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Abstract

We study mechanisms for wavenumber selection in a minimal model for run-and-tumble dynamics. We

show that nonlinearity in tumbling rates induces the existence of a plethora of traveling- and standing-

wave patterns, as well as a subtle selection mechanism for the wavenumbers of spatio-temporally periodic

waves. We comment on possible implications for rippling patterns observed in colonies of myxobacteria.
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1 Introduction

Inspired by Turing’s [49] proposition of pattern formation mechanisms based solely on simple diffusion and

reaction mechanisms, there has been a tremendous amount of theoretical and experimental efforts devoted

to designing and studying systems that exhibit mechanisms for the selection of spatial structure. Theoreti-

cally, the most accessible scenario is the instability of an unpatterned, spatially homogeneous state against

perturbations with spatial structure. The linearly fastest growing mode then allows for rough predictions of

wavenumbers in nonlinear systems. Despite the simple theoretical appeal of Turing’s prediction, it took a long

time to support his theoretical predictions experimentally, see e.g. [11, 29], where sustained, self-organized

spatially periodic structures are observed in an open-flow chemical reaction; [43], where the roles of the Nodal

and Lefty signal are summarized during the blastula stage; [45], where WNT and DKK signaling is discussed

in the context of hair follicle spacing; and [48], where Turing’s ideas are quantitatively tested in a cellular

chemical system.

It’s worth noticing that absence of diffusion in one species out of two, does not lead to selection of finite

wavenumbers in linear instabilities [18, 35]. However, patterns with well-defined wavenumber laws had ex-

perimentally been observed for such systems long before Turing’s prediction [37, 15, 36]. On the other

hand, systems of two species do not exhibit linear instabilities that select temporal oscillations with a finite

wavenumber. Such spatio-temporal selections through a fastest growing linearly unstable mode, that will be

the main theme of the present paper, are possible in reaction-diffusion systems with at least three species,

only; see [49, 17, 18].

Our interest here is in a yet simpler system of run-and-tumble dynamics. We think of self-propelled agents

moving with the same speed to either right or left. In addition, agents may change orientation, and start

moving in the opposite direction. The probability of this tumbling events is assumed to be a pointwise

function of the densities of left- and right-moving agents. The resulting tumbling rates can be thought of as

encoding probabilities of encounters between left- and right-moving agents, which in turn induce changes of

orientation.

This caricature picture is motivated by observations of rippling patterns in colonies of myxobacteria [39, 44,

41, 51]. During aggregation and starvation induced self-organization of myxobacteria an intriguing rippling

pattern can be observed within the colony; see Figure 1.1. The ripple crests are oriented approximately

perpendicular to the movement direction of the bacteria. The so-called C-signal, bound to their cell surface, is
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Figure 1.1: Experimentally observed patterns of high and low cell density in myxobacteria colonies, forming planar

ripple patterns (left) or concentric circles and spiral wave patterns (right); from [33, Fig. 5] with permission.

transmitted upon end-to-end contact of bacteria, and increases the reversal probability of individual bacteria.

A number of mathematical models with different assumption have been discussed in the literature in order

to decribe this rippling behavior, cf. [32, 38, 8, 1, 6, 31, 33, 2, 46, 7, 40, 5].

All models include active motion and collision-triggered reversal of myxobacteria. Continuous, [6, 5, 32, 31,

33, 38, 40], and discrete approaches, [1, 2, 7, 8, 46] are discussed. Several of the models assume a refractory

period after collision and/or a reversal triggering internal biochemical clock to play a role. This is not needed

in [38, 6]. In [40] different cellular states are suggested instead, i.e. the state of excitation (being able to

receive or send the C-signal), the state when being in contact with counter-migrating cells, and the state of

reversing the motors.

Although rippling patterns could numerically be observed in all models, a strict argument that the respective

assumed mechanisms really do select a wavenumber, as one can see in experiments, could so far only be

shown for the model in [40]. As pointed out in [31, 40] any linear stability analysis is not capable to predict

a correct wavelength and wavespeed for the models given in [32, 38]. In the limit of weak signaling for the

model in [32] a Fokker-Planck type of equation was derived by [5] for the reversal-point density, that contains

a source term which is absent in the respective limit given by [31]. For small nonlinearities wave number

selection could be found. Strengthening the nonlinearity tends to confine and destroy the patterns through

a nonequilibrium phase transition, reminiscent of destruction of synchronization in the Kuramoto model.

Such an analysis is even less accessible for discrete or individual based models, i.e. leaving the rigorous

analysis of the suggested mechanisms for rippling patterns and defined wavelengths in these models still

largely open. A further crucial control for the suggested rippling mechanisms are their capability to also

reflect mutant, or dilution-experiments, see Section 6 for a detailed discussion, and the close relation between

rippling and aggregation patterns.

Tying in with these considerations and since the actual mechanism for motion and tumbling are most definitely

quite complex, we think of our caricature example as trying to exhibit the simplest mechanism that can explain

the intriguing rippling patterns and also the associated selection of wavenumbers.

To be precise, we start with the model that was analyzed in [38],

ut = +ux − r(u, v) + r(v, u),

vt = −vx + r(u, v)− r(v, u), (1.1)

where u = u(t, x) and v = v(t, x) encode the densities of left- and right-moving bacteria, respectively, r(u, v)

is the rate at which left-moving bacteria reverse direction, and, by reflection symmetry, r(v, u) the rate at

which right-moving bacteria reverse direction. Such systems do arise as special lower dimensional case from

structured population dynamics models, cf. [40, 47],

∂tU(t, x, c) + V (c) · ∂xU(t, x, c) + ∂c [K (U(t, x, c))] = 0, (1.2)
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where {c} denotes a set of internal variables which characterize the state of the considered species, i.e. here

the direction of motion. The most distinctive feature of the operator K is, that it acts on the density U in a

local manner. To our knowledge, the classification of pattern formation in such systems is largely open, and

one could view our attempts at a precise description of the patterns in the drastically simplified system (1.1)

as a first step towards a systematic description of patterns in the more complex system (1.2).

At times, we will also allude to a diffusive regularization of (1.1),

ut = ε2uxx + ux − r(u, v) + r(v, u)

vt = ε2vxx − vx + r(u, v)− r(v, u), (1.3)

with ε > 0, small, encoding Brownian fluctuations in addition to directed motion. We mostly think of these

systems posed on x ∈ R, but will restrict to periodic boundary conditions when convenient.

