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Abstract

An equivariant center-manifold reduction near relative equilibria of G-equivariant

semiflows on Banach spaces is presented. In contrast to previous results, the Lie group

G is possibly non-compact. Moreover, it is not required that G induces a strongly

continuous group action on the underlying function space. In fact, G may act discon-

tinuously. The results are applied to bifurcations of stable patterns arising in reaction-

diffusion systems on the plane or in three-space modeling chemical systems such as

catalysis on platinum surfaces and Belousov-Zhabotinsky reactions. These systems

are equivariant under the Euclidean symmetry group. Hopf bifurcations from rigidly-

rotating spiral waves to meandering or drifting waves, and from twisted scroll rings are

investigated.
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1 Introduction

Spiral waves arise as stable spatio-temporal patterns in various chemical and physical sys-

tems. They have been observed experimentally, for instance, in catalysis on platinum

surfaces [14], Belousov-Zhabotinsky reactions [10, 20], and the Rayleigh-Benard convection

[17]. The dynamics of the first two systems is modeled by reaction-diffusion equations

ut = D∆u + f(u, µ), x ∈ IRN , N = 2, 3(1.1)

on the plane or in three-space. Here, D is a diagonal matrix with non-negative entries,

and f is a smooth nonlinearity. The function u : IRN → IRM can be interpreted as a

vector of spatially dependent concentrations of chemical species. Equation (1.1) is well-

posed on the space C0
unif(IR

N , IRM) of uniformly continuous, bounded functions or, under

certain additional growth conditions on f in case the diffusion matrix D is singular, on the

space L2(IRN , IRM). On both spaces, it then generates a smooth local semiflow denoted by

Φt(u, µ), see [8].

The Euclidean group SE(N) is the semi-direct product SO(N)+̇IRN of the orthogonal

group SO(N) and the group of translations IRN with composition

(R,S)(R̃, S̃) = (RR̃, S + RS̃)(1.2)

on the product SO(N) × IRN . The Lie algebra se(N) of SE(N) can be represented as

the product so(N) × IRN of the Lie algebra so(N) of SO(N) consisting of anti-symmetric

matrices and IRN , see [6]. The commutator and the exponential map on so(N) × IRN are

given by

[(r, s), (r̃, s̃)] = (rr̃ − r̃r, rs̃ − r̃s)

exp((r, s)t) = (exp(r t), r−1(exp(r t) − id)s).
(1.3)

The group SE(N) acts on functions on IRN by

((R,S)u)(x) := u(R−1(x − S)).

Equation (1.1) is equivariant with respect to this SE(N)-action, that is, Φt(u, µ) is a

solution whenever (R,S)Φt(u, µ) is.

We consider bifurcations from relative equilibria of (1.1). Relative equilibria are solutions

satisfying

Φt(u∗, µ∗) = (R(t), S(t))u∗,

with (R(t), S(t)) = exp((r∗, s∗)t) for suitable elements (r∗, s∗) ∈ se(N). In other words, u∗

is a relative equilibrium if its time orbit is contained in its group orbit SE(N)u∗. Rigidly-

rotating spiral waves u∗ are rotating waves obeying

Φt(u∗, µ∗) = (R(t), 0)u∗,
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where R(t) = exp(r∗t) is the one-parameter family of rotations generated by some fixed

element r∗ ∈ so(N). Thus, spiral waves are equilibria in a rotating frame (x, t) 7→

(exp(−r∗t)x, t).

We shall further distinguish two kinds of modulated waves; these solutions are not relative

equilibria. Meandering spiral waves are modulated rotating waves, that is, quasiperiodic

solutions which are periodic in a rotating frame. In contrast, drifting spiral waves are mod-

ulated travelling waves, that is, periodic in a moving frame (x, t) 7→ (x − s∗t, t) generated

by some element s∗ ∈ IRN . We remark that this does not agree with the terminology used

in [7] though it does coincide with the one introduced in [6].

Meandering spiral waves in the plane emanate from rigidly-rotating spiral waves by a

Hopf bifurcation in the rotating frame. This has been verified numerically by Barkley

[2]. Furthermore, in simulations of a two-parameter system, he observed a curve of drifting

spiral waves emerging from the rotating wave if the rotation frequency of the rotating wave is

a multiple of the eigenvalue leading to the Hopf bifurcation, see [3]. Barkley proposed a five-

dimensional system of ordinary differential equations modeling the qualitative behavior of

reaction-diffusion systems near Hopf bifurcations from rotating waves. However, a rigorous

relation between the two systems has not been established previously. We remark that

the system studied by Barkley has a singular diffusion matrix D, which seems to model

the chemical situation more accurately. For that reason, we allow for degenerate diffusion

matrices.

In three dimensions, Hopf instabilities of twisted scroll rings have been observed numerically

in [15]. Mathematically, scroll rings are rotating waves which, at the same time, drift along

the axis of rotation. Thus, they are relative equilibria with respect to the one-parameter

family (R(t), S(t)) = (exp(r∗t), s∗t) for elements (r∗, s∗) ∈ so(3)×IR3 = se(3) with r∗s∗ = 0.

In this article, we will explain the phenomena mentioned above using an equivariant center-

manifold reduction of the reaction-diffusion system (1.1). Standard results for center man-

ifolds are not applicable since the group action of SE(N) is not norm-continuous on either

C0
unif(IR

N , IRM) or L2(IRN , IRM), see [22]. In fact, on C0
unif(IR

N , IRM), rotations act not

even as a strongly continuous semigroup: a counterexample is provided by the function

u(x1, x2) = cos x1. In addition, the group SE(N) is not compact. Therefore, it is not clear

how to obtain a smooth and equivariant center manifold. We remark that, even if the spiral

wave is contained in L2, it is useful to consider its stability in the space C0
unif containing

planar wave perturbations. For this reason, we include discontinuous SE(N)-actions in our

set-up.

To circumvent the difficulties mentioned above, we make the following hypotheses. Con-

sider a smooth group orbit associated with a relative equilibrium. Assume that the

center-unstable eigenspace of the linearization at the wave has a finite-dimensional gen-
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eralized eigenspace. Note that the group action always enforces spectrum on the imaginary

axis. Next, we assume that the group acts smoothly on elements in the center-unstable

eigenspace, whence the center-unstable bundle along the group orbit will itself be smooth.

Under these assumptions, we will prove the existence of a smooth center manifold M cu
∗

tangent to the center bundle. The group will act smoothly on M cu
∗ . Note that the group

SE(N) is not assumed to act smoothly on the whole function space. We shall empha-

size that the result is optimal in the sense that whenever an invariant manifold M cu
∗ with

the above properties exists, the group will already act smoothly on the center bundle. In

particular, the group orbit of u∗ must be smooth.

We should comment on the satisfaction of these assumptions for the reaction-diffusion sys-

tem (1.1). It turns out that SE(2) acts smoothly on rigidly-rotating waves (exp(r∗t), 0)u∗

with r∗ 6= 0 in either C0
unif(IR

2, IRM) or L2(IR2, IRM). In addition, SE(N) acts smoothly on

vectors in the finite-dimensional eigenspace provided it acts smoothly on the underlying

relative equilibrium. Therefore, the only hypothesis which is not automatically satisfied is

that the eigenspace is indeed of finite dimension. This last assumption, however, has been

verified numerically at Hopf-bifurcation points of spiral waves, see Barkley [2].

Therefore, at the outcome, we have reduced the infinite-dimensional dynamical system to

ordinary differential equations on the center manifold. The structure of these equations

has been clarified and analyzed in detail in the related paper [6]. In particular, drifting

along the group orbit as well as bifurcations in the normal direction can be analyzed

separately. We will apply these results to the phenomena mentioned above, that is, to

Hopf bifurcations from spiral waves and twisted scroll rings, see Theorems 4 and 6 in

section 5 and 6, respectively.

