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Abstract

We analyze a simplistic model for run-and-tumble dynamics, motivated by observations of complex spatio-

temporal patterns in colonies of myxobacteria. In our model, agents run with fixed speed either left or

right, and agents turn with a density-dependent nonlinear turning rate, in addition to diffusive Brownian

motion. We show how a very simple nonlinearity in the turning rate can mediate the formation of self-

organized stationary clusters and fronts. Phenomenologically, we demonstrate the formation of barriers,

where high concentrations of agents at the boundary of a cluster, moving towards the center of a cluster,

prevent the agents caught in the cluster from escaping. Mathematically, we analyze stationary solutions

in a four-dimensional ODE with a conserved quantity and a reversibility symmetry, using a combination

of bifurcation methods, geometric arguments, and numerical continuation. We also present numerical

results on the temporal stability of the solutions found here.

1 Introduction

Consider two populations of agents with densities u(t, x) and v(t, x) on the real line x ∈ R, diffusing with rate

ε2, and moving with fixed speed to the left and to the right, respectively, In addition, we suppose that left- and

right-moving agents interact through a tumbling mechanism, where left-moving agents tumble and become

right-moving agents with rate r(u, v). Assuming reflection symmetry, right-moving agents then tumble with

rate r(v, u), leading to the system of partial differential equations

ut = ε2uxx + ux − r(u, v) + r(v, u),

vt = ε2vxx − vx + r(u, v)− r(v, u).
(1.1)

Models of this form clearly represent a variety of “traffic flow” situations. Our interest is particular motivated

by the formation of rippling patterns and fruiting bodies in colonies of myxobacteria [5, 7, 8, 11, 12, 13].

Indeed, tumbling dependent on encounters with other agents has been identified as a driver in the collective

behavior of myxobacteria, which are capable of communicating upon end-to-end contact through the so-called

C-signal [8]. We are interested here in fairly simple tumbling rates r(u, v), that exhibit an increase depending

on the concentration. We therefore consider monotone rates

r(u, v) = u · g(v), g(v) = µ+
vp

1 + γvq
, (1.2)

where µ models spontaneous tumbling, p a power law growth in the tumbling rate depending on head-to-head

encounters, γ a saturation level for the increase, and p− q the power-law growth (or decay) of tumbling rates

for high frequencies of head-to-head encounters.

It turns out that the analysis of stationary structure is somewhat intricate in this case and we therefore also

study a somewhat flawed, simplistic example,

r(u, v) = u · g(u+ v), g(w) = (w − 1)(γw − 1), (1.3)

that is, tumbling rates depend on all encounters with all agents, not only with agents traveling in the opposite

direction. We refer to this latter case as an aggregate sensing, and to the former case as head-on sensing.

Clearly, turning rates that combine both features, for instance g = µ+vp/(1+(u+v)q) with increase through

head-on encounters and saturation from overcrowding, may well be more realistic, but we restrict ourselves

here to the two cases (1.2) and (1.3), illustrating the somewhat universal scenario of cluster formation and

growth throughout the family of possible nonlinear tumbling rates.
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More precisely, our interest here is in the possibility of stationary solutions to (1.2) or (1.3) that possess limits

u(x)→ u±, v(x)→ v±, u′(x)→ 0, v′(x)→ 0, for x→ ±∞.

We refer to the case u− = u+, v− = v+ as homoclinic structures, which turn out to be either clusters or gaps

in the population density, and other cases as cluster boundaries. We also restrict to the case u± = v±, that

is agents are asymptotically equidistributed across left- and right-moving populations.

Our main results can be informally summarized as follows.

(i) There exist two one-parameter families of homoclinic structures, parameterized by the level of the back-

ground concentration u± = v±, one family representing a cluster and the other a gap in concentration.

Both families limit on a constant density state, where the amplitude of the cluster or gap converges to

zero, and both limit on the same pair of cluster boundaries, when the width of cluster or gap tends to

infinity.

(ii) Direct simulations and numerical computation of spectra of the linearized operators suggest that clusters

and gaps are stable for intermediate values of mass densities, and cluster boundaries are stable for

sufficiently small values of the saturation γ.

Outline. We present analytical results on existence of homoclinic and heteroclinic orbits in Section 2.

Section 3 contains numerical analysis of homoclinic and heteroclinic families, and Section 4 illustrates the

results in direct simulations, complemented with a numerical stability analysis.

Acknowledgment. Most of this work was carried out during an REU project on “Complex Systems” at

the University of Minnesota, funded through NSF grant DMS- 1311740.

2 Homoclinics, heteroclinics, clusters, and gaps

We analyze the stationary equations corresponding to (1.1). We first discuss the formulation of the equation

for stationary solutions as a dynamical system in the spatial variable x, together with some qualitative

properties of the resulting dynamical system, Section 2.1. We then study the case of aggregate sensing where

properties of stationary solutions are accessible “explicitly” in Section 2.2. In Section 2.3, we provide an

analogous set of results for the case of head-on sensing, when explicit solutions are not available.

2.1 Spatial Dynamics and Symmetry

We first consider general turning rates r(u, v). The symmetry of the system suggests ρ = u+v and m = u−v
as a natural coordinate system. The quantity r(u, v) − r(v, u) changes sign under the switching of u and v,

and therefore is odd in m. Thus, as long as r(u, v)−r(v, u) is smooth, there exists a smooth function R(ρ,m)

such that mR(ρ,m) = −2(r(u, v)− r(v, u)). In (ρ,m)-coordinates, we find

ρt = ε2ρxx +mx,

mt = ε2mxx + ρx +mR(ρ,m).
(2.1)

We consider stationary solutions, that is, we set ρt = mt = 0, thus obtaining a pair of second-order differential

equations
0 = ε2ρ′′ +m′,

0 = ε2m′′ + ρ′ +mR(ρ,m).
(2.2)

This system possesses a first integral, θ := ε2ρ′+m, that is, θ is constant along any solution of (2.2). We can

rewrite the equation solely in terms of ρ, a transformation which in particular puts the linear part in Jordan
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normal form,

d

dx

 ρ

ρ1
ρ2

 =

0 1 0

0 0 1

0 0 0

 ρ

ρ1
ρ2

+

 0

0

ε−4ρ1 + (ε−4θ − ε−2ρ1)R(ρ, θ − ε2ρ1))/ε2

 . (2.3)