While most of our results give valid predictions for general systems of the form (1.1), we focus in our analysis

on the following class of tumbling rates

r(u, v) = u · g(v), g(v) = 1 +
v2

1 + γv2
, (1.4)

for some γ > 0. Those nonlinearities model a tumbling rate proportional to the number of say right-moving

agents, depending in a nonlinear fashion on encounters with oppositely oriented agents. Constants g(v) ≡ 1

encode spontaneous tumbling, linear dependence g(v) = v encodes binary collisions, albeit with zero net

effect on the dynamics due to the presence of the reverse tumbling, ug(v)−vg(u) = 0 for g(v) = v. Therefore

we keep the next simplest term g(v) = v2, which encodes triple collisions, and we also allow for a Hill-type

saturation of the tumbling rate for large densities through the denominator 1 + γv2.

The interaction of tumbling and transport appears to be surprisingly difficult to characterize. The linear

transport equation associated with linear tumbling rates g(v) ≡ µ can be converted to a damped wave

equation for ρ = u+ v using the “Kac trick”,

ρtt + 2µρt − ρxx = 0, (1.5)

with diffusive long-time dynamics for µ > 0. For nonlinear tumbling rates, such a simple description does

not appear to be possible. One can however find criteria that guarantee global existence of solutions, at least

in the presence of small viscosity ε > 0 (1.3); see [26, 38]. In fact, invariance of the domain (u, v) ∈ [0, s]2 for

(1.1) implies r(w, s)− r(s, w) 6 0 for all 0 6 w 6 s, which, for r(u, v) = ug(v) gives

g(s)w − g(w)s 6 0, for 0 < w < s.

For power-law behavior, those conditions imply sublinear growth of g, motivating to some extent the choice

of a Hill-type saturation in (1.4).

Systems (1.1) and (1.3) exhibit trivial, spatially constant equilibrium densities 1 when r(u, v) = r(v, u), which

is satisfied for u ≡ v (symmetric states), but possibly also along curves where u 6≡ v (asymmetric states).

Following Turing’s ideas [49], one can then ask for the type of patterns which may emerge from instabilities

of such uniform densities, striving to find a simple explanation for the occurance of the ripples shown in

Figure 1.1. It was noted in [38, 40] that the linearization at symetric states does not predict finite wavelength

patterns as fastest growing modes of the linearization in this simple two-species models. In fact, at the

onset of instability, all spatial wavenumbers become simultaneously naturally stable, with eigenvalues on the

imaginary axis, and past onset spatially homogeneous perturbations exhibit the fastest growth rate; see also

Section 2, below. “Turing instabilities”, where the first instability occurs for a wavenumber 0 < k∗ < ∞
arise only when more complexity is allowed, for instance the introduction of different stages of right and left

moving bacteria, uj , vj , j > 2; see [40, 47].

Our main results here can be informally summarized as follows:

1Equilibrium here refers to an Eulerian, density equilibrium — the agents are perpetually moving and tumbling.
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(i) linear growth favors wavenumbers klin = 0 or klin = ∞, that is, linear instabilities do not select finite

wavenumbers from white-noise perturbations;

(ii) localized perturbations of asymmetric states may generate traveling waves with a selected non-zero

wavenumber kloc, that is, instabilities do select finite wavenumbers from shot-noise perturbations;

(iii) localized perturbations of symmetric states result in the creation of asymmetric states and subsequent

evolution of traveling and standing waves, with nonzero wavenumber kloc, that is, localized instabilities

eventually do select finite wavenumbers from shot noise perturbations.

The key insight is that localized perturbations result in a spatio-temporal spreading of perturbations. The

resulting invasion process is oscillatory in nature with a well-defined spreading speed and finite temporal

frequency. In other words, oscillatory invasion selects spatial wavenumbers.

Such spatio-temporal selection mechanisms are also relevant in contexts where the run-and-tumble dynamics

are subject to an additional growth mechanism. We demonstrate this here in an oversimplified scenario,

where growth is induced by simply depositing agents into the system at locations x = ±ct. Most importantly,

the selection mechanisms referred to above are not induced by diffusion. Indeed, linear growth from white

noise may favor a finite wavenumber 0 < k(ε) < ∞ in (1.3), but k(ε) → 0 or k(ε) → ∞ for ε → 0, for these

kinds of perturbations. For shot noise perturbations, diffusion plays a subordinate role, and the selected

wavenumber kloc(ε) is continuous in ε with nonzero limit at ε = 0.

These main findings are summarily illustrated below in Figure 5.5 (no wavenumber selection from white

noise perturbations), Figure 5.1 (wavenumber selection from local perturbations), Figure 5.4 (wavenumber

selection from shot noise perturbations), Figure 5.6 (wavenumber selection from localized perturbations of

symmetric states), and Figure 5.7 (wavenumber selection through growth).

Outline: We discuss kinetics and instabilities of spatially uniform distributions in Section 2. Section 3

contains existence and stability analysis of nonlinear traveling- and standing-wave patterns. We briefly

review linear pointwise growth theory in Section 4 and apply the theory to our specific example. Section 5

demonstrates the validity of these predictions in several contexts, including the above mentioned localized

and shot noise perturbations of localized equilibria. We conclude with a discussion and list of open problems,

Section 6.

Acknowledgments. A. Scheel was partially supported through NSF grants DMS-1612441 and DMS-

1311740, through a DAAD Faculty Research Visit Grant, WWU Fellowship, and a Humboldt Research

Award. A. Stevens was partially supported by the DFG Excellence Cluster Cells in Motion (CiM). A. Scheel

gratefully acknowledges generous hospitality during his extended research stay at the WWU Münster.

2 Tumbling kinetics and linear analysis

We first discuss dynamics of x-independent density profiles, Section 2.1 and then calculate stability of these

profiles against x-dependent perturbations, Section 2.2.

2.1 Tumbling kinetics

The tumbling kinetics

ut = −r(u, v) + r(v, u)

vt = +r(u, v)− r(v, u), (2.1)

can in principle be solved explicitly, exploiting mass conservation u(t)+v(t) ≡M to reduce to a scalar equation

ut = −r(u,M −u) + r(M −u, u). Possibly more elegantly, notice the reflection symmetry (u, v) 7→ (v, u) and
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introduce invariant ρ = u+ v and equivariant m = u− v as variables,

ρt = 0, mt = −2

(
r

(
ρ+m

2
,
ρ−m

2

)
− r

(
ρ−m

2
,
ρ+m

2

))
,

which in turn can be written as

ρt = 0, mt = mR
(
m2, ρ

)
,

exploiting the fact that mt is an odd function in m and viewing ρ as a parameter. The symmetric solution

branch m = 0, changes stability when ∂1R = 0, or

∂1r(u, u) = ∂2r(u, u) (2.2)

and a nontrivial branch of solutions with m 6= 0 bifurcates in a local pitchfork bifurcation when stability

changes.

