
Absolute and 
onve
tive instabilities of waves on unbounded andlarge bounded domainsBj�orn SandstedeDepartment of Mathemati
sOhio State University231 West 18th AvenueColumbus, OH 43210, USA Arnd S
heelInstitut f�ur Mathematik IFreie Universit�at BerlinArnimallee 2-614195 Berlin, GermanyMar
h 5, 2000Abstra
tInstabilities of nonlinear waves on unbounded domains manifest themselves in di�erent ways.An absolute instability o

urs if the amplitude of lo
alized wave pa
kets grows in time at ea
h�xed point in the domain. In 
ontrast, 
onve
tive instabilities are 
hara
terized by the fa
t that,even though the overall norm of wave pa
kets grows in time, perturbations de
ay lo
ally at ea
hgiven point in the unbounded domain: wave pa
kets are 
onve
ted towards in�nity. In experimentsas well as in numeri
al simulations, bounded domains are often more relevant. We are interestedin the e�e
ts that the trun
ation of the unbounded to a large but bounded domain has on theaforementioned (in)stability properties of a wave. These e�e
ts depend upon the boundary 
onditionsthat are imposed on the bounded domain. We 
ompare the spe
tra of the linearized evolutionoperators on unbounded and bounded domains for two 
lasses of boundary 
onditions. It is provedthat periodi
 boundary 
onditions reprodu
e the point and essential spe
trum on the unboundeddomain a

urately. Spe
tra for separated boundary 
onditions behave in quite a di�erent way: �rst,separated boundary 
onditions may generate additional isolated eigenvalues. Se
ond, the essentialspe
trum on the unbounded domain is in general not approximated by the spe
trum on the boundeddomain. Instead, the so-
alled absolute spe
trum is approximated that 
orresponds to the essentialspe
trum on the unbounded domain 
al
ulated with 
ertain optimally 
hosen exponential weights.We interpret the di�eren
e between the absolute and the essential spe
trum in terms of the 
onve
tivebehavior of the wave on the unbounded domain. In parti
ular, it is demonstrated that stability of theabsolute spe
trum implies 
onve
tive instability of the wave, but that 
onve
tively unstable waves
an destabilize under domain trun
ation. The theoreti
al predi
tions are 
ompared with numeri
al
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1 Introdu
tionWe are interested in the stability properties of nonlinear waves su
h as fronts and pulses on unboundedand bounded domains. On unbounded domains, an instability 
an manifest itself in di�erent ways. Thephysi
s literature distinguishes between two di�erent kinds of instability, namely absolute and 
onve
tiveinstabilities. An absolute instability o

urs if perturbations grow in time at every �xed point in thedomain. Conve
tive instabilities are 
hara
terized by the fa
t that, even though the overall norm of theperturbation grows in time, perturbations de
ay lo
ally at every �xed point in the unbounded domain;in other words, the growing perturbation is transported, or 
onve
ted, towards in�nity. In experimentsas well as in numeri
al simulations, bounded domains are often more relevant. From a physi
al point ofview, it is then interesting and important to understand how absolute and 
onve
tive instabilities manifestthemselves on large bounded domains under various boundary 
onditions. A possible 
on
lusion would bethat 
onve
tive instabilities disappear on bounded domains, while absolute instabilities persist. It turnsout, however, that there are 
onve
tive instabilities that survive the trun
ation to a bounded domain.Understanding the spe
tral properties of waves under domain trun
ation amounts to identifying and
apturing those instabilities that survive domain trun
ation, and to 
al
ulating and 
omparing the spe
traof the relevant linearized operators on su
h domains. These are the issues we set out to explore in thisarti
le. Our main result establishes that it is not absolute and 
onve
tive instabilities but what we 
allremnant and transient instabilities, see below, that determine the spe
tral (in)stability of waves underdomain trun
ation. Before we explain these instabilities in more details and outline our approa
h, we
omment more on our motivation to study these issues.Physi
al situations in whi
h the aforementioned issues are relevant in
lude, for instan
e, 
uid 
ows in�nite 
ontainers [9, 43℄ and the break-up of spiral waves as observed in experiments [28℄ and numeri
alsimulations [5, 6, 42℄. In open 
ows, the di�eren
e between absolute and 
onve
tive instabilities isimportant; this problem has been studied intensively for modulation equations su
h as the 
omplexGinzburg-Landau equation; see, for instan
e, [3, 13, 14, 43℄. Part of our motivation 
omes from thebreak-up of spiral waves in two-dimensional ex
itable and os
illatory media [5, 6℄. Spirals 
an break upeither near the 
ore or else in the far-�eld; the di�eren
e between these instabilities is the dire
tion towardswhi
h unstable eigenmodes 
onve
t and transport. An interesting issue is to predi
t these instabilities,and the dire
tion of transport, from spe
tral properties of the asymptoti
 wave trains of the spiral; thiswill be dis
ussed in a forth
oming paper using the te
hniques introdu
ed here.A se
ond reason for investigating the behavior of spe
tra under domain trun
ation is the fa
t that itis in general quite diÆ
ult to 
al
ulate the spe
trum of the linearization about a given nonlinear waveanalyti
ally. Thus, one has to resort to numeri
al te
hniques whi
h typi
ally require that the unboundeddomain is repla
ed by a bounded domain, supplemented with appropriate boundary 
onditions. Thereis then, however, no guarantee that the true spe
trum on the unbounded domain is re
overed as domaintrun
ation is not a regular perturbation. In parti
ular, the spe
trum on the bounded domain may welldepend upon the 
hoi
e of boundary 
onditions.1.1 Di�erent instability me
hanisms on unbounded domainsWe begin by reviewing the di�erent instability me
hanisms that we are interested in on the unboundeddomain R. As mentioned above, absolute instabilities o

ur if perturbations grow in time at every �xedpoint in the domain. Conve
tive instabilities are 
hara
terized by the fa
t that perturbations de
aylo
ally at every �xed point in the unbounded domain even though the overall norm of the perturbationgrows in time. 1



There are, however, other ways of di�erentiating between instabilities on unbounded domains. We referto the situation where every unstable mode travels to either left or right but not simultaneously to the leftand right as a transient instability. Note that a 
onve
tive instability allows waves to split into two wavepa
kets that travel simultaneously to the left and right. In 
ontrast, transiently unstable modes have apreferred dire
tion of transport. We expe
t that transiently unstable waves are 
onve
tively unstable butnot ne
essarily vi
e versa.We outline how 
onve
tive and transient instabilities 
an be 
aptured mathemati
ally on the unboundeddomain R. Suppose that we linearize a 
ertain partial di�erential equation (PDE) about a pulse, say.We then investigate the resulting linear PDE operator L on the real line using the spa
e L2(R) withnorm k � k. The spe
trum of the operator L is the disjoint union of two sets: the point spe
trum that
onsists of all isolated eigenvalues with �nite multipli
ity, and its 
omplement whi
h we refer to as theessential spe
trum. If part of the essential spe
trum lies in the right half-plane, then there is typi
allya 
ontinuum of unstable modes present. The essential spe
trum 
an be 
omputed using the dispersionrelation d(�; �) = 0 that relates temporal eigenvalues � and spatial eigenvalues �: the dispersion relationis 
al
ulated by substituting u(x; t) = e�t+�x into the PDE ut = L1u whi
h is the linearization aboutthe asymptoti
 rest state of the pulse. We remark that our notation of dispersion relation di�ers slightlyfrom the physi
s 
onvention where � and � are repla
ed by i! and �ik, respe
tively.In 
ertain 
ases, the essential spe
trum indu
es a 
onve
tive instability. Suppose that part of the essentialspe
trum lies in the right half-plane. In many situations, it 
an be shown that a wave is 
onve
tivelyunstable if the dispersion relation d(�; �) does not have any double roots in � for � in the 
losed right half-plane; see [3, 9℄ and the referen
es therein. A wave be
omes absolutely unstable if a temporal eigenvalue� for whi
h the dispersion relation has a spatial double root 
rosses into the right half-plane.To des
ribe transient instabilities, it is 
onvenient to introdu
e exponential weights; see [40℄: for anygiven real number �, de�ne a new norm k � k� bykuk2� = Z 1�1 je�xu(x)j2 dx;and denote by L2�(R), equipped with the norm k � k�, the spa
e of fun
tions u(x) for whi
h e�xu(x) isin L2(R). Note that the norms k � k� for di�erent values of � are not equivalent to ea
h other. We then
onsider L as an operator on L2�(R) and 
ompute its spe
trum using the new norm k � k� for appropriatevalues of �. The key is that, for � > 0, the norm k � k� penalizes perturbations at +1 while it toleratesperturbations (whi
h may in fa
t grow exponentially with any rate less than �) at �1. Thus, if aninstability is of transient nature so that it manifests itself by modes that travel towards �1, then theessential spe
trum 
al
ulated in the norm k � k� should move to the left as � > 0 in
reases. Indeed, as theperturbations travel towards �1, they are multiplied by e�x whi
h is small as x ! �1 and thereforeredu
es their growth or even 
auses them to de
ay. Exponential weights have been used to study a varietyof problems posed on the real line su
h as rea
tion-di�usion operators [40℄, 
onservative systems su
h asthe KdV equation [32℄, and generalized Kuramoto-Sivashinsky equations that des
ribe thin �lms [11, 12℄.As mentioned above, 
onve
tive and transient instabilities are not identi
al: an example of a 
onve
tivelyunstable wave that is not transiently unstable is given in Example 2 in Se
tion 3.3. What happens in thisexample is that perturbations travel to both +1 and �1 at the same time. Su
h instabilities 
annotbe removed by exponential weights sin
e we would need � > 0 to get rid of modes travelling to the leftbut � < 0 to handle the modes that travel to the right. This might seem to be a minor point but is infa
t of importan
e when the domain is trun
ated to a bounded interval; see below. We refer to Figure 1where we illustrate absolute as well as transient and 
onve
tive instabilities.Finally, we say that a wave is remnantly unstable if the spe
trum of L, 
omputed in the spa
e L2�(R),2



