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1 Introdu
tionIn this arti
le, semilinear ellipti
 equationsuxx +�yu+ g(y; u; ux;ryu) = 0 (x; y) 2 IR�
; (1:1)in in�nite 
ylinders IR�
 are investigated. Here, 
 is an open and bounded subset of IRn,and boundary 
onditions on IR��
 should be added. Solitary waves are lo
alized solutionsu(x; y) of (1.1) satisfying limjxj!1u(x; y) = 0uniformly for y 2 
. In appli
ations, they frequently arise as travelling waves u(x � 
t; y)for paraboli
 equationsut = uxx +�yu+ g(y; u; ux;ryu)� 
ux (x; y) 2 IR� 
: (1:2)As su
h, their bifur
ations to periodi
 waves or N -solitary waves resembling N 
opies ofa primary solitary wave are interesting issues. Of importan
e is also the question of theirstability with respe
t to the paraboli
 equation (1.2). Another aspe
t is the numeri
al
omputation of solitary-wave solutions sin
e it is in general impossible to obtain expli
itexpressions. Typi
al appli
ations in
lude problems in stru
tural me
hani
s like rods andstruts, 
hemi
al kineti
s, 
ombustion, and nerve impulses, see, for instan
e, [30℄ and the
omprehensive bibliography there. Existen
e of solitary waves or fronts has been proven formany equations of the form (1.1), see again [30, Se
tion 1.6.6℄ for referen
es. Thus, in thispaper, we will assume that a solitary wave of (1.1) exists, and shall study its bifur
ations.In order to investigate ellipti
 equations in 
ylinders IR � 
, it has proved very useful to
onsider them a dynami
al system in the unbounded variable x. Properties like dissipativ-ity, reversibility, Hamiltonian stru
ture, and zero numbers have been exploited in order todes
ribe bounded solutions of su
h equations, see, for example, [4, 8, 16, 19, 21, 28℄. Themain te
hnique has been redu
tion to lo
al 
enter or global essential manifolds 
ontainingsome or all bounded solutions of (1.1). For instan
e, Mielke derived bifur
ation equations
lose to stationary [19℄ and periodi
 [7, Chapter 4℄ solutions on a 
enter manifold.However, the use of geometri
 redu
tions like lo
al 
enter or global essential manifoldsis limited. Finite-dimensional essential or inertial manifolds are only C1 smooth. Also,1



the redu
tion requires spe
tral gaps and works only for parti
ular nonlinearities, see [20,21℄. On the other hand, �nite-dimensional smooth lo
al 
enter manifolds exist only inthe neighborhood of small solutions. Using analyti
al methods like Lyapunov-S
hmidtredu
tion near solutions of (1.1) with large amplitudes resolves some of these problems.Therefore, rather than studying the set of all bounded solutions of (1.1), we shall onlyinvestigate solutions 
lose to solitary waves hoping to get a more detailed pi
ture of thenearby dynami
s. Interpreting the variable x as time, we write (1.1) as the �rst ordersystem 0B� uxvx 1CA = 0B� 0 id��y 0 1CA0B� uv 1CA�0B� 0g(y; u; v;ryu) 1CA : (1:3)Here, for ea
h �xed x 2 IR, (u; v)(x) is a fun
tion of y 2 
 
ontained in some fun
-tion spa
e depending on the boundary 
onditions on �
. A solitary wave of (1.1) 
or-responds to a homo
lini
 orbit of (1.3), that is to a solution (q(x); qx(x)) of (1.3) withlimjxj!1(q(x); qx(x))! 0 in the underlying fun
tion spa
e.There are two di�erent te
hniques available for investigating homo
lini
 solutions. The�rst approa
h is to 
onsider Poin
ar�e maps. However, (1.3) is still ill-posed and will notgenerate a semi
ow. Thus it is not even possible to de�ne a Poin
ar�e map. The se
ond ap-proa
h, whi
h is adopted in this arti
le, is entirely analyti
 and based on Lyapunov-S
hmidtredu
tions. The heart of this te
hnique are exponential di
hotomies for the linearization of(1.3) 0B� uxvx 1CA = 0B� 0 id��y �Dug �Dryugry Duxg 1CA0B� uv 1CA (1:4)along the solitary wave (q(x); qx(x)). Here, derivatives of g are evaluated at (y; q; qx;ryq).Exponential di
hotomies are proje
tions onto x-dependent stable and unstable subspa
es,say Es(x) and Eu(x), su
h that solutions (u; v)(x) of (1.4) asso
iated with initial values(u; v)(x0) in the stable spa
e Es(x0) exist for x > x0 and de
ay exponentially for x!1.In 
ontrast, solutions (u; v)(x) asso
iated with initial values (u; v)(x0) in the unstable spa
eEu(x0) satisfy (1.4) in ba
kward x-dire
tion x < x0 and de
ay exponentially for de
reasingx. Existen
e of exponential di
hotomies for ordinary, paraboli
 or fun
tional di�erentialequations is well known, see, for instan
e, [5, 14, 11℄. However, the proofs known thus farrely on the existen
e of a semi
ow. Even though in [25℄ a fun
tional-analyti
 framework for2



the existen
e on time intervals [�;1) for large � has been developed, the global extension tothe half line IR+ has been 
arried out using semi
ows. In the 
ontext of ellipti
 equations,stable and unstable subspa
es will both be in�nite-dimensional and the semi
ow on theunstable subspa
e de�ned for ba
kward x-dire
tion 
annot be inverted. Hen
e, (1.4) willnot de�ne a semi
ow.In this arti
le, we present a proof of the existen
e of di
hotomies for equation (1.4). Theproof employs a fun
tional-analyti
 framework 
ombining ideas from [25℄ and [28℄. In theformer work, exponential di
hotomies for paraboli
 equations have been investigated us-ing only integral equations. In [28℄, an integral-equation based approa
h has been givenfor ellipti
 equations. We will derive an integral equation, see equation (3.1), satis�ed byexponential di
hotomies. In 
ontrast to previous works on ordinary and paraboli
 di�eren-tial equations, we 
annot use semi
ows or the Gronwall lemma for the reasons explainedabove. Also, the integrands arising in the integral formulation are not small preventing usfrom using 
ontra
tion mapping prin
iples. Instead, Fredholm's alternative is employed forproving existen
e of di
hotomies on arbitrary subintervals of IR+. The advantage of thisapproa
h is that it preserves the symmetry between stable and unstable subspa
es in thede�nition of di
hotomies and does not a priori distinguish a time dire
tion.As a result, all bounded solutions of the nonlinear equation (1.3) staying 
lose to the solitarywave for all values of x are a

essible using Lyapunov-S
hmidt redu
tion. For illustration,and as a �rst appli
ation, Melnikov's method for interse
tions of stable and unstable mani-folds is extended to semilinear ellipti
 equations. Main result is the embedding of a shift onN symbols, with positive topologi
al entropy, into the dynami
al system generated by theshift of bounded solutions 
lose to the solitary wave, provided a small generi
 perturbation�h(x; y; u; ux;ryu) periodi
 in x is added to (1.1).In a forth
oming paper, we will give other appli
ations. In parti
ular, bifur
ations toperiodi
 waves as well as to N -solitary waves 
lose to a primary solitary wave will beinvestigated using te
hniques developed in [17℄ and [25℄. Moreover, algorithms for thenumeri
al 
omputation of homo
lini
 or hetero
lini
 orbits of ellipti
 equations introdu
edin [12, 13℄ will be justi�ed by stability and 
onvergen
e proofs.We hope that the methods introdu
ed here 
an be used to investigate stability of solitarywaves with respe
t to the paraboli
 equation (1.2) using an extension of the Evans fun
tion.3



Also, it may be possible to use this method to study ellipti
 equations for 
 = IRn providedthe solitary wave is lo
alized in the x and y variable, see the remark at the end of Se
tion 2.1.Note that in this 
ase essential manifolds will not exist due to the presen
e of 
ontinuousspe
trum.This arti
le is organized as follows. In Se
tion 2, the main results on existen
e of exponentialdi
hotomies for abstra
t linear equations are presented. They are proved in Se
tion 3.Smoothing properties for abstra
t linear and nonlinear equations are addressed in Se
tion 4.In Se
tion 5, the e�e
t of small non-autonomous perturbations of an abstra
t autonomousequation is investigated. Finally, Se
tion 6 is devoted to appli
ations to semilinear ellipti
equations, and an example on the in�nite 
ylinder IR� (0; �)n is presented.A
knowledgement. DP was supported by the Deuts
he Fors
hungsgemeins
haft (DFG)under grants La525/4-2 and La525/4-4. BS was partially supported by a Feodor-LynenFellowship of the Alexander von Humboldt Foundation.2 Exponential Di
hotomies2.1 A 
lass of abstra
t di�erential equationsLetX be a re
exive Bana
h spa
e, andA : D(A) � X ! X be a 
losed, possibly unboundedoperator su
h that its domain D(A) is dense in X. Then X1 := D(A) is a Bana
h spa
ewhen equipped with the norm jujX1 = jujX + jAujX . Let Z be some Bana
h spa
e su
hthat there are 
ontinuous embeddingsX1 ,! Z ,! X:Later, Z is 
hosen as an interpolation spa
e between X1 and X. Moreover, let B 2C0(J; L(Z;X)) be a 
ontinuous family of operators where J � IR is some 
losed interval.We will be mainly interested in J = IR, J = IR+ or J = IR�.Consider the di�erential equation _x = (A+B(t))x: (2:1)A fun
tion x(t) de�ned on a 
losed interval J � IR is 
alled a solution of (2.1) if4



(i) x(�) 2 C0(intJ;X1) \C1(intJ;X),(ii) x(�) 2 C0(J; Z),(iii) x(�) satis�es equation (2.1) on intJ with values in X.We are parti
ularly interested in solutions with some pres
ribed exponential behavior.Throughout, range and kernel of an operator L are denoted R(L) and N(L), respe
tively.De�nition (Exponential Di
hotomy)Equation (2.1) is said to possess an exponential di
hotomy in Z on the interval J � IR ifthere exists a family of proje
tions P (t) for t 2 J su
h thatP (t) 2 L(Z); P 2(t) = P (t); P (�)z 2 C0(J; Z) for any z 2 Zand there exist 
onstants K; � > 0 with the following properties.� Stability. For any � 2 J and z 2 Z, there exists a unique solution xs(t; �; z) of (2.1)de�ned for t � � in J with xs(� ; �; z) = P (�)z andjxs(t; �; z)jZ � K e��jt�� j jzjZfor all t � � with t 2 J .� Instability. For any � 2 J and z 2 Z, there exists a unique solution xu(t; �; z) of(2.1) de�ned for t � � in J with xu(� ; �; z) = (id�P (�))z andjxu(t; �; z)jZ � K e��jt�� j jzjZfor all t � � with t 2 J .� Invarian
e. The solutions xs(t; �; z) and xu(t; �; z) satisfyxs(t; �; z) 2 R(P (t)) for all t � � with t; � 2 Jxu(t; �; z) 2 N(P (t)) for all t � � with t; � 2 J:In other words, if an exponential di
hotomy exists, we 
an solve equation (2.1) for t � � forany initial value z 2 R(P (�)). The solution is then given by xs(t; � ; z) with xs(�; � ; z) = z.In addition, the solution is de
aying exponentially in t. Moreover, the stable subspa
es5