Asymmetric equilibria continue as curves, generically without further bifurcation points. Linear stability of

an equilibrium (u, v) = (u∗, v∗) is readily found from the linearized matrix

A∗ =

(
−∂1r

uv + ∂2r
vu ∂1r

vu − ∂2r
uv

∂1r
uv − ∂2r

vu −∂1r
vu + ∂2r

uv

)
=

(
n1 n2

−n1 −n2

)
where the superscripts uv and vu indicate evaluation at (u∗, v∗), respectively, and

n1 := −∂1r
uv + ∂2r

vu, n2 := ∂1r
vu − ∂2r

uv.

Note that n = (n1, n2) is a normal vector to a curve of equilibria as it is perpendicular to the kernel of A∗.

Asymmetric equilibria are stable when the nontrivial eigenvalue of A∗ is negative,

λ2 := n1 − n2 < 0.

Bifurcation diagrams for the specific kinetics (1.4) are shown in Figure 2.1 and illustrate the relation between

orientation of curves of equilibria, that is, of n, and stability. In fact, asymmetric equilibria exist for γ < 1/8
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Figure 2.1: Dynamics of tumbling kinetics (2.1) in the phase plane for r as in (1.4) with γ = 0.122, 0.115, 0.07, 0.021

from left to right. Stability changes correspond to horizontal tangencies of curves of equilibria.

for g like in (1.4) and are given explicitly through

u =
v ±

√
v2 − 4γ (1 + γv2) (1 + (1 + γ) v2)

2γ (1 + (1 + γ) v2)

bifurcating from the symmetric branch at

u∗ = v∗ =

√
1− 2γ ±

√
1− 8γ

2γ(1 + γ)
.

For γ = 0, asymmetric equilibria are always stable for the pure tumbling kinetics and lie on the hyperbola

uv = 1.
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Figure 2.2: Dispersion relations Reλ± as functions of k from (2.4) for typical choices of (n1, n2).

2.2 Dispersion relations and linear stability

We now turn to analyzing stability of spatially homogeneous states with respect to x-dependent perturbations.

After Fourier transformation with variable ν = ik, we find the family of matrices

A∗(ν) =

(
−∂1r

uv + ∂2r
vu + ν ∂1r

vu − ∂2r
uv

∂1r
uv − ∂2r

vu −∂1r
vu + ∂2r

uv − ν

)
=

(
n1 + ν n2

−n1 −n2 − ν

)
,

with eigenvalues λ found as roots of the dispersion relation,

d(λ, ν) = det (A∗(ν)− λ) = λ (λ− (n1 − n2))− ν (ν + (n1 + n2)) , (2.3)
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that is, setting ν = ik,

λ±(k) =
1

2

(
n1 − n2 ±

√
(n1 − n2)2 + 4ik (n1 + n2 + ik)

)
. (2.4)

Expanding the neutral branch, λ−(0) = 0, at k = 0, we find

λ−(k) = −cgik − deffk
2 + O(k3), with cg =

n1 + n2

n1 − n2
, deff = 4

n1n2

(n1 − n2)3
, (2.5)

such that long-wavelength modulations can be thought of as obeying a diffusive transport law with transport

velocity given by the group velocity cg and effective viscosity deff nonzero, even at ε = 0. One readily finds

curves Reλ±(k) as depicted in Figure 2.2. Stable equilibria have n1 < 0 < n2. Note that Reλ± is maximal

for k = 0 on the symmetric branch, and when n1 < 0 < n2 or n2 < 0 < n1 on the asymmetric branch, and for

k = ∞, otherwise. Consequences for stability are illustrated in the bifurcation diagrams in Figure 2.3. We

remark that the presence of diffusion would cause all branches λ±(k) to stabilize eventually, Reλ± ∼ −k2 for

|k| large. One can therefore verify that in the cases where the selected wavenumber is k =∞, a small amount

of diffusion would induce selection of finite wavenumbers, that is Reλ maximal for some 0 < k(ε) <∞. On

the other hand, k∗(ε) → ∞ as ε → 0, such that pattern selection occurs on the length scale of diffusion

and should therefore not be thought of as induced by the tumbling mechanism. In direct simulations, we

also noticed that such patterns were typically subject to coarsening, driving the system eventually to an

unpatterned state.
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Figure 2.3: Dispersion relations Reλ±(k) from (2.4) along branches of equilibria. Stability depends on the tangent

vectors of asymmetric branches, only.

Comparing with experiments, the linear stability of symmetric states with small mass (u, v) ≡ m agrees with

the observed absence of rippling patterns in bacterial colonies with small mass densities [34].
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3 Nonlinear traveling- and standing-wave patterns

We exhibit a large family of traveling- and standing-wave patterns and comment on stability.

Traveling waves: non-characteristic speeds. Traveling-wave solutions u(x − ct), v(x − ct) solve the

differential equation

(−1− c)uξ = −r(u, v) + r(v, u)

(1− c)vξ = +r(u, v)− r(v, u). (3.1)

For |c| 6= 1, this is a genuine differential equation, bounded solutions are smooth, with conserved quantity

Mc = (−1 − c)u + (1 − c)v. As a consequence, we can reduce to a scalar ODE with heteroclinic orbits as

the only possible bounded solutions. Geometrically, the resulting dynamics can immediately be inferred from

intersecting the bifurcation diagram with lines of constant Mc.

Since level lines of Mc are not simply anti-diagonals, it is possible for such heteroclinic orbits to connect two

equilibria that are both stable for the pure tumbling kinetics. One can however verify that one of the two

equilibria is necessarily linearly unstable for the PDE, that is, Reλ±(k) > 0 for some k, for any c and any

choice of tumbling kinetics.

Traveling waves: characteristic speeds. When c = 1, the v-equation is algebraic and solutions are not

necessarily smooth as functions of ξ. From the algebraic relation, we find that r(u, v) = r(v, u) for all ξ, such

that uξ = 0 and u ≡ u∗ is constant, while v may jump arbitrarily between roots of r(u∗, v) − r(v, u∗). As

a consequence, traveling waves can be constructed by fixing a value u∗ and choosing v arbitrarily for any ξ

on branches of the bifurcation diagram, provided that for this particular value of u = u∗ there exist multiple

equilibrium solutions v. The simplest such solution amounts to a front mediating one vertical jump in the

bifurcation diagram.

Standing and counter-propagating waves. We can more generally look for solutions with “compatible”

values that is, the measurable initial condition takes values on equilibria, only,

u0(x) ∈ {u∗, v∗}, v0(x) ∈ {u∗, v∗}, r(u∗, v∗) = r(v∗, u∗), u∗ 6= v∗.

