.20)
i(t,) = (id—P(t)) 2% (t;7,-) (id —P(1)) T>t>0,

then Z is an exponential dichotomy of (2.1) such that R(P(0)) = graph L, see [25]. Note
that we still have R(P(0)) = E° with E* defined in (3.5).

Finally, by inspecting (3.1) and (3.20), we have

o
zelb’ = z=P z- / e 7P, B(0)z* (030, 2) do
0

as z%(0;0,z) = (id—P(0))z = 0. It has been proved in Lemma 3.2 that the integral
operator is the sum of a compact operator and an operator with norm less than Ce for

some constant C independent of e.

This completes the proof of Theorem 1.
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3.5 Proof of the corollaries and Theorem 2

Proof of Corollary 1. The corollary follows easily from the characterization of the stable

subspaces in Theorem 1. [ |

Proof of Corollary 2. We prove the corollary for complements E" satisfying (3.7).
Using the expression (3.20), it is straightforward to show the statements of the corollary

for arbitrary complements.

It is straightforward to verify that the right hand side of the integral equation (3.1) is
well-defined and an isomorphism from X*" to XX+ even for n = § provided B(t) decays

exponentially as t — co. This proves the claim concerning the choice of 7.

The projection P(t) satisfies
t

P(t)z = P z—e P 2%0;t,2) — / e~ A== p B(o)z%(o;t,z)do  (3.21)
0
o0
+ / e~ A+ =)p. B(0)z* (031, 2) do.
t

We will prove the corollary using the assumption that B(t) decays exponentially with rate

6. Using (3.21) and Theorem 1, we have

IP(t)z — P_z|xa < e A="P_z"(0;¢, 2)| xo + \ /0 t e A== P_B(5)z"(03t, 2) da‘X
+| /t " e MO P B0y (031, 2) do|
< Ce v + OO ‘ /Ot(l 4 (= o) %) 0=0) g0 nlt=0) da‘ Ers
00| [Tt 0) e 00 07D o]

< C’(e_(5+")t + e_et) 2| xa,

which proves the corollary. |

Proof of Theorem 2. If (2.1) has an exponential dichotomy P(¢) on IR, any bounded
solution z(t) satisfies (id —P(0))z(0) = 0, since z(¢) is bounded for ¢ > 0. Similarly,
P(0)z(0) = 0 on account of boundedness of z(¢) for ¢ < 0. Therefore, z(0) = 0, which

implies z(-) = 0 by the uniqueness hypothesis (H5).

Assume conversely, that z(-) = 0 is the only bounded solution of (2.1) on IR. The mild
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formulation (3.1) can be written as

T~z = ¢p7°¢ te Rt
Trx = pt¢ telR™.

Here, 7" and " denote right and left hand side of (3.1), respectively, for ¢ € IRT, while
T~ and ¢~ correspond to the mild formulation on J = IR™. We denote the associated
projections of the exponential dichotomies by P(t) and Q(t) defined for ¢+ € IRT and ¢ €
IR™, respectively. We have R(P(0)) N R(id —Q(0)) = {0}, since, by assumption, equation
(2.1) has no bounded non-trivial solution on IR. Therefore, R(id —Q(0)) is a complement
of R(P(0)) whence we can construct an exponential dichotomy on IRT with associated
projection P(t) such that R(P(0)) = R(P(0)) and N(P(0)) = R(id —Q(0)). By the same
token, an exponential dichotomy exists for ¢ € IR™ such that the associated projection at

t = 0 is again given by P(0). Thus, the projections are continuous at ¢ = 0, whence we

obtain an exponential dichotomy on IR. [ |

4 Regularity and nonlinear equations

From now on, we will use the notation

O(t, 1)z = x°(t;7,2), t>T

U (t,T)z = x(t;7,2), t <,

where z € X® and ¢,7 € J. Indeed, in the last section, we considered the solutions z*(¢; 7, z)
and z%(t;7,z) for fired z € X®. Here, however, z will vary. We therefore emphasize the

operator-point-of-view and choose a notation which is closer to semigroup theory.