This system is equivalent to the third-order ODE

−ε4ρ′′′ + ρ′ + (θ − ε2ρ′)R(ρ, θ − ε2ρ′) = 0. (2.4)

We shall focus on solutions asymptotic to symmetric states, where u = v, or m = 0. We therefore choose

θ = 0, from now on. Also, scaling x = ε2x̃, R = ε−2R̃, we arrive at the same system (2.4) with ε = 1. We

will therefore from now on assume ε = 1. Altogether, we shall study

ρ′′′ − ρ′(1−R(ρ,−ρ′)) = 0,
d

dx

 ρ

ρ1
ρ2

 =

0 1 0

0 0 1

0 0 0

 ρ

ρ1
ρ2

+

 0

0

ρ′(1−R(ρ,−ρ′))

 . (2.5)

We now collect some basic properties of (2.5). First, the reflection symmetry in the original equation, u 7→ v

and x 7→ −x, induces a reversibility symmetry in (2.5). Define the reverser acting on the phase space

M : R3 → R3, (ρ, ρ1, ρ2)→ (ρ,−ρ1, ρ2). Then, if ρ(x) = (ρ(x), ρ1(x), ρ2(x)) ∈ R3 is a solution to (2.5), then

Mρ(−x) ∈ R3 is a solution as well. A particular role is played by the fixed point set Fix M := {(ρ | ρ1 = 0}.
Whenever a trajectory intersects Fix M , its reflection provides an extension of the trajectory. Also, Fix M :=

{(ρ | ρ1 = 0} divides the phase space into two half spaces, ρ1 > 0 and ρ1 < 0. The flow restricted to each

of these two half spaces possesses a Lyapunov function V (ρ) = ρ, which is strictly increasing in ρ1 > 0 and

strictly decreasing in ρ1 < 0.

Lemma 2.1. A non-equilibrium solution ρ(x) = (ρ(x), ρ1(x), ρ2(x))T to (2.5) cannot have more than two

intersections with Fix M . Moreover, ρ is

(i) periodic if and only if it has two intersections with Fix M ;

(ii) homoclinic if and only if it is bounded and has one intersection with Fix M ;

(iii) heteroclinic if and only if it is bounded and does not have any intersections with Fix M .

Proof. Assertions (i) and (ii) follow from reversibility and from the fact that the system possesses a

Lyapunov function in the complement of Fix M . The ’if’ part is obtained readily by reflecting the solution

using M and continuing at intersection points. The ’only if’ part follows from the fact that homoclinic

and periodic solutions are recurrent, hence cannot be contained in the complement of Fix M , where the

system has a strict Lyapunov function. Two intersections immediately imply periodicity, such that more

than two intersections are not possible. One intersection together with boundedness and monotonicity of

a half trajectory implies that the limit of ρ exists, lim|x|→∞ ρ(x) = ρ∞. Therefore, the ω-limit set of the

trajectory is contained in the plane ρ = ρ∞. Invariance of the ω-limit set implies that ρ1 = 0 on the ω-limit

set, and, subsequently, ρ2 = 0, which proves the claim.

We will rely on this lemma primarily in Section 2.3 when constructing homoclinic and heteroclinic orbits

using qualitative methods.

2.2 Aggregate sensing

In this section, we consider the turning rate r(u, v) = g(u + v), g(w) = (w − 1)(γw − 1). Much of the

(elementary) analysis here is similar to [2] where the system (1.1) with nonlinearity (1.3) was considered with

a different modeling background.
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The new turning rate, as a function of u + v, is described by a simplified quadratic g(u + v) = ((u + v) −
1)(γ(u+ v)− 1). Now we have a modified turning rate in terms of ρ, R(ρ) = −2g(ρ), which we incorporate

into equation (2.3). This allows us to rewrite equation (2.4) as

ρ′′′ = ρ′(1−R(ρ)). (2.6)

We integrating both sides with respect to x, and apply the chain rule to the right hand side to obtain

ρ′′ = ρ− R̄(ρ) + c, (2.7)

where d
dρ R̄(ρ) = R(ρ), and c is a constant of integration. With the specific quadratic form of g, this equation

is given explicitly through

ρ′′ =
2

3
γρ3 − ρ2(γ + 1) + 3ρ+ c. (2.8)

As a second order nonlinear pendulum equation, this second-order equation possesses a first integral,

H =
1

2
(ρ′)2 −W (ρ, c),

d

dρ
W (ρ) = R̄(ρ), W (ρ, c) =

1

6
γρ4 − 1

3
ρ3(γ + 1) +

3

2
ρ2 + cρ. (2.9)

One can now proceed and find solutions explicitly, solving the corresponding first-order equation by integra-

tion. We find it more convenient to discuss solutions to this equation qualitatively. Since level sets of H are

invariant, orbits on bounded non-critical level sets are periodic, and orbits on bounded parts of critical level

sets are heteroclinic or homoclinic. For convenience, we state the main geometric property of W that we will

rely on as a lemma.

Lemma 2.2. Consider w′′ + V ′(w) = 0and suppose that V has 3 non-degenerate critical points w− < w0 <

w+, V ′′(w±) < 0 V ′′(w0) > 0, V (w−) > V (w+); see Figure 2.1. Then the set of bounded solutions consists of

the three equilibria, a family of periodic orbits limiting on the equilibrium w0 and a homoclinic orbit to w+.

When V (w−) = V (w+), the set of bounded solutions consists of the three equilibria, a family of periodic orbits

limiting on w0 and a heteroclinic loop between w− and w+. Moreover, the homoclinic orbits possess a unique

maximum w∗ determined through the condition V (w∗) = V (w−). The case V (w−) < V (w+) is analogous,

interchanging w+ and w− in the statement.

The proof is an elementary analysis of level sets of H and properties of the one-dimensional ODEs on those

level sets. Applying this result to (2.7) yields the following result on clusters and gaps in the case of aggregate

V

Ww- w+w°w*

V

Ww- w+w°

Figure 2.1: The Hamiltonian potential, V (w), with region spanned by homoclinic (left) and heteroclinic (right) orbit.

sensing.