We then define u(t, x) = u0(x + t), v(t, x) = v0(x − t) and claim that (u(t, x), v(t, x)) is a solution to the

initial value problem. Indeed, the nonlinearity vanishes on the solution for all times, since (u, v)-values are

either on the diagonal or at a zero of the combined tumbling rate, and the transport term is accommodated

by the shift. We briefly discuss in the appendix some basic existence theory, defining a concept of a solution

that allows for local existence and uniqueness, but also for discontinuous solutions of this form.

Summarizing, the particular structure of our system imposes very strong restrictions on traveling waves, in

particular on smooth traveling waves, but allows for a very large family of step-function type wave patterns.

On those patterns, the nonlinarity vanishes such that dynamics are simply left- and right-shifts in the two

components, equivalent to the wave equation.

Stability. The arguably most interesting situation are discontinuous fronts with speed c = 1 (or c = −1),

u ≡ u∗, v(x) = v± for ±x > 0. In the comoving frame of reference, waves solve a transport equation coupled

to an ODE, with linearization

ut = 2ux + n1u+ n2v, vt = −n1u− n2v,

and the notation from Section 2 for derivatives of the tumbling rates. The coefficients and nj = nj(x) = n±j
for ±x > 0 are associated with the linearization at (u∗, v

±). While it would be interesting to prove nonlinear

8



stability in general, we restrict ourselves here to showing that there do not exist unstable linear modes

associated with the discontinuity. Therefore, we restrict ourselves to n±1 − n
±
2 > 0, that is, both asymptotic

states are stable, and consider the eigenvalue problem

λu = 2ux + n1u+ n2v, λv = −n1u− n2v,

with Reλ > 0. For λ + n±2 6= 0, this equation reduces to an ODE for u with no bounded solutions for λ to

the right of the essential spectrum. In case λ = −n−2 > 0, say, we conclude n1 < 0 such that n1 − n2 < 0,

and therefore u = 0 from the second equation. The first equation then also gives v = 0, hence, by continuity

at x = 0, u = v = 0 and again λ is not an eigenvalue.

4 Wavenumber selection mechanisms — linear pointwise growth

We review the basic idea of pointwise growth, state the pinched double root criterion, and compute linear

predictions in our coupled transport system.

Pointwise growth. As pointed out in the introduction, our main goal here is to emphasize the interplay

of transport and instability, particularly through its role in selecting wavenumbers. The ideas relate back

to considerations in plasma physics, where a distinction between convective and absolute instabilities was

deemed important [9, 4]. The concepts became more generally relevant in fluid mechanics [30] and were later

on discovered to be important for instabilities in dissipative, pattern-forming systems [14, 50].

The key idea is to analyze the growth of spatially localized initial conditions in a finite window of observation.

For a linear equation ut = Lu with constant coefficients, one finds the solution via Laplace transform

u(t, ·) =
1

2πi

∫
Γ

eλt(λ− L)−1u(0, ·) dλ =
1

2πi

∫
Γ

eλt
∫
R
Gλ(· − y)u(0, y) dy dλ,

where Γ is a contour in the complex half plane to the right of singularities of the integrand, and Gλ is the

Green’s function associated with the resolvent (λ−L)−1. In order to find temporal asymptotics, one deforms

the contour Γ exploiting analyticity of the integrand such as to minimize the maximum of its real part. This

process is limited by the presence of singularities of the integrand in the complex plane. The key observation

is that Gλ(ξ) might be analytic for fixed ξ in regions of the complex λ-plane even though (λ − L) is not

bounded invertible, in particular not analytic, in those regions. For compactly supported initial data u(0, y),

and evaluating u(t, ·) at fixed spatial locations, one may then be able to deform the contour of integration

in the formulation using the Green’s function further and obtain exponential decay although (λ − L) may

possess singularities in Reλ > 0. The simplest example is the operator ∂x on L2, where (λ − ∂x) is not

bounded invertible for Reλ = 0, but the Green’s function Gλ(ξ) = eλξχξ<0 is analytic for all λ ∈ C. This

reflects the fact that compactly supported initial conditions decay to zero in finite time, hence faster than

any exponential, when observed in a finite window of x-values. We refer to [28] for a more mathematical

recent account of the linear theory and its relation to front invasion problems, but also to [19] for limitations

of this linear approach.

The pinched double root criterion. The Green’s function Gλ in our case can be found through solving

the constant-coefficient ODE,

ux = − 1

1 + c
((n1 − λ)u+ n2v − u0δ(x)) ,

vx =
1

1− c
(−n1u− (n2 + λ)v − v0δ(x)) ,

where c denotes the speed of the frame of observation. Solutions to the homogeneous equation are expo-

nentials (u±λ , v
±
λ )eν±(λ)x, where (u±λ , v

±
λ ) are eigenvectors to the coefficient matrix on the right-hand side
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with eigenvalues ν±(λ). Eigenvectors and eigenvalues, and hence also Gλ, are analytic as long as ν+ 6= ν−.

Obstructions to analyticity are therefore pinched double roots. In fact, the ν±(λ) are roots to the complex

extension of the dispersion relation, dc(λ, ν) := d(λ− cν, nu) = 0, where d was defined in (2.3). The eigen-

values ν+ = ν− correspond to a double root when in addition d
dν dc(λ, ν) = 0. The “pinching condition”

usually refers to the requirement that Re ν±(λ) → ±∞ as Reλ → +∞; it is automatically satisfied in our

setting as long as |c| < 1, and never satisfied when |c| > 1, since in that case both roots Re ν± → +∞ or

Re ν± → −∞. This is intuitively clear because information cannot propagate faster than the characteristic

speeds; transport is unidirectional in such a frame of reference and the Green’s function is analytic for all λ

just as in the simple example of the operator ∂x, described above.

Double roots λ∗, ν∗, that is, solutions to

dc(λ, ν) = 0, ∂νdc(λ, ν) = 0, (4.1)

therefore yield a pointwise growth rate and a growth frequency. One can now detect the spatial boundaries

of the growth process by finding spreading speeds c where Reλ∗ = 0, that is, λ∗ = iω∗. The frequency ω∗
determines the frequency of the invasion process in the leading edge and therefore yields a linear prediction

for the selected pattern in the wake of the invasion. While there are no mathematical proofs for this selection,

there is ample numerical and experimental evidence, as well as a number of criteria which determine when

such linear predictions may fail [50, 28, 19].