Similar results hold for relative periodic solutions of (1.1). They can be used to study

secondary bifurcations of meandering or drifting waves to higher-dimensional tori, or to

investigate the influence of periodic forcing. This is work in progress and will appear

elsewhere.

Finally, we mention related results. Wulff [22] investigated Hopf bifurcations from rotating

to meandering and drifting one-armed planar spiral waves using Lyapunov-Schmidt reduc-

tion in the largest subspace of C0
unif on which the rotations act as a strongly continuous

semigroup. This was the first rigorous result on bifurcations of spiral waves involving non-

compact groups. Some of the results of this paper have been announced in [18]. Based

on results by Krupa [12], Golubitsky et al. [7] used a formal center-bundle construction

to derive ODEs describing bifurcations near ℓ-armed planar spiral waves. They exploited

the structure of these ODEs using ideas from [6], and derived new conditions for drifting.

Fiedler et al. [6] clarified the structure of the ODEs associated with relative equilibria with

compact isotropy for general non-compact groups and gave conditions for drifting. In the
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present paper, these ODEs are derived rigorously using center-manifold reductions.

The paper is organized as follows. In section 2, an abstract result for the existence of

center manifolds is given. It is proved in section 3. In section 4, we verify the smoothness

hypothesis for the Euclidean group SE(N). We apply the results to Hopf bifurcations of

spiral waves and twisted scroll rings in section 5 and 6, respectively.

Acknowledgement. B. Sandstede was partially supported by a Feodor-Lynen Fellowship

of the Alexander von Humboldt Foundation.

2 Center-manifold reduction near relative equilibria

Consider a semilinear differential equation

ut = −Au + F (u),(2.1)

on some Banach space X. We assume that A is sectorial and F is a Ck+2-function from

Y = Xα to X for some k ≥ 1 and α ∈ [0, 1), see Henry [8] for the notation. The norms

for vectors and operators on Y are denoted | · | and ‖ · ‖, respectively. The local semiflow

on Y associated with (2.1) is denoted by Φt(u). Let G be a finite-dimensional but possibly

non-compact Lie group, and ρ : G → GL(Y ), g 7→ ρg be a representation of G in the

space of bounded invertible operators. We assume that there exists a constant K such

that ‖ρg‖ ≤ K for all g ∈ G. After introducing an equivalent norm on Y , we may assume

that ‖ρg‖ = 1 for all g, see Lemma 3.1. We suppose that Φt(u) is G-equivariant, that is,

Φt(ρgu) = ρgΦt(u) for t ≥ 0, g ∈ G, and u ∈ Y .

Throughout, we fix a point u∗ and denote its group orbit and the isotropy group by Gu∗

and H, respectively, that is, we set Gu∗ = {ρgu∗; g ∈ G} and H = {g ∈ G; ρgu∗ = u∗}.

Suppose that the element u∗ chosen is a relative equilibrium of (2.1):

Hypothesis 1 Let u∗ ∈ Y and assume that there exists an element ξ∗ ∈ alg(G) in the Lie

algebra of G such that

Φt(u∗) = ρg∗(t)u∗,

where g∗(t) = exp(ξ∗t) ∈ G is the one-parameter family generated by ξ∗.

Next, we consider the linearization of the flow evaluated at u∗.

Hypothesis 2 Assume that {λ ∈ C; |λ| ≥ 1} is a spectral set for the linearization

ρexp(−ξ∗)DΦ1(u∗) ∈ L(Y )

with associated projection P∗ ∈ L(Y ) such that the generalized eigenspace Ecu
∗ = R(P∗) is

finite-dimensional.
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Note that the isotropy H acts on Ecu
∗ . Hence, whenever H is non-compact and does not

possess any finite-dimensional representation on the space Y , the spectral hypothesis 2

must be violated.

Finally, as announced in the introduction, we impose smoothness conditions.

Hypothesis 3 (i) ρgu∗ is Ck+2 in g ∈ G.

(ii) For any ǫ > 0 there exists a δ > 0 such that |ρgu∗ − u∗| ≥ δ for all g ∈ G satisfying

dist(g,H) ≥ ǫ.

(iii) ρgv is Ck+1 in g ∈ G for any point v in Ecu
∗ .

(iv) The projections ρgP∗ρg−1 are Ck+1 in g ∈ G in the operator norm.

It follows from Hypotheses 3(i) and (ii) that the group orbit Gu∗ is an embedded Ck+2-

manifold. In many applications, Hypothesis 3 follows from Hypothesis 2, see section 4. We

remark that, if the group G were compact and the G-action on Y smooth, Hypothesis 3

would always be satisfied.

We have then the following theorem, which is proved in section 3.

Theorem 1 Assume that Hypotheses 1 – 3 are obeyed. Under these conditions, there exists

a G-invariant manifold M cu
∗ ⊂ Y which is locally invariant under Φt for any t ≥ 0. The

manifold M cu
∗ and the action of G on M cu

∗ are of class Ck+1. Furthermore, M cu
∗ is locally

exponentially attracting and contains all solutions which stay close to the group orbit of u∗

for all backward times.

Similar results are valid for the equation

ut = −Au + F (u) + µG(u, µ), (u, µ) ∈ Y × IRp,(2.2)

with |µ| < δ for some small δ > 0 whenever the nonlinearity G : Y × IRp → X is Ck+2. The

resulting manifold is Ck+1 in µ.

We shall investigate the structure of the vector field on the center manifold. For that

purpose, we need to introduce more notation. The adjoint representation of G on alg(G)

is defined by

Adg ξ = g ξ g−1 =
d

dt

(

g exp(ξt) g−1
)∣

∣

∣

t=0
, g ∈ G, ξ ∈ alg(G).

The isotropy group H acts naturally on the eigenspace Ecu
∗ and the tangent space

Tu∗
(Gu∗) ⊂ Ecu

∗ of the group orbit, and both spaces are invariant under the H-action.

Actually, the representation of H is via the image of ρ, that is, ρ(H) ⊂ GL(Ecu
∗ ) acts

on Ecu
∗ . Since the latter space is finite-dimensional and group elements are isometries,
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we see that clos ρ(H) ⊂ GL(Ecu
∗ ) is compact. Using the Haar measure associated with

clos ρ(H), we can construct an H-equivariant projection Q∗ : Ecu
∗ → Ecu

∗ with kernel

N(Q∗) = Tu∗
(Gu∗). Its range V∗ := R(Q∗) is an H-invariant complement of Tu∗

(Gu∗). We

then consider the manifold G × V∗ with an H-action defined by (g, v) → (gh−1, ρhv) for

(g, v) ∈ G × V∗ and h ∈ H.

Theorem 2 Suppose that the assumptions of Theorem 1 are met, and that the isotropy

group H is compact. The manifold M cu
∗ is then diffeomorphic to (G × V∗)/ ∼ where the

equivalence relation on G × V∗ is defined by identifying orbits under the above H-action,

that is, (g, v) ∼ (gh−1, ρhv) for (g, v) ∈ G × V∗ and h ∈ H. Furthermore, there exist

Ck-functions fG : V∗ → alg(G) and fN : V∗ → V∗ such that any solution of

(

ġ

v̇

)

=

(

gfG(v)

fN(v)

)

(2.3)

on G × V∗ corresponds to a solution of the vector field on M cu
∗ under the identification.

The vector field (2.3) is H-equivariant: fG(ρhv) = Adh fG(v) = hfG(v)h−1 and fN(ρhv) =

ρhfN(v) for all h ∈ H and v ∈ V∗. Finally, fG(0) = ξ∗ and fN(0) = 0.

We say that the vector field (2.3) is the pull-back of the vector field on M cu
∗ to G × V∗.

Note that it is of skew-product form. We refer to [6] for more properties of the pull-back.

Proof. The statement follows from [6, Theorem 1.1] provided the Lie group G induces

a proper action on M cu
∗ . We prove that this is indeed the case. The action being proper

means that if yn ∈ M cu
∗ and gn ∈ G are sequences such that yn → y and ρgnyn → ỹ, then

{gn} has a convergent subsequence. The action restricted to the group orbit satisfies this

condition, and thus is proper, since Gu∗ is embedded on account of Hypothesis 3(ii). We

show that the above condition is an open property using that each ρg is an isometry.