R(P (t)) satisfy R(xs(t; � ; �)) � R(P (t)). An analogous statement holds for xu(t; � ; z).Therefore, the spa
es R(P (t)) 
an be thought of as the time-sli
es of the stable manifold ofthe linear non-autonomous equation (2.1), while xs(t; � ; �) is the evolution operator mappingthe time-sli
e R(P (�)) into R(P (t)) for t � � .First, we give suÆ
ient 
onditions su
h that the equation_x = Ax; (2:2)that is (2.1) with B(t) = 0, has an exponential di
hotomy on IR in X. These 
onditions arenot ne
essary for the existen
e of di
hotomies, but will be used later in deriving the mainperturbation and 
ontinuation result.(H1) Suppose that there is a 
onstant C su
h thatk(A � i�)�1kL(X) � C1 + j�jfor all � 2 IR. Assume that there is a proje
tion P� 2 L(X) su
h that A�1 and P�
ommute. Furthermore, there exists a Æ > 0 su
h that Re� < �Æ for any � 2 �(AP�) andRe� > Æ for any � 2 �(A(id�P�)).SuÆ
ient 
onditions for the existen
e of the proje
tion P� have been given in [3℄ and [10℄.We also refer to the expli
it 
onstru
tion of the proje
tions for semilinear ellipti
 equationsin Se
tion 6.1.De�ne P+ = id�P� and A� = �P�A, A+ = P+A, and let X� = R(P�) and X+ = R(P+).By Hypothesis (H1), the operators A� and A+ are se
torial with their spe
trum 
ontainedin the right half plane. Thus, they generate analyti
 semigroupseA+t = 12�i Z�+ e�t(��A)�1 d�; t < 0e�A�t = 12�i Z�� e�t(��A)�1 d�; t > 0on X+ and X�, respe
tively. Here, the 
urve �+ is asymptoti
 to re�i' as r ! 1 forsome �xed ' 2 (0; �2 ), and �� = ��+. We should point out that the semigroups eA+t ande�A�t are 
ontained in L(X+) and L(X�), respe
tively. However, the produ
ts eA+tP+ ande�A�tP� are de�ned on X. With the 
onstant Æ appearing in Hypothesis (H1), eA+tP+and e�A�tP� satisfy the estimateke�A�tP�kL(X) + ke�A+tP+kL(X) � C e�Æt6



for some 
onstant C and all t � 0.Finally, we de�ne the interpolation spa
es X�+ = D(A�+) and X�� = D(A��) for � � 0, see[14℄ or [31℄, and set X� = X�+ �X��. The proje
tion P� obtained in Lemma 2.1 is then inL(X�) for any � < 1, and the semigroups e�A+t and e�A�t satisfyke�A�tP�kL(X;X�) + ke�A+tP+kL(X;X�) � Cmax(1; t��)e�Ætfor some 
onstant C and all t > 0.We summarize the above dis
ussion in the following lemma.Lemma 2.1 Assume that Hypothesis (H1) is met. Equation (2.2) has then an exponentialdi
hotomy on IR in X. The proje
tions P (t) = P� 2 L(X) do not depend on t and 
ommutewith A on D(A). Moreover, �P�A and (id�P�)A are se
torial operators su
h that theirdomains are dense in R(P�) and N(P�), respe
tively.From now on, we 
onsider the intervals J = IR, J = IR+, or J = IR�. The perturbation B(t)appearing in (2.1) should satisfy the following hypothesis. The 
onstant � > 0 appearingin (H2) is small and will be spe
i�ed in the statement of the main theorem below.(H2) There exist � 2 [0; 1), # > 0, t� � 0, and S;K 2 C0;#(J; L(X�;X)) with B(t) =S(t) +K(t) su
h that kS(t)kL(X� ;X) � � for t 2 J , and K(t) = 0 for all t 2 J with jtj � t�.Hypothesis (H2) requires that B(t) is small for all suÆ
iently large jtj. Su
h an assumptionis needed as 
an be seen in the 
ase that B(t) = B is independent of t and Hypothesis(H1) is met for the operator A. Indeed, the perturbed equation _x = (A + B)x has thenan exponential di
hotomy on IR+ or IR� if, and only if, the spe
trum of A+B is boundedaway from the imaginary axis whi
h 
an only be guaranteed if kBkL(X�;X) is small.As mentioned in the introdu
tion, some 
ompa
tness properties will be needed later on.We assume that either A has 
ompa
t resolvent:(H3) Suppose that the inverse A�1 is a 
ompa
t operator in L(X).or else the operators K(t) appearing in (H2) are 
ompa
t:(H4) Suppose that there exists a Bana
h spa
e Y � X with 
ompa
t in
lusion su
h thatK 2 C0;#(J; L(X�; Y )). In addition, the restri
tion of A to Y is a 
losed operator A :7



D(A) � Y ! Y with domain dense in Y whi
h satis�es Hypothesis (H1) with X repla
edby Y .Hypothesis (H4) may be useful when 
onsidering semilinear ellipti
 equations on IR � IRnwith lo
alized solutions u(x; y) su
h that ju(x; y)j � Ce��jyj for some � > 0 uniformly in x.Then B is a di�erential operator with 
oeÆ
ients de
aying exponentially in y, and Y 
anbe 
hosen as a fun
tion spa
e with exponential weights.Finally, we assume forward and ba
kward uniqueness of solutions of equation (2.1) onthe interval J . This hypothesis seems to be ne
essary for the 
ontinuation of exponentialdi
hotomies from a stri
t subinterval ~J of J to J . For instan
e, ba
kward uniqueness ofsolutions has been used in the 
ontext of paraboli
 or fun
tional di�erential equations, see[14℄ and [11℄, respe
tively. There, forward uniqueness is met automati
ally. For ellipti
equations, however, we also have to require forward uniqueness. Of 
ourse, for ordinarydi�erential equations, forward and ba
kward uniqueness are always satis�ed.(H5) The only bounded solution x(t) of (2.1) or its adjoint equation on the interval J withx(0) = 0 is the trivial solution x(t) = 0.Here, the adjoint equation is given by_� = �(A� +B(t)�) �; � 2 X�: (2:3)Note that the adjoint operators A� and B(t)� 
onsidered with range in X� satisfy (H2),(H3) and (H4) whenever A and B(t) do sin
e X is re
exive, see [23, Se
tion 1.10℄, [14,Se
tion 7.3℄, and [15, Chapter III℄.2.2 Perturbation and 
ontinuation of exponential di
hotomiesThe following theorem, whi
h is the main result of this paper, is stated for the intervalJ = IR+.Theorem 1 Suppose that Hypothesis (H1) is satis�ed. Let J = IR+. Choose � su
h that0 � � < Æ where Æ appears in Hypothesis (H1). There are then 
onstants �0 > 0 and C > 0with the following properties. Assume that Hypotheses (H2), (H5) and either (H3) or (H4)8



are met for some � � �0. Equation (2.1) has then an exponential di
hotomy in X� on theinterval J = IR+ with rate �.Furthermore, the proje
tions P (t) are H�older 
ontinuous in t 2 J = IR+ with values inL(X�). The range Es of P (0) is uniquely determined and satis�esz 2 Es = R(P (0)) =) z = P�z + P+(S0 +K0)zfor some operators S0 and K0 in L(X�) with kS0kL(X�) � C� and K0 
ompa
t. For any
losed 
omplement Eu of Es there exists a unique exponential di
hotomy with R(P (0)) = Esand N(P (0)) = Eu. In parti
ular, 
losed 
omplements of Es exist.An analogous theorem is true for the interval J = IR�.It is straightforward to generalize Theorem 1 in that perturbations of the non-autonomousequation (2.1) instead of the autonomous equation (2.2) are 
onsidered. In that 
ase, wehave to require that the solutions xs(t; �; z) and xu(t; �; z) of (2.1) map X� into X�+� forsome positive � and are H�older 
ontinuous between these spa
es. We will not state a resultbut refer the reader to Se
tion 4 where the ne
essary regularity properties are proved.Theorem 1 shows that, up to fa
toring a �nite-dimensional subspa
e of the stable subspa
eEs, the range R(P (0)) = Es is 
lose to the spa
e R(P�). Hen
e, dimensions 
an be 
ountedon a

ount of the 
ompa
tness assumptions (H3) or (H4).Corollary 1 Suppose that A and B(t) satisfy the assumptions of Theorem 1 on both inter-vals, J = IR+ and J = IR�. Denote the proje
tions of the asso
iated exponential di
hotomieson IR+ and IR� by P (t) and Q(t), respe
tively. The interse
tion R(P (0))\R(Q(0)) is then�nite-dimensional.If J = IR+ and the perturbation B(t) tends to zero as t ! 1, we expe
t the proje
tionP (t) of the exponential di
hotomy on IR+ to 
onverge to the spe
tral proje
tion P�. Thisis made pre
ise in the following 
orollary.Corollary 2 Suppose that A and B(t) satisfy the assumptions of Theorem 1 on the intervalJ = IR+ and, in addition,kB(t)kL(X�;X) � Ĉe��t t � 09



for some 
onstants Ĉ; � > 0. The rate � appearing in Theorem 1 
an then be 
hosen in therange 0 � � � Æ and we havekP (t) � P�kL(X�) � ~C(e�2Æt + e��t) t � 0for some 
onstant ~C > 0. An analogous statement is true on the interval J = IR�.Finally, we state a theorem 
hara
terizing equations having exponential di
hotomies on thereal line IR.Theorem 2 Suppose that the assumptions of Theorem 1 hold for both intervals J = IR+and J = IR�. Then, x(�) = 0 is the only bounded solution of equation (2.1) on t 2 IR if andonly if equation (2.1) has an exponential di
hotomy on IR.3 Proofs of the results in Se
tion 2.2We start with the proof of Theorem 1 whi
h will o

upy most of this se
tion. The outlineof its proof is as follows.First, we give a mild formulation of the problem, an integral equation whi
h is satis�edby the evolution operators xs(t; � ; z) and xu(t; � ; z). It is then shown that strong and mildformulation are equivalent. Using the mild integral equation, we 
onstru
t the subspa
eEs = R(P (0)) 
onsisting of bounded solutions of (2.1) on IR+ using Fredholm's alternative.Then, for a �xed 
hoi
e of Eu, it is shown that the mild integral equation has a unique so-lution (xs(�; �); xu(�; �)) for any �xed � � 0 satisfying xu(0; �) 2 Eu. Finally, we verify thatthese solutions are strongly 
ontinuous in � and that they satisfy the semigroup properties.3.1 The integral formulationWe write xs(t; �; z) = xs(t; �) and xu(t; �; z) = xu(t; �) whenever 
onfusion is impossible.
10