Double roots and spreading speeds in coupled transport. In our example, double roots solve

dc(λ, ν) = (λ− cν)2 − (λ− cν)(n1 − n2)− (n1 + n2)ν − ν2,

∂νdc(λ, ν) = −2cλ− (n1 + n2) + c(n1 − n2)− 2ν + 2c2ν, (4.2)

which gives

λ∗ =
1

2

(
n1 − n2 − c(n1 + n2)± 2

√
−n1n2(1− c2)

)
,

ν∗ =
1

2(1− c2)

(
(n1 + n2)(c2 − 1)∓ 2c

√
−n1n2(1− c2)

)
. (4.3)

These formulas are valid only for |c| < 1 since double roots are not pinched for |c| > 1. Note that |Re ν| → ∞
as c→ 1, a feature that has received some attention in the context of “frustrated fronts” in unidirectionally

coupled systems; see [10] and references therein.

We next describe intervals of speeds where Reλ∗ > 0, which in turn are bounded by the linear spreading

speed.

First, suppose that n1n2 < 0, such that the discriminant is positive. Then instability corresponds to λ+
∗ > 0,

which, after a short calculation is found to be equivalent to n1 > 0 > n2 (linear instability) and c ∈ (−1, 1).

In other words, the spreading occurs with characteristic speed in both directions and is not oscillatory in this

case.

Next, suppose that n1n2 > 0, such that the discriminant is negative and the λ∗ are complex. Then instability

corresponds to n1−n2 > c(n1 +n2). For n1, n2 > 0, this gives c < n1−n2

n1+n2
, for n1, n2 < 0 the reverse inequality.

Summarizing, we have instability intervals

• n1 > 0, n2 > 0: −1 < c < n1−n2

n1+n2
;

• n1 < 0, n2 < 0: n1−n2

n1+n2
< c < 1;

• n1 > 0, n2 < 0: −1 < c < 1;

• n1 < 0, n2 > 0: c ∈ ∅ (stable),
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where the last set of conditions refers to a regime in which the linear instability decays in a translation-

invariant L2-norm, hence in any choice of comoving frame; see the calculation in Fourier space in (2.4).

From the perspective of wavenumber selection, the instability is oscillatory at the spreading speed only when

n1n2 > 0, at the “right edge” of the spreading region when n1, n2 > 0, and at the left edge of the spreading

region when n1, n2 < 0. At those speeds, ω∗ = Imλ∗ =
√
n1n2(1− c2), which evaluates to

ω∗ = 2
n1n2

n1 + n2
. (4.4)

When n1, n2 > 0, these oscillations create periodic wave trains propagating to the left at the right edge of the

spreading region. Since the speed of propagation of the wave trains is the characteristic speed c = −1, the

wave trains can be written in the form u(t, x) = uper(k(x+ t)), with uper being 2π-periodic in its argument,

and k denoting the spatio=temporal wavenumber. In a frame moving with speed c∗, ξ = x − c∗t, we have

u(t, x) = ũper(kξ + k(1 + c∗)t), with frequency ω∗ = k(1 + c∗). Similarly, at the left edge of the spreading

region, we find ω∗ = k(−1 + c∗). Summarizing we find the predicted wavenumber emerging from one side of

the spreading region (where spreading speeds are less than one in modulus), after some simplifications, as

k∗ = n1 when n1, n2 > 0, k∗ = −n1 when n1, n2 < 0. (4.5)

This is a linear prediction for wavenumbers of wave trains emanating in the wake of a spreading instability.

In the following section, we demonstrate by numerical simulations that the linear predictions, both for the

absence of wavenumber selection from white-noise perturbations, and for the selected wavenumber for localized

or shot-noise perturbations, are accurate. We also demonstrate that the theory for localized perturbations

gives good predictions when growth is externally triggered at localized regions of space.

5 Wavenumber selection — scenarios

We present results of numerical simulations that illustrate the selection mechanisms described in the previous

section. We used first-order upwind finite differences with periodic boundary conditions to discretize in space

and an explicit Euler method in time, with grid size dx = 0.01, step size dt = 0.008, throughout. We found

those to perform better than second- or third-order upwind discretizations, in particular in regard to round-

off errors that can cause difficulties when studying growth of perturbations near unstable profiles. We note

that the first-order upwind method introduces a small amount of viscosity, which one however could argue is

more realistic than dispersion or higher-order viscosity introduced by higher-order upwind methods. We also

compared to Matlab’s built-in ODE solvers without significant gain in accuracy.

In the following, we show results from perturbations of asymmetric states, from perturbations of symmetric

states, and results induced by an externally generated growth of the population size at a fixed spatial location.

Invasion of asymmetric states. We first show the effect of a localized perturbation on asymmetric states.

Our first results in Figure 5.1 concern γ = 0.115, corresponding to the second diagram of Figure 2.1. We

apply to the constant solution a pointwise zero-mass perturbation in both components,

δu(x) = δv(x) =
a

w
sech

(
x− x0

w

)
tanh

(
x− x0

w

)
. (5.1)

The resulting wavenumber, kmeas ∼ 0.17, agrees well with the theoretical prediction k∗ = 0.1593. In particu-

lar, we note that convergence of wavenumbers for such invasion processes is expected to be slow, k(t)−k∗ ∼ t−1

[50], such that a significant portion of the discrepancy can be attributed to transients. We varied the values

of (u, v) in the initial condition and found generally satisfactory agreement with the theoretically predicted

wavenumbers and speeds.
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Figure 5.1: Space-time plot of the v-component and final profiles of u- and v-components after perturbing an unstable

asymmetric state locally in space. Parameter values are u0 = 1.2, v0 = 1.657, γ = 0.115 (n1 = 0.0617, n2 = 0.1593).

The initial perturbation is as in (5.1) with w = 0.3, a = 1.12, x0 = 30. Note that the u-component (red) remains

almost constant and the spreading of perturbation in a cone (c ∈ [0.4416, 1]) is as predicted in the previous section.

For smaller values of γ, the amplitude of the patterns formed in the wake increases. This can be compared

to the invariant domain condition as it was derived in [38]. Here values for (u, v) ∈ [0, s] are invariant when

(1 + γw2)(1 + γs2) > sw(1 − γsw) for all w with 0 < w < s, which is true for any s when γ > 1/8, and

for s <
√

(1− 2γ −
√

1− 8γ)/(2γ(1 + γ)) for γ < 1/8. Therefore decreasing the value of γ leads to more

restrictive invariance conditions hinting at the possibility of large amplitude bursts.