Due to Hypothesis 3(ii), compactness of the isotropy group H, and local compactness of

G, there exist δ > 0 and a neighborhood U of H in G such that U is precompact and

|ρgu∗ − u∗| ≥ δ > 0(2.4)

for all g /∈ U . Note that the same estimate is valid with u∗ and U replaced by g̃u∗ and

g̃ U g̃−1, respectively, for any g̃ ∈ G since ‖ρg‖ = 1 for all g.

Suppose now that yn → y and ρgnyn → ỹ in M cu
∗ as n → ∞. Since ρg is linear and of norm

one, |ρgnyn − ρgny| ≤ |yn − y|. Therefore, ρgny → ỹ in M cu
∗ . We have to show that {gn}

has a convergent subsequence.

Due to the proof of Theorem 1 in section 3, any point on M cu
∗ is of the form ρg(u∗ +

v∗ + σ#(u∗ + v∗)) with v∗ ∈ V∗ where σ# is a smooth and G-equivariant map satisfying
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‖Dσ#‖ ≤ 1 and σ#(u∗) = 0. Hence, without loss of generality, we may assume that

y = (id +σ#)(u∗ + v∗), and

ρgn(id +σ#)(u∗ + v∗) → (id +σ#)(u∗ + ṽ∗)(2.5)

for some ṽ∗ ∈ Ecu
∗ . Indeed, ỹ = ρg̃(id +σ#)(u∗ + ṽ∗) for some g̃ ∈ G and ṽ∗ ∈ Ecu

∗ , and we

may replace the sequence {gn} by {g̃−1gn}.

We will argue by contradiction. Assume that the sequence {gn} has no convergent sub-

sequence. We may then assume that gn /∈ U for all n since the neighborhood U of H is

precompact. Therefore, for the sequence appearing in (2.5), we obtain

|ρgn(id +σ#)(u∗ + v∗) − (id +σ#)(u∗ + ṽ∗)|

≥ |ρgnu∗ − u∗| − |ρgnv∗ − ṽ∗| − |σ#(u∗ + v∗)| − |σ#(u∗ + ṽ∗)| ≥ δ − 2(|v∗| + |ṽ∗|),

using (2.4) and the properties of the map σ# mentioned above. For |v∗|, |ṽ∗| ≤ δ/8, this

contradicts convergence of the sequence. Therefore, G acts properly on a δ/8-neighborhood

of Gu∗ in M cu
∗ and the theorem is proved.

We shall comment on the relation between the spectral assumption 2 and the spectrum of

the reduced vector field (2.3).

Lemma 2.1 Suppose that assumptions 1 – 3 are obeyed, and that H is compact. Under

these conditions, there exists a matrix B∗ ∈ L(Ecu
∗ ) such that

eB∗tv := ρg−1
∗

(t)DΦt(u∗)v(2.6)

for any v ∈ Ecu
∗ and t ≥ 0, and

B∗ =





−[ξ∗, ·] DfG(0)

0 DfN(0)



 ,(2.7)

using Ecu
∗ = Tu∗

(Gu∗) × V∗.

Proof. Notice that the matrix B∗ is well-defined. Indeed, ρg−1
∗

(t)DΦt(u∗) maps the space

Ecu
∗ into itself and, by equivariance, meets the semiflow properties, whence [16, Corollary

1.4] applies. It remains to show that B∗ satisfies (2.7). The linearization of (2.3) at the

relative equilibrium Φt(u∗) = ρexp(ξ∗t)u∗ is given by
(

ξ̇

v̇

)

=

(

ξξ∗ + exp(ξ∗t)DfG(0)v

DfN(0)v

)

,

using fG(0) = ξ∗. Solving the second component, we may write its solution as

(ξ(t), eDfN (0)tv0) with v(0) = v0. Using the variation-of-constant formula and multiply-

ing by exp(−ξ∗t), we obtain the expression

exp(−ξ∗t) ξ(t) = exp(−ξ∗t) ξ0 exp(ξ∗t)+
∫ t
0 exp(−ξ∗(t − τ))DfG(0)(eDfN (0)τ v0) exp(ξ∗(t − τ)) dτ
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for the first component with ξ(0) = ξ0. Comparing its derivative with respect to t with the

first component of B∗(ξ0, v0) proves (2.7).

3 Graph transform near group orbits

In this section, the center-manifold theorem will be proved using the graph transform. We

will show how the set-up of the previous section fits into the standard framework. For the

remaining part of the proof, we then refer to [5, 9, 19, 21], where the reader may also find

background in graph transform. The graph transform requires a first approximation of

the desired manifold, normal hyperbolicity, and a property called overflowing. We outline

their verification. The first approximation is constructed using the group orbit Gu∗ with

the spaces ρgV∗ attached to it. Normal hyperbolicity means that the linearization of the

flow near the group orbit contracts vectors in the center direction with a smaller rate than

in the direction normal to it. This property will follow from the spectral hypothesis 2.

Finally, for the overflowing property, we show that solutions starting at the boundary of

the first approximation leave a fixed neighborhood of it immediately. This will be achieved

by modifying the vector field in a G-equivariant fashion. Complications arise due to the

presence of Jordan blocks and since the cut-off function used for this purpose has to be

G-invariant and smooth.

As claimed in the previous section, an equivalent norm may be chosen such that group

elements act as isometries on the underlying Banach space.

Lemma 3.1 There exists a norm ‖ · ‖ on Y such that ‖ρg‖ = 1 for all g ∈ G. Moreover,

the old and new norm are equivalent.

Proof. Define ‖y‖ := supg∈G |ρgy|. It is straightforward to verify that this norm satisfies

the properties claimed in the lemma.

From now on, we assume that the above norm replaces the original norm on Y .

3.1 Jordan blocks in IR
l

To outline the basic idea of the cut-off mechanism, consider

v̇ =





0 K

0 0



 v, v ∈ IR2,(3.1)

for K 6= 0. We seek a small neighborhood Û of zero such that any solution starting

on the boundary ∂Û will leave Û immediately. Such neighborhoods are called overflow-

ing. Apparently, for (3.1), overflowing neighborhoods do not exist. Therefore, we add an
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outward-directed vector field of norm δ > 0,

v̇ =





δ K

0 δ



 v.(3.2)

For small ǫ > 0, we may then choose Û = {v; |v1| < ǫ, |v2| < ǫ δ
2|K|}. Indeed, for the

first component, and with v1 > 0, say, we obtain v̇1 = δv1 + Kv2 > 0 whenever v ∈ ∂Û .

However, we should not change the vector field near zero. Thus, we consider

v̇ =





δχ(v1

ǫ ) K

0 δχ(2Kv2

δǫ )



 v.(3.3)

Here, χ(·) is the standard cutoff-function on [0, 1], that is, χ(τ) ∈ [0, 1], χ(τ) = 0 and

χ(τ) = 1 for τ close to zero and one, respectively. Then, (3.3) coincides with (3.2) on the

boundary ∂Û , while it coincides with (3.1) near zero. Moreover, the derivative

∥

∥

∥

∥

∥

∥





δχ(v1

ǫ ) + δ v1

ǫ Dχ(v1

ǫ ) 0

0 δχ(2Kv2

δǫ ) + δ 2Kv2

δǫ Dχ(2Kv2

δǫ )





∥

∥

∥

∥

∥

∥

≤ δ (1 + ‖Dχ‖)

of the perturbation is small since v ∈ Û . Note that we have to choose a vector-valued

cut-off function for obtaining the above bound.