The following mild formulation of equation (2.1) is the key.e�A�(t��)P�z = xs(t; �) + e�A�tP�xu(0; �) + Z 1t eA+(t��)P+B(�)xs(�; �) d�� Z t� e�A�(t��)P�B(�)xs(�; �) d�+ Z �0 e�A�(t��)P�B(�)xu(�; �) d�eA+(t��)P+z = xu(t; �)� e�A�tP�xu(0; �) � Z t� eA+(t��)P+B(�)xu(�; �) d�+ Z 0t e�A�(t��)P�B(�)xu(�; �) d�� Z 1� eA+(t��)P+B(�)xs(�; �) d�:
(3:1)

Here, t � � � 0 in the �rst and � � t � 0 in the se
ond equation of (3.1). The pair(xs; xu) is written x := (xs; xu). We will see that solutions of (3.1) are in fa
t the evolu-tion operators arising in the de�nition of exponential di
hotomies. In parti
ular, we willprove that the proje
tions of the exponential di
hotomy are given by P (t)z = xs(t; t; z)and (id�P (t))z = xu(t; t; z) for solutions xs(t; �; z) and xu(t; �; z) of (3.1). The operatorxu(0; 0; �) is determined by the 
hoi
e of the 
omplement Eu.Noti
e that the integrands appearing in (3.1) are not small sin
e B might have large norm.Therefore, it is not possible to use the 
ontra
tion mapping theorem for solving equa-tion (3.1).We have to show that the strong and the mild formulation are equivalent.Lemma 3.1 Suppose that x = (xs; xu) satis�es equation (3.1) for some z 2 X�. Then,xs(�; �) and xu(�; �) satisfy (2.1) on the intervals J = [�;1) and J = [0; � ℄, respe
tively.Conversely, any two solutions x1(�), x2(�) of (2.1) on J1 = [�;1) and J2 = [0; � ℄ aresolutions of (3.1) with xs(t; �) = x1(t), xu(t; �) = x2(t) and z = x1(�) + x2(�).Proof. Suppose x = (xs; xu) satis�es equation (3.1). Then, by [14, Lemma 3.5.1℄, the inte-gral operators are 
ontinuously di�erentiable in t sin
e the family B(t) is H�older 
ontinuous.Thus, for t 6= � , we 
an di�erentiate with respe
t to t and obtain that_xs(t; �) = (A+B(t))xs(t; �) t > �_xu(t; �) = (A+B(t))xu(t; �) t < �:Therefore, Axs(t; �) and Axu(t; �) are 
ontinuous, too, and xs(t; �) and xu(t; �) are solu-tions. 11



Conversely, suppose that x1(t) and x2(t) satisfy (2.1). As xi(�) are bounded for i = 1; 2,they are solutions ofx1(t) = e�A�(t��)P�x1(�) + Z t� e�A�(t��)P�B(�)x1(�)d�� Z 1t eA+(t��)P+B(�)x1(�)d�x2(t) = e�A�tP�x2(0) + eA+(t��)P+x2(�) + Z t� eA+(t��)P+B(�)x2(�)d�+ Z t0 e�A�(t��)P�B(�)x2(�)d�;by integration. Setting z = x1(�) + x2(�), we obtain equation (3.1).3.2 Constru
tion of the stable eigenspa
eHere, we will determine those initial values for whi
h we 
an solve (2.1) for t 2 IR+ su
hthat the asso
iated solution is bounded on IR+. Therefore, we set � = 0 in (3.1) and obtaine�A�tP�z = xs(t) + e�A�tP�xu(0) + Z 1t eA+(t��)P+B(�)xs(�) d�� Z t0 e�A�(t��)P�B(�)xs(�) d�P+z = P+xu(0)� Z 10 e�A+�P+B(�)xs(�) d�for t � 0. Note that we have omitted the argument � = 0 in xs and xu. Sin
e we areinterested in the initial values with xs(0; z) = z, we set xu(0) = 0 and obtain the equatione�A�tP�z = xs(t) + Z 1t eA+(t��)P+B(�)xs(�) d�� Z t0 e�A�(t��)P�B(�)xs(�) d�P+z = � Z 10 e�A+�P+B(�)xs(�) d�: (3:2)We will solve this equation in the following spa
es. For a �xed 
hoi
e of � 2 [0; Æ), and for�xed � � 0, letX s� = fx 2 C0([�;1);X�); jxjX s� := supt�� e�jt�� jjx(t)jX� <1gX u� = fx 2 C0([0; � ℄;X�); jxjXu� := sup0�t�� e�jt�� jjx(t)jX� <1g (3:3)equipped with the norms j � jX s� and j � jXu� , respe
tively, and set X� = X s� �X u� .For �xed z 2 X�, we shall then solve ~'0z = ~T0xs (3:4)12



for xs 2 X s0 , where( ~T0xs)(t) = xs(t)� Z t0 e�A�(t��)P�B(�)xs(�) d� + Z 1t eA+(t��)P+B(�)xs(�) d�and ( ~'0z)(t) = e�A�tP�z for t � 0. Thus, equation (3.4) 
oin
ides with the �rst equationin (3.2). It is straightforward to verify that ~'0 : X� ! X s0 is bounded. We show next that~T0 is Fredholm with index zero on X s0 .Lemma 3.2 The operator ~T0 2 L(X s0 ) is Fredholm with index zero.Proof. It is straightforward to show that ~T0 is a bounded operator from X s0 into itself.The operator ~T0 is of the form ~T0 = id+I1+ I2, where I1 and I2 are the integral operators(I1xs)(t) = � Z t0 e�A�(t��)P�B(�)xs(�) d�(I2xs)(t) = Z 1t eA+(t��)P+B(�)xs(�) d�:We have to show that ~T0 = id+I1 + I2 is Fredholm with index zero. It suÆ
es to showthat the operators Ij 
an be written as Ij = Sj+Kj for j = 1; 2 su
h that Sj has norm lessthan 14 and Kj is 
ompa
t for j = 1; 2. Indeed, the operator id+S1+S2 is then invertible,and hen
e Fredholm with index zero. Adding a 
ompa
t operator preserves this property.For any t� � 0, we may de
ompose I1 = S1 +K1 a

ording to(K1xs)(t) = 8>><>>: � Z t0 e�A�(t��)P�B(�)xs(�) d� for t � t��e�A�(t�t�) Z t�0 e�A�(t���)P�B(�)xs(�) d� for t � t�;(S1xs)(t) = 8><>: 0 for t � t�� Z tt� e�A�(t��)P�B(�)xs(�) d� for t � t�:Sin
e S1xs and K1xs are 
ontinuous at t = t�, they map X s0 into itself. Moreover, for larget�, we have kS1kL(X s0 ) � C supt�t� kB(t)kL(X�;X) � C�by Hypothesis (H2). It remains to prove that K1 is 
ompa
t. We restri
t K1xs to theinterval [0; t�℄. The proof for 
ompa
tness of K1 then depends on whether Hypothesis (H3)or (H4) is satis�ed.First, assume that Hypothesis (H3) is met. It follows that K1 maps X s0 
ontinuously intoC0;�([0; t�℄;X�+�) for some small � > 0, see [14, Lemma 3.5.1℄. Sin
e A has 
ompa
t13



resolvent, the in
lusion X�+� ,! X� is 
ompa
t. Thus, by Arz�ela's theorem, the spa
eC0;�([0; t�℄;X�+�) is 
ompa
tly embedded into C0([0; t�℄;X�).Next, assume that Hypothesis (H4) is met. The proof is then similar to the one above.Note that B(t) = S(t) +K(t) with S small. Subsume the part of K1 asso
iated with theoperator S(t) into S1. The remaining term of K1 asso
iated with K(t) is 
ompa
t. Indeed,it maps X s0 
ontinuously into C0;�([0; t�℄; Y �) by applying the arguments given so far to therestri
tion of A to Y . Finally, C0;�([0; t�℄; Y �) is 
ompa
tly embedded in C0([0; t�℄;X�).Thus, K1 is a 
ompa
t operator sin
e it is the 
omposition of the above restri
tion to [0; t�℄with the bounded multipli
ation operator asso
iated withid for 0 � t � t�e�A�(t�t�)P� for t� � t:The proof for I2 is similar.We denote the stable subspa
e at t = 0 byEs := ( ~T�10 (R( ~'0)))(0) = fz 2 X�; 9xs 2 X s0 with xs(0) = z and ~T0xs = ~'0zg: (3:5)In other words, Es 
onsists of all initial values yielding bounded solutions on IR+. Notethat Es is 
losed sin
e ~T0 is Fredholm, see Lemma 3.2, and R( ~'0) is 
losed.Lemma 3.3 The equalitydimN(P�jEs) = dimN( ~T0) = 
odimR( ~T0) = 
odimX�� P�Es = ksholds for some ks <1.Proof. We start by showing the �rst equality. The mappingN( ~T0) 7! N(P�jEs)xs(�) 7! xs(0)is well de�ned, 
ontinuous and one-to-one by the uniqueness assumption (H5). It is alsoonto by 
onstru
tion of Es. This proves dimN(P�jEs) = dimN( ~T0) = k <1.Next, we have dimN( ~T0) = 
odimR( ~T0) sin
e ~T0 is Fredholm with index zero.14



In order to show the last equality, 
hoose a 
omplement V� of P�Es inX��. By 
onstru
tion,for any z 2 V�, the map t ! e�A�tP�z is not 
ontained in R( ~T0). Thus the mappingz 2 V� ! e�A��P�z 2 X s0 maps the 
omplement V� of P�Es in X�� one-to-one into a
omplement of R( ~T0) in X s0 . This implies 
odimX�� P�Es � 
odimR( ~T0) = k.We use the adjoint equation_� = �(A� +B(t)�)�; � 2 (X�)� (3:6)to show equality. Note that results obtained so far apply to the adjoint equation as well,see the 
omments in Se
tion 2.1. It is easy to see thatddth�(t); x(t)i = 0for arbitrary solutions �(t) and x(t) of (3.6) and (2.1), respe
tively, where h�; �i denotes thedual pairing. Sin
e all bounded solutions xs satisfy the estimatejxs(t)jX� � Ce��tjxs(0)jX� ;any bounded solution of the adjoint equation has to annihilate Es at t = 0. Call Es� thesubspa
e of (X�)� 
onsisting of initial values �(0) of bounded solutions for (3.6). Next, weapply the arguments obtained thus far to the adjoint equation. The 
on�guration spa
e(X�)� 
an be written as (X�)�+ � (X�)��. Therefore, using the arguments given so far, thestable subspa
e satis�es1 > dimN �P �+jEs�� = k� � 
odim(X�)�+ P �+Es� :Hen
e, using that Es� annihilates Es, we obtaink� = dimN �P �+jEs�� � dimN �P �+jAnnih:(Es)�= dim�(��; 0) 2 (X�)�� � (X�)�+; h��; z�i = 0 8z� 2 P�Es	= 
odimX��(P�Es) � k:Repeating the same argument for the adjoint system and using re
exivity of X, yieldsk�� = dimN �P ��� jEs��� = k = dimN (P�jEs)and k = k�� � 
odim(X�)�+ P �+Es� � k� � k;where the stri
t inequality holds if and only if dimN(P�jEs) > 
odimX��(P�Es).15