In this section, we will verify some additional properties for the families ®°(¢,7) and ®“(¢t, 7)
of evolution operators where t,7 € J with t > 7 and ¢ < 7, respectively. The statements
are similar to the parabolic case, where the ranges R(®"%(¢,7)) are finite-dimensional for
t <7, see [14, Theorem 7.1.3]. However, the Gronwall-type lemma which is the main tool

in Henry’s proof is not available in the present setting.

Theorem 3 Assume that A and B(t) satisfy the conditions of Theorem 1 with J = IRT.

The evolution operators ®°(t,7) with t,7 € J and t > T then have the following properties.

24



(i) For t > 7, ®%(t,7) has a bounded extension to X satisfying ®°(t,t) = P(t) and
O5(t,0)P% (0, 7)2 = ®*(t,7)z for allt > o > 7 and any z € X.

(ii) For fired 0 < B < 1, ®5(¢,7), t > T is strongly continuous in (t,7) with values in

L(XP).

(iii) For any 0 <+, B < 1, there is a constant C > 0 such that ®*(t,7) € L(X7,X?) for
t>7 and
19 (£, 7). xv 8y < Cmax(1, (£ — 7)) e 1),

Analogous properties hold for ®“(t,7) with t,7 € J and t < T.

Proof. As mentioned above, the assertion of the theorem is similar to [14, Theorem
7.1.3]. However, the weak integral formulation (3.1) involves integrals over intervals [0, ¢]
and [t,00). Moreover, these integrals are not small. We therefore cannot use the Gronwall
lemma but have to adopt a different strategy. For the sake of clarity, we take the exponential

weight n = 0.

First, we prove (i) and (ii). Note that the claims are true if 5 > « by applying Theorem 1 to
the space X?. Thus, we would like to solve the equation Tz = ¢z for z € X? with 8 < a.

However, @z is continuous with values in X only for ¢ # 7, but satisfies an estimate
(p2)° (¢, 7)|xe = [e A= P z|xa < Clt = 717|2| x5,

as t — 7, and similarly for (pz)“(t).

The key idea is to subtract the part coming from the autonomous equation, that is the

operator ¢z, from the solution z(¢,7). So, define
y' (b7, 2) = w(t;7,2) — (p2)(t = 7).
The new unknown y! satisfies the equation 7'y = 'z where ¢! is given by
o'z = (id =T)pz.

Again, the crucial point is continuity of ¢! as t — 5. We claim that ¢! is continuous with

values in X7 for any v < 1 — a + (3, and satisfies the slightly better estimate
(9*2)*(t,7)|xe < Ot = 7|7~ F1 "z,
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as t — 7, and similarly for (¢'2)“. Assuming that the claim has been proved, we may

proceed by induction. Let

k—1
Y=z — Z(id —T)'pz
i=0
which satisfies the equation
Ty* = (id =T) 2. (4.1)

By the same arguments as in the first step, we see that the right hand side of this equation

is continuous for z € X” with values in X* provided k(1 — a) > a — 8.

So, we have split the solution z in a well-behaving, continuous part y* and explicitly given
discontinuous parts (id —7)%pz, which behave better than ¢z. Choosing k large enough,

we can solve equation (4.1) as its right hand side is continuous with values in X .

From this observation, (i) and (ii) follow immediately. Indeed, the explicit part

E—1 .

Z (id=T)'pz

i=0
extends to X? for any < a. Therefore, it suffices to prove the smoothing property for
the operators (id —T')".

The function o'z = (id —T)pz is given by
o0
(oL2)5(t,7) = — / A+=0) P, B(o)e A~ "D P_4 do
t
+/ —A-(t=9)p B(o)e ("N P_zdo
—/ e~ A-t=p_B(0)e "+ P, 2 do, t>T
0
t
(pr2)%(t, T) =/ A+ p B(o)e M+ P 2 do
0 T
/ —A

+/ +t=9)p, B(o)e 4-(""T P_z do, t<m,

=) p_B(o)e M+ P, zdo

see (3.1), as the exponential terms disappear due to the definition of pz. Note that this
property is preserved under the iteration (id —T')* for the same reason as in the proof of

Proposition 1.