We consider now the set-up of section 2. Recall that the space Ecu
∗ = Tu∗

(Gu∗) ⊕ V∗ can

be decomposed into two H-invariant subspaces. The projection onto V∗ along the tangent

space Tu∗
(Gu∗) is denoted Q∗. Moreover, by Lemma 2.1, there exists a matrix B∗ ∈ L(Ecu

∗ )

with

eB∗tv = ρg−1
∗

(t)DΦt(u∗)v,

for all v ∈ Ecu
∗ . Let A∗ := Q∗B∗|V∗

in L(V∗). We will define an H-invariant neighborhood

Û of zero in V∗, which depends on small parameters δ and ǫ, such that any solution of

v̇ = (A∗ + δ id)v, v(0) ∈ ∂Û ,

will leave Û immediately.

As remarked in the previous section, without loss of generality, we may assume that H is

compact since its action on V∗ is induced by the bounded subgroup ρ(H) ⊂ GL(V∗). Fur-

thermore, we may choose an H-invariant scalar product using the Haar measure associated

with ρ(H) ⊂ GL(V∗). Thus, by an H-invariant change of coordinates, we can transform A∗

into complex Jordan normal form. Let K > 0 be a bound for the off-diagonal elements of

the matrix A∗ written in normal form. Without loss of generality, we consider the case that

spec(A∗) = {λ} for some eigenvalue λ on the imaginary axis. Otherwise, apply the results

below for each eigenvalue, which is possible since generalized eigenspaces are H-invariant.
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It follows that there exists an H-invariant decomposition of V∗ =
⊕l

i=1 V i
∗ such that

N(A∗ − λ id)j =
j
⊕

i=1

V i
∗

for any j ≤ l, and A∗ maps
⊕j

i=1 V i
∗ into itself. We write any vector v ∈ V∗ as v = (v1, ..., vl)

with vi ∈ V i
∗ . In these coordinates, the matrix A∗ acts according to

A∗v = (λv1 + A2v2, λv2 + A3v3, ..., λvl),

where the matrices Ai have norm less than K. We define the H-invariant neighborhood Û

by

Û =
{

v ∈ V∗ =
l
⊕

i=1

V i
∗ ; |vi| < ǫ

(

δ

2K

)i−1

, i = 1, ..., l
}

,(3.4)

for any ǫ > 0 small.

Finally, define the function

F̂ (v) := δ
(

χ
( |v1|

ǫ

)

v1, χ
(2K|v2|

δǫ

)

v2, ..., χ
( (2K)l−1|vl|

δl−1ǫ

)

vl

)∗
,(3.5)

where the cut-off function χ has been defined above. Notice that F̂ is H-equivariant and

smooth since the norm induced by the H-invariant scalar product is smooth. Moreover, as

before,

‖DF̂ (v)‖ ≤ δ (1 + ‖Dχ‖), v ∈ Û ,(3.6)

uniformly in (δ, ǫ). It is straightforward to verify that any solution v(t) of

v̇ = A∗v + F̂ (v),

with v(0) ∈ ∂Û leaves Û immediately. Indeed, F̂ (v) = δv for any v ∈ ∂Û by construction,

and the eigenvalues of A∗ have non-negative real part. Therefore, (A∗ + δ id)v points

outwards of ∂Û for v ∈ ∂Û .

3.2 Normal hyperbolicity

In this paragraph, we define a global parametrization of a neighborhood of the group orbit

Gu∗ which is adapted to the spectral decomposition assumed in Hypothesis 2.

Lemma 3.2 The complementary projections

QG(ρgu∗) := ρg(id−Q∗)P∗ρg−1, QV (ρgu∗) := ρgQ∗P∗ρg−1 , QS(ρgu∗) := ρg(id−P∗)ρg−1

are Ck+1 in g ∈ G and depend only on u = ρgu∗ ∈ Gu∗. They satisfy

R(QG(ρgu∗)) = Tgu∗
(Gu∗), R(QV (ρgu∗)) = ρgV∗, R(QS(ρgu∗)) = ρgW∗ := ρgN(P∗).

In particular, the sets {ρgu∗ + w; w ∈ ρgW∗} and {ρg(u∗ + v); v ∈ V∗} are Ck+1-bundles

over Gu∗, to which we refer as the stable and center bundle.
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Proof. The assertions are consequences of Hypothesis 3(iv).

We obtain the following parametrization of a neighborhood of the group orbit Gu∗. There

exists an η > 0 such that, if |y − Gu∗| < η, then y = u(y) + v(y) + w(y). Here,

u(y) = ρg(y)u∗ ∈ Gu∗, v(y) ∈ ρg(y)V∗, and w(y) ∈ ρg(y)W∗ are Ck+1 in y. Since G/H

is diffeomorphic to Gu∗, we may choose g(y) locally as a Ck+1-function. Indeed, since H is

a submanifold of G, we find a submanifold Σ of G transverse to H at g = id such that the

map Σ → Gu∗, g 7→ gu∗ is a diffeomorphism locally near g = id. Thus, there exist smooth

local charts near any point u ∈ Gu∗. These charts may not fit together globally, though

they do if the isotropy group H is compact, see [6].

Using the set Û , see (3.4), we define the G-invariant set

N cu := {ρg(u∗ + v); g ∈ G, v ∈ Û ⊂ V∗},(3.7)

for any δ, ǫ ∈ (0, η). Note that N cu is well-defined since Û is H-invariant. Thus, for fixed

u in Gu∗, it is not important which g ∈ G with gu∗ = u we choose. It is a consequence of

Lemma 3.2 and the discussion above that N cu is a Ck+1-manifold. Finally, let

Ũ := {ρg(u∗ + v) + w; ρg(u∗ + v) ∈ N cu, w ∈ ρgW∗, |w| < ǫ}(3.8)

be an adapted neighborhood of N cu.

On account of the spectral hypothesis 2 and G-equivariance, there exist constants C > 0,

l ∈ IN, and γs > 0 such that

‖DΦt(ρgu∗)|ρgW∗
‖ < Ce−γst, ‖DΦ−t(ρgu∗)|Tgu∗

(Gu∗)⊕ρgV∗
‖ < C(1 + tl),(3.9)

for t > 0 uniformly in g ∈ G. Indeed, Hypothesis 2 and equation (2.6) show that we have

DΦt(ρgu∗)|Tgu∗
(Gu∗)⊕ρgV∗

= ρgρg∗(t)e
B∗tρg−1

for some matrix B∗ with Re spec(B∗) ≥ 0, and, by Lemma 3.1, ‖ρg‖ = 1 for all g. Thus,

normal hyperbolicity is established.

3.3 Overflowing of N
cu

In this paragraph, we extend the nonlinear perturbation F̂ as defined in (3.5) to the man-

ifold N cu, and show that N cu is overflowing.

Lemma 3.3 For y ∈ Ũ , let

F̃ (y) := ρg(y)F̂ (ρg(y)−1v(y)),(3.10)

then F̃ is well-defined, smooth, and G-equivariant.
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Proof. We start by verifying that F̃ is well-defined. Without loss of generality, we may

again restrict to the case of a single Jordan block since, using the notation of section 3.1,

the isotropy group H and the function F̂ defined in (3.5) map each subspace V i
∗ into itself.

For the proof that F̃ is well-defined, assume that

F̃ (ρgj
(u∗ + vj) + w∗) = ρgj

χ
( |vj|

ǫ

)

vj

for j = 1, 2 such that ρg−1
1

ρg2
∈ H and ρg1

v1 = ρg2
v2. Using that χ is a scalar function

and the norm is H-invariant, it is straightforward to show that F̃ does not depend on the

choice of g1 and g2. Equivariance follows in a similar fashion. It is also clear that F̃ is

smooth since the charts g(y) are.

By (3.6), we have

‖DF̃ (y)‖ ≤ Cδ, y ∈ Ũ ,(3.11)

for some constant C > 0 uniformly in ǫ. Moreover, by definition of F̂ ,

F̃ (y) = δv(y),(3.12)

for any y = ρg(y)u∗ + v(y) + w(y) with ρg(y)u∗ + v(y) ∈ ∂N cu.