In fact, the value of u jumps between the two asymmetric branches associated with a fixed v-value, respecting

mass conservation. As one can immediately infer from Figure 2.1, the value of the second asymmetric

equilibrium for given u is very large. On the other hand, derivatives nj are larger and resulting wavenumbers
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Figure 5.2: Space-time plot of the u-component and final profiles of u- and v-components after perturbing an unstable

asymmetric state locally in space. Parameter values are u0 = 2, v0 = 0.741, γ = 0.07 (n1 = 0.281, n2 = 1.374), initial

perturbation as in (5.1) with w = 0.3, a = 1.12, x0 = 240. Note that here the v-component (blue) remains almost

constant and the spreading of perturbation in a cone c ∈ [−1,−0.660] is as predicted in the previous section.

smaller; see Figure 5.2 for an illustration of the results. While generally wavenumbers agree well with

the prediction, one can notice a “phase slip” in space-time plots, that is, the nucleation of a ripple at

time t ∼ 150 which vanishes at time t ∼ 200; we comment on such phenomena in the discussion. A

comparison of theoretically predicted wavenumbers (4.5) and wavenumbers observed in direct simulations is

shown in Figure 5.3. The measured wavenumber is typically slightly larger than predicted. We attribute this

discrepancy to temporal transients since we observed changes in the wavenumber of magnitude comparable to
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this discrepancy across the domain, suggesting that a simulation in larger domains over longer time periods

would yield more accurate results; see for instance [3] for an example where such comparisons were performed

to very high accuracy and [50] for theoretical results on the slow (1/t) convergence of wavenumbers. For lower

masses on the upper branch, we noted failure of nucleation, leading to larger (typically doubled) wavelengths

and hence significant discrepancies to the theoretical predictions. Perturbations at multiple, random locations
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Figure 5.3: Stable (dashed) and unstable (solid) equilibrium branches (red for smaller mass branch, blue for larger

mass), and associated selected wavenumbers (bottom curves), illustrating the dependence of the wavenumber on the

mass (anti-diagonals illustrate constant mass). Enlarged plots of selected wavenumbers versus total mass (center and

right for red (smaller mass) and blue (larger mass) branch), including measured wavenumbers; numerical parameters

as noted at the beginning of Section 5, γ = 0.115.

(“shot noise”) lead to almost regular patterns, with defects at shot locations; see Figure 5.4. One can observe

the expected crossover to irregular patterns when the distance between locations of perturbations approaches

the wavenumber. Figure 5.4 also illustrates the absence of a wavenumber selection mechanism for white-noise

perturbations. Finally, we show simulations with white-noise (random value at grid points) perturbations of
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Figure 5.4: With parameters as in Figure 5.1, we look at localized perturbations at 20 random locations. One can

distinguish the selected wavenumber, as well as irregular parts of the pattern associated with the shot locations;

space-time contour plot of v-compoent (left) and time snap shot t = 400 (right) of v- (blue) and u- component (red).

amplitude 0.1. As expected, the scale of patterns is controlled by the (numerical) diffusion; see Figure 5.5.
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Figure 5.5: With parameters as in Figure 5.1, we start from white-noise perturbations, space-time plot of v-component

(left), final profiles (right) of u (red) and v (blue). Wavenumbers in the resulting patterns are controlled by numerical

diffusion. Note the smaller spatial scale compared to Figure 5.4.

Invasion of symmetric states. The linear analysis in the Section 4 predicts instabilities with zero fre-

quency, that is, spreading of disturbances without oscillations. One indeed observes an instability that simply

change the state left in the wake, spreading with the characteristic speed c = ±1. As discussed in Section 3,

such fronts involve a jump in, say, the u-component, with v constant across the jump. The resulting state in

the wake of the jump is of course asymmetric, and may well be unstable, with small disturbances spreading

in an oscillatory fashion. We did observe such a two-stage scenario; see Figure 5.6. Starting from the initial
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Figure 5.6: Space-time plots of the u- and v-components (top row); space-time plot of the total concentration u + v

and final profiles of u- and v-components (bottom row). The symmetric state u = v = 1.8, γ = 0.115 is perturbed by

a localized perturbation as in Figure 5.2.
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state u = v = 1.8, γ = 0.115, we observe a primary change in the u-value, say, to u = 1.157 or u = 2.2362,

which results in secondary instabilities with wavenumbers k = 0.2323 and k = 0.1155, respectively, and

predicted wavelengths L = 27 and L = 54. The observed wavenumber is larger: in fact, the instability is

related to the instability of the wave train where u is piecewise constant with values in {1.157, 2.2362}. It

appears to be difficult to derive more accurate predictions for the resulting wavenumbers.

We also explored different types of localized perturbations and observed qualitatively similar dynamics.

Again, shot noise produces less regular patterns and white noise perturbations of the initial state results in

incoherent dynamics without apparent selection of wavelengths.

Growth. The selection of wavenumbers induced by the spatial spreading of disturbances is relevant when

initial disturbances are well separated in space. A related scenario is when an unstable state is created

through a growth mechanism. We illustrate this here in a prototypical context, again without striving for a

systematic exploration. We prepare initial conditions as small random (white noise) fluctuations, (u0, v0) ∼ 0.

We then mimic a growth process, where agents u and v are “created” in the system at spatially localized

positions x = xj(t). The system with such a spatio-temporal source term reads

ut = +ux − r(u, v) + r(v, u) + hu(t, x)

vt = −vx + r(u, v)− r(v, u) + hv(t, x). (5.2)

We first focus on the simplest case, where hj(t, x) = aj cdepH(x − cdep t), with
∫
RH(ξ)dξ = 1, for instance

H(ξ) = (sech (ξ/δ)/(πδ).

One would expect that the deposition front leads to the formation of a nonlinear solution (uf , vf)(x− cdept),

with (u, v)→ 0 for x→∞ and (u, v)→ (au, av) for x→ −∞. Whenever (ua, va) corresponds to an unstable

state, one expects the instability in the wake of this front to result in the creation of spatio-temporal patterns,

originating from the front interface x ∼ cdept. The initial small fluctuations, superimposed on the nonlinear

front profile (uf , vf) created by the deposition, help initiate the development of the instability at the front

interface.

Figure 5.7 shows the result of a numerical simulation. Deposition at locations x = ±cdept,

hj(t, x) = a+
j cdepH(x− cdept) + a−j cdepH(x+ cdept) (5.3)

leads to counter-propagating waves in the occupied region. One expects that the selected wavenumber is close

to the wavenumber selected by instabilities of the constant state (au, av) for speeds cdep ∼ 1, but we did not

attempt to derive or validate asymptotics, here; see [22, 23, 24] for such asymptotics in different contexts.

Figure 5.8 illustrates the resulting patterns in the symmetric case, a±j = a.

6 Discussion

We summarize and discuss our results.

Counter-propagating waves. We studied a “minimal” model for run-and-tumble dynamics, with nonlin-

earity confined to tumbling kinetics. Our main results here illustrate a dramatic dependence of the selected

pattern on the type of perturbation of the initial state. White-noise perturbations of unstable states result

in either oscillations of arbitrary fine scales, or long-wavelength modulations of spatially constant states.