First, consider the integral

(ho)(t.7) = [ =P BloYg(o ) do
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where g(t,7) is continuous for ¢ > 7 with values in X satisfying
l9(t,7)|xe < Clt— 7|7

as t — 7 for some 6 > 0. Notice that I; is continuous for ¢ > 7 with values in X¢. We

estimate
() +holxe < | [ M=, B(o)g(o,r) do]
T+h
oo
< C / AT e L b — 0| |7 — o] da‘
T+h

as h — 0 for some constants C' and C' independent of h. Thus, as claimed, the exponent
is decreased by 1 — «. The calculations for the other integral operators are similar, and we

will omit them.

The proof of (iii) is completely analogous to the above and we will omit it, too. [ |

Theorem 1 and 3 are used for obtaining existence of solutions of inhomogeneous linear
equations

@ = (A+B(t)z + f(t) feC™ (R, X), 9>0
as well as nonlinear equations
&= (A+ B(t)z + G(t,z) G e CH(RT x X%, X)
with G(¢,0) = DG(t,0) = 0. The associated weak formulation is given by
e AP 7 = %t 1)+ e AtP_z™(0, 1)
+/ A=) p, (B(U):US(U,T) + F(o,2° (U,T)))da
/ A= p_(B(o)a*(0.7) + F(o,2°(0.7)) ) do
/ e A~ P_(B(0)s"(0,7) + F(0,5"(0,7))) do
MNP s = gt T) —e 1P 2*(0,7)
/ e+t B(U):Uu(O', T) + F(o,z2"(0, T)))dO'
/ e A-(-0)p_ (B( )a"(0.7) + F(0,2"(0,7)))do

_l_

(4.2)

-

t

/ - VP, (B(0)e*(0,7) + F(o,2(0,7)) ) do,
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where F' is replaced by either f or G. In the former case, using Theorem 1 and 3, existence
is easily obtained, see [14, Theorem 7.1.4]. In the latter case, the right hand side of (4.2)
defines a differentiable map from X" to XY*+ with n = 0. Also, the linear part is invertible
as T is. Thus, we may employ an implicit function theorem and obtain solution operators
O5(t;7,2) and ®%(¢;7,2) for t > 7 and 0 < t < 7, respectively, defined for small z € X¢

and depending smoothly on z.

5 Transverse homoclinic orbits in periodically perturbed

equations

In this section, we extend the Melnikov theory, see, for instance, [18] or [22], for intersections
of stable and unstable manifolds to the general class of differential equations investigated
in the previous sections. Except for the proof of Theorem 4, we can closely follow the
presentation in [22], and will only indicate the changes necessary to adapt the proofs given

there to the situation studied here. We refer to [2] and [24] for proofs for parabolic equations.

Throughout this section, we assume that X is a reflexive Banach space, and A is a closed
operator on X with compact resolvent satisfying Hypothesis (H1) stated in Section 2.
Consider the following small non-autonomous perturbation of an autonomous nonlinear
equation

& =Az+ G(z) + pH(t,z,p) (z,p) € X* xR (5.1)

for some fixed € [0,1). Suppose that G € CH1(X?, X) with G(0) = 0 and DG(0) = 0.
The perturbation H belongs to C!(IR x X x IR, X) such that, in addition,

t — DH(t,z, 1) and x — Dy H(t,x, 1)

are locally Holder and Lipschitz continuous, respectively, in the operator norm. Further-

more, H is periodic in ¢ with period p, that is H(t + p,-,-) = H(t,-,-) for all ¢ € IR.

(H6) Assume that A meets Hypothesis (H1) and has compact resolvent. Suppose that
equation (5.1) has a homoclinic orbit for p = 0, that is a solution q(t) € C*(IR, X%) N
C(R, X') with q(t) — 0 as t — £oo. We assume that the operator DG(q(t)) satisfies

Hypothesis (H5). Finally, assume that ¢(t) is the only bounded solution (up to constant
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multiples) of the variational equation
&= Az + DG(q(t))z (5.2)
along q(t).

Note that Hypothesis (H2) is met for the variational equation for any € > 0 since ¢(t) — 0.
Hypothesis (H3) is also satisfied since the resolvent A~ € L(X) of A is compact. With

these assumptions at hand, equation (5.2) and its adjoint equation
§=—(A"+DG(q(t)")y (5.3)

have exponential dichotomies on the intervals IRt and IR~ by Theorem 1. Moreover, the
results of Section 4 apply to the nonlinear equation (5.1), and all bounded solutions close

to the homoclinic orbit are given by (4.2).