3.3 Existen
e of xs(�; � ; z) and xs(�; � ; z) for �xed �In the next step, we 
onstru
t solutions xs(�; � ; z) and xs(�; � ; z) for �xed � . For thispurpose, we have to in
orporate a �xed 
omplement Eu of the stable subspa
e Es intothe fun
tional-analyti
 setting. Therefore, 
hoose any 
losed 
omplement Eu of Es in X�subje
t to 
odimX�+ P+Eu = dimN(P+jEu) = ku <1: (3:7)To a

omplish this, 
hoose, for instan
e, 
losed 
omplements Eu� of P�Es in X�� and Eu+ ofN(P�jEs) in X�+. Note that these 
omplements exist sin
e P�Es has �nite 
odimension inX�� and N(P�jEs) is �nite-dimensional, see Lemma 3.3. The spa
e Eu� � Eu+ � X�� �X�+is then a 
omplement of Es in X� satisfying the above 
ondition with ku = ks, sin
edimN(P�jEs) = 
odimX�� P�Es = ksby Lemma 3.3. Other 
omplements will be 
onsidered later.For any 
losed subspa
e E � X�, we de�ne the 
losed subspa
eXE� = f(xs; xu) 2 X s� �X u� ; xu(0) 2 Egof X s� �X u� .For �xed � � 0, the right hand side of equation (3.1) de�nes an operator denoted T�(T�x)s(t) := xs(t) + e�A�tP�xu(0) + Z 1t eA+(t��)P+B(�)xs(�) d�� Z t� e�A�(t��)P�B(�)xs(�) d� + Z �0 e�A�(t��)P�B(�)xu(�) d�(T�x)u(t) := xu(t)� e�A�tP�xu(0) � Z t� eA+(t��)P+B(�)xu(�) d�+ Z 0t e�A�(t��)P�B(�)xu(�) d� � Z 1� eA+(t��)P+B(�)xs(�) d�; (3:8)
with t � � in the �rst, and � � t � 0 in the se
ond equation. Similarly, the left hand sideof (3.1) de�nes a bounded operator '� : X� ! XX+� by('� z)s(t) = e�A�(t��)P�z t � � � 0('� z)u(t) = eA+(t��)P+z � � t � 0; (3:9)with bound independent of � .Proposition 1 For any �xed � � 0, the operator T� de�ned by (3.8) is an isomorphismwhen 
onsidered as a map T� : XEu� �! XX+� .16



Proof. First, noti
e that T� is well-de�ned and bounded independently of � . Indeed, T� isbounded as an operator from X s� �X u� into itself and its bound does not depend on � . Also,for any 
hoi
e of Eu, the range of T� is in
luded in XX+� , so T� is well-de�ned. Indeed, theonly term appearing in the equation for xu in (3.1) whi
h does not belong to X+ is theintegral Z 0t e�A�(t��)P�B(�)xu(�) d�:However, this term vanishes at t = 0.We 
laim that(i) N(T� ) = f0g and(ii) T� is Fredholm with index zero for B = 0.By arguments similar to those given in Lemma 3.2, we 
on
lude from (ii) that T� is Fredholmwith index zero for any perturbation B satisfying Hypothesis (H2) for � small enough. Notethat � 
an be 
hosen independent of � sin
e it depends only on the norm of P� and thede
ay rates Æ and �. The �rst assertion then shows that T� is one-to-one and thus, usingthe se
ond assertion (ii), onto. Therefore, by the 
losed graph theorem, T� is 
ontinuouslyinvertible.With a slight abuse of notation, but for the sake of 
larity, we write elements (xs(�); xu(�)) 2X� as (xs(�; �); xu(�; �)) indi
ating the domain of de�nition.We �rst prove (i). Suppose that T� (xs; xu) = 0 for some (xs; xu) 2 XEu� . This impliesxu(�; �) = �xs(�; �) by adding the two equations in (3.1). Thus, the fun
tion~xs(t; 0) := 8><>: xu(t; �) for 0 � t � ��xs(t; �) for � � t � 1 (3:10)is 
ontinuous. Using the de�nition (3.9) of ', we 
laim that ~xs(t; 0) satis�esT0(~xs; 0) = '0(~xs(0; 0)) = '0(xu(0; �)); (3:11)that is,e�A�tP�xu(0; �) = ~xs(t; 0) + Z 1t eA+(t��)P+B(�)~xs(�; 0) d�� Z t0 e�A�(t��)P�B(�)~xs(�; 0) d� t � 0P+xu(0; �) = � Z 10 e�A+�P+B(�)~xs(�; 0) d� t = 0: (3:12)17



By assumption, (xs; xu) satis�es (3.1) with z = 0, that is0 = xs(t; �) + e�A�tP�xu(0; �) + Z 1t eA+(t��)P+B(�)xs(�; �) d�� Z t� e�A�(t��)P�B(�)xs(�; �) d� + Z �0 e�A�(t��)P�B(�)xu(�; �) d�0 = xu(t; �)� e�A�tP�xu(0; �) � Z t� eA+(t��)P+B(�)xu(�; �) d�+ Z 0t e�A�(t��)P�B(�)xu(�; �) d� � Z 1� eA+(t��)P+B(�)xs(�; �) d� (3:13)
for t � � and t � � , respe
tively. Using (3.10) and distinguishing the 
ases t � � and t � � ,it is seen that (3.12) and (3.13) are identi
al.Thus ~xs(t; 0) satis�es (3.11). However, ~xs(0; 0) = xu(0; �) 2 Eu and, at the same time,belongs to Es as it is a bounded solution of (3.1) at � = 0. Therefore ~xs(0; 0) = 0 vanishessin
e Eu \ Es = f0g. By the uniqueness hypothesis (H5), we 
on
lude ~xs(t; 0) = 0 for allt � 0, whi
h proves (i).It remains to prove (ii). For B = 0, the equation T� (xs; xu) = (gs; gu) 2 XX+� readsP+xs(t; �) = P+gs(t; �); P�xs(t; �) = P�gs(t; �)� e�A�tP�xu(0; �)P+xu(t; �) = P+gu(t; �); P�xu(t; �) = e�A�tP�xu(0; �): (3:14)First, suppose that g = (gs; gu) = 0. Then, for any xu(0; �) 2 Eu satisfying xu(0; �) 2N(P+jEu), we get a unique solution of (3.14) in XEu� . Note that dimN(P+jEu) = ku.On the other hand, we 
an solve for any g provided P+gu(0; �) 2 P+Eu whi
h de�nes asubspa
e of XX+� of 
odimension ku. This proves (ii) and thus the proposition.3.4 Proof of Theorem 1Finally, we show the assertions of Theorem 1. We 
onsider a similar set-up as in theprevious se
tion.Similar to (3.3), we de�ne the fun
tion spa
esX s = fx 2 C0(Ds;X�); jxjX s := sup(t;�)2Ds e�jt�� jjx(t; �)jX� <1gX u = fx 2 C0(Du;X�); jxjXu := sup(t;�)2Du e�jt�� jjx(t; �)jX� <1gwith Ds = f(t; �); t � � � 0g and Du = f(t; �); � � t � 0g;and set XE = f(xs; xu) 2 X s �X u; xu(0; �) 2 E for all � � 0g18



for any 
losed subspa
e E of X�. As before, the left hand side of (3.1) de�nes a boundedoperator ' : X� ! XX+ by('z)s(t; �) = e�A�(t��)P�z (t; �) 2 Ds('z)u(t; �) = eA+(t��)P+z (t; �) 2 Du:Let T be the operator de�ned by the right hand side of (3.1). We shall solve Tx = 'z. We
laim that T : XEu ! XX+ is an isomorphism. Noti
e that T is well-de�ned, see the proofof Proposition 1, and 
ontinuous.Assuming that x 2 N(T ), we get x(�; �) 2 N(T� ) for any � � 0 when
e x(�; �) = 0 byProposition 1. Thus N(T ) = f0g.It is more diÆ
ult to prove that T is onto. Due to Proposition 1, there exists a unique familyx(�; �) satisfying T�x(�; �) = '� z for any �xed � . This family satis�es Tx = ' providedx(�; �) 2 XEu . In parti
ular, we have to show that x(�; �) is 
ontinuous in � and de
aysexponentially uniformly in � . Denoting the unique solution (xs; xu) of T� (xs; xu) = '�z by(xs(t; �; z); xu(t; �; z)), we will prove the following.(i) Invarian
e and semigroup properties.xs(t;�; xs(�; �; z)) = xs(t; �; z) t � � � �xs(t;�; xu(�; �; z)) = 0 � � t; �xu(t;�; xu(�; �; z)) = xu(t; �; z) t � � � �xu(t;�; xs(�; �; z)) = 0 � � t; �:(ii) Continuity.xs(�; �; z) and xu(�; �; z) are 
ontinuous.(iii) Exponential de
ay.jxs(t; �; z)jX� � Ce��jt�� j jzjX� t � �jxu(t; �; z)jX� � Ce��jt�� j jzjX� t � �:First 
onsider (i). Let � � � , and de�ne ẑ := xs(�; �; z) andys(t) := xs(t;�; ẑ) = xs(t;�; xs(�; �; z)) t � �yu(t) := xu(t;�; ẑ) = xu(t;�; xs(�; �; z)) t � �: (3:15)By de�nition, (ys; yu) = (xs; xu)(�;�; ẑ) satis�es T�(ys; yu) = '� ẑ, that is,e�A�(t��)P�ẑ = (T�(ys; yu))s(t) t � �eA+(t��)P+ẑ = (T�(ys; yu))u(t) t � �; (3:16)19