Finally, we modify the vector field in Ũ to achieve overflowing of the boundary of N cu.

Consider the equation

yt = −Ay + F (y) + F̃ (y), y ∈ Ũ .(3.13)

Solving this equation with y0 = y(0) ∈ Ũ , yields a G-equivariant semiflow denoted by

Φ̃t(y).

Lemma 3.4 Take any point y = ρgu∗ + v + w ∈ clos Ũ with ρgu∗ + v ∈ ∂N cu, then

Φ̃t(y) /∈ clos Ũ for any t > 0 small.

Proof. Without loss of generality, by equivariance, we may consider y0 = u∗ + v∗ + w∗

with v∗ ∈ V∗ and w∗ ∈ W∗. Denote the corresponding solution of (3.13) by y(t) = Φ̃t(y0),

and let u(t) = Φt(u∗) be the solution of the original equation (2.1)

yt = −Ay + F (y)

with u(0) = u∗. Let Ψ(t, τ) denote the evolution of the linearized equation

yt = −Ay + DF (u(t))y.

It is useful to introduce the difference

x(t) = y(t) − u(t) = Φ̃t(y0) − Φt(u∗),
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then x(t) satisfies the integral equation

x(t) = Ψ(t, 0)x0 +

∫ t

0
Ψ(t, τ)

(

G(τ, x(τ)) + F̃ (u(τ) + x(τ))
)

dτ

with x0 = v∗ + w∗ and

G(t, x) := F (u(t) + x) − F (u(t)) − DF (u(t))x = O(|x|2).

Since t is small and |x(0)| ≤ ǫ by assumption, we may write

x(t) = Ψ(t, 0)(v∗ + w∗) +
∫ t
0 Ψ(t, τ)F̃ (u(τ) + x(τ)) dτ + O(ǫ2)

= Ψ(t, 0)(v∗ + w∗) + O(t) + O(ǫ2)
(3.14)

uniformly for t ∈ [0, η] for some fixed η > 0. Indeed, the values of the nonlinearity F̃ are

in D(A). We will compare the solution x(t) with the function

z(t) = Ψ(t, 0)(v∗ + w∗) +

∫ t

0
Ψ(t, τ)δΨ(τ, 0)v∗ dτ = Ψ(t, 0)((1 + δt)v∗ + w∗).

Substituting the expansion (3.14) of x(t) into F̃ (u(t)+x(t)) and using the definition (3.10)

of F̃ , it is straightforward to calculate that |x(t) − z(t)| = O(ǫ2 + t2). Therefore,

x(t) = Ψ(t, 0)((1 + δt)v∗ + w∗) + O(ǫ2 + t2)

= ρexp(ξ∗t)e
B∗t(1 + δt)v∗ + Ψ(t, 0)w∗ + O(ǫ2 + t2)

and the claim follows from section 3.1 and the definition (3.8) of Ũ .

Summarizing, the modified vector field (3.13) has been constructed such that N cu is over-

flowing. In addition, the estimates

‖Φ̃T (y) − ΦT (y)‖ ≤ CT δǫ, ‖DΦ̃T (y) − DΦT (y)‖ ≤ CTδ,(3.15)

are true for all T > 0. Indeed, the derivative of the term F̃ (y) is of order δ, see (3.11) and

an application of the Gronwall lemma proves (3.15).

3.4 The graph transform

The graph transform works as follows. We consider the closed metric space Σ# of Lipschitz

continuous sections of the stable bundle defined by

Σ# := {σ ∈ C0,1(N cu, Y ); σ(u + v) ∈ ρg(u)W∗, |σ(u + v)| < ǫ, Lip(σ) ≤ 1},

equipped with the metric |σ− σ̂| := supy∈Ncu |σ(y)− σ̂(y)|. The time-T map Φ̃T will induce

a contraction Φ# on Σ# for any sufficiently large T by mapping σ to σ̃ where the latter is

defined by

y + σ̃(y) ∈ {Φ̃T (x + σ(x)); x ∈ N cu}(3.16)
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for all y ∈ N cu.

Normal hyperbolicity and overflowing of Φ̃T have been obtained in equations (3.9), (3.15)

and in Lemma 3.4, respectively. Therefore, we may apply the general results described,

for instance, in [5, 9, 19, 21] to conclude that Φ# is well-defined and a contraction on Σ#.

We can also infer the existence of a unique Ck+1-manifold M cu
∗ which is locally invariant

and attracting under Φ̃T , and tangent to N cu at the group orbit Gu∗, see the articles listed

above for the details.

It remains to prove that M cu
∗ is G-invariant and invariant under Φ̃t for any t ≥ 0. The first

claim follows since ρgM
cu
∗ is also invariant under Φ̃T . Indeed, by construction, Φ̃T is G-

equivariant. By uniqueness of M cu
∗ , we have ρgM

cu
∗ = M cu

∗ . By a similar token, we obtain

M cu
∗ ⊂ Φ̃tM

cu
∗ for any t ≥ 0. Since Φt and Φ̃t coincide in a small neighborhood of Gu∗,

we see that M cu
∗ is actually locally invariant under Φt. Finally, we prove that the G-action

restricted to M cu
∗ is Ck+1. Any point in M cu

∗ is given by u + v + σ#(u + v) with u = ρgu∗

and v ∈ ρgV∗. Here, σ# denotes the fixed point of Φ#. Since, by the above discussion,

σ# is G-equivariant and the group acts smoothly on the center bundle, the claim follows

immediately.

This completes the proof of Theorem 1.

4 SE(N)-equivariant reaction-diffusion equations

Isotropic and excitable media are described by reaction-diffusion systems (1.1)

ut = D∆u + f(u, µ), x ∈ IRN , N = 2, 3(4.1)

where D = diag(dj) is diagonal with non-negative entries dj ≥ 0, u ∈ IRM , and f :

IRM × IRp → IRM is a Ck+2-function for some k ≥ 1, see section 1. We consider (4.1) on

the space Y = C0
unif(IR

N , IRM) or Y = L2(IRN , IRM). Recall that (4.1) generates a smooth

semiflow Φt(u, µ) on both spaces. More precisely, we require growth conditions on the

nonlinearity if the diffusion matrix D is singular and Y = L2, see [8]. Equation (4.1) is

equivariant with respect to the action of SE(N) stated in the introduction.

4.1 Isotropy subgroups of relative equilibria

The next lemma classifies the possible isotropy subgroups of relative equilibria u∗ and shows

that group orbits are embedded provided SE(N) acts smoothly on u∗.

Lemma 4.1 Suppose that u∗ satisfies Hypothesis 3(i), that is, (R,S)u∗ is Ck+2 in (R,S) ∈

SE(N). Under this condition, Hypothesis 3(ii) is met. In particular, the group orbit of u∗
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is embedded. In addition, for N = 2, the isotropy subgroup H of u∗ is SE(2), S1, or ZZℓ.

Similarly, for N = 3, the isotropy of u∗ is either SE(3) or a compact subgroup of SO(3).

Proof. We prove the lemma for N = 2 and Y = C0
unif since the proofs for N = 3 or Y = L2

are similar. We start with the first assertion and argue by contradiction. Throughout, we

use the notation (ϕ, a) ∈ S1+̇IR2 = SO(2)+̇IR2 = SE(2). The action of (ϕ, a) on u is

then denoted ρ(ϕ,a)u. The generator of the rotations is ∂
∂ϕ with functions written in polar

coordinates. Observe that u∗ ∈ D( ∂
∂ϕ) by assumption.

Using compactness of SN−1 and the SO(N)-component of SE(N), it suffices to consider

the following: suppose that there exists a sequence an ∈ IR with an → ∞ and some ǫ > 0

such that dist((0, (an, 0)),H) ≥ ǫ and ρ(0,(an,0))u∗ → u∗ as n → ∞. In other words,

u∗(x1 − an, x2) → u∗(x1, x2) uniformly in (x1, x2) ∈ IR2. We will infer a contradiction to

u∗ ∈ D( ∂
∂ϕ). Note that either there exist numbers y1, y2 and ỹ2 such that u∗(y1, y2) 6=

u∗(y1, ỹ2), or else the function u∗(x1, x2) is independent of x2.