It is then a consequence of Hypothesis (H6) that the adjoint equation (5.3) has a unique,

up to scalar multiples, bounded solution v(¢). The proof is similar to the one given in [22].

We define the Melnikov integral

o
MB) = [ w0, H(t - B,a(2),0)) (54)
—00

for B € S' = [0,p]/ ~. Note that M is C' in 8. The next theorem characterizes transverse
intersections of the stable and unstable manifold of zero (more precisely, of the unique

hyperbolic p-periodic orbit p-close to zero).

Theorem 4 Assume that Hypothesis (H6) is met. If there is a number By € S' such that
M(By) =0 and M'(By) # 0, then there exist positive constants g and &y such that equation

(5.2) has a unique solution x(t,u) for any p with 0 < |u| < po satisfying

sup |z (t, p) — q(t + Bo)|xa < do.
telR

In fact,

sup |z (t, ) — q(t + Bo)|xa = O(n)
telR

as p — 0 and the variational equation
§=(A+ DG (x(t,p)) + pDaH (8, x(t, 1), 1)y (5.5)
has an exponential dichotomy on IR.
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Proof. First, we prove the existence of x(t, ). We introduce a new variable z by
z(t) = q(t + B) + z(t + ) B € R,
and write equation (5.1) in the form
z2=Az+ DG(q(t))z + F(t,z,u, B). (5.6)
with

F(t, 2,1, 0) = G(g(t) + 2) = G(q(t)) = DG(q())z + pH(t = B,q(t) + 2, ).

On account of Theorem 1 and the hypotheses made, we know that the linear part of equation
(5.6), that is equation (5.2), has an exponential dichotomy on IRT and IR™, respectively.
As in Section 4 and Theorem 3, we denote the solution operators of (5.2) by ®§(¢,7) and
QU(t,7) for t > 7 € IR" and 7 > t € IR, respectively, and by ®%(t,7) and ®4(¢,7) for
t <7 € R and 7 <t € IR7, respectively. We decompose the subspaces of bounded

solutions for ¢t — o0 according to
R(®7(0,0)) =Yy ®spang(0) and  R(®5(0,0)) = Y3 @ spang(0).

Solutions of the nonlinear equation (5.6) are bounded on IR™ and IR™, respectively, if and
only if there exist £; € Y7 and & € Y5 such that
t
at) = S04+ | W Frx().u8) dr

- q)zlb(taT)F(Ta Z1 (7—)7”75) dr for t € |R+
t

t
2l) = BHE0&+ [ ()00 dr
[ @it )0 ) dr for t€ R,

respectively. Thus, for any & € Y] and & € Y3 near zero, we get bounded solutions
21(t;€1, B, 1) and 2o(t; €2, B, 1) of equation (5.6) for t € IRT and ¢ € IR™, respectively, by
the implicit function theorem, see Theorem 3. The maps (&1, 5, 4) — 2z1(¢; &1, 8, 1) and
(é2, B, 1) — z2(t; €2, B, ) are C*. Next, for any small u, we seek £ = £ + & € Y1 @ Ya and
B € St such that z1(0;¢, 8, 1) = 22(0; &, B, ). This is equivalent to solving the equation

0
(©0,0) ~050,0)¢ = [ 50, 7)F(r (7., B ) B) dr (5.7)
+ [ B0, 1) (r, 21 (1. €, o 1), 1, B)
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According to the proof of Theorem 1, L = ®§(0,0) — ®4(0,0) € L(X®) is a Fredholm oper-
ator with index zero, null space N (L) = span ¢(0) and range R(L) = {n € X%; (¢(0),n) =
0}. Therefore, using Lyapunov-Schmidt reduction, it follows that equation (5.7) is solvable

near § = fy if and only if

[ i), 1t - o). 0) e = 0

—00

[ o), DaE G~ a0, 0t £ 0

—00
for some By € S'. The solution is given by z(t, ) = q(t + B(p)) + z(t + B(p), u) with
B(-) € CH{((—po, pt0),R) and B(0) = By. This proves the first part of the theorem.