where (T�y)s and (T�y)u are the 
omponents of T�y in X s� = X s� �X u� .On the other hand, using the de�nition ẑ = xs(�; �; z), we obtainẑ = e�A�(���)P�z � e�A��P�xu(0; �; z) � Z �0 e�A�(���)P�B(�)xu(�; �; z) d�(3.17)� Z 1� eA+(���)P+B(�)xs(�; �; z) d� + Z �� e�A�(���)P�B(�)xs(�; �; z) d�:Substituting (3.17) into (3.16) yieldse�A�(t��)P�z = Z �0 e�A�(t��)P�B(�)xu(�; �; z) d�� Z �� e�A�(t��)P�B(�)xs(�; �; z) d�+e�A�tP�xu(0; �; z) + (T�(ys; yu))s(t)0 = Z 1� eA+(t��)P+B(�)xs(�; �; z) d� + (T�(ys; yu))u(t); (3:18)for t � � and t � �, respe
tively. Regarding (ys; yu) as unknowns, we 
an uniquely solve(3.18) sin
e T� is invertible. Thus the unique solution (ys; yu) is given by (3.15). On theother hand, it is straightforward to 
al
ulate thatys(t) = xs(t; �; z) t � �yu(t) = 0 t � �satis�es (3.18) as well, proving two of the four identities in (i). The remaining two areproved in a similar way, see also [25℄.Next, we prove (ii). This is a
hieved by 
omparing the solutions x(�; � + h) and x(�; �) forsmall h. First, we take h > 0 and �x z 2 X� with jzjX� = 1. The 
ase h < 0 is provedsimilarly. De�ne ysh(t) = 8><>: xs(t; � + h) t � � + hz � xu(t; � + h) � + h � t � �yuh(t) = xu(t; � + h) t � �:Then, yh 2 XEu� sin
e ysh is 
ontinuous at t = � + h. With an abuse of notation, we willdenote the norms j � jXE� by k � k in this paragraph. We 
laim that the estimatekT�yh � T�x(�; �)k � o(1) (1 + kyhk) (3:19)holds for some fun
tion o(1) satisfying o(1)! 0 as h tends to zero. Assume for the momentthat (3.19) is true. Sin
e the inverse of T� is 
ontinuous, we then havekyh�x(�; �)k � C1kT�yh�T�x(�; �)k � o(1)(1+ kyhk) � o(1)(1+ kyh�x(�; �)k+ kx(�; �)k)20



for some 
onstant C1 > 0 independent of h whi
h we subsume into the o(1) term. Therefore,we 
on
lude that kyh� x(�; �)k = o(1)! 0 as h tends to zero. Thus, in order to prove (ii),it suÆ
es to prove (3.19).Note that, by de�nition, T�+hx(�; � + h) = '�+h. We 
ompare T�yh with T�+hx(�; � + h).Consider t � � �rst. Using equation (3.1) and the de�nition of yh, we obtain(T�yh)u(t) = (T�+hx(�; � + h))u(t)� Z �+h� eA+(t��)P+B(�)xu(�; � + h) d�� Z �+h� eA+(t��)P+B(�)(z � xu(�; � + h)) d�= eA+(t���h)P+z + o(1)O(e��jt�� j) (1 + kyhk);sin
e the arguments in the integrals are bounded by kx(�; � + h)k whi
h is bounded by1 + kyhk. Next, 
onsider t � � + h. Then(T�yh)s(t) = (T�+hx(�; � + h))s(t)� Z �+h� e�A�(t��)P�B(�)(z � xu(�; � + h)) d�+ Z ��+h e�A�(t��)P�B(�)xu(�; � + h) d�= e�A�(t���h)P�z + o(1)O(e��jt�� j) (1 + kyhk)holds. It remains to 
onsider � � t � � + h.(T�yh)s(t) = z � (T�+hx(�; � + h))u(t)� Z t� e�A�(t��)P�B(�)(z � xu(�; � + h)) d�+ Z �+ht eA+(t��)P+B(�)z d� + Z �t e�A�(t��)P�B(�)xu(�; � + h) d�= z � eA+(t���h)P+z + o(1)O(e��jt�� j) (1 + kyhk):Summarizing the above inequalities and using T�x(�; �) = '� , we obtain(T�yh)s(t) � (T�x(�; �))s(t) =8><>: eA+(t��)(e�A+hP+ � P+)z +Rs(t) t � � + hz � eA+(t���h)P+z � eA�(t��)P�z +Rs(t) � + h � t � �(T�yh)u(t) � (T�x(�; �))u(t) = e�A�(t���h)(P� � e�A�hP�)z +Ru(t) t � �for some remainder term with norm kRk = o(1) (1 + kyhk). This 
ompletes the proof ofinequality (3.19).It remains to show (iii). In order to prove uniform exponential de
ay for xs, it suÆ
esto 
onsider t; � � t� for some t� large. Indeed, as xs(t; �; z) = xs(t; t�; xs(t�; �; z)) fort > t� > � , we 
an employ boundedness of xs(t; �; z) on t; � � t� and obtain the result infull generality. Up to this point, we have investigated the operator T on the interval [0;1).21



However, we may as well restri
t to [t�;1). On this smaller interval, T is 
ontinuouslyinvertible as T = id+I for some integral operator I whi
h is small in norm on [t�;1) asB is small, see the proof of Lemma 3.2 or [25℄. Thus the operators xs(t; �; �) have uniformexponential bounds for t � � � t�. The arguments for xu are similar. Note that, by
al
ulating the norm of I, the 
onstant �0 determining the largest admissible norm of B(t)on [t�;1) depends only on the 
hoi
e of the exponent �.Thus, T is onto and therefore 
ontinuously invertible. Finally, we 
onstru
t the exponentialdi
hotomy. Let P (t)z = xs(t; t; z):By the semigroup property (i), P (t) is a proje
tion. Moreover, P (t) is bounded as T�1 is.The invarian
e properties of R(P (t)) and N(P (t)) follow immediately from the invarian
eproperty (i). The uniform exponential bounds 
an be obtained from the uniform boundson xs and xu.Until now, we have only 
onsidered 
omplements Eu whi
h meet (3.7). Exponential di-
hotomies a
tually exist for any 
omplement Eu of Es and not just for the ones satisfying(3.7). Indeed, let xs and xu be the evolution operators for some 
omplement satisfying(3.7) and denote the asso
iated proje
tions by P (t). Choose an arbitrary 
omplement ~Euof Es and let L : R(id�P (0))! R(P (0)) be a bounded operator su
h that graphL = ~Eu.De�ne ~P (t) := P (t)� xs(t; 0; �)Lxu(0; t; �) t � 0~xs(t; �; �) := xs(t; �; �) ~P (�) t � � � 0~xu(t; �; �) := (id� ~P (t))xu(t; �; �) (id�P (�)) � � t � 0; (3:20)then ~x is an exponential di
hotomy of (2.1) su
h that R( ~P (0)) = graphL, see [25℄. Notethat we still have R( ~P (0)) = Es with Es de�ned in (3.5).Finally, by inspe
ting (3.1) and (3.20), we havez 2 Es =) z = P�z � Z 10 e�A+�P+B(�)xs(�; 0; z) d�as xu(0; 0; z) = (id�P (0))z = 0. It has been proved in Lemma 3.2 that the integraloperator is the sum of a 
ompa
t operator and an operator with norm less than C� forsome 
onstant C independent of �.This 
ompletes the proof of Theorem 1. 22



3.5 Proof of the 
orollaries and Theorem 2Proof of Corollary 1. The 
orollary follows easily from the 
hara
terization of the stablesubspa
es in Theorem 1.Proof of Corollary 2. We prove the 
orollary for 
omplements Eu satisfying (3.7).Using the expression (3.20), it is straightforward to show the statements of the 
orollaryfor arbitrary 
omplements.It is straightforward to verify that the right hand side of the integral equation (3.1) iswell-de�ned and an isomorphism from XEu to XX+ even for � = Æ provided B(t) de
aysexponentially as t!1. This proves the 
laim 
on
erning the 
hoi
e of �.The proje
tion P (t) satis�esP (t)z = P�z � e�A�tP�xu(0; t; z) � Z t0 e�A�(t��)P�B(�)xu(�; t; z) d� (3.21)+ Z 1t e�A+(t��)P+B(�)xs(�; t; z) d�:We will prove the 
orollary using the assumption that B(t) de
ays exponentially with rate�. Using (3.21) and Theorem 1, we havejP (t)z � P�zjX� � je�A�tP�xu(0; t; z)jX� + ��� Z t0 e�A�(t��)P�B(�)xu(�; t; z) d����X�+��� Z 1t e�A+(t��)P+B(�)xs(�; t; z) d����X�� Ce�(Æ+�)tjzjX� + CĈ ��� Z t0 (1 + (t� �)��)e�Æ(t��) e��� e��(t��) d���� jzjX�+CĈ ��� Z 1t (1 + (t� �)��)e�Æ(��t) e��� e��(��t) d���� jzjX�� ~C(e�(Æ+�)t + e��t) jzjX� ;whi
h proves the 
orollary.Proof of Theorem 2. If (2.1) has an exponential di
hotomy P (t) on IR, any boundedsolution x(t) satis�es (id�P (0))x(0) = 0, sin
e x(t) is bounded for t � 0. Similarly,P (0)x(0) = 0 on a

ount of boundedness of x(t) for t � 0. Therefore, x(0) = 0, whi
himplies x(�) = 0 by the uniqueness hypothesis (H5).Assume 
onversely, that x(�) = 0 is the only bounded solution of (2.1) on IR. The mild23



formulation (3.1) 
an be written asT�x = '�� t 2 IR+T+x = '+� t 2 IR�:Here, T+ and '+ denote right and left hand side of (3.1), respe
tively, for t 2 IR+, whileT� and '� 
orrespond to the mild formulation on J = IR�. We denote the asso
iatedproje
tions of the exponential di
hotomies by P (t) and Q(t) de�ned for t 2 IR+ and t 2IR�, respe
tively. We have R(P (0)) \ R(id�Q(0)) = f0g, sin
e, by assumption, equation(2.1) has no bounded non-trivial solution on IR. Therefore, R(id�Q(0)) is a 
omplementof R(P (0)) when
e we 
an 
onstru
t an exponential di
hotomy on IR+ with asso
iatedproje
tion ~P (t) su
h that R( ~P (0)) = R(P (0)) and N( ~P (0)) = R(id�Q(0)). By the sametoken, an exponential di
hotomy exists for t 2 IR� su
h that the asso
iated proje
tion att = 0 is again given by ~P (0). Thus, the proje
tions are 
ontinuous at t = 0, when
e weobtain an exponential di
hotomy on IR.4 Regularity and nonlinear equationsFrom now on, we will use the notation�s(t; �)z := xs(t; �; z); t � ��u(t; �)z := xu(t; �; z); t � �;where z 2 X� and t; � 2 J . Indeed, in the last se
tion, we 
onsidered the solutions xs(t; �; z)and xu(t; �; z) for �xed z 2 X�. Here, however, z will vary. We therefore emphasize theoperator-point-of-view and 
hoose a notation whi
h is 
loser to semigroup theory.In this se
tion, we will verify some additional properties for the families �s(t; �) and �u(t; �)of evolution operators where t; � 2 J with t � � and t � � , respe
tively. The statementsare similar to the paraboli
 
ase, where the ranges R(�u(t; �)) are �nite-dimensional fort � � , see [14, Theorem 7.1.3℄. However, the Gronwall-type lemma whi
h is the main toolin Henry's proof is not available in the present setting.Theorem 3 Assume that A and B(t) satisfy the 
onditions of Theorem 1 with J = IR+.The evolution operators �s(t; �) with t; � 2 J and t � � then have the following properties.24