(a) (b) (
)Figure 1: The dotted waves are the initial data u0(x) to the linearized equation ut = Lu, while the solid wavesu(x; t) represent the solution at a �xed positive time t; the horizontal axis is x, the verti
al axis 
orrespondsto the value of u(x; t) at x. Pi
ture (a) illustrates an absolute instability where the solution to the linearizedequation grows without bounds at ea
h given point x in spa
e as time tends to 1. Plot (b) illustrates transientinstabilities: the solution u(x; t) grows but also travels in one dire
tion so that u(x; t) a
tually de
ays for ea
h�xed value of x as t ! 1. The operator L would have stable spe
trum in the norm k � k� for a 
ertain � > 0.Finally, pi
ture (
) shows a 
onve
tively unstable pattern that is not transiently unstable: the solution u(x; t)
onsists of two waves that grow while travelling in opposite dire
tions. Su
h an instability 
annot be stabilizedby using the norm k � k�. Typi
ally, the group velo
ities of the two waves would di�er in modulus as shown here.is unstable for any 
hoi
e of �. Thus, remnantly unstable modes are modes whi
h are not a�e
ted byexponential weights. We 
an 
apture remnant and absolute instabilities by 
omputing what we 
all theabsolute spe
trum: roughly speaking, the absolute spe
trum �abs is de�ned as the set of 
omplex numbers� for whi
h the resolvent L� � is not invertible in L2�(R) for any 
hoi
e of �; see Se
tion 3.2 for a morepre
ise de�nition. In fa
t, the absolute spe
trum 
an be 
omputed using only the asymptoti
 
oeÆ
ientsof the linear operator L, that is, it depends only upon the asymptoti
 rest states of the underlying wave.The absolute spe
trum 
aptures remnant instabilities: the absolute spe
trum moves into the right half-plane if, and only if, the wave experien
es a remnant instability. As the absolute spe
trum 
ontains anypoints � for whi
h the dispersion relation has double spatial roots, we 
an also use it to 
apture absoluteinstabilities. Su
h temporal eigenvalues � 
orrespond to unstable eigenmodes with zero group velo
ity.Absolute and remnant instabilities would be identi
al if the rightmost unstable temporal eigenvalue � inthe absolute spe
trum always 
orresponds to an eigenmode with zero group velo
ity; there is, however,the possibility that the most unstable eigenmode in the absolute spe
trum has non-zero group velo
ity;see Examples 2 and 3 in Se
tion 3.3.In summary, upon using exponentially weighted norms, the essential spe
trum may move to a di�erentlo
ation. The new lo
ation of the essential spe
trum is determined by a balan
e between the growth inamplitude and the speed of adve
tion asso
iated with ea
h eigenmode on the one hand and the rate �that is being used in the weight on the other hand.1.2 Instabilities on large bounded domainsNext, we 
onsider the relevant PDE operator on a large but bounded interval with appropriate boundary
onditions. The distin
tion between point and essential spe
trum then disappears. We may, however,de�ne the extrapolated essential spe
tral set �eext that 
onsists of all 
omplex numbers that are approa
hedby in�nitely many eigenvalues as the interval approa
hes the entire real line. In other words, rather thaninvestigating how the essential spe
trum breaks up under domain trun
ation, we 
onsider the inverseproblem by determining the asymptoti
 lo
ation of eigenvalues on the bounded interval as the domainsize tends to in�nity. The �rst result, Theorem 4 in Se
tion 5.2, demonstrates that the essential spe
trum�ess and the extrapolated essential spe
tral set �eext are equal to ea
h other provided we use periodi
boundary 
onditions; this requires that the nonlinear wave is a pulse and not a front. In other words,with periodi
 boundary 
onditions, the essential spe
trum of pulses is well approximated under domain3



trun
ation. The se
ond result, Theorem 5 in Se
tion 5.3, shows that the sets �ess and �eext are in generaldi�erent if separated boundary 
onditions are used. Thus, no matter how large we 
hoose the intervallength, the resulting spe
trum will never be 
lose to the spe
trum on the real line. In fa
t, we demonstratethat, for separated boundary 
onditions, the extrapolated essential spe
tral set �eext is typi
ally equal tothe absolute spe
trum �abs. The reason that the spe
trum on the real line is not well approximated by thespe
trum on bounded intervals is related to the existen
e of transiently unstable eigenmodes. We had seenthat we 
an shift the transient part of the essential spe
trum by using exponential weights. As mentionedabove, this amounts to 
hanging the underlying fun
tion spa
e as these norms are not equivalent tothe standard L2-norm. On bounded intervals, however, these norms are all equivalent to ea
h othersin
e e�x is then bounded away from zero and from in�nity. Thus, we expe
t that, if the operator isstable in an exponentially weighted norm, then it should also be stable on large bounded intervals. Inother words, even if it is unstable on the real line, it will be stable on bounded intervals provided itis also stable on the real line 
onsidered with exponential weights. Heuristi
ally, transiently unstableeigenmodes transport perturbations towards either +1 or �1; on bounded intervals, the perturbationsthen disappear through the boundary. This also explains why the essential spe
trum is re
overed uponusing periodi
 boundary 
onditions: the transient modes transport perturbations towards the boundaryas before but they get fed in on the other endpoint of the interval through the boundary 
onditions.It also explains why 
onve
tive instabilities may lead to instabilities on bounded domains: if there areunstable eigenmodes that transport perturbations to the left and other modes that transport to the right,then these modes may 
ouple through the boundary 
onditions; even for separated boundary 
onditions,this may lead to an instability on bounded intervals; see Example 2 in Se
tion 3.3.An interesting 
onsequen
e of these remarks is a 
hara
terization of the so-
alled pseudo-spe
trum.Roughly speaking, for arbitrary small � > 0, the �-pseudo-spe
trum of an operator L on a boundeddomain 
onsists, by de�nition, of all 
omplex numbers su
h that the asso
iated resolvent (L � �)�1 hasnorm larger than 1=�. It has been used in linear numeri
al analysis; see, for instan
e, [44℄ for moreba
kground information. Our results imply that the pseudo-spe
trum on large domains typi
ally inter-polates between the absolute spe
trum �abs and the essential spe
trum �ess: for �xed interval lengthL, the �-pseudo-spe
trum of L approa
hes the absolute spe
trum as � ! 0; on the other hand, for �xed� > 0, the pseudo-spe
trum 
onverges, as L ! 1, to an open set whose 
losure 
ontains the essentialspe
trum. See Se
tion 4.4. The reason is that the resolvent on the real line is invertible only in someexponentially weighted norm. Even though all these norms are equivalent on bounded intervals, theirequivalen
e 
onstants approa
h in�nity exponentially fast in terms of the interval length. Thus, the normof the resolvents also grows exponentially in terms of the interval length. For the 
onstant-
oeÆ
ient
onve
tion-di�usion operator uxx + 
ux, this fa
t has been established in [34℄.It remains to 
onsider the e�e
ts of domain trun
ations on isolated eigenvalues. Again, we have todistinguish between periodi
 and separated boundary 
onditions. In Theorem 2 in Se
tion 4.2, we provethat eigenvalues persist with their multipli
ity under periodi
 boundary 
onditions. Furthermore, allthe eigenvalues for the operator on the bounded interval originate from eigenvalues on the real line.Thus, periodi
 boundary 
onditions re
over not only the essential spe
trum but also the point spe
truma

urately.The 
ase of separated boundary 
onditions is again quite di�erent. There are three issues that haveto be dealt with. Firstly, given an isolated eigenvalue on the real line, we may ask for its persisten
ewhen trun
ating to a bounded interval. Se
ondly, additional eigenvalues 
ould be 
reated through theboundary 
onditions. The third issue is as follows. We have seen that the essential spe
trum may shiftupon using exponential weights. In the region between the original and the shifted essential spe
trum,additional eigenvalues may arise. The asso
iated eigenfun
tions are bounded in the k � k� norm that was4



used to shift the spe
trum but are unbounded in the original L2-norm. It is then possible that these neweigenvalues, whi
h are often referred to as resonan
e poles, persist upon domain trun
ation. The reasonis that the exponential weights do not matter on any bounded interval. All these issues are taken 
areof in Theorem 3 in Se
tion 4.3.2. Resonan
e poles indeed persist under domain trun
ation in addition toeigenvalues of the operator in the original L2-norm. Furthermore, it is possible that additional eigenvaluesare 
reated through the boundary 
onditions, and we give pre
ise 
onditions on when this phenomenono