Proposition 2.3. For 0 < γ < 2−
√

3, there exists an interval of values c such that there are three critical

points W (ρ, c), ρ− < ρ0 < ρ+, satisfying the conditions of Lemma 2.2, and therefore associated homoclinic

or heteroclinic solutions to ρ− and/or ρ+. For each fixed value of γ, homoclinic or heteroclinic orbits exist

for c ∈ (c−, c+). There are two families of homoclinic orbits for c ∈ (c−, c0) and c ∈ (c0, c+), respectively,

asymptotic to ρ±(c), respectively, limiting on ρ± at c = c± and on a heteroclinic loop at c = c0, with

c0 = (1− 6γ − 5γ2 + γ3)/(6γ2).
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Proof. Elementary algebra shows that the cubic function ρ − R̄(ρ) possesses three two critical points

precisely when γ < 2+
√

3. Choosing −c between the values of these extrema gives three non-trivial equilibria.

Elementary properties of the cubic and Lemma 2.2 now imply the result.

Summarizing those properties graphically, we define maxima and minima of homoclinic orbits asymptotic to

ρ−(c) and ρ+(c), respectively, as ρ−max and ρ+min, respectively. Figure 2.2 contains sample plots of potentials

W and phase portraits that illustrate how Lemma 2.2 implies Proposition 2.3. Figure 2.3 contains plots

of amplitudes of homoclinic and heteroclinic orbits, as well as sample profiles of u and v, exhibiting the

formation of barriers, that is, regions of high concentration of inward traveling populations near the cluster

boundaries. Those barriers become more localized and larger in amplitude as the parameter γ decreases.

We will revisit these effects in the case of head-on sensing. We note here, that the non-monotone structure

of the solutions u and v can be directly inferred from the phase plots in Figure 2.2 after recognizing that

u = (ρ −m)/2, that is, monotonicity of u is equivalent of monotonicity of the projection of the homoclinic

onto the diagonal.
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(a) γ = 1/8, c = 1.31

5 10 15
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(f) γ = 1/8, c∗ = 27/16

Figure 2.2: Top row, left to right: Potentials W (ρ, c) for cases with homoclinics to ρ−, ρ+, and heteroclinics, respectively.

Bottom row: Associated phase portraits.

Remark 2.4 (Positivity). The solutions constructed here are not all positive. On the other hand, the simple

translation u 7→ u+δu, v 7→ v+δv with δu, δv sufficiently large, preserves the form of the equation and ensures

that all stationary solutions considered here are positive. On the other hand, however, all aggregate turning

rates considered here are incompatible with the requirement that the temporal dynamics preserve positivity.

Indeed, nullclines of r(u, v) − r(v, u) are the diagonal u = v and lines u + v = ρ, constant. Then, setting

v = 0, we see that the sign of ut changes (ignoring the advection term) when crossing u = ρ, implying that

the positive quadrant is not forward invariant for the ODE. This in turn could be remedied by modifying the

turning rate near u = 0 and near v = 0, preserving symmetry, such that ut > 0 for u = ux = 0. Performing

this modification outside of the region of values (u, v) assumed by homoclinics and heteroclinics would give

explicit examples of positive clusters in a positivity preserving system. Since one may well argue with the

physical relevance of the resulting nonlinearity, we do not carry out such a construction in detail, here, but
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rather think of these aggregate turning rates as an instructive simple example elucidating the general behavior

in our run-and-tumble dynamics.

ρ

ρ
max

ρ-
max

min
ρ+

ρ- ρ- ρ+ ρ+

∞
+ - +-

0 8 16

-0

4 

0 8 16

-0

4 

8 

0 8 16

1

5

Figure 2.3: Maxima and minima of homoclinic orbits as a function of the background state (left). Plots of density profiles u

(blue, left-traveling), v (red, right-traveling), and ρ = u + v (black) for γ = 0.15, c = −0.5,−0.234, 0.2 from top to bottom

(right). Note that concentrations of inward traveling populations peak at the boundary of high-density regions.

Remark 2.5. We note that a completely analogous analysis is possible in the case of differential sensing,

when g = g(u − v), In this case, we find R = R(m) and (2.4) is a second-order, integrable equation for

ρ1 = ρ′, only. One looks for adjusting θ such that w = 0 is an equilibrium and finds homoclinic orbits, which

in turn yield heteroclinic orbits for ρ.

2.3 Head-on sensing

In the present section, we pursue turning rates from head-on sensing, (1.2), with p = q = 2; see [11, Fig.

13] for a comparison of various turning rates. In contrast to Section 2.2, the systems cannot be reduced to

an integrable equation in any obvious fashion, nor were we able to identify an explicit first integral more

generally for this system. Despite this, the system still respects the symmetry and structure outlined in

Section 2.1 and Lemma 2.1. We shall exploit this structure along with estimates and perturbation arguments

to find results mimicking those in Section 2.2.

Elementary algebra gives the explicit nonlinearity

R(ρ,m) = −2

(
µ+

(m2 − ρ2)
(
γ
(
m2 − ρ2

)
+ 4
)

(γ(m− ρ)2 + 4) (γ(m+ ρ)2 + 4)

)
(2.10)

in our third-order system

ρ′′′ = ρ′(1−R(ρ, ρ′)), (2.11)

which can be written as a first-order ODE in three-dimensional phase space ρ = (ρ, ρ1, ρ2)T in the standard

fashion. The equation possesses the obvious line of equilibria ρ ≡ ρ∞ ∈ R, or ρ = (ρ∞, 0, 0)T . Linearizing at

these equilibria, we find the Jacobian

J =

0 1 0

0 0 1

0 1−R(ρ, 0) 0

 . (2.12)

Eigenvalues of J are λ0 = 0, associated with the family of equilibria, and λ1/2 = ±
√

1−R(ρ, 0).

For γ < γ∗ := (4 + 8µ)−1, R(ρ, 0)− 1 has precisely two positive roots ρ±, given through

ρ± = 2

√
1− γ − 2γµ±

√
1− 4γ − 8γµ

2γ + γ2 + 2γ2µ
, (2.13)
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where one easily verifies that ρ± are real. In particular, R(ρ, 0) is positive for ρ ∈ (ρ−, ρ+), and negative for

ρ 6∈ [ρ−, ρ+], ρ > 0. Accordingly, J has eigenvalues 0,±η ∈ iR, when ρ ∈ (ρ−, ρ+). For the boundary case

ρ = ρ±, J is a Jordan block with eigenvalue 0. Our next result establishes existence of homoclinic orbits

close to ρ±.