(i) For t � � , �s(t; �) has a bounded extension to X satisfying �s(t; t) = P (t) and�s(t; �)�s(�; �)z = �s(t; �)z for all t � � � � and any z 2 X.(ii) For �xed 0 � � < 1, �s(t; �), t � � is strongly 
ontinuous in (t; �) with values inL(X�).(iii) For any 0 � 
; � < 1, there is a 
onstant C > 0 su
h that �s(t; �) 2 L(X
 ;X�) fort > � and k�s(t; �)kL(X
 ;X�) � Cmax(1; (t� �)
��) e��(t��):Analogous properties hold for �u(t; �) with t; � 2 J and t � � .Proof. As mentioned above, the assertion of the theorem is similar to [14, Theorem7.1.3℄. However, the weak integral formulation (3.1) involves integrals over intervals [0; t℄and [t;1). Moreover, these integrals are not small. We therefore 
annot use the Gronwalllemma but have to adopt a di�erent strategy. For the sake of 
larity, we take the exponentialweight � = 0.First, we prove (i) and (ii). Note that the 
laims are true if � � � by applying Theorem 1 tothe spa
e X�. Thus, we would like to solve the equation Tx = 'z for z 2 X� with � < �.However, 'z is 
ontinuous with values in X� only for t 6= � , but satis�es an estimatej('z)s(t; �)jX� = je�A�(t��)P�zjX� � Cjt� � j���jzjX� ;as t! � , and similarly for ('z)u(t).The key idea is to subtra
t the part 
oming from the autonomous equation, that is theoperator 'z, from the solution x(t; �). So, de�ney1(t; �; z) = x(t; �; z) � ('z)(t � �):The new unknown y1 satis�es the equation Ty1 = '1z where '1 is given by'1z = (id�T )'z:Again, the 
ru
ial point is 
ontinuity of '1 as t! s. We 
laim that '1 is 
ontinuous withvalues in X
 for any 
 < 1� �+ �, and satis�es the slightly better estimatej('1z)s(t; �)jX� � Cjt� � j���+(1��)jzjX� ;25



as t ! � , and similarly for ('1z)u. Assuming that the 
laim has been proved, we maypro
eed by indu
tion. Let yk = x� k�1Xi=0(id�T )i'zwhi
h satis�es the equation Tyk = (id�T )k'z: (4:1)By the same arguments as in the �rst step, we see that the right hand side of this equationis 
ontinuous for z 2 X� with values in X� provided k(1� �) > �� �.So, we have split the solution x in a well-behaving, 
ontinuous part yk and expli
itly givendis
ontinuous parts (id�T )i'z, whi
h behave better than 'z. Choosing k large enough,we 
an solve equation (4.1) as its right hand side is 
ontinuous with values in X�.From this observation, (i) and (ii) follow immediately. Indeed, the expli
it partk�1Xi=0(id�T )i'zextends to X� for any � < �. Therefore, it suÆ
es to prove the smoothing property forthe operators (id�T )i.The fun
tion '1z = (id�T )'z is given by('1z)s(t; �) = � Z 1t eA+(t��)P+B(�)e�A�(���)P�z d�+ Z t� e�A�(t��)P�B(�)e�A�(���)P�z d�� Z �0 e�A�(t��)P�B(�)e�A+(���)P+z d�; t � �('1z)u(t; �) = Z t� eA+(t��)P+B(�)e�A+(���)P+z d�� Z 0t e�A�(t��)P�B(�)e�A+(���)P+z d�+ Z 1� eA+(t��)P+B(�)e�A�(���)P�z d�; t � �;see (3.1), as the exponential terms disappear due to the de�nition of 'z. Note that thisproperty is preserved under the iteration (id�T )k for the same reason as in the proof ofProposition 1.First, 
onsider the integral(I1g)(t; �) = Z 1t eA+(t��)P+B(�)g(�; �) d�26



where g(t; �) is 
ontinuous for t > � with values in X� satisfyingjg(t; �)jX� � Cjt� � j��as t ! � for some � > 0. Noti
e that I1 is 
ontinuous for t > � with values in X�. Weestimate j(I1g)(� + h; �)jX� � ��� Z 1�+h eA+(�+h��)P+B(�)g(�; �) d����X�� C ��� Z 1�+h eÆ(�+h��) j� + h� �j�� j� � �j�� d����� Ĉh1����as h! 0 for some 
onstants C and Ĉ independent of h. Thus, as 
laimed, the exponent �is de
reased by 1��. The 
al
ulations for the other integral operators are similar, and wewill omit them.The proof of (iii) is 
ompletely analogous to the above and we will omit it, too.Theorem 1 and 3 are used for obtaining existen
e of solutions of inhomogeneous linearequations _x = (A+B(t))x+ f(t) f 2 C0;#(IR+;X); # > 0as well as nonlinear equations_x = (A+B(t))x+G(t; x) G 2 C1;1(IR+ �X�;X)with G(t; 0) = DG(t; 0) = 0. The asso
iated weak formulation is given bye�A�(t��)P�z = xs(t; �) + e�A�tP�xu(0; �)+ Z 1t eA+(t��)P+�B(�)xs(�; �) + F (�; xs(�; �))�d�� Z t� e�A�(t��)P��B(�)xs(�; �) + F (�; xs(�; �))�d�+ Z �0 e�A�(t��)P��B(�)xu(�; �) + F (�; xu(�; �))�d�eA+(t��)P+z = xu(t; �)� e�A�tP�xu(0; �)� Z t� eA+(t��)P+�B(�)xu(�; �) + F (�; xu(�; �))�d�+ Z 0t e�A�(t��)P��B(�)xu(�; �) + F (�; xu(�; �))�d�� Z 1� eA+(t��)P+�B(�)xs(�; �) + F (�; xs(�; �))�d�;
(4:2)
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where F is repla
ed by either f or G. In the former 
ase, using Theorem 1 and 3, existen
eis easily obtained, see [14, Theorem 7.1.4℄. In the latter 
ase, the right hand side of (4.2)de�nes a di�erentiable map from XEu to XX+ with � = 0. Also, the linear part is invertibleas T is. Thus, we may employ an impli
it fun
tion theorem and obtain solution operators�s(t; �; z) and �u(t; �; z) for t � � and 0 � t � � , respe
tively, de�ned for small z 2 X�and depending smoothly on z.5 Transverse homo
lini
 orbits in periodi
ally perturbedequationsIn this se
tion, we extend the Melnikov theory, see, for instan
e, [18℄ or [22℄, for interse
tionsof stable and unstable manifolds to the general 
lass of di�erential equations investigatedin the previous se
tions. Ex
ept for the proof of Theorem 4, we 
an 
losely follow thepresentation in [22℄, and will only indi
ate the 
hanges ne
essary to adapt the proofs giventhere to the situation studied here. We refer to [2℄ and [24℄ for proofs for paraboli
 equations.Throughout this se
tion, we assume that X is a re
exive Bana
h spa
e, and A is a 
losedoperator on X with 
ompa
t resolvent satisfying Hypothesis (H1) stated in Se
tion 2.Consider the following small non-autonomous perturbation of an autonomous nonlinearequation _x = Ax+G(x) + �H(t; x; �) (x; �) 2 X� � IR (5:1)for some �xed � 2 [0; 1). Suppose that G 2 C1;1(X�;X) with G(0) = 0 and DG(0) = 0.The perturbation H belongs to C1(IR�X� � IR;X) su
h that, in addition,t! DtH(t; x; �) and x! DxH(t; x; �)are lo
ally H�older and Lips
hitz 
ontinuous, respe
tively, in the operator norm. Further-more, H is periodi
 in t with period p, that is H(t+ p; �; �) = H(t; �; �) for all t 2 IR.(H6) Assume that A meets Hypothesis (H1) and has 
ompa
t resolvent. Suppose thatequation (5.1) has a homo
lini
 orbit for � = 0, that is a solution q(t) 2 C1(IR;X�) \C0(IR;X1) with q(t) ! 0 as t ! �1. We assume that the operator DG(q(t)) satis�esHypothesis (H5). Finally, assume that _q(t) is the only bounded solution (up to 
onstant28



multiples) of the variational equation_x = Ax+DG(q(t))x (5:2)along q(t).Note that Hypothesis (H2) is met for the variational equation for any � > 0 sin
e q(t)! 0.Hypothesis (H3) is also satis�ed sin
e the resolvent A�1 2 L(X) of A is 
ompa
t. Withthese assumptions at hand, equation (5.2) and its adjoint equation_y = �(A� +DG(q(t))�)y (5:3)have exponential di
hotomies on the intervals IR+ and IR� by Theorem 1. Moreover, theresults of Se
tion 4 apply to the nonlinear equation (5.1), and all bounded solutions 
loseto the homo
lini
 orbit are given by (4.2).It is then a 
onsequen
e of Hypothesis (H6) that the adjoint equation (5.3) has a unique,up to s
alar multiples, bounded solution  (t). The proof is similar to the one given in [22℄.We de�ne the Melnikov integralM(�) = Z 1�1h (t);H(t � �; q(t); 0)i dt (5:4)for � 2 S1 = [0; p℄=�. Note that M is C1 in �. The next theorem 
hara
terizes transverseinterse
tions of the stable and unstable manifold of zero (more pre
isely, of the uniquehyperboli
 p-periodi
 orbit �-
lose to zero).Theorem 4 Assume that Hypothesis (H6) is met. If there is a number �0 2 S1 su
h thatM(�0) = 0 and M 0(�0) 6= 0, then there exist positive 
onstants �0 and Æ0 su
h that equation(5.2) has a unique solution x(t; �) for any � with 0 < j�j < �0 satisfyingsupt2IR jx(t; �)� q(t+ �0)jX� � Æ0:In fa
t, supt2IR jx(t; �)� q(t+ �0)jX� = O(�)as �! 0 and the variational equation_y = (A+DG(x(t; �)) + �DxH(t; x(t; �); �))y (5:5)has an exponential di
hotomy on IR. 29