Localized or shot-noise perturbations result in spatially periodic waves with well-defined wavenumber. While

a distinction between wavenumbers selected as the fastest linearly growing mode (relevant for white noise

perturbations) and wavenumbers selected through an invasion process (relevant for shot noise perturbations)

has been noted early on [14, 50], it is often quantitative, changing the wavenumber slightly. In that regard,

our results are an extreme case, where the nature of the noise enables the selection of wavenumbers.
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Figure 5.7: Space-time plots of the u- and v-components for (5.2) (top row) and final profiles (bottom row) with

γ = 0.115, H(ξ) = sech (ξ/δ)/(πδ), cdep = 2, aj = 1.8, δ = 3; numerical parameters as described in the text at the

beginning of Section 5.
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Figure 5.8: Space-time plots of the u-component, of u + v, (top row), and final u- and v-profiles (bottom row) for

(5.2) with h from (5.3), cdep = 2, aj = 1.8, δ = 3; numerical parameters as described in the text at the beginning of

Section 5.

On the other hand, there are virtually no systems so far, where a mathematical proof of this wavenumber

selection process is available. The best mathematical results rely on the construction of invasion fronts that

are periodic in a comoving frame, U(x− c∗t, ω∗t), and proving stability of those in suitably weighted norms;

see for instance [12, 13, 16, 25, 20, 42]. Selection of invasion fronts from compactly supported initial data has

not been shown in pattern-forming systems. It would be interesting to attempt such a study in the present
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case, that is, study the existence of invasion fronts with speeds and frequency from the linear calculus given

in Section 4.

In a different direction, the intriguingly simple structure of our systems insinuates that a more direct, hands-

on description might be possible. As an example, considering the equation for time-periodic invasion fronts

(u, v)(x− ct, ωt), leads to an evolution equation with “time” variable ξ = x− ct and “space” τ = ωt, which

is again a coupled transport equation, now with tumbling kinetics uξ = vξ. Also this equation obviously

possesses a large group of transformations that preserve its structure, u = φ(ũ), v = φ(ṽ), with φ being

invertible. It seems however difficult to reduce the system to a form that is accessible to an explicit analysis.

Possibly most intriguingly, one would suspect that the linear coupled transport equation

ut = + ux + n1u+ n2v

vt =− vx − n1u− n2v,

should be amenable to a more direct (that is, not reliant on Fourier transform) analysis. In particular, one

would hope to derive the selected wavenumber n1 (or n2) in a straightforward fashion.

Experimental implication and validations. We commented in the introduction on experiments showing

rippling patterns with a distinct wavenumber in myxobacterial colonies. While our model is clearly too simple

to capture many relevant features, let us shortly discuss whether it can capture an essential feature of the

selection mechanism. A semi-quantitative test case are experiments where mutants are introduced into the

system that do not release the C-signal. Therefore their presence does not induce tumbling of opposite moving

bacteria, whereas the mutants themselves do turn upon interaction with counter-migrating wildtype cells.

The overall population is always kept constant. Experiments show that the higher the density of mutants is

in the mixed mutant-wildtype populations, the larger the wavelength of ripples becomes, until the pattern

disappears completely when about 90% of bacteria in the population are C-signaling mutants, [41].

The resulting system for unaltered (u, v) and mutant (ũ, ṽ) bacteria is

ut = +ux − ug(v) + vg(u),

vt = −vx + ug(v)− vg(u),

ũt = +ũx − ũg(v) + ṽg(u),

ṽt = −ṽx + ũg(v)− ṽg(u),

which is in skew-product form, that is, the (u, v) dynamics do not depend on the (ũ, ṽ)-dynamics. In par-

ticular, selected wavenumbers depend on the selection through the non-mutant population. Fixing the total

population in the system, one can therefore view the introduction of mutants as equivalent to a reduction of

total mass in a pure non-mutant population. This dilution experiment was considered as test case for the

rippling models in [38, 1, 46, 40]

The dependence of wavenumbers on the equilibria and the total mass was shown in Figure 5.3. One notices

that wavenumbers are decreasing with mass on the branch with lower mass and are (mostly) monotonically

decreasing on the branch with higher mass. Pictures for smaller values of γ are somewhat similar but more

intricate.

In summary, these findings agree with the experimentally observed increase in wavelength as the percentage

of mutants in the population is increased as given in Figure 7E in [41], but only within a well defined range of

total mass, that is, for masses corresponding to asymmetric equilibria on the lower non-trivial branch. In this

respect, the anomalous decrease of the wavelength with increasing mass is associated with the restabilization

and subsequent new destabilization of the asymmetric branch. Of course, tuning γ or possibly altering

kinetics further, one can arrange for the lower asymmetric branch to exist for a large range of total masses,

and simulataneously push the upper unstable asymmetric branch to very large, potentially unrealistic masses.
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Modulation. In the marginally stable regime, n1 < 0, n2 > 0, the dispersion relation suggests exponential

damping of modes with k 6= 0, such that one would like to expand in terms of long-wavelength modes.

One therefore expands the dispersion relation to find near, say, u = v = 1/2, γ = 0, a neutral eigenvalue

λ1 = − 2
3k

2 + O(k4), with eigenvector (1 + 2
3 ik, 1− 2

3 ik)T + O(k2), and therefore chooses an ansatz

u(t, x) = εA(εx, ε2t) +
2

3
ε2AX(εx, ε2t), v(t, x) = εA(εx, ε2t)− 2

3
ε2AX(εx, ε2t).

We denote the variables corresponding to the diffusive scaling by T = ε2t,X = εx. Then substituting into

the equation, expanding in ε, and projecting onto the kernel, we find at order ε3

AT =
2

3
AXX ,

a simple diffusion equation.

We emphasize that the diffusive effect is generated by the interaction of tumbling and transport, without

explicit diffusion in the system! This can be understood somewhat more directly in the interaction of tumbling

and transport on the linear level, deriving a damped wave equation for the total mass q = u+ v, as described

in the introduction (1.5). A description of dynamics in the unstable or marginally stable regime, then appears

to be difficult for a variety of reasons. First, since all wavenumbers are simultaneously unstable, an expansion

around one particular mode is unlikely to capture dynamics. Moreover, expansions around the most unstable

mode k = ∞ appear challenging. Lastly, resulting patterns are not of small amplitude against the uniform

unstable background, such that small amplitude expansions will likely not capture relevant phenomena.