Suppose the former is true, that is, u∗(y1, y2) 6= u∗(y1, ỹ2) for some y1, y2 and ỹ2. Using

ρ(0,(an,0))u∗ → u∗, there exist δ > 0 and numbers y
(n)
2 ∈ [y2, ỹ2] such that

∣

∣

∣

( ∂

∂x2
u∗

)

(y1 − an, y
(n)
2 )

∣

∣

∣ ≥ δ > 0

for any n ∈ IN. The derivative of u∗ with respect to ϕ evaluated at (y1, y
(n)
2 ) is given by

( ∂

∂ϕ
u∗

)

(y1 − an, y
(n)
2 ) = (y1 − an)

( ∂

∂x2
u∗

)

(y1 − an, y
(n)
2 ) − y

(n)
2

( ∂

∂x1
u∗

)

(y1 − an, y
(n)
2 ).

Since an → ∞, we obtain a contradiction to boundedness of ∂
∂ϕu∗ as ∂

∂x1
u∗(x) is bounded

uniformly in x ∈ IR2.

Next, suppose that the function u∗(x1, x2) = u∗(x2) is independent of x2. Using the above

arguments in the x1-direction for x2 → ∞, we conclude that u∗ is in fact a constant function

reaching a contradiction to dist((0, (an, 0)),H) ≥ ǫ. Thus the first assertion of the lemma

is proved.

If the isotropy subgroup were to contain a translation, we could apply the above results.

They show that u∗ is in fact a constant function. Otherwise we would reach a contradiction

to u∗ ∈ D( ∂
∂ϕ ).

Remark 4.2 In passing, we note that, since SE(N), N = 2, 3, has no finite-dimensional

representations on C0
unif , the isotropy subgroup H of u∗ must be compact once the spectral

hypothesis 2 is satisfied. Unless, of course, u∗ is a constant function and Ecu
∗ = {0} is

trivial.
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4.2 Satisfaction of Hypothesis 3

In this section, we show that Hypotheses 3(iii) and (iv) are satisfied provided the relative

equilibrium meets Hypothesis 2, and SE(N) acts smoothly on u∗.

Theorem 3 Assume that u∗ is a relative equilibrium of (4.1) for N = 2, 3 on C0
unif or L2,

and satisfies Hypotheses 2 and 3(i). If some of the entries of the diffusion matrix D vanish,

assume in addition that u∗ is a rotating wave, that is, the generator (r∗, s∗) = (r∗, 0) is a

pure rotation. Under these conditions, Hypotheses 3(iii) and (iv) are also satisfied.

Thus, we have to prove that (R,S)v is Ck+1 in (R,S) ∈ SE(N) for any v ∈ Ecu
∗ , and that

the spectral projections are Ck+1. We start with the latter.

Lemma 4.3 Under the assumptions of Theorem 3, Hypothesis 3(iv) is obeyed.

Proof. Since u∗ is a relative equilibrium, it satisfies Φt(u∗, µ∗) = exp((r∗, s∗)t)u∗ for some

element (r∗, s∗) ∈ so(N) × IRN . Without loss of generality, we may therefore assume that

Φ1(u∗, µ∗) = (id, S∗)u∗, see (1.3). Note that it is here where we use that N = 2, 3, since

the subgroup SO(N) contains non-trivial tori for N > 3. Hence, by (1.2),

(R,S) (id, S∗) (R,S)−1 = (id, RS∗)(4.2)

is a pure translation which depends smoothly on the rotational component R. We claim

that the operator

L(R,S) := (R,S) (id, S∗) (R,S)−1 DΦ1((R,S)u∗, µ∗)(4.3)

depends smoothly on (R,S) ∈ SE(N) as a map from C0
unif or L2 into itself. Assume for

the moment that the claim is true. Using Dunford-Taylor calculus, we see that the spectral

projections associated with L(R,S) are smooth in (R,S). Moreover, by equivariance, they

coincide with the projections (R,S)P∗ (R,S)−1 appearing in Hypothesis 3(iv). Therefore,

it suffices to prove the above claim in order to verify Hypothesis 3(iv).

First, we consider the case that the diffusion matrix D is singular. Then, by assumption,

S∗ = 0 and therefore L(R,S) = DΦ1((R,S)u∗, µ∗), see (4.2) and (4.3). In particular, L(R,S)

is smooth in (R,S) and the arguments given above go through.

Next, consider non-singular diffusion matrices D. We argue for the space C0
unif . As ex-

plained above, the operator L(R,S) is the composition of a translation and the operator

DΦ1((R,S)u∗, µ∗). Since the diffusion matrix is non-singular, DΦ1((R,S)u∗, µ∗) depends

smoothly on (R,S) as a map from C0
unif(IR

N , IRM) into Ck+2
unif (IR

N , IRM), see [8]. Finally, the

translations (id, R−1S∗) are Ck+1 in R considered as maps from Ck+2
unif into C0

unif . Therefore,

L(R,S) ∈ L(C0
unif) is Ck+1 in (R,S). This proves the claim for the space C0

unif . Since the

proof for L2 is similar, we will omit it.
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It remains to prove that (R,S)v is Ck+1 in (R,S) ∈ SE(N) for any v ∈ Ecu
∗ .

Lemma 4.4 Under the assumptions of Theorem 3, Hypothesis 3(iii) is obeyed.

Proof. Throughout the proof, the action of SE(N) on functions u is denoted by either

(R,S) or ρg with g = (R,S) ∈ SE(N). Note that Hypothesis 3(iv) is met by the previous

lemma. Therefore, by Hypotheses 3(i) and (iv), the set

N cu
∗ := {ρgu∗ + ρg P∗ρg−1 v; g ∈ SE(N), v ∈ V∗}

is a Ck+1-manifold locally near u∗. Here, V∗ has been defined in section 2 as a complement

of the tangent space Tu∗
SE(N)u∗ in the eigenspace Ecu

∗ = R(P∗), where P∗ is the spectral

projection appearing in Hypothesis 2. We claim that SE(N) acts continuously on N cu
∗ .

Suppose the claim is true. Since SE(N) operates continuously on the finite-dimensional

smooth manifold N cu
∗ , the action is in fact smooth, see, for instance, [13, Theorem 5.3],

and the assertion of the Lemma follows.

Thus, it remains to prove the claim. Since SE(N) acts smoothly on the group orbit of u∗,

it suffices to show that ρgv is continuous in g ∈ SE(N) for any v ∈ V∗.

For v ∈ Ecu = R(P∗) and g ∈ SE(N),

|(1 − P∗)(ρgv − v)| = |(1 − P∗)ρgv| ≤ |(1 − P∗)ρgP∗ρg−1| |ρgv|,

because (ρgP∗ρg−1)ρgv = ρgv. Since ‖(1 − P∗)(ρgP∗ρg−1)‖ → 0 as g → id, we infer that

(1 − P∗)(ρgv − v) is continuous at g = id.

It remains to show that P∗ρgnv converges to P∗v for any sequence gn → id in SE(N)

as n → ∞. We argue by contradiction: suppose that there is some ǫ > 0 such that

|P∗ρgnv − v| ≥ ǫ for all n. Since P∗ρgnv is bounded and Ecu
∗ is finite-dimensional, there

exists a convergent subsequence, which we again denote by gn, such that P∗ρgnv → ṽ for

some ṽ ∈ Ecu
∗ . This, however, implies v = ṽ and a contradiction is obtained. Indeed, for

the representation of SE(N) on C0
unif or L2, if (Rn, Sn) → (id, 0) and (Rn, Sn)v → ṽ as

n → ∞ then v = ṽ.

Remark 4.5 Note that no use has been made in the proof of Lemma 4.4 of particular

features of equation (4.1) or the function spaces involved except for the property: if gn → id

and ρgnv → ṽ as n → ∞, then v = ṽ.