Proof. First, we prove the existen
e of x(t; �). We introdu
e a new variable z byx(t) = q(t+ �) + z(t+ �) � 2 IR;and write equation (5.1) in the form_z = Az +DG(q(t))z + F (t; z; �; �): (5:6)with F (t; z; �; �) = G(q(t) + z)�G(q(t)) �DG(q(t))z + �H(t� �; q(t) + z; �):On a

ount of Theorem 1 and the hypotheses made, we know that the linear part of equation(5.6), that is equation (5.2), has an exponential di
hotomy on IR+ and IR�, respe
tively.As in Se
tion 4 and Theorem 3, we denote the solution operators of (5.2) by �s1(t; �) and�u1(t; �) for t � � 2 IR+ and � � t 2 IR+, respe
tively, and by �u2(t; �) and �s2(t; �) fort � � 2 IR� and � � t 2 IR�, respe
tively. We de
ompose the subspa
es of boundedsolutions for t! �1 a

ording toR(�s1(0; 0)) = Y1 � span _q(0) and R(�u2(0; 0)) = Y2 � span _q(0):Solutions of the nonlinear equation (5.6) are bounded on IR+ and IR�, respe
tively, if andonly if there exist �1 2 Y1 and �2 2 Y2 su
h thatz1(t) = �s1(t; 0)�1 + Z t0 �s1(t; �)F (�; z1(�); �; �) d�� Z 1t �u1(t; �)F (�; z1(�); �; �) d� for t 2 IR+z2(t) = �u2(t; 0)�2 + Z t0 �u2(t; �)F (�; z2(�); �; �) d�+ Z t�1�s2(t; �)F (�; z2(�); �; �) d� for t 2 IR�;respe
tively. Thus, for any �1 2 Y1 and �2 2 Y2 near zero, we get bounded solutionsz1(t; �1; �; �) and z2(t; �2; �; �) of equation (5.6) for t 2 IR+ and t 2 IR�, respe
tively, bythe impli
it fun
tion theorem, see Theorem 3. The maps (�1; �; �) ! z1(t; �1; �; �) and(�2; �; �)! z2(t; �2; �; �) are C1. Next, for any small �, we seek � = �1 + �2 2 Y1 � Y2 and� 2 S1 su
h that z1(0; �; �; �) = z2(0; �; �; �). This is equivalent to solving the equation(�s1(0; 0) ��u2(0; 0))� = Z 0�1�s2(0; �)F (�; z2(�; �; �; �); �; �) d� (5.7)+ Z 10 �u1(0; �)F (�; z1(�; �; �; �); �; �) d�:30



A

ording to the proof of Theorem 1, L = �s1(0; 0)��u2 (0; 0) 2 L(X�) is a Fredholm oper-ator with index zero, null spa
e N(L) = span _q(0) and range R(L) = f� 2 X�; h (0); �i =0g. Therefore, using Lyapunov-S
hmidt redu
tion, it follows that equation (5.7) is solvablenear � = �0 if and only if Z 1�1h (t);H(t � �0; q(t); 0)i dt = 0Z 1�1h (t);D�H(t� �0; q(t); 0)i dt 6= 0for some �0 2 S1. The solution is given by x(t; �) = q(t + �(�)) + z(t + �(�); �) with�(�) 2 C1((��0; �0); IR) and �(0) = �0. This proves the �rst part of the theorem.It remains to show that equation (5.5) has an exponential di
hotomy on IR. On a

ount ofTheorem 1, equation (5.5) has an exponential di
hotomy on IR+ and IR�, respe
tively, forany small �.For a bounded solution y(t) of equation (5.5), we set y(t) = _x(t; �) + w(t) su
h that_w = �A+DG(x(t; �)) + �DxH(t; x(t; �); �)�w � �DtH(t; x(t; �); �) (5.8)= �A+DG(q(t; �))�w + �DG(x(t; �)) �DG(q(t; �)) +�DxH(t; x(t; �); �)�w � �DtH(t; x(t; �); �)= �A+DG(q(t; �))�w +O(�)w � �DtH(t; x(t; �); �):Lyapunov-S
hmidt redu
tion shows that this equation has a bounded solution if and onlyif ~M(�) := Z 1�1 D (t+ �(�)); �DG(x(t; �)) �DG(q(t+ �(�))) +�DxH(t; x(t; �); �)�w(t; �)� �DtH(t; x(t; �); �)E dt= 0;where w(t; �) = O(�) satis�es the invertible part of (5.8). Therefore,~M(�) = �� Z 1�1h (t);DtH(t� �0; q(t); �)i dt+Z 1�1 D (t+ �(�)); �DG(x(t; �))�DG(q(t+ �(�))) + �DxH(t; x(t; �); �)�w(t; �)���DtH(t; x(t; �); �) �DtH(t; q(t+ �0); �)�E dt:The �rst integral is M 0(�0) whi
h we keep. The other integral is of order o(�). Indeed,DG(x) is Lips
hitz 
ontinuous in x, w(t; �) = O(�), and x(t; �) � q(t + �(�)) = z(t; �) =31



O(�), when
e the term involving w is of order O(�2). The di�eren
e DtH(t; x(t; �); �) �DtH(t; q(t+�0); �) = o(1) 
onverges to zero as � tends to zero sin
e � is C1 andDtH(t; x; �)is 
ontinuous in x. Thus, we have~M (�) = �M 0(�0)�+ o(�);whi
h is non-zero sin
eM 0(�0) 6= 0. An appli
ation of Theorem 2 then shows that equation(5.5) has an exponential di
hotomy on IR.We pro
eed by proving the shadowing lemma, see also [2℄ for a proof for the paraboli
 
ase.We 
onsider the slightly more general nonlinear equation_x = Ax+ F (t; x) (5:9)with F 2 BC1(IR�X�;X) for some � 2 [0; 1) and DxF (t; �) being Lips
hitz. Note that Fis not ne
essarily periodi
 in t.Theorem 5 Assume that A satis�es Hypothesis (H1) and has 
ompa
t resolvent. Fur-thermore, suppose that equation (5.9) has solutions u�n1(t), uk(t), and un2(t) for �n1 <k < n2 de�ned on the intervals I�n1 = (�1; t�n1 ℄, Ik = [tk�1; tk℄, and In2 = [tn2 ;1) for�n1 < k < n2, respe
tively, su
h that(i) the variational equation _y = (A+DxF (t; uk(t)))yhas an exponential di
hotomy on Ik with proje
tions Pk(t), exponent Æ and bound K for�n1 � k � n2. Also, Hypotheses (H2) and (H5) are met for the variational equation.(ii) jtk � tk�1j � Æ�1 ln 3K.Then, there exists a positive 
onstant �0 su
h that the following holds. For any � with0 < � < �0 there exists a 
onstant �(�) > 0 su
h that, if in addition(iii) juk�1(tk�1)� uk(tk�1)jX� � �(�), and(iv) kPk�1(tk�1)� Pk(tk�1)kL(X�) � �(�),are met, equation (5.9) has a unique bounded solution x(t) on IR satisfyingjx(t)� uk(t)jX� < �for t 2 Ik and �n1 � k � n2. 32



Proof. We de�ne a fun
tion u(t) for t 2 IR by u(t) = uk(t) for t 2 Ik. Then, u(t)is H�older 
ontinuous ex
ept at the points tk. For any �xed 
 > 0, there is a fun
tion�(t) 2 L1(IR;X) with supt2IR j�(t)jX < 
 su
h that F (u(t); t) + �(t) is H�older 
ontinuouson IR. We approximate u(t) by the unique bounded solution z(t) of the equation_z = Az + F (u(t); t) + �(t):Sin
e the equation _z = Az has an exponential di
hotomy on IR, the above equation has aunique solution. We have the estimateju(t)� z(t)jX� � C(
 + �)for some 
onstant C > 0. Thus, for � and 
 suÆ
iently small, and due to Hypothesis (ii),_y = (A+DxF (t; z(t)))yhas an exponential di
hotomy on IR, see [22℄ for the details.Finally, we introdu
e new 
oordinates x(t) = z(t) + w(t) and write equation (5.9) in theform _w = (A+DxF (t; z(t)))w + F (t; z(t) + w)� F (t; z(t)) �DxF (t; z(t))w+F (t; z(t)) � F (t; u(t)) � �(t):For 
 and � small, we thus obtain a unique solution of equation (5.9) employing an impli
itfun
tion theorem.We now de�ne the Bernoulli shift. Let N be a positive integer andSN = f(ak)k2 ZZ ; ak 2 f0; :::; N � 1g for all k 2 ZZ gwith the produ
t topology. The shift � : SN ! SN , de�ned by (�(a))k = ak+1, is ahomeomorphism.Corollary 3 Assume that the hypotheses of Theorem 5 are met and that, in addition,F (t; x) is periodi
 in t with period p. Moreover, suppose that (5.9) has a bounded solutionv(t) and a T -periodi
 solution u(t) su
h that33



(i) the variational equation _y = Ay +DxF (t; v(t))yhas an exponential di
hotomy on IR and(ii) jv(t)� u(t)jX� ! 0 as jtj ! 1.Then there are �0 > 0 and fun
tions MN (�) for ea
h N 2 IN su
h that, for given � with0 < � � �0 and m � MN (�) the following holds. For any a 2 SN , equation (5.9) has aunique bounded solution xa(t) de�ned on IR satisfyingjxa(t+ (2k � 1)mT )� v(t+ akT )jX� � � (5:10)for t 2 [�mT;mT ℄ and for all k 2 ZZ . The map �(a) = xa(0) is a homeomorphism onto a
ompa
t subset � of X�. Furthermore,xa(2mp) 2 �xa(2mp) = x�(a)(0) = �(�(a))is true for any a 2 SN .Proof. The 
onditions of Theorem 5 are satis�ed for k 2 [�n0; n0℄ and n0 2 IN if we de�neuk(t) = v(t + akT � (2k � 1)mT ) and tk = 2kmT for m large enough. Thus, for any n0,we obtain a solution xan0 that satis�es inequality (5.10) for k 2 [�n0; n0℄. The sequen
eof solutions fxan0 gn02IN is a Cau
hy sequen
e on 
ompa
t intervals and 
onverges to thesolution xa. The remaining part of the proof is similar to the one given by Palmer [22,Corollary 3.6℄.We 
an interpret the statement of the 
orollary as follows. The solution v(t) has N partswhi
h 
orrespond to the time segments[�mT;mT ℄; [(�m+ 1)T; (m + 1)T ℄; :::; [(�m +N � 1)T; (m +N � 1)T ℄:The solution xa(t) shadows one of these N parts of v(t) in ea
h time segment[(2k � 2)mT; 2kmT ℄but swit
hes randomly from one part to another.34