It remains to show that equation (5.5) has an exponential dichotomy on IR. On account of
Theorem 1, equation (5.5) has an exponential dichotomy on IR™ and IR™, respectively, for

any small .
For a bounded solution y(t) of equation (5.5), we set y(t) = @ (¢, u) + w(t) such that
i = (A+ DG(a(t, ) + pDpH (b w(t p) 1) Jw = pDeH (b a(t 1), ) (5:8)
= (44 DG(g(t, p))w + (DG(x(t, p)) — DG(g(t, p)) +
D H (8, 5(t, 1), 1) )w = pDyH (t, (¢, 1), 1)

= (A4 DG(g(t, w))w + O(pyw — pDyH (¢, 2(t, 1), ).
Lyapunov-Schmidt reduction shows that this equation has a bounded solution if and only
if

M(p) = / Z (9t + B(w)), (DG(x(t, 1) — DG(g(t + B())) +
D H (@ (t, 1), 1) (b 1) — pDH (t o (t, 1), 1) ) dt

_
where w(t, 1) = O(y) satisfies the invertible part of (5.8). Therefore,
W) = = | (5(2), DiH(E = oy alt), ) e+
/ Z ((t+ Bw), (DG (w(t 1) = DG(g(t + B())) + pDoH (b, w(t, 1), ) ) w(t, 1) —
p(DeH (k2 (t, 1), 1) = DoH (E gt + o), ) ) .

The first integral is M'(5y) which we keep. The other integral is of order o(u). Indeed,
DG(z) is Lipschitz continuous in z, w(t, ) = O(u), and z(t,u) — q(t + B(p)) = z(t, n) =
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O(p), whence the term involving w is of order O(u?). The difference Dy H (t,z(t, 1), 1) —
Dy H (t,q(t+f0), 1) = o(1) converges to zero as p tends to zero since (3 is C' and D, H (t, x, 1)

is continuous in x. Thus, we have

M(p) = —M'(Bo)p + o(p),

which is non-zero since M'(y) # 0. An application of Theorem 2 then shows that equation

(5.5) has an exponential dichotomy on IR. [ |

We proceed by proving the shadowing lemma, see also [2] for a proof for the parabolic case.

We counsider the slightly more general nonlinear equation
&= Azx+ F(t,x) (5.9)

with F € BC'(IR x X%, X) for some « € [0,1) and D, F(t,-) being Lipschitz. Note that F

is not necessarily periodic in .

Theorem 5 Assume that A satisfies Hypothesis (H1) and has compact resolvent. Fur-
thermore, suppose that equation (5.9) has solutions u_p, (t), ug(t), and un,(t) for —n; <
k < ngy defined on the intervals I_,, = (—00,t_pn,], I = [tk—_1,tk], and I, = [tp,,00) for

—n1 < k < ng, respectively, such that

(i) the variational equation
Y= (A+ Do F(t,u(t)))y

has an exponential dichotomy on I with projections Py(t), exponent 6 and bound K for

—ny < k < ngy. Also, Hypotheses (H2) and (H5) are met for the variational equation.
(i3) [ty —tp—1] > 6 ' In3K.

Then, there exists a positive constant ey such that the following holds. For any e with

0 < € < € there exists a constant v(e) > 0 such that, if in addition

(113) |ugk—1(tg—1) — uk(te—1)|xe < v(e), and

(1) |1 Pe—1(tg—1) — Pr(tr—1)llnxey < vle),

are met, equation (5.9) has a unique bounded solution z(t) on IR satisfying
2(6) — uet)| e < ¢

fort € I and —ny <k < ns.
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Proof. We define a function wu(t) for ¢ € IR by u(t) = ug(t) for t € Iy. Then, u(t)
is Holder continuous except at the points tx. For any fixed v > 0, there is a function
0(t) € L*(IR, X) with sup, g |6(¢)|x < v such that F'(u(t),t) + 6(t) is Holder continuous

on IR. We approximate u(t) by the unique bounded solution z(t) of the equation
i = Az + F(u(t),t) + 0(t).

Since the equation z = Az has an exponential dichotomy on IR, the above equation has a

unique solution. We have the estimate
lu(t) — z(t)|xe < C(y+v)
for some constant C' > 0. Thus, for v and ~y sufficiently small, and due to Hypothesis (ii),
§=(A+ D, F(t2(t))y

has an exponential dichotomy on IR, see [22] for the details.