Theorem 3 is a consequence of Lemmata 4.3 and 4.4.
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5 Spiral waves in two-dimensional excitable media

Consider the set-up of section 4 with N = 2. We will use a slightly different notation for

the group action, namely

(ρ(ϕ,a)u)(x) := u(R−ϕ(x − a)),

where (ϕ, a) ∈ S1+̇IR2 = SO(2)+̇IR2 = SE(2). The matrix Rϕ denotes the rotation by the

angle ϕ around zero in IR2.

5.1 Center manifolds near spiral waves

For the sake of clarity, we formulate the results for the space C0
unif though they are also

true for L2, then with Hk replacing Ck.

We assume that u∗ ∈ C0
unif is a rotating wave of (4.1) for µ = µ∗ satisfying Hypothesis 1,

that is,

Φt(u∗, µ∗) = ρ(ω∗t,0)u∗

for some ω∗ 6= 0. First, it is shown that Hypothesis 3(i) is satisfied.

Lemma 5.1 Assume that u∗ is a rotating wave with ω∗ 6= 0. If the diffusion matrix D is

singular, assume in addition that u∗ ∈ Ck+2
unif (IR

2, IRM). Under these conditions, Hypothe-

sis 3(i) is satisfied.

Proof. If D is positive, we observe that u∗ is of class Ck+2 by regularity properties of

(4.1), see [8]. Therefore, the translations ρ(0,a) : u∗(·) 7→ u∗(· − a) act smoothly on u∗. The

one-parameter family of rotations ρ(ϕ,0) act smoothly on u∗ since, by definition, the action

coincides with the time evolution of the rotating wave u∗ provided ω∗ 6= 0.

We have then the following application of Theorem 1.

Theorem 4 Let u∗ be a rotating wave of (4.1) with ω∗ 6= 0. Suppose that the spectral

hypothesis 2 is met. If the diffusion matrix D is singular, assume in addition that u∗ ∈

Ck+2
unif (IR

2, IRM).

Then, for any µ with |µ − µ∗| sufficiently small, there exists an SE(2)-invariant, locally

flow-invariant manifold M cu
µ contained in C0

unif . The manifold M cu
µ and the action of SE(2)

on M cu
µ are of class Ck+1 and depend Ck+1-smoothly on the parameter µ. Furthermore,

M cu
µ contains all solutions which stay close to the group orbit of u∗ for all negative times.

Finally, M cu
µ is locally exponentially attracting.

Proof. We have to show that the assumptions of Theorem 1 are obeyed. Hypothesis 3(i)

is met by Lemma 5.1. Therefore, we may apply Lemma 4.1 and Theorem 3 to conclude

that Hypotheses 3(ii), (iii) and (iv) are satisfied. This completes the proof.
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Remark 5.2 Assume that the diffusion matrix D is singular. Using the results of [22],

it is possible to prove that ρ(ϕ,a)u∗ is Ck+2 in ρ(ϕ,a) ∈ SE(2) whenever the group acts

continuously on u∗ and Hypothesis 2 is met. Since translations act strongly continuously on

C0
unif , the assumption u∗ ∈ Ck+2

unif (IR
2, IRM) appearing in Theorem 4 is therefore automatic.

We also remark that Theorem 4 remains true for more general relative equilibria provided

Hypothesis 3(i) is met.

Under the assumptions of Theorem 4, the isotropy H of u∗ is either ZZℓ or S1, see Lemma 4.1

and Remark 4.2. Thus, we can apply the results of [6], see Theorem 2, and obtain the fol-

lowing theorem. As in section 2, we choose an H-invariant complement V∗ of Tu∗
(SE(2)u∗)

in the generalized eigenspace Ecu
∗ .

Theorem 5 Suppose that the assumptions of Theorem 4 are met. The isotropy subgroup

H of u∗ is then either ZZℓ or S1. The manifold M cu
µ is diffeomorphic to (SE(2) × V∗)/∼,

where the equivalence relation on SE(2) × V∗ = S1 × C × V∗ is defined by (ϕ, a, v) ∼

(ϕ+ ϕ̂, a, ρ(−ϕ̂,0)v) for any (ϕ̂, 0) in the isotropy H of u∗. Furthermore, the pull-back of the

vector field on M cu
µ to SE(2) × V∗ as defined in Theorem 2 is of skew-product form

ϕ̇ = f1(v, µ)

ȧ = eiϕ f2(v, µ)

v̇ = fN(v, µ),

(5.1)

and H-equivariant:

(f1, f2, fN)(ρ(ϕ̂,0)v, µ) = (f1, e
iϕ̂f2, ρ(ϕ̂,0)fN)(v, µ).

Finally, (f1, f2, fN)(0, µ∗) = (ω∗, 0, 0).

Proof. The theorem follows from Theorem 2 and 4 once the adjoint representation has

been computed. Identifying SE(2) with S1+̇C, and its Lie algebra se(2) with IR × C, the

group structure on SE(2) is given by

(ϕ̃, ã)(ϕ, a) = (ϕ + ϕ̃, eiϕ̃a + ã).

In particular, the inverse of (ϕ, a) is

(ϕ, a)−1 = (−ϕ,−e−iϕa).

Thus, the adjoint action Ad(ϕ,a) of SE(2) on the Lie algebra se(2) is given by

Ad(ϕ,a)(r, s) = (ϕ, a) (r, s) (ϕ, a)−1 = (r, eiϕs − ira)

and, in particular,

Ad(ϕ̃,0)(r, s) = (r, eiϕ̃s).(5.2)

Any element in the isotropy group H is of the form (ϕ̃, 0). Thus the theorem is proved.
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5.2 The spectral hypothesis 2

We remark that Lemma 2.1 relates the spectral assumption 2 to the spectrum of the

linearization of (5.1) at the rotating wave u∗. It is possible to make this relation more

explicit. For that purpose, we have to work in either L2(IR2, IRM) or else the subspace

C0
eucl(IR

2, IRM) of C0
unif(IR

2, IRM) which is defined as the closure of D( ∂
∂ϕ) in C0

unif , see

[22]. On L2 and C0
eucl, the one-parameter family of rotations acts as a strongly continuous

semigroup.

It is then possible to write Hypothesis 2 in terms of the spectrum of the operator

L := D∆ − ω∗
∂

∂ϕ
+ Duf(u∗, µ∗),(5.3)

that is, the linearization of the spiral wave in a rotating frame. Note that L generates

a C0-semigroup on either C0
eucl(IR

2, IRM) or L2(IR2, IRM), see [22], but not necessarily on

C0
unif(IR

2, IRM).

Lemma 5.3 Consider equation (4.1) on either C0
eucl(IR

2, IRM) or L2(IR2, IRM). Further-

more, assume that u∗ is a rotating wave solution. Suppose that spec(L)∩{λ ∈ C; Re λ ≥ 0}

is a spectral set with spectral projection P∗. If dim P∗(E
cu
∗ ) < ∞ and the semigroup eLt

satisfies

‖eLt|(1−P∗)Ecu
∗

‖ ≤ Ce−βt

for some β > 0, then Hypothesis 2 is true. In that case, we have spec(DfN(0, µ∗)) =

spec(Q∗L|V∗
), where V∗ = R(Q∗) is an H-invariant complement of Tu∗

(SE(2)u∗) = N(Q∗)

in Ecu
∗ with associated projection Q∗.

Proof. Since the operator L generates a C0-semigroup on either space, we have

DΦt(u∗, µ∗) = ρ(ω∗t,0)e
Lt, see [22, Lemma 3.7]. In particular, DΦ2π/ω∗

(u∗, µ∗) = e2π/ω∗L.

The remaining assertions follow from Lemma 2.1.

Finally, consider the operator L on L2.

Hypothesis 4 Assume that the spectrum of the operator A∞ := D∆ + Duf(0, µ∗) on

L2(IR2, IRM) satisfies spec(A∞) < −β < 0.