urs and how many eigenvalues are 
reated.We remark that we do not give asymptoti
 expansions of isolated eigenvalues in the interval length Lof the underlying bounded interval as L ! 1. Su
h expansions 
an, however, be obtained using theapproa
h utilized here; see, for instan
e, [37℄ for expansions of eigenvalues for the linearization about apulse under periodi
 boundary 
onditions.The main te
hniques that we use to demonstrate the persisten
e of eigenvalues are the Evans fun
tion [1℄for bounded intervals [19, 21℄ applied with exponential weights [40℄. Domain trun
ation for the absoluteand essential spe
trum are investigated using exponential di
hotomies [16, 29, 33, 35℄; impli
itly, we alsouse extensions of the Evans fun
tion a
ross the essential spe
trum [25℄. We emphasize that we prove ourresults for � in bounded subsets of the 
omplex plane. Thus, we do not establish resolvent estimates forlarge �; in parti
ular examples, su
h estimates are typi
ally obtained on a 
ase-by-
ase basis.Finally, we mention related results. In [8℄, the persisten
e of eigenvalues under domain trun
ation hasbeen investigated for rea
tion-di�usion operators under periodi
 and separated boundary 
onditions.The authors also provided error estimates for the dependen
e of the eigenvalues on the interval length L.The results established in [8℄ apply only to eigenvalues that are to the right of the essential spe
trum;resonan
e poles or the behavior of the essential spe
trum itself were not dis
ussed. A general referen
efor boundary-value problems is [4℄.In addition, there is a tremendous amount of arti
les in the physi
s literature where absolute and 
on-ve
tive instabilities have been investigated; see, for instan
e, [3, 43℄ to name but two. In many of thesearti
les, absolute and 
onve
tive instabilities were investigated for the 
omplex Ginzburg-Landau equa-tion. The results typi
ally 
hara
terize the onset to instability by the 
rossing of a double root of thedispersion relation through the imaginary axis into the right half-plane. As we already mentioned above,this 
riterion is in general not 
orre
t even though it gives the right answer in almost all the 
ases weare aware of. Our 
ontribution is �rstly the 
orre
t 
riterion for instability on large bounded domainsthrough the notions of remnant and transient instabilities and, se
ondly, a 
hara
terization of the entirespe
trum, and not only of the double roots of the dispersion relation, on bounded domains. This allowsfor a 
omparison of numeri
al 
al
ulations with theoreti
al predi
tions. In addition, the systemati
 useof exponentially weighted norms allows us to predi
t the absolute or 
onve
tive nature of instabilitiesin
luding the dire
tion of transport.This arti
le is organized as follows. The set-up and most of the relevant de�nitions are given in Se
tion 2.In Se
tion 3, we introdu
e the various notions of spe
trum that we shall use. The behavior of pointspe
trum under domain trun
ation is dis
ussed in Se
tion 4. Se
tion 5 
ontains the results for theessential spe
trum. Numeri
al simulations for the KdV equation and the Gray-S
ott model are presentedin Se
tion 6. The last se
tion 
ontains 
on
lusions and a dis
ussion of open problems.2 Operators, boundary 
onditions, and exponential di
hotomiesIn this se
tion, we introdu
e our pre
ise set-up as well as all ne
essary de�nitions that we shall use.5



2.1 The 
oeÆ
ient matrixThroughout this arti
le, we assume that A(x;�) 2 RN�N is a matrix-valued fun
tion of (x; �) 2 R� Cof the form A(x;�) = Â(x) + �B(x):Most of our results are valid for more general A(x;�); we note, however, that eigenvalue problems arisingfrom evolutionary equations are typi
ally of the above type. We assume that A(x;�) satis�es the followinghypothesis.Hypothesis 1 The matri
es A(x;�) 2 RN�N are smooth in x 2 R and analyti
 in � 2 C . Furthermore,the following 
onditions are met.� Asymptoti
ally 
onstant 
oeÆ
ients. There are positive 
onstants K and �, independent of x and�, and matri
es A�(�) that depend analyti
ally on � su
h thatkA(x;�)� A�(�)k � Ke��jxjas x!�1.� Well-posedness. There is a number � > 0 and an integer i1 2 N su
h that, for all � with Re� � �,the asymptoti
 matri
es A�(�) are hyperboli
 (i.e. they have no spe
trum on iR), and the dimensionof their generalized unstable eigenspa
es is equal to i1.The se
ond 
ondition above is satis�ed for eigenvalue problems that arise from evolution equations. Itguarantees that the essential spe
trum is to the left of the line Re� = � for some �nite number �.We emphasize that most of our results hold in more generality; for instan
e, it suÆ
es that A(x;�) isasymptoti
ally periodi
 in x.Throughout this paper, we label eigenvalues of A�(�) a

ording to their real part, and repeated withtheir multipli
ity, i.e. Re ��1 (�) � Re ��2 (�) � : : : � Re ��N�1(�) � Re ��N (�): (2.1)In parti
ular, 
hoose � so that Re� is large. Using Hypothesis 1(ii), we see thatRe ��1 (�) � : : : � Re ��i1(�) > 0 > Re ��i1+1(�) � : : : � Re ��N (�):We refer to � and ��j as the temporal and spatial eigenvalues, respe
tively. For every �xed temporaleigenvalue �, the spatial eigenvalues ��j are the roots of the 
hara
teristi
 polynomialsd�(�; �) = det[� �A�(�)℄of A�(�). The dependen
e between spatial and temporal eigenvalues is 
ommonly referred to as thedispersion relation, where ! = �i� is 
onsidered as a fun
tion of k = i�.2.2 The operator on the real lineOn the unbounded real line R, we 
onsider the family T of linear operatorsT (�) : H1(R; CN ) �! L2(R; CN ); u 7�! dudx �A(�;�)u (2.2)6



for � 2 C , where H1 is the usual Sobolev spa
e of L2-fun
tions that have a weak derivative whi
h is inL2.As mentioned in the introdu
tion, it is often 
onvenient to 
onsider the operators T (�) on exponentiallyweighted fun
tion spa
es; see [40, 31℄. Thus, for arbitrary � = (��; �+) 2 R2, we setkv(�)k2L2� = Z 0�1 jv(�)e��� j2 d� + Z 10 jv(�)e�+�j2 d�kv(�)k2H1� = kv(�)k2L2� + kvx(�)k2L2� :We may then 
onsider the operatorT �(�) : H1� (R;CN ) �! L2�(R;CN ); v 7�! dvdx �A(�;�)v: (2.3)For any fun
tion v de�ned on R, let(J�v)(x) = ( e��xv(x) for x < 0e�+xv(x) for x > 0:The maps J� : H1� �! H1; v 7�! J�v and J� : L2� �! L2; v 7�! J�vare then linear isomorphism, and the operator T �(�) 
an be written as~T �(�) : H1(R; CN ) �! L2(R; CN ); u 7�! dudx �A(�;�)u� �(�)u; (2.4)where �(x) = ( �� for x < 0�+ for x > 0: (2.5)Indeed, we have ~T �(�) = J�T �(�)J�1� :In the following, we omit the tilde and denote both operators by T �(�).2.3 The operators on the bounded interval (�L;L)Alternatively, we 
ould 
onsider the operators on the bounded interval (�L;L) for large numbers L. Inthis 
ase, we introdu
e boundary 
onditions at the endpoints of the interval. For periodi
 boundary
onditions, a suitable fun
tion spa
e isH1per((�L;L); CN ) = H1((�L;L); CN ) \ fu; u(�L) = u(L)g;and we 
onsider the operatorT perL (�) : H1per((�L;L); CN ) �! L2((�L;L); CN ); u 7�! dudx � A(�;�)u: (2.6)Separated boundary 
onditions 
an be realized by 
hoosing appropriate subspa
es Q+ and Q� of CN .We assume that these subspa
es satisfy the following hypothesis.Hypothesis 2 (Separated boundary 
onditions) We assume thatdimQ� = i1; dimQ+ = N � i1where the asymptoti
 Morse index i1 has been introdu
ed in Hypothesis 1.7



The 
orre
t fun
tion spa
e for separated boundary 
onditions is then given byH1sep((�L;L); CN ) = H1((�L;L); CN ) \ fu; u(�L) 2 Q� and u(L) 2 Q+g;and we are interested in the operatorT sepL (�) : H1sep((�L;L); CN ) �! L2((�L;L); CN ); u 7�! dudx �A(�;�)u: (2.7)Example 1 Consider the 
onve
tion-di�usion problem Ut = Uxx + 
Ux together with the asso
iatedeigenvalue problem �U = Uxx + 
Ux. Upon writing the eigenvalue problem as a �rst-order system, wesee that N = 2 and Â =  0 10 �
 ! ; B =  0 01 0 ! ; A(x;�) = Â+ �B (2.8)so that u = (u1; u2)T = (U;Ux)T 2 R2. Diri
hlet and Neumann boundary 
onditions are given byU (�L) = 0 and Ux(�L) = 0, respe
tively, and 
an be realized using the subspa
es QDir� = spanf(0; 1)Tgand QNeu� = spanf(1; 0)Tg.Note that, for separated boundary 
onditions, the integer i1 is singled out as the number of boundary
onditions at the right endpoint of the interval (�L;L); observe that the number of boundary 
onditionsat x = �L is the 
odimension of Q�. Furthermore, we emphasize that exponential weights do not a�e
tseparated boundary 
onditions but that they 
hange periodi
 boundary 
onditions.2.4 Exponential di
hotomiesThe main tool that we use below to investigate the spe
tral properties of the family T are exponentialdi
hotomies of the asso
iated ordinary di�erential equationddxu = A(x;�)u (2.9)for u 2 CN .De�nition 2.1 (Exponential di
hotomies) Let I = R+, R� or R, and �x �� 2 C . We say that (2.9),with � = �� �xed, has an exponential di
hotomy on I if there exist positive 
onstants K, �s and �u anda family of proje
tions P (x) de�ned and 
ontinuous for x 2 I su
h that the following is true.� For any �xed y 2 I and u0 2 CN , there exists a solution 's(x; y)u0 of (2.9) with initial value's(y; y)u0 = P (y)u0 for x = y, and we havej's(x; y)j � Ke��s jx�yjfor all x � y with x; y 2 I.� For any �xed y 2 I and u0 2 CN , there exists a solution 'u(x; y)u0 of (2.9) with initial value'u(y; y)u0 = (1 � P (y))u0 for x = y, and we havej'u(x; y)j � Ke��ujx�yjfor all x � y with x; y 2 I. 8