Remark 2.6. We emphasize that the critical value of γ∗ is not the critical value emphasized in [11], which

marks the minimal value of γ for which all equilibria of the turning rate r(u, v) − r(v, u) are symmetric,

u = v. Equivalently, the values ρ± do not mark the boundary of stability of symmetric states u = v = ρ/2.

Rather, increasing u = v = ρ/2 past ρ−/2, or decreasing below ρ+/2, creates a pointwise, stationary absolute

instability in the sense that the Green’s function admits a pinched double root at λ = 0; see Section 4.

Theorem 1. Suppose 0 < γ < γ∗ = (4 + 8µ)−1. Then there exist two families of homoclinics ρ±∗ (x; ρ∞),

of (2.11), even in x, limiting on ρ±, with asymptotic equilibria ρ∞ ∈ (ρ− − δ, ρ−) and ρ∞ ∈ (ρ+, ρ+ + δ),

respectively, for some δ > 0. Moreover, minx ρ
∗
+(x; ρ∞) < ρ∞ and maxx ρ

∗
−(x; ρ∞) > ρ∞.

Proof. We focus on the analysis near ρ+; the analysis near ρ− is identical.

We expand R near (ρ, ρ′) = (ρ+, 0) using reversibility, and find a nonlinearity

ρ′(R(ρ, ρ1)− 1 = α1,0(ρ− ρ+)ρ1 + O(ρ2ρ1). (2.14)

The leading-order coefficient is obtained through α1,0 = ∂a(1 − R(a, 0)|a=ρ+) > 0 such that equilibria

(ρ, ρ1, ρ2)T = (ρ+ + δ, 0, 0)T are hyperbolic. We next scale, setting ρ(x) = ρ+ + εψ(ξ) for any ε > 0,

where ξ =
√
εα1,0x is a scaled independent variable. Substituting the scaling into (2.14), we find

ψ′′′ = ψψ′ + O(ε). (2.15)

Formally setting ε = 0 we readily find a one-parameter family of explicit homoclinic solutions,

ψ(ξ) = ψ∞(1− 3sech2(ψ1/2
∞ ξ/2)), (2.16)

with lim|ξ|→∞ ψ(ξ) = ψ∞ > 0. It remains to show that this family of homoclinic orbits persists for ε > 0,

sufficiently small.

Therefore, notice that (2.15) defines a smooth family of vector fields that possess a line of normally hyperbolic

equilibria near ψ∞ = 1. The family of strong stable manifolds to this family of equilibria therefore depends

smoothly on parameters. In the three-dimensional phases space, each of the strong stable manifolds, given by

(2.16), intersects FixM = {ρ1 = 0}, the fixed point space of the action of the reversibility. The intersection

occurs at ξ = 0 in (2.16). The tangent space to the strong stable manifold is spanned by the vector field at

ξ = 0, (ψ′, ψ′′, ψ′′′)T |ξ=0. Since ψ′′|ξ=0 6= 0, this tangent space is transverse to FixM . In other words, the

intersection of strong stable manifolds and FixM is transverse in R3 and therefore persists for small ε. This

concludes the proof of Theorem 1.

Remark 2.7 (Traveling clusters and gaps). One can of course perform a completely analogous analysis for

traveling clusters, that is, stationary solutions in a comoving frame of speed c ∼ ±1. One then finds similar

results on bifurcation of clusters and gaps, now near the critical mass concentration where R(ρ, 0) = 0, that

is, near the points where asymmetric equilibria, m 6= 0, bifurcate from the symmetric branch m = 0. Indeed,

in a comoving frame of speed c = 1 + σ with |σ| � 1, we find, ε = 1 in (2.2),

0 = ρ′ +m+ ρ+ σρ+ θ,

0 = m′′ +m′ + ρ′ +mR(ρ,m) + σm′.
(2.17)

Substituting the expression for ρ′ from the first equation into the second equation, we obtain a three-dimensional

ODE. Linearizing at a solution m = 0, ρ = θ, σ = 0, where R(θ, 0) = 0, we readily find an algebraically double

eigenvalue at the origin in addition to a stable eigenvalue -1; see [1, 10] for the relation between the wave

speed c as the group velocity and the bifurcation structure in spatial dynamics. Center-manifold reduction,

expanding the nonlinearity, and exploiting the wave speed correction σ as additional unfolding parameter, one

then readily constructs homoclinic orbits bifurcating from the homogeneous equilibrium. A more comprehen-

sive analysis of the existence and stability of such traveling structures, extending the work in [2] would be

interesting but beyond the scope of the present work.
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As in the previous section, we refer to the family of homoclinic orbits with background states ρ∞ > ρ+ as

gaps and to the family of homoclinic orbits with background states ρ∞ < ρ− as clusters. The next natural

question is how far this family of cluster (or gap) solutions can be extended. In order to address this global,

non-perturbative question, we shall exploit properties established in Section 2.1, together with more subtle

properties of the homoclinic orbits.

Lemma 2.8. For all 0 < γ < γ∗, there exists constants C±(γ) > 0 such that for any ρ∞ and any ρ(x),

homoclinic orbit to the background state ρ∞ > 0, we have the following a priori estimates,

sup
x
|ρ(x)| 6 max{C+(γ), ρ∞},

inf
x
|ρ(x)| > min{C−(γ), ρ∞}.

In particular, extrema of max(u, v) at finite x take values in a compact set, bounded away from the coordinate

axes u = 0 and v = 0. As a consequence, we have that

‖(u, v)‖BC3 6 C(ρ∞, γ),

for some continuous function C.

Proof. We use the fact that the equation for ρ is equivalent to the equations for u and v. First, an

elementary calculation shows that the total turning rate satisfies 1
2m

2R = (u− v)(−r(u, v) + r(v, u)) < 0 for

u 6= v, except for a compact region G0 ⊂ {u, v > 0}; see also [11]. A homoclinic orbit in the equation for ρ

corresponds to a homoclinic orbit to u = v = ρ∞/2 in

uxx + ux − r(u, v) + r(v, u) = 0,

vxx − vx + r(u, v)− r(v, u) = 0.