Finally, we introduce new coordinates z(t) = z(t) + w(t) and write equation (5.9) in the

form

W o= (A+ DyF(t,2(t))w + F(t,2(t) +w) — F(t, 2(t)) — DyF(t, 2(t))w

+F(t,z(t)) — F(t,u(t)) — 0(t).

For v and v small, we thus obtain a unique solution of equation (5.9) employing an implicit

function theorem. | |

We now define the Bernoulli shift. Let N be a positive integer and
Sy = {(ar)pez; ax €{0,..,N — 1} for all k € Z}

with the product topology. The shift o : Sy — Sy, defined by (o(a))r = aki1, is a

homeomorphism.

Corollary 3 Assume that the hypotheses of Theorem 5 are met and that, in addition,
F(t,x) is periodic in t with period p. Moreover, suppose that (5.9) has a bounded solution
v(t) and a T-periodic solution u(t) such that
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(i) the variational equation

y= Ay + Dy F(t,v(t))y
has an exponential dichotomy on IR and
(i) |v(t) — u(t)|xoa — 0 as |t| = oo.
Then there are €9 > 0 and functions My (-) for each N € IN such that, for given € with

0 <e<e and m > My(e) the following holds. For any a € Sy, equation (5.9) has a

unique bounded solution x4(t) defined on IR satisfying
|za(t + (2k — 1)mT) —v(t + axT)|xo < € (5.10)

for t € [=mT,mT] and for all k € Z. The map ¢(a) = x4(0) is a homeomorphism onto a

compact subset X of X%. Furthermore,

xq(2mp) € &
xa(2mp) = xa(a)(o) = ¢(U(a))

is true for any a € Sy.

Proof. The conditions of Theorem 5 are satisfied for k € [—ng, ny] and ny € IN if we define
up(t) = v(t + apT — (2k — 1)mT) and t; = 2kmT for m large enough. Thus, for any ny,
we obtain a solution z,,, that satisfies inequality (5.10) for k € [~ng,no]. The sequence
of solutions {zg, },,cN is a Cauchy sequence on compact intervals and converges to the
solution z,. The remaining part of the proof is similar to the one given by Palmer [22,

Corollary 3.6]. [ ]

We can interpret the statement of the corollary as follows. The solution v(¢) has N parts

which correspond to the time segments
[—mT,mT], [(-m +1)T,(m+ 1)T],...[(-m+ N —-1)T,(m+ N —1)T)].
The solution z,(t) shadows one of these N parts of v(¢) in each time segment
[(2k — 2)mT, 2kmT]

but switches randomly from one part to another.
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6 An application to semilinear elliptic equations

In this section, we apply Melnikov’s method as developed in the last section to semilinear
elliptic equations. First, we have to relate the abstract equation investigated in the previous
sections to elliptic equations. Then, elliptic equations on infinite cylinders are considered.
We state conditions guaranteeing that the theory developed in the present paper applies.

Finally, a concrete example on the infinite cylinder IR x (0, 7)™ is presented.

6.1 Abstract elliptic equations

Let Y be a Hilbert space and L : D(L) C Y — Y a densely defined, strictly positive and
self-adjoint operator. Moreover, denote the fractional power spaces associated with L by

Y?. In particular, Y! = D(L). Finally, suppose that
1+ @
g Y xYE Y

is a nonlinearity of class C* for some « € [0,1) which we will fix from now on. We are

interested in the abstract elliptic equation

Uy — Lu = g(u, uy) z € IR (6.1)
for u € Y.
Consider the operator

A= 2 i;l L YIxY? 5YExY, (6.2)

then Hypothesis (H1) is met. In fact, the projections Py are given by

1

1 id £L 2

Pp=- 1 YT XY 5 YExY,
2\ 41z id
and the operators A4 by
1 [ Lz +id
AL == .
2\ 4L L»
The fractional powers are then given by
o 1 $ 4L
+ =5 o o
2\ 217" LS



1+

with associated fractional power spaces X* =Y 2 X Y. Consider the equation

d
ke Av + G(v) (6.3)

with v = (u,u;) and G(v) = (0,g(v)). Since g : Y3 xYS 5 Vs C*, we see that
G : X* = X is C* as well. Furthermore, it is straightforward to show that A has compact

resolvent whenever L has.