� The solutions 's(x; y)u0 and 'u(x; y)u0 satisfy's(x; y)u0 2 R(P (x)) for all x � y with x; y 2 I'u(x; y)u0 2 N(P (x)) for all x � y with x; y 2 I:The (x-independent) dimension of N(P (x)) is referred to as the Morse index i(��) of the exponentialdi
hotomy on I. If (2.9) has exponential di
hotomies on R+ and on R�, the asso
iated Morse indi
esare denoted by i+(��) and i�(��), respe
tively.The existen
e of exponential di
hotomies of (2.9) is related to hyperboli
ity of the asymptoti
 matri
esA�(�); re
all that A(x;�) 
onverges to A�(�) as x ! �1. If A�(�) is hyperboli
, then we denote byEs;u� (�) the asso
iated stable and unstable eigenspa
es. Furthermore, we denote the spe
tral proje
tionsof A�(�) asso
iated with the stable and unstable eigenvalues by P s�(�) and P u�(�), respe
tively.Statement 1 (Coppel [16℄) Fix �� 2 C . Equation (2.9) has an exponential di
hotomy on R+ if, andonly if, the matrix A+(��) is hyperboli
. In this 
ase, the Morse index i+(��) is equal to the dimensiondimEu+(�) of the generalized unstable eigenspa
e of A+(��). The same statements are true on R� withA+(��) repla
ed by A�(��).Finally, (2.9) has an exponential di
hotomy on R if, and only if, it has exponential di
hotomies on R+and R� with proje
tions P�(x) so that R(P+(0)) � N(P�(0)) = CN ; this requires in parti
ular that theMorse indi
es i+(��) and i�(��) are equal.In fa
t, we 
an say more about the asymptoti
 behavior of exponential di
hotomies and their dependen
eon �. We denote by '(x; y;�) the evolution operator to (2.9) with initial time y. Re
all that we orderedthe eigenvalues ��j (�) of A�(�); see (2.1). Let UÆ(��) be the ball in C with 
enter �� and radius Æ.Theorem 1 ([16, 35, 33℄) Fix �� 2 C and assume that A+(��) is hyperboli
. There are then numbers�s+, �u+ and Æ > 0 so that, with i+ = i+(��),Re �+i+(�) > �u+ > 0 > ��s+ > Re �+i++1(�):for all � 2 UÆ(��). Furthermore, there is a K � 1 so that, for every � 2 UÆ(��), there are evolutionoperators 's+(x; y;�) and 'u+(x; y;�), de�ned for x; y � 0 and analyti
 in �, su
h that, for x; y 2 R+,'(x; y;�) = 's+(x; y;�) + 'u+(x; y;�)k's+(x; y;�)k � Ke��s+jx�yj x � y;k'u+(x; y;�)k � Ke��u+jx�yj y � x;k'u+(x; x;�)� P u+(�)k � K(e��jxj + e��+jxj);where � appeared in Hypothesis 1 and �+ = �s++�u+ is a lower bound for the gap, in the real part, betweenthe stable and unstable spe
tral sets of A+(�).The matri
es 's+(x; x;�) and 'u+(x; x;�) are 
omplementary proje
tions, and we de�ne the subspa
esEs+(x;�) = R('s+(x; x;�)) of dimension N � i+ and Eu+(x;�) = R('u+(x; x;�)) of dimension i+. For anysubspa
e Ê of CN with Es+(0;�)� Ê = CN , there is a 
onstant C su
h thatdist('(x; 0;�)Ê; Eu+(�)) � C(e��jxj + e��+jxj); x � 0;where Eu+(�) = R(P u+(�)). (We refer to Se
tion 4.1 for a de�nition of the distan
e between subspa
es).Finally, 's+(x; y;�) and 'u+(x; y;�) are unique up to the 
hoi
e of Eu+(0;�): any other analyti
 
hoi
eof a 
omplement of Es+(0;�) leads to evolution operators with the above properties. Furthermore, theseevolution operators are exponential di
hotomies in the sense of De�nition 2.1.9



The same statements are true on R� with A+(�) repla
ed by A�(�). Furthermore, if (2.9) has anexponential di
hotomy on R, then the operators de�ned above 
an be 
hosen to be analyti
 in � for allx; y 2 R.Proof. The proofs 
an be found in [35, Se
tion 1.1℄ and [33, Se
tions 2.2 and 3.4℄.Remark 2.1 We emphasize that the above results 
an be extended to the 
ase where the asymptoti
matrix A+(�) has also spe
trum on the imaginary axis. The evolution operator 
an then be written asthe sum '(x; y;�) = 's+(x; y;�)+'
+(x; y;�)+'u+(x; y;�) of evolution operators that depend analyti
allyon �. The operators 's+ and 'u+ satisfy the same estimates as before, while we have in additionk'
+(x; y;�)k � Ke�
+ jx�yj; x; y � 0for �xed 0 < �
+ < minf�s+; �u+g. This statement 
an be proved by applying Theorem 1 twi
e to (2.9) withA repla
ed by A+ � for � > 0 and � < 0 
lose to zero, respe
tively. We omit the details and instead referto [38℄.The following theorem proved by Palmer relates Fredholm properties of the operator T (�) to propertiespertaining to the existen
e of di
hotomies of (2.9).Statement 2 (Palmer [29, 30℄) Fix � 2 C . If (2.9) has exponential di
hotomies on R+ and R�, thenT (�) is Fredholm with index i�(�) � i+(�). Conversely, if T (�) is Fredholm, then (2.9) has exponentialdi
hotomies on R+ and R� with asso
iated Morse indi
es i+(�) and i�(�), respe
tively, and the di�eren
ei�(�) � i+(�) is the Fredholm index of T (�). Finally, T (�) is invertible if, and only if, (2.9) has anexponential di
hotomy on R. If T is invertible, we denote by i = i+ = i� the spatial Morse index of Tthat is given by the dimension dimEu(0;�) of the unstable subspa
e Eu(0;�) of the asso
iated di
hotomy.As a 
onsequen
e of Statement 2 and the above dis
ussion, T �(�) is Fredholm if, and only if, the matri
esA�(�) + �� are both hyperboli
. The Fredholm index is then given by the di�eren
e of the dimensionsof the generalized unstable eigenspa
es of A�(�) + ��.3 Spe
tra on the unbounded real line3.1 Point and essential spe
trumWe 
onsider the family of operators T with parameter �. The spe
trum of the operator T (�) for �xed �is of no interest to us; instead, we 
onsider the so-
alled B-spe
trum, see [23, Ch. IV℄, of ddx � Â(x).De�nition 3.2 (Spe
trum) We say that � is in the spe
trum � of T if T (�) is not invertible. We saythat � 2 � is in the point spe
trum �pt of T , or alternatively that � 2 � is an eigenvalue of T , if T (�)is a Fredholm operator with index zero. The 
omplement � n�pt =: �ess is 
alled the essential spe
trum.Example 1 (
ontinued) We de
ompose A(x;�) = Â + �B as in (2.8). The spe
trum of T then
oin
ides with the spe
trum of the asso
iated ellipti
 di�erential operator L = d2dx2 + 
 ddx .In parti
ular, � =2 �ess if, and only if, (2.9) has exponential di
hotomies on R+ and on R� with equalMorse index. The essential spe
trum is determined by the asymptoti
 matri
es A�(�): T (�) is Fredholm10



if, and only if, the spe
tra of A+(�) and A�(�) are disjoint from the imaginary axis; the Morse indi
esi�(�) are given by the dimensions of the unstable eigenspa
es of A�(�).For any � in the point spe
trum, we de�ne the multipli
ity of � as follows. Re
all that A(x;�) is of theform A(x;�) = Â(x) + �B(x). Suppose that � is in the point spe
trum of T , whereT (�) = ddx � Â(x)� �B(x);so that N(T (�)) = spanfu1(x)g. We say that � has multipli
ity ` if there are fun
tions uj(x) forj = 2; : : : ; ` so that ddxuj = (Â(x) + �B(x))uj + B(x)uj�1for j = 2; : : : ; ` but no solution to ddxu = (Â(x) + �B(x))u + B(x)u`:Here, we assumed that the fun
tions uj belong to the same fun
tion spa
e that may in
lude boundary
onditions. Finally, we say that an arbitrary eigenvalue � of T has multipli
ity ` if the sum of themultipli
ities of a maximal set of linearly independent elements in N(T (�)) is equal to `.Next, we dis
uss stability in exponentially weighted spa
es. Choose � to the right of the essentialspe
trum. As before, we label eigenvalues of A�(�) a

ording to their real part and repeated with theirmultipli
ity. For any � to the right of the essential spe
trum, we then haveRe ��i1(�) > 0 > Re ��i1+1(�)due to Hypothesis 1(ii). These inequalities are satis�ed upon varying � until � tou
hes the boundary of theessential spe
trum where at least one of these eigenvalues 
rosses the imaginary axis. Using exponentialweights � = (��; �+) has the e�e
t of repla
ing the matri
es A�(�) by A�(�) + ��. Thus, � is to theright of the essential spe
trum of T � provided the eigenvalues of A�(�) satisfyRe ��i1(�) > ��� > Re ��i1+1(�):We give several di�erent notions of stability, and begin with spe
tral stability.De�nition 3.3 (Spe
tral stability) We say that T is stable if � is 
ontained in the open left half-plane. We say that T is unstable if part of its spe
trum � lies in the 
losed right half-plane.The next de�nition measures stability up to exponential weights. We restri
t the allowed set of exponentialweights to make them 
ompatible with the asymptoti
 behavior of spatial eigenvalues for large � > 0 asexpressed in Hypothesis 1(ii).De�nition 3.4 (Transient and remnant instability) Suppose that �ess is not 
ontained in the openleft half-plane. We then say that T is transiently unstable if there are exponential weights �(�) su
h thatT �(�)(�) is invertible with spatial Morse index i1 for every � in the 
losed right half-plane; we say thatT is remnantly unstable if it is not transiently unstable.We refer to Statement 2 in Se
tion 2.4 for the de�nition of the spatial Morse index.We emphasize that the weight � that we use to invert T �(�) may depend upon �; in other words, we donot require that the spe
trum of T � lies in the open left half-plane for some 
hoi
e of �.Note that, despite its name, we really 
onsider a transient instability as some kind of stability: if a waveis transiently unstable, it is stable in an exponentially weighted norm. In su
h a norm, unstable modesthat travel suÆ
iently fast in one preferred dire
tion are 
onsidered to be stable.11