Lemma 5.4 Consider equation (4.1) on L2(IR2, IRM). Let the diffusion matrix D be non-

singular. We assume that u∗ ∈ L2(IR2, IRM) is a rotating wave such that u∗(x) → 0 uni-

formly in |x| → ∞. Suppose that Hypothesis 4 is met. Under these conditions, Hypothesis 2

is obeyed. In fact,

spec(eL) ∩ {λ ∈ C; |λ| ≥ 1} = exp
(

spec(L) ∩ {λ ∈ C; Re λ ≥ 0}
)

is a spectral set and dimEcu
∗ < ∞ is true for the associated generalized eigenspace. More-

over, spec(DfN(0, µ∗)) and spec(L) are related as in Lemma 5.3.
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Proof. The proof is motivated by [4, Chapter 4]. Note that −A∞ is sectorial with domain

H2(IR2, IRM) since the diffusion matrix D is positive. Therefore, spec(eA∞) lies inside the

circle of radius e−β , see [8], and

‖eA∞t‖ ≤ Ce−βt(5.4)

for some positive C and all t > 0. The operator

L∞ = D∆ − ω∗
∂

∂ϕ
+ Duf(0, µ∗)

generates a strongly semigroup given by eL∞t = ρ(−ω∗t,0)e
A∞t. Since the rotations ρ(−ω∗t,0)

have norm one, spec(eL∞) is also contained inside the circle of radius e−β. Indeed, use

the estimate (5.4), and the relation between spectral radius and the norm of powers of the

operator. We claim that eLt−eL∞t is compact for any t > 0. Suppose for the moment that

the claim is true. Then, by [11, Theorem IV.5.35], the essential spectra

specess(e
L) = specess(e

L∞) ⊂ spec(eA∞) ⊂ {λ ∈ C; |λ| < e−β}

coincide. Here, the essential spectrum specess denotes the complement (in the spectrum) of

the set of isolated eigenvalues with finite multiplicity. Therefore, Hypothesis 2 is satisfied.

Also, the relation between the point spectra of L and eL outside the circle of radius e−β is

a consequence of [16, Theorem 2.2.4, p. 46]. It remains to prove that

eLt − eL∞t =

∫ t

0
eL(t−τ)KeL∞τ dτ(5.5)

is compact for positive t. Here, the bounded operator K is given by K = Duf(u∗, µ∗) −

Duf(0, µ∗). Note that K is compact from H2(R2, IRM) to L2 since u∗(x) → 0 uniformly as

|x| → ∞, see [4, pp. 27–28]. Therefore,

KeL∞τ = Kρ(−ω∗τ,0)e
A∞τ ∈ L(L2)

is compact for τ > 0 since eA∞τ maps L2 into H2 and ρ(−ω∗τ,0) ∈ L(H2). By the arguments

given in [4, p. 28], the integrand appearing on the right hand side of (5.5) is norm-continuous

in τ ∈ (0, t]. Thus,
∫ t
ν eL(t−τ)KeL∞τ dτ is compact for any ν > 0. Since the set of compact

operators is closed in the norm-topology, and ‖
∫ ν
0 eL(t−τ)KeL∞τ dτ‖ ≤ Cν in norm, the

integral in (5.5) is compact. This proves the claim and thus the lemma.

5.3 Bifurcations of spiral waves

Summarizing, a center-manifold reduction to a smooth and SE(2)-equivariant manifold

near ℓ-armed spiral waves has been obtained. The skew-product structure of the vector

field on the center manifold has been proved in [6]. Finally, at least on C0
eucl(IR

2, IRM) and

L2(IR2, IRM), the spectrum of the reduced vector field (5.1) has been explicitly related to
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the spectrum of the linearization of (4.1). Thus, we may investigate bifurcations of the

H-equivariant normal component

v̇ = fN(v, µ)

of (5.1) and study the drift along the group orbit using the H-equivariant equation





ϕ̇

ȧ



 =





f1(v, µ)

eiϕ f2(v, µ)



 .

For Hopf bifurcations from rigidly-rotating ℓ-armed spiral waves to meandering or drifting

waves, this program has been carried out in [7] and [6] to which we refer for more details.

In [7], the consequences of Takens-Bogdanov bifurcations for one-armed spirals have been

discussed. By Theorem 5, similar statements hold for ℓ-armed waves. Note that the

formal reduction given in [7] requires that the center bundle is trivial. Takens-Bogdanov

bifurcations near ℓ-armed spiral waves may result in non-trivial bundles. However, the

center-manifold theorem 4 and the associated reduction described in [6], see Theorem 5, do

not suffer from this drawback. Therefore, our results cover Takens-Bogdanov bifurcations

near ℓ-armed spiral waves.

6 Relative equilibria in SE(3)-equivariant systems

Consider the reaction-diffusion system (4.1)

ut = D∆u + f(u, µ), x ∈ IR3

and assume that the diffusion matrix D is positive.

Theorem 6 Assume that (4.1) has a relative equilibrium u∗ which meets Hypotheses 2

and 3(i). The conclusions of Theorem 4 are then valid with SE(3) replacing SE(2).

Proof. By assumption, Hypothesis 3(i) is met. Thus, Theorem 3 applies, and Hypothe-

ses 3(iii) and (iv) are obeyed. Similarly, by Lemma 4.1, Hypothesis 3(ii) is satisfied. The-

orem 1 proves then the assertion of the theorem.

Remark 6.1 Using an extension of the results of [22], we can prove that Hypothesis 3(i)

is satisfied whenever Hypothesis 2 is met and SE(3) acts continuously on u∗. The proof

will appear elsewhere.

Theorem 6 applies in particular to relative equilibria with finite isotropy group ZZℓ. Ex-

amples include so-called twisted scroll rings. These solutions rotate around the x3-axis,

say, and additionally drift along the same axis with constant speed. We may think of a
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one-parameter family of spirals with a core aligned along the unit circle parallel to the

(x1, x2)-plane. The spiral patterns occur, locally, in the bundle of normal planes to the

core circle. Such patterns are called scroll rings. We assume now that the spirals possess

a phase difference along the family of normal planes. For ℓ-times twisted scroll rings, this

phase difference is ℓ times the angle difference between the core points on the unit circle. In

mathematical terms, an ℓ-times twisted scroll ring u∗ has spatial isotropy ZZℓ and satisfies

Φt(u∗) = exp(ξ∗t)u∗,

where ξ∗ = (r∗, s∗) ∈ so(3) × IR3 = se(3) in the Lie algebra of SE(3) has the special form

r∗ =











0 −ω∗ 0

ω∗ 0 0

0 0 0











, s∗ =











0

0

c∗











.(6.1)

Here, s∗ lies in the fixed point space of the spatial isotropy ZZℓ of u∗, see [6]. The temporal

evolution of the twisted scroll ring is then given by

Φt(u∗)(x) = u∗(R∗(−ω∗t)x − s∗t),

where R∗(ϕ) denotes the rotation by the angle ϕ around the x3-axis in IR3.

Scroll rings have been observed in [15] in numerical simulations of reaction-diffusion sys-

tems on IR3. Their group orbits appear to be smooth. We can therefore investigate Hopf

bifurcations of twisted scroll rings by applying the center-manifold reduction of Theorem 6.

The reduced differential equations (2.3) can then be used to analyze the dynamics near such

bifurcations.

It turns out that for simply twisted scroll rings bifurcating solutions drift approximately

in the x3-direction. In a plane perpendicular to the vertical propagation direction, the

bifurcating scroll rings perform a planar meandering or drifting motion. In the case of ℓ-

times twisted scroll rings, the same phenomena occur if the isotropy group of the bifurcating

solutions is trivial. Otherwise, drift is only possible along the axis of the scroll ring. We

refer to [6, Section 6] for the details. Recently, [1] studied the drift of relative equilibria

and relative periodic orbits for general non-compact group actions.
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