Therefore, it suffices to verify the assumptions made on L and g stated at the beginning of
this section in order to apply the results in Section 2 and 5 to equation (6.3) which is (6.1)
written as a first order system in . We emphasize that similar statements hold if (6.1) is

of fourth order in z, and refer to a forthcoming paper for the details.

6.2 Semilinear elliptic equations on infinite cylinders

Consider a scalar semilinear elliptic equation

~

Ugz +Ayu+g(yauau.’liavyu) +:U‘h($7yauau.’l:7vyu) =0 (xay) € IR x €2 (64)

Here, i1 is a small real parameter, h is periodic in z with period p and  C IR" is an open
bounded domain with smooth boundary. For the sake of simplicity, we consider Neumann

boundary conditions
Oyu(z,y) =0 (z,y) € R x 0Q (6.5)

where v denotes the outer normal of 9. Let Y = L?(Q). Then L = —A, 4+ u is a

self-adjoint and positive operator with compact resolvent and dense domain
Y!=D(L) = {u € H*(Q); d,u = 0 on 0}

in L?(€2), see, for instance, [9]. Finally, we assume that the nonlinearities g and h defined
by
(g(vi,v2))(y) = 9(y,v1(y),v2(y), (Vyv1)(y))
(h(z,01,v2))(y) = h(z,y,v1(y),v2(y), (Vyo1)(y))
map the space Y xYS smoothly into L?(Q) for some «a € [0,1). Depending on the
dimension of €2, this may require some nonlinear growth restrictions for which we refer to

the literature, see, for instance, [1, Chapter 9], [29, Chapter II], and [27, Chapter 7]. We
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remark that the spaces chosen above always allow for linear dependence of ¢ and h on the
gradient u, of u in the unbounded variable z. This is important when the elliptic equation

describes travelling waves of parabolic equations travelling in the z-direction.
The uniqueness assumption (H5) is met under very weak conditions on equation (6.4).

Indeed, Cordes [6, Satz 5] proved that any solution u of class C? satisfying

Uge + Ayu 4 a(z, y)u, + b(z,y)Vyu + c(z, y)u = 0 (z,y) € R x
u(0,y) = uz(0,y) =0 y€Q

(6.6)

vanishes identically u(z,y) = 0 on IR x © provided the coefficients a, b, and ¢ are locally

Lipschitz continuous.

Suppose that ¢(z,y) is a homoclinic solution of (6.4) for p = 0 satisfying

lim ¢(z,y) =0.

|x|—00

In addition, assume that g, (x,y) is the unique, up to scalar multiples, bounded solution of

Vgz + Ay” + Duzg(y7 q, 4z, VyQ)'Uw (67)
+DVyug(y7 Q7 qu VyQ)VyU + ‘Dug(yJ q7 Q$7 qu)v = 07
which is of the form (6.6). Also, as limy o g(7,y) = 0, the coefficients converge for
|z| — oo to functions depending only on y.

Thus, the theory developed in the previous sections applies. Indeed, using the results in

Section 6.1, it is possible to write (6.4) as an evolution equation

d
U= Av + G(v) + pH(z,v) (6.8)
where
0 id
A=
—-Ay+id 0
and
0 0
G(v)(y) = ,  H(z,v)(y) =
—g(v1,v2) —v1 —ph(z,v1,v9)

The linearization

d
—uv = Av + DG(q, qz)v
dx

37



at the homoclinic solution satisfies Hypothesis (H5) whenever, for instance, Cordes’ result
applies to (6.7). Also, the smallness assumption (H2) is always satisfied based on the above

remarks.

6.3 An example on an infinite cylinder

As an example, we take = (0, 7)™ and consider
Ugy + V2 Ay — u+u? + p(1 + h(y)) cosz =0 (z,y) € Rx (0,7)",  (6.9)
for n € IN with Neumann boundary conditions
Oyu(z,y) =0 for (z,y) € IR x 0Q.