In Se
tion 3.3, we shall 
ompare transient instabilities with 
onve
tive instabilities. Conve
tive insta-bilities are related to the absen
e, in the right half-plane, of temporal eigenvalues � that 
orrespondto 
ertain spatial double roots � of the dispersion relation d�(�; �) = 0; this latter 
ondition typi
allyimplies pointwise stability.Example 1 (
ontinued) Without exponential weights, we haveA+ = A� =  0 1� �
 ! ;and the asso
iated eigenvalues � satisfy �2 + 
� � � = 0, i.e. �1;2 = � 
2 �q 
24 + �. Therefore, � 2 iRif, and only if, � = �k2 + i
k for some k 2 R; by the arguments above, this gives the essential spe
trum�ess = f�k2+i
k; k 2 Rgwith \eigenfun
tions" eikx(1; ik)T . Using weights indu
ed by �+ = �� = �, theessential spe
trum is shifted to � = �k2+ �(�� 
)+ ik(
� 2�) with \eigenfun
tions" e(ik��)x(1; ik� �)T .This 
urve is shifted furthest to the left if �2��
 is minimal. Thus, � = 
=2 gives the optimal weight, andwe have Re� � �
2=4. This 
orresponds to the point where the 
hara
teristi
 polynomial �2+
��� hasa double root in the 
omplex plane. Note that the 
onve
tion term 
ux with 
 positive has the e�e
t thatlo
alized initial 
onditions travel to the left. Exponential weights with � positive are 
ompatible withsu
h temporal behavior as these weights penalize solutions that travel to the right and favor solutionsthat travel to the left.Finally, we remark that the point spe
trum is often de�ned as the set of all isolated eigenvalues with�nite multipli
ity, i.e., as the set ~�pt of those � for whi
h T (�) is Fredholm with index zero, the nullspa
e of T (�) is non-trivial, and T (~�) is invertible for all ~� in a small neighborhood of �.The sets �pt and ~�pt di�er in the following way. The set of � for whi
h T (�) is Fredholm with index zerois open. Take a 
onne
ted 
omponent C of this set, then the following alternative holds. Either T (�) isinvertible for all but a dis
rete set of elements in C, or else T (�) has a non-trivial null spa
e for all � 2 C.We assume that the latter 
ase does not o

ur.Hypothesis 3 (Isolated Eigenvalues) Eigenvalues in C n�ess are isolated with �nite multipli
ity.In the 
onne
ted 
omponent of C n�ess that 
ontains large positive real numbers, eigenvalues are typi
allyisolated; see, for instan
e, [1℄ for the relevant argument.3.2 Absolute spe
trumOn bounded domains with separated boundary 
onditions, it is not the essential spe
trum but what we
all the absolute spe
trum that is important. We remark that the absolute spe
trum is not a \spe
trum"in that it is not de�ned as the set of 
omplex numbers for whi
h a 
ertain operator is not invertible;nevertheless, the absolute spe
trum gives information about the spe
tra of 
ertain operators.De�nition 3.5 (Absolute spe
trum) The subset �+abs of C 
onsists exa
tly of those � for whi
hRe �+i1(�) = Re �+i1+1(�). Analogously, � is in ��abs if, and only if, Re ��i1(�) = Re ��i1+1(�). Finally,we say that � is in the absolute spe
trum �abs of T if � is in �+abs or in ��abs (or in both).In other words, if � =2 �abs, then there are numbers �� su
h that Re ��i1(�) > ��� > Re ��i1+1(�).In parti
ular, if we ignore point spe
trum, then T is transiently unstable if, and only if, its absolutespe
trum is 
ontained in the open left half-plane. 12



In parti
ular, for 
onstant-
oeÆ
ient matri
es A(x;�) = A1(�), we have that T is transiently unstableif, and only if, its absolute but not its essential spe
trum is 
ontained in the open left half-plane.Example 1 (
ontinued) Re
all thatA+ = A� =  0 1� �
 ! :with spatial eigenvalues �1;2 = � 
2�q 
24 + �. Thus, we have �abs = (�1;� 
24 ℄ sin
e then Re �1 = Re �2.In parti
ular, we have �ess 6= �abs ex
ept when 
 = 0. The absolute eigenmodes for the absolute spe
trumare e(�
=2+ik)x(1;�
=2+ik)T where k 2 R. Growing exponentially as x!�1, they re
e
t the transportto the left that is indu
ed by the linear drift term 
ux.Typi
ally, we expe
t that �abs 6= �ess. One ex
eption are reversible systems that admit a symmetryx 7! �x. In this 
ase, whenever a spatial eigenvalue 
rosses from right to left, then, by symmetry,another spatial eigenvalue 
rosses simultaneously from left to right. Thus, for reversible systems, weexpe
t that �abs = �ess. An example is the di�usion operator uxx without 
onve
tion; see Example 1above with 
 = 0.3.3 Conve
tive instability and pointwise de
ayConve
tive instability is de�ned as follows. As before, we label the eigenvalues of A�(�) a

ording totheir real part so thatRe ��1 (�) � : : : � Re ��i1(�) � Re ��i1+1(�) � : : : � Re ��N (�):We denote by �db the largest real number su
h that there exists a �� 2 C with Re�� = �db so that�+i1(��) = �+i1+1(��) or ��i1(��) = ��i1+1(��). Note that �� always 
orresponds to a spatial double root� of one of the dispersion relations d�(�; �) = 0 (re
all that repla
ing � = i! and � = �ik with spatio-temporal behavior ei(!t�kx) gives the standard form of the linear dispersion relation at the asymptoti
states, with group velo
ity d!dk = �d�d� ). The above 
riterion on the double root, namely that is has toinvolve the spatial eigenvalues with index i1 and i1 + 1, is often 
alled the pin
hing 
ondition; see [9℄.De�nition 3.6 (Conve
tive and absolute instability) Suppose that �ess is not 
ontained in theopen left half-plane. We then say that T is 
onve
tively unstable if �db < 0, while we say that T isabsolutely unstable if �db � 0.We shall see below that 
onve
tive instability sometimes implies pointwise stability: perturbations growin fun
tion spa
e but de
ay pointwise for ea
h �xed x. In other words, they are 
onve
ted away. Thedi�erent spe
tra that we used as well as their 
hara
terization in terms of the asymptoti
 matri
es areillustrated in Figure 2.The next example demonstrates that, even for 
onstant matri
es A(�), the operator may be remnantlyunstable but not absolutely unstable: this means that, even though there are no double spatial eigenvaluesfor � in the 
losed right half-plane, we 
annot move the temporal spe
trum into the left half-plane byusing exponential weights.Example 2 Consider the operator LL�U1U2� = � �xU1�(�2x + 1)2U2 � �xU2� (3.1)13



�ess��ess�abs
Figure 2: A s
hemati
 pi
ture of the various spe
tra that we de�ned and their relationship to the spatial spe
traof the matrix A+(�) = A�(�) that we plotted as inlets. The essential spe
trum of T � is denoted by ��ess; thedotted line in the spatial spe
tra 
onsists of all spatial 
omplex numbers with real part ��. The two 
ir
les inthe absolute spe
trum mark the temporal eigenvalues that 
orrespond to spatial double roots.as well as the asso
iated eigenvalue problem �xU1 = �U1�(�2x + 1)2U2 � �xU2 = �U2:Eigenvalues � of the spatial dynami
s solve the 
hara
teristi
 equation(� � �)((�2 + 1)2 + � + �) = 0:Double roots o

ur if � is a double root of one of the fa
tors or if the roots of the two fa
tors 
oin
ide.It is not hard to verify that all double roots that arise as 
ollisions of unstable eigenvalues �1 and stableeigenvalues �2 o

ur at values of � in the open left half-plane; see Figure 3. On the other hand, theessential spe
trum 
annot be pushed into the open left half-plane by means of exponential weights sin
ethe di�erent signs of the transport terms in the two 
omponents of L would always lead to an instabilityin one of the two 
omponents. Therefore, adding �U1 to the �rst 
omponent of L and �U2 to these
ond produ
es an instability whi
h, for � > 0 suÆ
iently small, does not disappear when introdu
ingexponential weights even though all relevant spatial double roots o

ur for � in the open left half-plane.As we shall see below, this instability is also present on any large bounded interval provided we 
ouple thetwo 
omponents appropriately through the boundary 
onditions; in fa
t, generi
 
hoi
es of the boundary
onditions will produ
e su
h an instability.Example 3 The same phenomenon 
an be observed in a Turing-Hopf instability of a rea
tion-di�usionsystem provided a small drift term is added to destroy the re
e
tion symmetry. In a Turing-Hopfinstability, the �rst unstable modes are travelling waves of the form sin(!t � kx) and sin(!t + kx) withnon-zero k and !. One of these modes travels to the left, the other one to the right. The superposition ofthese waves is a standing wave sin(!t) 
os(kx) that 
orresponds to a double root in the dispersion relation;in other words, the most unstable eigenmodes have zero group velo
ity. Adding a linear drift term 
uxto the equation transforms these eigenmodes into sin(!t � (k � 
)x) and sin(!t+ (k+ 
)x), respe
tively,whi
h have non-zero group velo
ity. The spatial eigenvalues �i(k � 
) and �i(k + 
) are non-resonant,14