Dependence on tumbling rates. Our results are for a very specific tumbling rate, only, and one can

easily argue for different rates. On the other hand, the linear selection results and the existence of traveling

waves depend on the geometric shape of the curves of equilibria, only. From this perspective, it turns out

that the class of nonlinearities represented by our specific choice is quite a bit larger.

As a first generalization, one could introduce add a parameter in front of the linear part of the tumbling

rate, g(v) = µ+ v2

1+γv2 . Figure 6.1 shows that equilibrium configurations are qualitatively similar to the case

µ = 1, studied here.

Interestingly, the structure of the set of asymmetric equilibria changes qualitatively when nonlinear saturation

of tumbling rates is caused by increase of total mass in the system, g(v) = µ+ v2

1+γ(u+v)2 , cf. [38, 40]. Such

nonlinearities incorporate a slightly different sensing of also the total population as opposed to only sensing

the opposite moving bacteria. One notices that for such systems, the branch of asymmetric equilibria does

not re-destabilize; see Figure 6.1. Generally, asymmetric equilibria bifurcate as PDE-unstable branches that

subsequently stabilize; the resulting stable branch extends to infinity. Moreover, the asymmetric branch

appears in a bifurcation from infinity, rather than through the spontaneous emergence of a sub- and a super-

critical pitchfork bifurcation at finite mass. Following [38], one can generalize further by allowing different

power laws for small and large v, g(v) = µ + vp

1+γvq . A priori bounds based on the comparison principle

require p 6 q [38].

We notice that for p > q, asymmetric branches of equilibria extend to infinity; see Figure 6.1. It would be nice

to further explore for which parameter regimes solutions blow up in finite time, i.e. reflecting the initiation

of fruiting body formation as discussed for the model in [38]. Ideally, only small parameter changes in the

model would result in the formation of ripples, of aggregates or in the initiation of self-organization.

In direct simulations, we found little differences when starting with localized perturbations of asymmetric

states; see Figure 6.2. We did not see patterning when perturbing symmetric equilibria in the case of

saturation by total mass.

Coherent structures and stability. Striving to put the present analysis on a stronger theoretical footing,

one would want to analyze coherent structures and their stability. As a first step, one would study the stability

18



0 2 4 6

0

2

4

6

Figure 6.1: Equilibria for different tumbling rates: g(v) = µ+ v2

1+γv2
with µ = 0.166, γ = 1 (left); g(v) = µ+ v2

1+γ(u+v)2
,

µ = 0.2, γ = 0.7 (center left); g(v) = µ + v3

1+γv2
, µ = 0.45, γ = 1 (center right); g(v) = µ + v2

1+γv3
, µ = 1, γ = 0.01

(right).
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Figure 6.2: Space-time plots of the v-component resulting from perturbations of asymmetric equilibria through local-

ized perturbations for tumbling kinetics as in Figure 6.1 (from left to right). Initial mass values were u = 0.06, v = 0.3

(left, k ∼ 0.37), u = 0.35, v = 1 (center left, k ∼ 0.5), u = 0.3, v = 2 (center right k ∼ 0.57), and u = 0.55, v = 2

(right, k ∼ 2.1).

of piecewise constant wave trains using Floquet-Bloch theory. In a different direction, it would be interesting

to analyze the effect of small diffusion on wave trains, fronts, and interfaces, possibly including dispersive terms

−∂xxx or even higher-order diffusion ∂xxxx. Numerical observations from higher-order upwind finite-difference

simulations suggest that stability properties of the jump interface can change in subtle ways under diffusive

or dispersive regularization. Ultimately, the phenomena described here should of course be understood in

terms of invasion fronts, their existence, and their stability.

Wavenumber selection through growth elsewhere. The phenomena observed here here bear a striking

resemblance to wavenumber selection in models for recurrent precipitation [21, 35],

ut = uxx − g(v)− u
vt = g(v) + u,

where g(v) is non-monotone, for instance g(v) = v(1 − v)(v − a), a ∈ (0, 1). White noise perturbations of

unstable spatially homogeneous equilibria result in spatially decorrelated patterns of arbitrarily fine spatial

scale, while shot noise perturbations give rise to patterns with a dominant nonzero spatial wavenumber.

Structurally, the system is similar to our system as it possesses a reflection symmetry (which however does

not involve the dependent variables) and a conservation law for the total mass. We also have a plethora of

spatially periodic patterns, u(x) = 0, v(x) ∈ {0, 1}, analogous to the traveling waves described in Section 3,

but independent of time t.

Spatially constant equilibria with g′(v) > 0 are unstable but fastest growing wavenumbers are either 0 or ∞
as observed in our models. Again, invasion processes do select finite, nonzero wavenumbers and observations

in direct numerical simulations agree quite well with linear predictions, obtained in a similar fashion to our

analysis in Section 4. Furthermore, selected patterns are discontinuous, stable, yet subject to coarsening

when a small diffusivity is added in the second equation.
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A more subtle similarity is the “instantaneous coarsening” observed here: a wave maximum nucleating at the

leading edge of the growth process may not develop into a large amplitude peak of a wave train, or merge

with a previous peak, as can be seen in Figure 5.2, for the first two peaks or the 13th peak, respectively.

This mechanism was demonstrated numerically in [21, 35] and associated with resonances. A more detailed

study can be found in [42] for the Cahn-Hilliard equation.

Appendix

We outline a basic functional analytic setting that allows us to show local existence and uniqueness of

solutions, as well as smooth dependence on initial data. Previous work in the literature does not quite cover

the setting of bounded yet discontinuous functions that we are interested in, here; see for instance [27] for a

linear theory, including boundary conditions. We therefore solve

ut = ux + f(u, v), vt = −vx − f(u, v),

with initial data u0(x), v0(x) ∈ X, a Banach space, using the variation-of-constants formula

u(t, x) = u(0, x+ t) +

∫ t

0

f (u(τ, x+ (t− τ)), v(τ, x+ (t− τ))) dτ (6.1)

v(t, x) = v(0, x− t) +

∫ t

0

f (u(τ, x− (t− τ)), v(τ, x− (t− τ))) dτ. (6.2)

For t ∈ [−δ, δ], sufficiently small, this system of integral equations defines a contraction mapping principle and

yields local existence of solutions in a similar way as the Picard-Lindelöf iteration, provided that X controls

supremum norms, that is, choosing for instance X = BC0, BC0
unif , L

∞, or X = BV . Note that solutions will

not necessarily be continuous in time for X = L∞. Mimicking the existence proof for ODEs further, we also

obtain continuous dependence on initial data in these spaces for fixed times t 6= 0.

From the integral formulation, it is immediately clear that solutions where f ≡ 0 are given through simple

right- and left shifts of u and v, respectively.
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