Now consider M = max{supx u(x), supx v(x)}. If the maximum is given by a supremum that is not attained,

it equals ρ∞/2, and thus establishes the first inequality using ρ = u + v. If the maximum is given by a

supremum that is attained, we may without loss of generality assume that u(0) > u(x) and u(0) > v(x)

for all x. Therefore ux(0) = 0, uxx(0) 6 0, and u(0) − v(0) > 0, which implies either u(0) = v(0) or

r(u, v) − r(v, u) 6 0, that is, u, v ∈ G0. In the former case, ux(0) = vx(0) = 0 and u = v, that is, the

solution is at an equilibrium at x = 0, a contradiction. In the latter case, we established that (u, v) are

a priori bounded, in G0. This proves the first inequality. The proof of the second inequality is analogous.

The a priori bounds for u and v are then obtained readily exploiting the bounds on r(u, v), writing for

instance uxx + ux− u = r(u, v)− r(v, u)− u, using that the right-hand side is bounded in BC0, and that the

left-hand-side defines an invertible operator. Boot strapping then gives bounds on higher derivatives.

One can in fact refine the a priori bounds inspecting the extrema of u−v = m = −ρ′ = −ρ1, that is, inflection

points of ρ, using that

ρ′′1 = ρ1 (1−R(ρ, ρ1)) .

Here, the maximum principle implies that the extrema of ρ1 are contained in Ḡ, where

G = {(ρ, ρ1)|ρ > 0, R(ρ, ρ1) > 1}. (2.18)

Note that trivially G ⊂ G0.

Lemma 2.9. We have G ⊂ {(ρ, ρ1)|ρ > ρ−}.

Proof. The proof consists of straightforward but slightly tedious algebra. One finds the boundary of G in

m = ρ1 > 0 given through curves

ρ±G(m) =

√
γ2m2µ̃± 4

√
−γ3µ̃2m2 − 2γ2m2µ̃− 4γµ̃+ 1 + 2γ (m2 − 2µ̃) + 4

γ(γµ̃+ 2)
, (2.19)
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where µ̃ = 2µ+ 1. Clearly, ρ+G(m) > ρ−G(m), and for m > 0,

sign

(
d

dm
ρ−G(m)

)
= sign

(√
−γ3µ̃2m2 − 2γ2m2µ̃− 4γµ̃+ 1 + 2γµ̃

)
> 0,

when m > 0. At m = 0, ρ−G(m) = ρ−, proving the claim.

We present a cluster and gap solution as a trajectory in phase space together with the region G in Figure

2.4 for γ = 1/16 and µ = 1. A priori bounds will allow us to continue homoclinic solutions globally, beyond

the small amplitude regime in Theorem 1. The following result characterizes possible end points to such a

continuation.

Cluster in Phase Space; γ = 1/16, µ = 1 Gap in Phase Space; γ = 1/16, µ = 1

ρ′′

ρ
ρ′

ρ′′

ρ
ρ′

Figure 2.4: Homoclinic trajectories in phase space (black), their projections onto the ρ-ρ′ plane (red) and the region G in the

ρ-ρ′ plane (blue). See Section 3.1 for details on how these solutions were found numerically.

Corollary 2.10. Let S be the set of all equilibria in [0, ρ−) with homoclinic orbits and suppose there is

ρ∗∞ ∈ (∂S)\{ρ−}. Then there exist two positive heteroclinic solutions ρ∗(x) and ρ∗(−x) connecting equilibria

ρ∗∞ to ρ∗+ ∈ [ρ+,∞).

Proof. Consider a sequence of homoclinic orbits ρn(x), even, asymptotic to ρn∞ → ρ∗∞. By normal

hyperbolicity of ρ∗∞ ∈ ([0, ρ−), we can identify the homoclinic solutions with unstable manifolds, limiting on

the one-dimensional unstable manifold of ρ∗∞. The trajectory ρ∗(x) in this unstable manifold is bounded as

the limit of uniformly bounded functions, not homoclinic, since not in S, and not periodic. It is therefore

heteroclinic, by Lemma 2.1. It remains to show that ρ∗+ > ρ+. Since ρ∗(x) is monotone and convergent, its

derivative converges to zero and therefore possesses an extremum. By Lemma 2.9, this extremum lies in G,

with a value of ρ∗(x0) > ρ−. This together with monotonicity of ρ∗(x) establishes that ρ∗+ > ρ−. It remains

to show that ρ∗+ 6∈ (ρ−.ρ+). For this, notice that the linearization at equilibria in this interval is elliptic, with

eigenvalues 0,±ωi. Following the proof of Theorem 1, one sees that the local dynamics near the equilibrium

ρ = ρ∞ ∈ (ρ−.ρ+) are

ρ′′′ + α2ρ′ + O
(
(ρ− ρ∞)2ρ′

)
= 0,

for some α 6= 0. At leading order, we find a family of periodic orbits, ρ = ρ∞ + A cos(α(x − x0)). By re-

versibility, this family of solutions persists for the full system. Varying ρ∞, A, x0, we find that a neighborhood

of the line of equilibria is filled with periodic orbits, such that there do not exist solutions that converge to

ρ∞ for x→∞.

Loosely, this corollary states that “homoclinics limit on heteroclinics as one varies the background state ρ∞”.

This observation forms the basis for the numerical continuations of Section 3. This corollary also gives us a

sufficient condition for the existence of a heteroclinic: suppose there is ρ∗− > 0 such that there does not exist

a homoclinic orbit to ρ∗−; then there exists a heteroclinic orbit for some ρ∞ > ρ∗−.

In the following, we show how to derive existence of such heteroclinic orbits for γ moderately small. To do

this, it suffices to show that the largest interval (ρ∗−, ρ−) for which all ρ∞ ∈ (ρ∗−, ρ−) is bounded away from

−ρ− (and ideally nonnegative since ρ represents a concentration).