�ess �essFigure 3: The thi
k 
urves 
orrespond to the essential spe
trum of the operator (3.1) while the inlets representthe spatial spe
tra in the di�erent regions. The two spe
tral 
urves interse
t at � = i. At this point, the spatialeigenvalues on the imaginary axis are �1 = i and �2 = �i whi
h are not equal. Hen
e, there are no double spatialeigenvalues � for � on (or to the right of) the imaginary axis, even though � = i is in the absolute spe
trum.and the system is therefore 
onve
tively unstable. On the other hand, the presen
e of waves that travelto the left and to the right shows that the instability 
annot be suppressed in exponentially weightedspa
es; hen
e, the operator is not transiently unstable.We 
on
lude this 
hapter with a brief digression on pointwise stability; we refer to [9℄ for more details andreferen
es regarding this topi
. Suppose that T (�) is invertible so that (2.9) has an exponential di
hotomyon Rwith evolution operators 'u;s(x; y;�). We 
an then 
onstru
t the Green's fun
tion G(x; y;�) of theoperator T (�) in the following fashion. The solution of T (�)u = h is given expli
itly byu(x) = ZRG(x; y;�)h(y) dywhere G(x; y;�) = ( �'u(x; y;�) for x < y's(x; y;�) for x > y:Using the Green's fun
tion, the solution of the linear initial-value problem of�xu� A(x; �t)u = 0 (3.2)
an be 
onstru
ted via Lapla
e transform in t. Re
all that A(x;�) is given byA(x;�) = Â(x) + �B(x);and de�ne u(x; t) = � 12�i Z� e�t ZRG(x; y;�)B(y)u0(y) dy d�where the 
ontour � is to the right of �; the pre
ise shape of � depends on the type of the problem. Forparaboli
 problems, � 
an be 
hosen to in
lude a se
tor of the left �-half-plane; for hyperboli
 problems,� is a verti
al line, and the integral is understood to be the prin
ipal value. Under reasonable 
onvergen
eassumptions, and under 
ertain 
ompatibility 
onditions on u0(x), the fun
tion u(x; t) then satis�es thePDE (3.2) with initial data u(x; 0) = u0(x).If the 
ontour � 
an be deformed 
ontinuously into a 
ontour that is 
ontained in the left half-planewithout 
hanging the value of the integral, the zero-solution is pointwise stable. This follows, for instan
e,from the Riemann-Lebesgue Lemma:ju(x; t)j � 12� ����ZRZRei!tG(x; y; i!)B(y)u0(y) d! dy���� �! 015



as t!1.To deform the 
ontour, we need analyti
ity of G in � for � in the right 
omplex half-plane and suitablede
ay estimates for large values of �. Typi
ally, stability, or at least 
onve
tive instability of the essentialspe
trum, is ne
essary for analyti
ity of G in �, sin
e multiple eigenvalues typi
ally 
reate bran
h pointsof G. SuÆ
ient 
onditions are given by 
onve
tive instability together with the absen
e of embeddedpoint spe
trum. However, an additional 
ondition, known as the Gap Lemma, is needed in order to beable to 
ontinue the Green's fun
tion into regions where hyperboli
ity (and exponential di
hotomies) isla
king. Roughly speaking, the Gap Lemma states that analyti
 
ontinuation is possible if the exponential
onvergen
e of the 
oeÆ
ients of A(x;�) is faster than the la
k of hyperboli
ity that is 
reated by theunstable and stable part of the overlapping spe
trum of A�(�); see [22, 25℄. Ne
essary and suÆ
ient
onditions do not seem to be known.4 Persisten
e of isolated eigenvalues and resonan
e poles with�nite multipli
ityIn this se
tion, we begin our investigation of the spe
trum of TL on the bounded interval (�L;L); see(2.6) and (2.7). The goal is to 
hara
terize the spe
tra of TL for large values of L. Before we 
ontinue,we point out that Fredholm properties no longer 
lassify the spe
trum.Lemma 4.1 The operators TL(�) on the bounded interval (�L;L) with periodi
 or separated boundary
onditions are Fredholm with index zero for all �.Proof. This 
an be readily seen by 
onsidering TL(�) as a 
ompa
t perturbation of ddx with periodi
 orseparated boundary 
onditions.Hen
e, it suÆ
es to lo
ate eigenvalues of TL. We begin by studying the persisten
e of eigenvalues andresonan
e poles under domain trun
ation. In addition, we show that separated boundary 
onditions 
ansometimes generate additional eigenvalues on (�L;L).Our strategy is to use various versions of the Evans fun
tion. Ea
h Evans fun
tion is designed to tra
kisolated eigenvalues with �nite multipli
ity of one of the operators that we are interested in. We shallthen show that the Evans fun
tions de�ned for bounded intervals are small perturbations of the Evansfun
tion that is asso
iated with the entire real line. Sin
e all these fun
tions are analyti
, we 
an then
on
lude that eigenvalues persist with their multipli
ity.Throughout the remainder of this paper, we denote by UÆ(��) the ball in C with 
enter �� and radius Æ.4.1 Evans fun
tionsLet E�(�) be two subspa
es of CN that depend analyti
ally on � su
h that n� + n+ = N wheren� := dimE�(�) is independent of �. Choose ve
tors v�1 (�); : : : ; v�n�(�) su
h thatE�(�) = spanfv�1 (�); : : : ; v�n�(�)gand v�j (�) is analyti
 in � for all j; this is possible due to [26, Ch. II.4.2℄. We then de�neE�(�) ^E+(�) := det[v�1 (�); : : : ; v�n�(�); v+1 (�); : : : ; v+n+(�)℄ 2 C :Note that this fun
tion is analyti
 in �. In addition, its zeros and the order of its zeros do not dependon the 
hoi
e of the bases; in fa
t, any two su
h fun
tions di�er by a produ
t with a non-zero analyti

omplex-valued fun
tion. In this sense, the fun
tion depends only on the two subspa
es.16



Remark 4.2 We shall often use the following argument: if E1(�) and E2(�) are two subspa
es of CN thatdepend analyti
ally on � 2 U2Æ(��) so that dimE1(�)+dimE2(�) = N , then either dim(E1(�)\E2(�)) >0 for all � 2 U2Æ(��) or else E1(�) � E2(�) = CN for all � 2 UÆ(��) ex
ept for at most �nitely many� 2 UÆ(��). This statement follows immediately from analyti
ity of the determinant E1(�) ^ E2(�) in� 2 U2Æ(��).The following remark, whi
h will be used repeatedly below, shows that the dependen
e of D on thesubspa
es E� is 
ontinuous in an appropriate sense: we say that two k-dimensional subspa
es E and Êof CN are �-
lose provided je� êj � � for all unit ve
tors e 2 E and ê 2 Ê.Remark 4.3 Suppose that, for some �� 2 C ,D(�) := E�(�) ^E+(�) = (� � ��)` + O(j�� ��j`+1)for some ` � 0. Suppose that Ê�(�) and E�(�) are �-
lose to ea
h other, with � suÆ
iently small,uniformly for all � near ��. By Rou
h�e's theorem, we then have thatD̂(�) = Ê�(�) ^ Ê+(�)has ` zeros (
ounted with multipli
ity) near ��, and these zeros are �1=`-
lose to ��.Assume that D(�) is an analyti
 fun
tion. We denote by ord(��; D) the order of �� as a zero of D(�). Ifthe order is �nite, then it is equal to the winding number of D(�) about any suÆ
iently small 
ir
le in Cthat is 
entered at ��.4.2 Periodi
 boundary 
onditionsWe begin by investigating the behavior of eigenvalues under domain trun
ation for periodi
 boundary
onditions. We demonstrate that eigenvalues persist with their multipli
ity without any additional as-sumptions and that no additional eigenvalues are 
reated.Throughout this se
tion, we assume that A�(�) are equal to ea
h other, and denote A�(�) = A0(�).Our proofs are based upon the Evans fun
tion. Eigenvalues of T 
an be found by seeking boundedsolutions to u0 = A(x;�)u: (4.1)For � =2 �ess, the asymptoti
 matrixA0(�) is hyperboli
. Equation (4.1) then has exponential di
hotomieson R+ and R�, and we denote the asso
iated x-dependent stable and unstable subspa
es de�ned forx 2 R+ and x 2 R� by Es;u+ (x;�) and Es;u� (x;�), respe
tively; see Se
tion 2.4. Thus, for every � =2 �ess,we 
an de�ne the Evans fun
tion D1(�) = Eu�(0;�) ^Es+(0;�): (4.2)Note that the dimension of the subspa
es that appear in the wedge produ
ts in (4.2) add up to N dueto the assumption on �. It has been proved in [1, 20℄ that ord(��; D1) is equal to the multipli
ity of ��as an eigenvalue of T .Next, for every � =2 �ess, we de�neDper(�) = det['(0;�L;�)� '(0; L;�)℄; (4.3)where '(x; y;�) is the �-dependent linear evolution operator to (4.1) with initial time y. It has beenproved in [18℄ that �� is an eigenvalue of T perL with multipli
ity ` if, and only if, �� is a zero of Dper(�)of order `. 17