Here, v # 0, and h(y) is a smooth function with zero mean, that is [, h(y) dy = 0. Note
that the nonlinearity is analytic for u = 0. Hence the uniqueness hypothesis (H5) is satisfied
since any solution of either (6.9) or its linearization is analytic as well. Though the domain
Q2 is not smooth, equation (6.9) fits into the setting of the last section. Alternatively, the
reader may consider the n-dimensional unit ball using spherical harmonics instead of the

trigonometric expansion employed below.

We remark that the reduction to essential manifolds developed by Mielke [21] applies to
equation (6.9) provided n = 1. However, as pointed out in the introduction, the resulting
manifold will only be of class C'. For n > 1, the results in [20] do not apply since they
require that the nonlinearity is independent of . Also, the example can be modified easily
such that the spectral gaps are not arbitrarily large as required by any inertial-manifold
reduction. Replace, for instance, (2 as defined above by []7_, (0, a;7) with rationally inde-

pendent constants a; > 0.
Rewrite equation (6.9) according to

d vy 0 1 VU1 0
dz v —y?A,+1 0 v - v? + u(l+ h(y)) cosz
= Av+ Gv) + pH(z,v).
Let k € IN§ be a multi-index and define |k|? := 2= k]2 Then, the eigenvalues of the linear

operator A are given by

AF = £1/1+92]k)? for k € IN}
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with associated eigenfunctions

1 n
w,f(y) = H cos k;y; for k € INg.
L+2k* ) j=

In the invariant subspace W, = span{wﬁ" , Wy }, the homoclinic solution

1 1 1
(q(x),qz(x)) = (% sech 3% —Z sech 3% tanh 535)

of (6.9) is found for ;1 = 0. Consider the variational equation

o= (A+ DG(gla))e. (6.10)

It turns out that the subspaces Wy, = span{w,, w, } are invariant under the flow of (6.10)

for k£ € INg. In the subspace Wy, equation (6.10) reads
Wee — (1 + 72 |E[* — 2¢(z))w =0 z € R, (6.11)

where w(z) is the amplitude. We are interested in the set of bounded solutions to this

equation. First consider the spectrum of the operator

Lw = wgy — (1 — 2g9(z))w z € R. (6.12)

3

The spectrum of L is given by isolated simple eigenvalues Ag = %, A1 =0, and Ay = —3

with eigenfunctions wy(z) = sech? (32) and @ (z) = ¢z(2). The remainder part (—oo, —1]

of the spectrum is essential spectrum. See [26, Lemma 2.1] for the proofs.

Now suppose that

V5
21

Then the linearized equation (6.11) has non-trivial bounded solutions only for £ = 0 and

vy % for all I € IN. (6.13)

Hypothesis (H6) holds by non-degeneracy of the homoclinic orbit in the plane Wy. There-
fore, Theorem 4 and Corollary 3 apply once (6.13) is met. Note that, in particular, (6.13)
is met if y > @

In passing, we remark that the subspace Wy becomes normally hyperbolic for v — co. In
this case, equation (6.9) is posed on a thin domain as can be readily seen by rescaling the

y variable.

It remains to calculate the Melnikov integrals. The bounded solution of the adjoint equation

%v = —(A" 4+ DG(gq(x))")v
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is given by
(=%2(2), (7)) = (—4oa(), ¢z (7).

Therefore, we obtain

1B = [ [ axle)t+ ) costa - ) dyda

= 7rn/ q(z)sin(x — B) dx

—00
n o 3 : d
-7 /,oo 1+ coshz sin(z — f) dz
Gl

= — sin 3.
sinh 7 p

For 8 = 0, we have M(0) = 0 and M'(0) # 0. Thus, the conclusions of Theorem 4 and

Corollary 3 apply to this particular example.

Note that, for non-zero h(y) and p # 0, the subspace Wy is no longer invariant whence the
solutions ensured by Corollary 3 do have non-trivial y-dependence. These solutions can be

viewed as complicated equilibria u(z,y) of the parabolic equation
Up = Ugg + Y Ayu —u +u? + p(l + h(y)) cos z (z,y) € R x (0,m)" (6.14)

on the cylinder IR x (0,7)". Moreover, for small ¢, the above results still hold if a term
pcug is added to (6.9). Then Corollary 3 ensures existence of many travelling-wave solutions

u(x — pct,y) of (6.14) with non-trivial spatial dependence travelling with non-zero speed

pe.
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