First, while this system has no obvious first integral, we can derive estimates through comparison with an

integrable system. Therefore, consider any function Q(ρ) such that Q(ρ) > R(ρ, ρ1) for all ρ, ρ1. Then,

9



if ρ(x) → ρ∞ as x → −∞ and ρ is strictly increasing on x 6 xf , we have ρ′′ >
∫ ρ
ρ∞

(1 − Q(a))da for all

x ∈ (−∞, xf ). Multiplying by ρ′ and integrating in ρ once more, we obtain an explicit bound on ρ′,

ρ′ >

√
2

∫ ρ

ρ∞

∫ b

ρ∞

(1−Q(a)) da db =: q(ρ). (2.20)

Thus, if G ⊆ {(a, b)T | |b| 6 q(ρ), a > ρ∞} =: B, then (ρ, ρ′)T never enters G and so ρ′′′ > 0 for all x < xf .

In such a case, ρ′′(xf ) is never zero. This implies ρ′′(x) > 0 for all x where ρ is defined, and likewise for ρ′.

Thus ρ(x)→∞ in finite or infinite x.

To obtain nonnegative solutions, we set ρ∞ = 0. The simplest nontrivial candidate for an upper bound Q is

Q(ρ) = −2µ+ ρ2/(2 + γρ2). (2.21)

One can use a more sophisticated bound, taking for instance the critical points of R for fixed values of ρ

and finding local maxima. Trying this approach, we found little improvement over the estimates obtained

here. In our case, one can calculate the regions G and B explicitly. We show a sample of plots of the regions

G and B for a few values of γ and µ = 1, Our plots suggest that B ⊆ G whenever γ ∈ (γ0, 1/12), where

γ0 ∈ (1/18, 1/17). For all smaller γ, we found that G 6⊆ E. This is not surprising: when γ = 0, G is

unbounded, yet B is bounded. In summary, the plots show that positive heteroclinic orbits exist for γ > γ0.
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Figure 2.5: Plot of the boundaries of B and G in the ρ-ρ′ plane for µ = 1.

We supplement this analysis with a perturbational argument. Take ρ(x) to be in the unstable manifold

of ρ∞ with ρ′ > 0 for all sufficiently negative x. This solution is unique up to translation in x. As the

region G is empty for γ > γ∗, ρ(x) is necessarily increasing and concave up for all x. Thus, for such γ,

ρ is unbounded. Next, take γ1 ∈ (0, γ∗). Choose an equilibrium such that 0 6 ρ∞ < infγ16γ6γ∗ ρ−. Set

ā = sup{a | (a, b) ∈ G, γ1 6 γ 6 γ∗}, i.e. a right bound on G in the plane for all γ ∈ (γ1, γ
∗). We have that

ρ(x) > 2ā for all sufficiently large x. Since the flow is continuous in γ, there exists a γ2 ∈ (γ1, γ
∗) such that

(ρ, ρ′, ρ′′)T enters a compact subset of (ā,∞)×R+×R+ for all γ ∈ (γ2, γ
∗). This implies that ρ has positive

first, second and third derivatives for all later x, giving unboundedness.

More explicit expansions in this case can be found through a bifurcation analysis, mimicking Theorem 1. At

γ = γ∗ = 1
12 , the quadratic term ρρ1 in the Taylor expansion (2.14) vanishes and is replaced by

ρ1 (1−R(ρ, ρ1)) = ρ1

(
27

64
(ρ− 4)2 + 36

(
γ − 1

12

)
+ O(|ρ21ρ|+ |ρ3|)

)
,

representing, at leading order, a cubic second order equation with heteroclinic orbits when zeros are equidis-

tant. Those heteroclinic orbits are transverse when viewed as intersections of the family of unstable manifolds

of equilibria with the family of stable manifolds of equilibria, hence persist for higher-order perturbations.

3 Numerical Computations

We compute the two families of homoclinic solutions and the heteroclinic limit using an arc-length contin-

uation method in Section 3.1. Adapting this method, we compute and continue heteroclinic solutions in γ,

investigating in particular the limit γ → 0 in Section 3.2.
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3.1 Homoclinic Continuation

For our numerical computations, we consider (2.11) with turning rate (2.10) and set µ = 1. To find homoclinic

solutions, we used the arc-length continuation method to vary the background state ρ∞ = lim|x|→∞ ρ(x). We

do this for both cluster and gap solutions. For an initial guess, we adapt (2.16) for the equation ρ′′′ = ρ′(1−
R(ρ, ρ′)). We take ρ(x) = ρ±±δ(1−3 sech 2(|αδ|1/2x/2)) and δ > 0 to be small, where α := ∂1(1−R(ρ∞, 0)).

We compute homoclinics on a domain [0, L], using the left boundary condition ρ′(0) = 0. At x = L, we

approximate the strong stable manifold through its tangent space and use the associated projection boundary

conditions. Discretization uses the second-order trapezoidal rule on grid sizes dx ∼ 10−2 We present samples

of families of homoclinics in Figure 3.1 as functions of x, with cluster solutions on the left and gap solutions

on the right. Below these plots, one finds the corresponding foliated surface in the phase space of (2.11): the

surface is (one branch) of the union of strong unstable manifolds, thus part of the center-unstable manifold

of the line of equilibria. Black lines indicate individual trajectories alias strong unstable manifolds.

Figure 3.1 strongly suggests that both clusters and gaps limit on a heteroclinic orbit, that is, a cluster

boundary. Figure 3.1 also suggests that the limiting heteroclinic is the same, up to translation and reflection

in x for both cluster and gap continuations. Moreover, once the cluster or gap flattens out at x = 0, the

background state barely changes and the continuation only widens the heteroclinic plateau. In Figure 3.2,

we show the extreme values of these clusters as a function of their background state. These plots serve as

the numerical counterparts to Figure 2.3. As the cluster limits on a heteroclinic, its maximum converges to

the final background state of the gap. Similarly, the minimum of the gap converges to the background state

of the cluster.

3.2 Heteroclinic Continuation in the Limit γ → 0

From Section 2.3, we know that heteroclinics exist for γ less than and sufficiently close to γ∗. In the present

section, we present numerical evidence that heteroclinic orbits exist for all 0 < γ < 1/12 and investigate in

particular the limit γ → 0. The results are illustrated in Figure 3.3. As γ decreases, the amplitude of the

upper limit increases approximately as
√

6/γ. We also illustrate how the solution is patched using a long

intermediate given by a simple exponential. We suspect that a singular perturbation analysis would reveal

more details of the structure of heteroclinics at small γ. One can for instance use the scaling ρ =
√
γρ̃ and

formally set γ = 0, to obtain a differential equation that admits exponential decay or growth solutions (i.e.