Theorem 2 (Periodi
 boundary 
onditions) Assume that �� =2 �ess and that ord(��; D1) = ` forsome ` � 0. For every small Æ > 0, there is then an L� > 0 su
h that T perL has pre
isely ` eigenvalues(
ounted with multipli
ity) in the Æ-neighborhood UÆ(��) of �� in C for every L � L�. For ` > 0, theseeigenvalues are e�2�L=`-
lose to �� for all L � L�. Here, � = minf�u; �sg is the distan
e of the spe
trumof A0(��) from the imaginary axis.The statement regarding the persisten
e of eigenvalues with their multipli
ity has been proved �rst in [19℄using a topologi
al 
onstru
tion that involved Chern numbers. For the sake of 
ompleteness, we in
lude ashorter proof that illustrates in addition that the eigenvalues on the unbounded and the bounded intervalare exponentially 
lose; see also [8℄.Proof. The strategy is to show that D1(�) and Dper(�) are e�2�L-
lose to ea
h other for all � 
lose to��. Re
all that Dper(�) = det['(0;�L;�)� '(0; L;�)℄:Sin
e �� =2 �ess, the matri
es A0(�) are hyperboli
 for � 
lose to ��, and we denote their stable andunstable eigenspa
es by Es0(�) and Eu0 (�), respe
tively. Let i0 = dimEu0 (��). Re
all that Eu�(x;�) andEs+(x;�) 
onsist of pre
isely those solutions tou0 = A(x;�)uthat 
onverge to zero as x! �1 and x ! 1, respe
tively. The Evans fun
tion D1(�) measures non-trivial interse
tions of these subspa
es evaluated at x = 0; see (4.2) and Se
tion 4.1. To 
apture theseinterse
tions, if they exist, we 
hoose analyti
 bases fv�i (�)gi=1;:::;i0 and fv+i (�)gi=i0+1;:::;N of Eu�(0;�)and Es+(0;�), respe
tively.We shall use that, due to Theorem 1, the spa
es Es;u+ (L;�) and Es;u� (�L;�) are e��̂L-
lose to Es;u0 (�)where �̂ = minf�; �s + �ug.For every i with 1 � i � i0, there are then unique ve
tors w+i (�) 2 Eu+(L;�) and w�i (�) 2 Es�(�L;�)su
h that '(�L; 0;�)v�i (�) = w+i (�)� w�i (�);sin
e Eu+(L;�) and Es�(�L;�) are e��̂L-
lose to Eu0 (�) and Es0(�), respe
tively, (see above), and sin
ethe dire
t sum of the latter two spa
es is CN . Sin
e Eu�(�L;�) is also e��̂L-
lose to Eu0 (�), see againabove, we have jw+i (�)j � j'(�L; 0;�)v�i (�)j; jw�i (�)j � e��̂Lj'(�L; 0;�)v�i (�)j:We 
on
lude that w+i (�) is of the order e��uL, while w�i (�) is of the order e�(�̂+�u)L. Finally, for1 � i � i0, we de�ne ui(�) := w+i (�) = '(�L; 0;�)v�i (�) +w�i (�):Analogously, for indi
es i with i0 + 1 � i � N , there are unique ve
tors w+i (�) 2 Eu+(L;�) and w�i (�) 2Es�(�L;�) su
h that ui(�) := �w�i (�) = �'(L; 0;�)v+i (�)� w+i (�):For i0 + 1 � i � N , the ve
tors w�i (�) are of the order e��sL, while w+i (�) is of the order e�(�̂+�s)L.Using the estimates above and the de�nition of v�i (�), it is not hard to verify that the ve
tors ui(�) with1 � i � N form a basis of CN . We 
on
lude that('(0;�L;�)� '(0; L;�))ui(�) == ( v�i (�) + '(0;�L;�)w�i (�) � '(0; L;�)w+i (�) 1 � i � i0v+i (�) + '(0; L;�)w+i (�)� '(0;�L;�)w�i (�) i0 + 1 � i � N18



where the terms involving w�i (�) are of the order e�2�L with � = minf�u; �sg. On the other hand, wehave D1(�) = det[v�1 (�); : : : ; v�i0(�); v+i0+1(�); : : : ; v+N (�)℄:Invoking Remark 4.3 then proves the statement.Upon using the results in [24℄, it follows from [36℄ that the rate of 
onvergen
e in the above theorem isoptimal.4.3 Separated boundary 
onditionsIn this se
tion, we investigate the behavior of eigenvalues under domain trun
ation for separated boundary
onditions.4.3.1 The set-upThroughout this se
tion, we �x an element �� that does not belong to the absolute spe
trum �abs. Sin
e�� is not in the absolute spe
trum, we �nd weights � = (��; �+) su
h that the eigenvalues ��j (�) of A�(�)satisfy Re ��i1(�) > ��� > Re ��i1+1(�)for all � in a small Æ�-neighborhood UÆ� (��) of �� with UÆ� (��) \ �abs = ;. We �x these weights fromnow on and vary � in the UÆ� (��). In parti
ular, the operator T �(�) is Fredholm with index zero forany su
h �, and the asso
iated asymptoti
 Morse indi
es are both equal to i1. We then 
onsider theequation dvdx = (A(x;�) + �(x))v; (4.4)where �(x) = �+ for x > 0 and �(x) = �� for x < 0; see (2.5).Notation. Any quantity that refers to the weighted equation (4.4) has a supers
ript~.Thus, the evolution operator of (4.4) is denoted by ~'(x; y;�). The asymptoti
 matri
es A�(�) + �� arehyperboli
, and we denote by ~Es;u� (�) their stable and unstable subspa
es. Also, by hyperboli
ity of theasymptoti
 matri
es A�(�) + ��, (4.4) has exponential di
hotomies on R� with x-dependent stable andunstable subspa
es ~Es;u� (x;�), and we 
an 
onstru
t an analyti
 Evans fun
tion for T � by~D1(�) = ~Eu�(0;�) ^ ~Es+(0;�)for � 2 UÆ� (��). We also de�neDsep(�) = ~'(0;�L;�)Q� ^ ~'(0; L;�)Q+~D�(�) = Q� ^ ~Es�(�) (4.5)~D+(�) = Q+ ^ ~Eu+(�):Note that the dimension of the subspa
es that appear in the wedge produ
ts in (4.5) add up to N dueto the assumption on �. This is the set-up that we use below.We point out that the Evans fun
tion Dsep does not depend upon the 
hoi
e of the weight. Indeed,solutions u(x) to the original equation (4.1) and v(x) to (4.4) only di�er by multipli
ation by the s
alare�(x)x. Thus, the dire
tion of solutions is not 
hanged, and, in parti
ular, the x-evolution of subspa
es isindependent of the weight. 19



We brie
y 
omment on the dependen
e of the other Evans fun
tions on the 
hoi
e of our weight. Throughthe separated boundary 
onditions, a 
anoni
al dimension, namely i1, is sele
ted via the number ofboundary 
onditions at the endpoints of the interval; see Hypothesis 2. The relevant information thatwe require is a spe
tral de
omposition of the spatial spe
trum �� of the original asymptoti
 matri
esA�(�) into two spe
tral sets �s;u� whi
h is indu
ed by a gap in the real part (that is, the spe
tral sets�s;u� are su
h that Re �s� < Re �u� for any two elements �s� 2 �s� and �u� 2 �u�); most importantly, theasso
iated generalized \stable" and \unstable" eigenspa
es have dimension i1 and N � i1, respe
tively.One way of obtaining these eigenspa
es is by introdu
ing a weight so that the spe
tral de
omposition isgiven by eigenvalues with negative and positive real part. Afterwards, this de
omposition is extendeddynami
ally to x-dependent subspa
es of (4.4), and the resulting subspa
es are then used to 
onstru
t anEvans fun
tion. Again, weights allow us to 
onstru
t these x-dependent subspa
es by using exponentialdi
hotomies. None of these 
onstru
tions, however, depends really upon the weights: what we requireis that we 
an distinguish solutions by their growth or de
ay rate (
orresponding to the spe
tral gap)and that the spa
es of initial data leading to these solutions have the 
orre
t dimension, namely the onesele
ted by the boundary 
onditions. As we already mentioned, the x-evolution of subspa
es does notdepend on the weight.4.3.2 The persisten
e and generation of eigenvalues and resonan
e polesWe dis
uss the persisten
e of eigenvalues under domain trun
ation as well as the potential generationof additional eigenvalues through the boundary 
onditions. Throughout this se
tion, we use the set-upintrodu
ed in Se
tion 4.3.1 above.Eigenvalues of T sepL 
an be found as zeros of the fun
tion Dsep(�).Lemma 4.2 ([21℄) Assume that �� =2 �abs, then �� is an eigenvalue of T sepL with multipli
ity ` if, andonly if, �� is a zero of Dsep(�) of order `.Proof. For the 
ase of eigenvalues of rea
tion-di�usion equations with separated boundary 
onditions,the proof 
an be found in [21, Prop. 4.1℄. The proof for the more general situation 
onsidered here is thesame, save for notation, and we omit it.For separated boundary 
onditions, eigenvalues and resonan
e poles persist with their multipli
ity pro-vided the boundary 
onditions satisfy appropriate transversality 
onditions. The situation where these
onditions are violated is dis
ussed below.Lemma 4.3 Assume that �� =2 �abs. Choose a weight � as in Se
tion 4.3.1, and suppose that ~D�(��) 6= 0and ord(��; ~D1) = ` for some ` � 0. For every small Æ > 0, there is then an L� > 0 su
h that T sepL haspre
isely ` eigenvalues (
ounted with multipli
ity) in UÆ(��) for every L � L�. For ` > 0, these eigenvaluesare e��L=`-
lose to �� for all L � L�, where � = minf��g, and �� = Re ��i1(��)�Re ��i1+1(��) are thespe
tral gaps of the matri
es A�(��).For rea
tion-di�usion systems, this lemma has been proved in [8℄ for �� to the right of the essentialspe
trum. Note that the rate of 
onvergen
e proved in [8℄ is smaller than the rate that we establishhere. The reason for the improved rate is that we 
an always balan
e the distan
e from the stable andunstable part of the spe
trum to the imaginary axis by adjusting the weights. In 
ontrast to the 
ase ofperiodi
 boundary 
onditions, this does not 
hange the boundary 
onditions. Again, our rate is optimal,see [36℄, ex
ept when the boundary 
onditions Q� and Q+ happen to 
oin
ide with the unstable andstable subspa
es ~Eu�(��) and ~Es+(��), respe
tively. 20