6 An appli
ation to semilinear ellipti
 equationsIn this se
tion, we apply Melnikov's method as developed in the last se
tion to semilinearellipti
 equations. First, we have to relate the abstra
t equation investigated in the previousse
tions to ellipti
 equations. Then, ellipti
 equations on in�nite 
ylinders are 
onsidered.We state 
onditions guaranteeing that the theory developed in the present paper applies.Finally, a 
on
rete example on the in�nite 
ylinder IR� (0; �)n is presented.6.1 Abstra
t ellipti
 equationsLet Y be a Hilbert spa
e and L : D(L) � Y ! Y a densely de�ned, stri
tly positive andself-adjoint operator. Moreover, denote the fra
tional power spa
es asso
iated with L byY �. In parti
ular, Y 1 = D(L). Finally, suppose thatg : Y 1+�2 � Y �2 ! Yis a nonlinearity of 
lass Ck for some � 2 [0; 1) whi
h we will �x from now on. We areinterested in the abstra
t ellipti
 equationuxx � Lu = g(u; ux) x 2 IR (6:1)for u 2 Y �.Consider the operator A = 0B� 0 idL 0 1CA : Y 1 � Y 12 ! Y 12 � Y; (6:2)then Hypothesis (H1) is met. In fa
t, the proje
tions P� are given byP� = 12 0B� id �L� 12�L 12 id 1CA : Y 12 � Y ! Y 12 � Y;and the operators A� by A� = 12 0B� L 12 � id�L L 12 1CA :The fra
tional powers are then given byA�� = 12 0B� L�2 �L��12�L 1+�2 L�2 1CA35



with asso
iated fra
tional power spa
es X� = Y 1+�2 � Y �2 . Consider the equationddxv = Av +G(v) (6:3)with v = (u; ux) and G(v) = (0; g(v)). Sin
e g : Y 1+�2 � Y �2 ! Y is Ck, we see thatG : X� ! X is Ck as well. Furthermore, it is straightforward to show that A has 
ompa
tresolvent whenever L has.Therefore, it suÆ
es to verify the assumptions made on L and g stated at the beginning ofthis se
tion in order to apply the results in Se
tion 2 and 5 to equation (6.3) whi
h is (6.1)written as a �rst order system in x. We emphasize that similar statements hold if (6.1) isof fourth order in x, and refer to a forth
oming paper for the details.6.2 Semilinear ellipti
 equations on in�nite 
ylindersConsider a s
alar semilinear ellipti
 equationuxx +�yu+ ĝ(y; u; ux;ryu) + �ĥ(x; y; u; ux;ryu) = 0 (x; y) 2 IR� 
: (6:4)Here, � is a small real parameter, h is periodi
 in x with period p and 
 � IRn is an openbounded domain with smooth boundary. For the sake of simpli
ity, we 
onsider Neumannboundary 
onditions ��u(x; y) = 0 (x; y) 2 IR� �
 (6:5)where � denotes the outer normal of �
. Let Y = L2(
). Then L = ��y + u is aself-adjoint and positive operator with 
ompa
t resolvent and dense domainY 1 = D(L) = fu 2 H2(
); ��u = 0 on �
gin L2(
), see, for instan
e, [9℄. Finally, we assume that the nonlinearities g and h de�nedby (g(v1; v2))(y) := ĝ(y; v1(y); v2(y); (ryv1)(y))(h(x; v1; v2))(y) := ĥ(x; y; v1(y); v2(y); (ryv1)(y))map the spa
e Y 1+�2 � Y �2 smoothly into L2(
) for some � 2 [0; 1). Depending on thedimension of 
, this may require some nonlinear growth restri
tions for whi
h we refer tothe literature, see, for instan
e, [1, Chapter 9℄, [29, Chapter II℄, and [27, Chapter 7℄. We36



remark that the spa
es 
hosen above always allow for linear dependen
e of ĝ and ĥ on thegradient ux of u in the unbounded variable x. This is important when the ellipti
 equationdes
ribes travelling waves of paraboli
 equations travelling in the x-dire
tion.The uniqueness assumption (H5) is met under very weak 
onditions on equation (6.4).Indeed, Cordes [6, Satz 5℄ proved that any solution u of 
lass C2 satisfyinguxx +�yu+ a(x; y)ux + b(x; y)ryu+ 
(x; y)u = 0 (x; y) 2 IR� 
u(0; y) = ux(0; y) = 0 y 2 
 (6:6)vanishes identi
ally u(x; y) = 0 on IR � 
 provided the 
oeÆ
ients a, b, and 
 are lo
allyLips
hitz 
ontinuous.Suppose that q(x; y) is a homo
lini
 solution of (6.4) for � = 0 satisfyinglimjxj!1 q(x; y) = 0:In addition, assume that qx(x; y) is the unique, up to s
alar multiples, bounded solution ofvxx +�yv +Dux ĝ(y; q; qx;ryq)vx (6.7)+Dryuĝ(y; q; qx;ryq)ryv +Duĝ(y; q; qx;ryq)v = 0;whi
h is of the form (6.6). Also, as limjxj!1 q(x; y) = 0, the 
oeÆ
ients 
onverge forjxj ! 1 to fun
tions depending only on y.Thus, the theory developed in the previous se
tions applies. Indeed, using the results inSe
tion 6.1, it is possible to write (6.4) as an evolution equationddxv = Av +G(v) + �H(x; v) (6:8)where A = 0B� 0 id��y + id 0 1CAand G(v)(y) = 0B� 0�g(v1; v2)� v1 1CA ; H(x; v)(y) = 0B� 0��h(x; v1; v2) 1CA :The linearization ddxv = Av +DG(q; qx)v37



at the homo
lini
 solution satis�es Hypothesis (H5) whenever, for instan
e, Cordes' resultapplies to (6.7). Also, the smallness assumption (H2) is always satis�ed based on the aboveremarks.6.3 An example on an in�nite 
ylinderAs an example, we take 
 = (0; �)n and 
onsideruxx + 
2�yu� u+ u2 + �(1 + h(y)) 
os x = 0 (x; y) 2 IR� (0; �)n; (6:9)for n 2 IN with Neumann boundary 
onditions�yu(x; y) = 0 for (x; y) 2 IR� �
:Here, 
 6= 0, and h(y) is a smooth fun
tion with zero mean, that is R
 h(y) dy = 0. Notethat the nonlinearity is analyti
 for � = 0. Hen
e the uniqueness hypothesis (H5) is satis�edsin
e any solution of either (6.9) or its linearization is analyti
 as well. Though the domain
 is not smooth, equation (6.9) �ts into the setting of the last se
tion. Alternatively, thereader may 
onsider the n-dimensional unit ball using spheri
al harmoni
s instead of thetrigonometri
 expansion employed below.We remark that the redu
tion to essential manifolds developed by Mielke [21℄ applies toequation (6.9) provided n = 1. However, as pointed out in the introdu
tion, the resultingmanifold will only be of 
lass C1. For n > 1, the results in [20℄ do not apply sin
e theyrequire that the nonlinearity is independent of x. Also, the example 
an be modi�ed easilysu
h that the spe
tral gaps are not arbitrarily large as required by any inertial-manifoldredu
tion. Repla
e, for instan
e, 
 as de�ned above by Qnj=1(0; aj�) with rationally inde-pendent 
onstants aj > 0.Rewrite equation (6.9) a

ording toddx 0B� v1v2 1CA = 0B� 0 1�
2�y + 1 0 1CA0B� v1v2 1CA�0B� 0v21 + �(1 + h(y)) 
os x 1CA= Av +G(v) + �H(x; v):Let k 2 INn0 be a multi-index and de�ne jkj2 :=Pnj=1 k2j . Then, the eigenvalues of the linearoperator A are given by��k = �q1 + 
2jkj2 for k 2 INn038



with asso
iated eigenfun
tionsw�k (y) = 0B� 1�p1 + 
2jkj2 1CA nYj=1 
os kjyj for k 2 INn0 :In the invariant subspa
e W0 = spanfw+0 ; w�0 g, the homo
lini
 solution(q(x); qx(x)) = �32 se
h 12x;�34 se
h 12x tanh 12x�of (6.9) is found for � = 0. Consider the variational equationddxv = (A+DG(q(x)))v: (6:10)It turns out that the subspa
es Wk = spanfw+k ; w�k g are invariant under the 
ow of (6.10)for k 2 INn0 . In the subspa
e Wk, equation (6.10) readswxx � (1 + 
2jkj2 � 2q(x))w = 0 x 2 IR; (6:11)where w(x) is the amplitude. We are interested in the set of bounded solutions to thisequation. First 
onsider the spe
trum of the operatorLw = wxx � (1� 2q(x))w x 2 IR: (6:12)The spe
trum of L is given by isolated simple eigenvalues �0 = 54 , �1 = 0, and �2 = �34with eigenfun
tions ~w0(x) = se
h 32 (12x) and ~w1(x) = qx(x). The remainder part (�1;�1℄of the spe
trum is essential spe
trum. See [26, Lemma 2.1℄ for the proofs.Now suppose that 
 6= p52l for all l 2 IN: (6:13)Then the linearized equation (6.11) has non-trivial bounded solutions only for k = 0 andHypothesis (H6) holds by non-degenera
y of the homo
lini
 orbit in the plane W0. There-fore, Theorem 4 and Corollary 3 apply on
e (6.13) is met. Note that, in parti
ular, (6.13)is met if 
 > p52 .In passing, we remark that the subspa
e W0 be
omes normally hyperboli
 for 
 !1. Inthis 
ase, equation (6.9) is posed on a thin domain as 
an be readily seen by res
aling they variable.It remains to 
al
ulate the Melnikov integrals. The bounded solution of the adjoint equationddxv = �(A� +DG(q(x))�)v39



is given by (� x(x);  (x)) = (�qxx(x); qx(x)):Therefore, we obtainM(�) = Z 1�1 Z
 qx(x)(1 + h(y)) 
os(x� �) dy dx= �n Z 1�1 q(x) sin(x� �) dx= �n Z 1�1 31 + 
oshx sin(x� �) dx= 6�n+1sinh� sin�:For � = 0, we have M(0) = 0 and M 0(0) 6= 0. Thus, the 
on
lusions of Theorem 4 andCorollary 3 apply to this parti
ular example.Note that, for non-zero h(y) and � 6= 0, the subspa
e W0 is no longer invariant when
e thesolutions ensured by Corollary 3 do have non-trivial y-dependen
e. These solutions 
an beviewed as 
ompli
ated equilibria u(x; y) of the paraboli
 equationut = uxx + 
2�yu� u+ u2 + �(1 + h(y)) 
os x (x; y) 2 IR� (0; �)n (6:14)on the 
ylinder IR � (0; �)n. Moreover, for small 
, the above results still hold if a term�
ux is added to (6.9). Then Corollary 3 ensures existen
e of many travelling-wave solutionsu(x � �
t; y) of (6.14) with non-trivial spatial dependen
e travelling with non-zero speed�
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