(ρ′)2 = ρ2). Our numerical calculations confirm the coefficient
√

6 of γ−1/2 in the asymptotics to an accuracy

of 10−5.

4 Temporal stability — eigenvalues and direct simulations

Beyond existence, a natural next question is concerned with stability of equilibrium solutions. We address

this question here from two vantage points. We first investigate the spectrum of linearized operators, and then

inspect time evolution of small disturbances of spatial homoclinics and heteroclinics in direct simulations.

Spectral stability and instability — continuous spectra. We are interested in the linearization at the

stationary homoclinic and heteroclinic solutions. We therefore linearize the equation (1.1) at such a solutions

and look for solutions with exponential growth in time eλt,

λu = uxx + ux − nu(x)u+ nv(x)v,

λv = vxx − vx + nu(x)u− nv(x)v
(4.1)

where we have defined nu(x) = ∂1r(u0, v0)−∂2r(v0, u0), and nv(x) = ∂1r(v0, u0)−∂2r(u0, v0), and u0 and v0
denote the stationary solution, homoclinic or heteroclinic. The right-hand side defines an elliptic operator on

the real line such that it’s spectrum is contained in a sector | Imλ| 6 β−αReλ, α, β > 0, when considered on

spaces of bounded continuous functions or Lp-spaces. Alternatively, we could also consider weighted spaces,

imposing exponential growth or decay at ±∞.
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γ = 1/16

γ = 1/64

γ = 1/256

Figure 3.1: Cluster and gap solutions, with associated phase portraits. Individual plots show the families of solutions as the

background state is varied. Different plots correspond to different values of the parameter γ. Shown is the actual computational

domain, grid sizes vary in dx = 0.01 . . . 0.025.

The spectrum of such operators can be decomposed into isolated eigenvalues with finite multiplicity and the

complement, often referred to as the essential spectrum; see for instance [1]. In fact, one readily sees that

the operator is Fredholm of index 0 for values of λ to the right of the spectrum at the linearization at spatial

infinity, x→ ±∞. We therefore collect this stability information in the following lemma.
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Lemma 4.1. Consider the linearization at a homoclinic solution (u0, v0)(x) (4.1) on L2(R,R2). Then the

essential spectrum of the linearization (where the operator defined in (4.1) is not Fredholm of index 0) is given

by the curves

λ±(k) = −a+ k2 ±
√
a2 − k2, (4.2)

where a = ru(u∞, v∞), u∞ = v∞ is the asymptotic state of the homoclinic. For heteroclinic orbits with limits

(u, v)±∞, the essential spectrum is to the left of the four curves defined by (4.2) in the complex plane. In

particular, stable homoclinics have γ < 1/8 and

u2∞/2 6∈
(

1− 2γ −
√

1− 8γ

γ + γ2
,

1− 2γ +
√

1− 8γ

γ + γ2

)
. (4.3)

Proof. By standard compactness argument, see for instance [1] and references therein, it is sufficient to

compute the spectra at the asymptotic state using Fourier transform. Setting therefore nu/v = n∞u/v, and

using Fourier transform, one is left with computing eigenvalues of a matrix

λ

(
u

v

)
=

(
−k2 + ik + a −a

−a −k2 − ik + a

)(
u

v

)
(4.4)
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where we used that n∞u = n∞v = −ru + rv =: a when evaluated on u = v. Computing the eigenvalues readily

gives (4.2). Evaluating the condition a > 0 leads to the condition on u∞ = v∞ after some straightforward

algebra.

Corollary 4.2. Small clusters and gaps are spectrally unstable, that is, there is δ > 0 such that clusters and

gaps with background states in (ρ− − δ, ρ−) and (ρ+, ρ+ + δ) are spectrally unstable.

Proof. It is sufficient to note that u = ρ−/2 lies in the interval identified in (4.3).

One can rephrase this result from a bifurcation theory perspective. Clusters and gaps bifurcate from the

homogeneous background state. This bifurcation does however not occur when the background state changes

stability in the sense that the essential spectrum crosses the imaginary axis. This instability occurs before the

bifurcation of homoclinics, such that all homoclinics are unstable against perturbations of the background

state. Since bifurcation typically is associated with a degeneracy in the kernel of the linearization, one may

wonder what precisely happens at the origin on a spectral level, that gives rise to the bifurcation of localized

clusters and gaps.

A slightly weaker spectral stability criterion refers to the possibility of, roughly speaking, choosing optimal

exponential weights. The resulting “optimized spectrum” was coined the “absolute spectrum” in [9] and

shown to generically be the limit of spectra in bounded domains as the domain size goes to infinity. In order

to find the absolute spectrum, one computes the complex values of k that are compatible with a fixed value

of λ. ordering the resulting four roots by Re ν, ν = ik, that is, by the imaginary part of k, one looks for

values of λ such that Re ν1 < Re ν2 = Re ν3 6 Re ν4. It turns out that, by reversibility, essential spectra and

absolute spectra coincide; see also [6].

Yet more refined stability criteria are concerned with pointwise stability of the linear evolution. Here, one

constructs the temporal evolution near the states at ±∞ exploiting translational invariance and studies decay

properties of the temporal Green’s function, that is, of solutions with Dirac initial data; see [3]. Typically,

such instabilities correspond to pinched double roots crossing the imaginary axis. The following lemma states,

roughly speaking, that the bifurcation of homoclinic orbits does not correspond to an onset of a pointwise

instability, but rather to a secondary instability due to a degenerate pinched double root.

Lemma 4.3. For all a > 0, there exists a simple unstable pinched double root at λ = 2a, such that the system

is pointwise unstable whenever the essential spectrum is unstable. At ρ∞ = ρ±, or a = 1/2, a double root

λ = 0, ν = 0 is degenerate.

Proof. Following [3], we compute the complex dispersion relation by evaluating the characteristic polynomial

in (4.4) with ik = ν to find

d(λ, ν) = λ2 − 2(a+ ν2)λ+ ν2(ν2 + 2a− 1) = 0.

Solving for double roots d = ∂νd = 0, we find the four solutions (λ, ν) = (0, 0), (2a, 0), ((a−1/2)2,±
√
a2 − 1/4).

Since ∂λd 6= 0 at the double root λ = 2a, it is non-degenerate and creates a pointwise instability for a > 0.

Spectral stability — eigenvalues of heteroclinics. We did not attempt to study eigenvalues of the

linearization (4.1) analytically. The discussion of essential spectra, above, indicates that in the most accessible

limits of small amplitude, homoclinic orbits possess unstable essential spectrum and are, even in a very weak

sense, unstable due to the instability of the background state. In the following, we present numerical results.

We substituted the numerically computed profiles (u0, v0) into a second-order upwind discretization of (4.1).

We introduced artificial boundary conditions u′(0) = v(0) = 0 on the left and u(L) = v′(L) = 0, roughly

imposing zero values for populations migrating inwards and zero derivative for outward moving populations.

We first present results for heteroclinic orbits. We used Matlab’s sparse eigenvalue solver to find the 10

eigenvalues nearest to 1 for the discretized problem. Results appear to robustly give the 10 leading eigenvalues

when other preconditioners for the eigenvalue are employed. Figure 4.1 shows that heteroclinic orbits near the

bifurcation point γ = γ∗ = 1/12 are unstable as expected. For γ ∼ 1/16, the limit states of the heteroclinic
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stabilize and we see stability for all values of γ less than this critical value. Figure 4.1 shows that background

states stabilize at about 1/
√
γ = 3.8 . . ., at which point eigenvalue clusters stabilize. We note however that

heteroclinics stabilize somewhat later, when a pair of isolated eigenvalue crosses the imaginary axis.
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Figure 4.1: Left we have the real part of the spectrum of the heteroclinics. Right, we have the two background concentrations

of the heteroclinics in black (numerically the maximum and minimum of ρ(x), and the region where the corresponding constant

solutions are stable in pink. Computations here use grid size from the previous heteroclinic continuation.

We tested stability and instability in direct simulations with reasonably good agreement. Some results are

shown below.

Spectral stability — eigenvalues of homoclinics. We next turn to homoclinics, clusters and gaps.

We focus on small values of γ, where the limiting heteroclinic orbit is stable. Figure 4.2 shows largest

eigenvalues of clusters and gaps, depending on the background state ρ∞, for various values of γ. Both gaps

and clusters are unstable in the small-amplitude as well as in the heteroclinic limit, but appear to be stable

for an intermediate range of values of ρ∞, which grows as γ decreases. We next show direct simulations that

confirm these spectral computations while also illustrating the nature of the instability.
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Figure 4.2: Spectra of clusters and gaps as functions of the background ρ∞, for various values of γ. Note that eigenvalues

with positive real parts exist for gaps and clusters with large or small ρ∞, that is, near small-amplitude or heteroclinic limit,

respectively.
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Direct simulations. We performed direct simulations using a second order upwind finite-difference method

with grid size 5 ·10−3 and Matlab’s stiff solver ode15s. As initial conditions, we used the steady state with a

small perturbation in the direction of the leading eigenvector. Evolution of instabilities of clusters and gaps

is shown in Figure 4.3, showing a drift instability followed by diffusive decay. We observed different types of

instabilities, in particular for moderate values of γ, without finding simple organizing principles, there.
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Figure 4.3: Cluster instability (left) and gap instability (right). Time evolution of perturbation of a stationary profile in the

direction of the unstable eigenvector. Shown are space-time plots for u and v (top row), shape of the most unstable eigenfunction

(middle row), and snap shots of time evolution for u (red), v (blue), and u+v (black). Parameter values are γ = 1/64, ρ∞ = 1.3115

(left) and ρ∞ = 18.3805 (right).

Figure 4.4 shows instability of heteroclinic profiles for γ = 1/13.81. Disturbances lead to a break-up of cluster

boundaries through splitting into left- and right-traveling packets. Also shown in Figure 4.4 are results of

simulations in the stable parameter regime, for both clusters and cluster boundaries. Leading eigenvalues in

the stable regime were λ = 0 within numerical accuracy. Decay was roughly exponential in the case of cluster

boundaries. For clusters, we chose parameter values very close to the critical value and observed the expected

slow decay. Note that these particular simulations, γ = 1/64, ρ∞ = 1.3115 in Figure 4.3, left, ρ∞ = 1.3072,

Figure 4.4, top right, confirm with good accuracy the results from the spectral calculations Figure 4.2, where

we found stability change at approximately γ = 1.3073. Similarly, Figure 4.3, right, demonstrates a weak

instability at 1/γ = 18.3805, slightly below the instability threshold 1/γ = 18.6307 found in 4.2, middle right.

5 Discussion

We exhibited how a very simple mechanism, running and tumbling with a density-dependent, monotonically

increasing tumbling rate, can lead to the self-organized formation of clusters. The analysis was based on the

study of ordinary differential equations, exhibiting homoclinic and heteroclinic solutions. We also presented

ample numerical evidence that some, but not all of these solutions are stable in the PDE.

There are clearly many open questions, ranging from the study of traveling (rather than standing) clusters

[2], over a more analytical approach to stability using for instance Evans function techniques, and nonlinear

stability questions.

Beyond the immediate interest of these peculiar structures, one may be interested in more global descriptions

of the dynamics of run-and-tumble processes, such as the possibility of blowup in finite time, the formation

of rippling patterns, or conditions for equidistribution of agents in space and between left- and right-traveling

populations; see [11, 4]. In this context, it would be interesting to study the role of the structures found here
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Figure 4.4: Instability of cluster boundaries (left), showing space-time plots for u and v, top row, profile of the leading eigen-

function, and time snapshots, for γ = 1/13.81. Stable clusters (γ = 1/64, ρ = 1.3072) and cluster boundaries (γ = 1/21.41) on

the right, with leading eigenfunction corresponding to mass change (cluster) and translation (cluster boundary), respectively.

in the inviscid limit, ε→ 0, their relation to rippling patterns studied in [11], and to blowup studied in [4].
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