Proof. The proof is similar to the one given above for periodi
 boundary 
onditions. We 
onsider theweighted equation (4.4) and use the notation introdu
ed in Se
tion 4.3.1. Re
all thatDsep(�) = ~'(0;�L;�)Q� ^ ~'(0; L;�)Q+:Choose an analyti
 basis fv+j (�)gj=1;:::;N�i1 of ~Es+(0;�). Sin
e ~D+(�) 6= 0 for all � 
lose to �� byassumption, we have Q+ � ~Eu+(�) = CN :Sin
e ~Es+(L;�) and ~Eu+(L;�) 
onverge to ~Es+(�) and ~Eu+(�), respe
tively, exponentially fast as L ! 1,see Theorem 1, there are unique ve
tors w+j (�) 2 ~Eu+(L;�) su
h thatQ+ = spanf ~'(L; 0;�)v+j (�) + w+j (�); j = 1; : : : ; i1g:As in Theorem 2, we obtain that~'(0; L;�)Q+ = spanfv+j (�) + ~'(0; L;�)w+j (�); j = 1; : : : ; i1g:As a 
onsequen
e, ~'(0; L;�)Q+ and ~Es+(0;�) are e��+L-
lose to ea
h other. By the same argument, wehave that ~'(0;�L;�)Q� and ~Eu�(0;�) are e���L-
lose to ea
h other. Sin
e~D1(�) = ~Eu�(0;�) ^ ~Es+(0;�);the statements of the lemma follow from Remark 4.3 and Lemma 4.2.Remark 4.4 In the set-up of the above lemma, we have that an eigenfun
tion u(x) to the originalequation (4.1) on the interval (�L;L) typi
ally satis�esju(�L)j � e�Re ��i1 (�)L; ju(L)j � eRe �+i1+1(�)LIn parti
ular, the 
onve
tive properties of resonan
e poles manifest themselves via the growth of theasso
iated eigenmodes at x = �L depending on the dire
tion of transport. The remark is a 
onsequen
eof the proof of the previous lemma.Next, we investigate eigenvalues that are 
reated by separated boundary 
onditions near points whereeither ~D+ or ~D� vanishes.Lemma 4.4 Assume that �� =2 �abs. Choose a weight � as des
ribed in Se
tion 4.3.1. Suppose that~D�(��) 6= 0, ~D1(��) 6= 0 and ord(��; ~D+) = ` for some ` > 0. For every Æ > 0 suÆ
iently small, thereis then an L� > 0 su
h that T sepL has pre
isely ` eigenvalues (
ounted with multipli
ity) in UÆ(��) for everyL � L�. In addition, these eigenvalues are e��+L=`-
lose to �� for all L � L�. Here, �+ = minf�; �+gwhere � appears in Hypothesis 1, and �+ has been introdu
ed in Lemma 4.3.We have an analogous lemma in the 
ase that ~D+(��) 6= 0, ~D1(��) 6= 0 and ord(��; ~D�) = `.Proof. The general set-up is as in Se
tion 4.3.1. We writeDsep(�) = ~'(0;�L;�)Q� ^ ~'(0; L;�)Q+= det[ ~'(0; L;�)℄� �~'(L;�L;�)Q� ^Q+�;and note that is suÆ
es to determine the number of zeros of the fun
tion~'(L;�L;�)Q� ^Q+21



sin
e det[ ~'(0; L;�)℄ 6= 0 for all L and �. Sin
e Q� � ~Es�(��) = CN by assumption, it follows that~'(0;�L;�)Q� is e���L-
lose to ~Eu�(0;�) uniformly for � 
lose to ��; see the proof of Lemma 4.3. Sin
e~D1(��) 6= 0, we see that ~Eu�(0;�) � ~Es+(0;�) = CN . Hen
e, we 
an 
on
lude that ~'(L;�L;�)Q� ise��+L-
lose to ~Eu+(L;�), and therefore e�minf�;�+gL-
lose to ~Eu+(�) uniformly in �; see the argumentsin the proof of Lemma 4.3. Sin
e ~D+(�) = Q+ ^ ~Eu+(�), the statements of the lemma follow again fromRemark 4.3 and Lemma 4.2.The general 
ase where ~D� and ~D1 vanish for the same value of � is treated in the following theorem.Theorem 3 (Separated boundary 
onditions) Assume that �� =2 �abs. Choose a weight � as de-s
ribed in Se
tion 4.3.1. Suppose that ord(��; ~D�) = `� and ord(��; ~D1) = `1 for some `� and `1.For every small Æ > 0, there is then an L� > 0 su
h that T sepL has pre
isely `� + `+ + `1 eigenvalues(
ounted with multipli
ity) in a Æ-neighborhood of �� for every L � L�. If either `� = 0 or `1 = 0, thenerror estimates for the eigenvalues on (�L;L) are given in Lemmas 4.3 and 4.4, respe
tively.Proof. Re
all that, if ~D�(�) 6= 0, then Dsep(�) and ~D1(�) are e��L-
lose to ea
h other uniformly in Land �; see the proof of Lemma 4.3. Hen
e, there is a Æ� > 0 su
h that, for every 0 < Æ < Æ�, there arenumbers L� and �� > 0 with jDsep(�)j > �� for all L � L� and all � with j� � ��j = Æ. In parti
ular,the number of zeros of Dsep inside the Æ-neighborhood UÆ(��) is independent of L for L � L�. In thefollowing, we �x su
h a Æ and the asso
iated �� > 0.Next, 
hoose a subspa
e Q̂+ so 
lose to Q+ that j ~D+(�)� D̂+(�)j < ��2 for � with j�� ��j = Æ but su
hthat Q̂+ � ~Eu+(��) = CN . Here, D̂+(�) = ~Q+ ^ ~Eu+(�). Hen
e, the number of zeros of D̂+(�) insideUÆ(��) is also equal to `+.Similarly, 
hoose a subspa
e Q̂� with analogous properties; in addition, we require that Q̂� is 
hosensu
h that D̂�(�) 6= 0 whenever D̂+(�) = 0 for � 2 UÆ(��). Su
h a 
hoi
e is 
learly possible sin
e D̂+(�)has only �nitely many zeros in UÆ(��).As a 
onsequen
e of the above arguments, there is a number L� that depends on Æ and the above 
hoi
esof Q̂� su
h that Dsep(�) and D̂sep(�) are e��L-
lose to ea
h other for all � with j� � ��j = Æ and allL � ~L�; indeed, both fun
tions are e��L-
lose to ~D1(�). Thus, Dsep(�) and D̂sep(�) have the samenumber of zeros in UÆ(��) for all L suÆ
iently large. Due to Lemmas 4.3 and 4.4, D̂sep(�) has pre
isely`� + `+ + `1 zeros in UÆ(��) sin
e ~D1(�) has not 
hanged, and D̂�(�) and ~D1(�) have no 
ommonzeros by 
onstru
tion. This 
ompletes the proof.4.4 Resolvent estimates for periodi
 and separated boundary 
onditionsIn this se
tion, we establish estimates for the inverse of the operator TL(�) posed on the interval (�L;L).For periodi
 boundary 
onditions, it is a 
onsequen
e of the results presented in [8, 27℄ that the inverseof T perL (�) is bounded uniformly in L for � away from the point and essential spe
trum of T posedon R. Alternatively, the proofs given below for separated boundary 
onditions 
an be adapted in astraightforward fashion to the 
ase of periodi
 boundary 
onditions.We therefore 
on
entrate on the 
ase of separated boundary 
onditions. Our main result in this se
tion isthat, under 
ertain assumptions whi
h are stated below, the norm of the inverse of T sepL (�) grows expo-nentially in L for any �xed � for whi
h i+(�) or i�(�) di�ers from i1; re
all that i�(�) are the asymptoti
Morse indi
es of the matri
es A�(�). Roughly speaking, the inverse of T sepL (�) grows exponentially forevery � that is to the left of the boundary of the essential spe
trum while being 
lose to it: note that theboundary of the essential spe
trum is given as the union of algebrai
 
urves. For the operator uxx + ux,22



this fa
t has been proved in [34℄. Besides its importan
e for the stability and 
onvergen
e of numeri
alalgorithms for the 
omputation of spe
tra, the exponential growth of the resolvent in the region to theleft of the essential spe
trum has the following interesting 
onsequen
e: suppose that T sepL 
orrespondsto the eigenvalue problem of the linearization about a 
ertain nonlinear wave that is only transiently un-stable. Sin
e the resolvent grows as the interval length in
reases, the sensitivity of the wave with respe
tto small initial perturbations in
reases also. The large norm of the resolvent predi
ts a large 
onstant infront of the exponential de
ay fa
tor of the semigroup. Before the system pi
ks up the exponential de
aypredi
ted from spe
tral information, there will be a long intermediate regime where solutions �rst growin norm while travelling to one end of the domain, a phenomenon whi
h is most easily illustrated in thepure 
onve
tion problem ut = ux+u with boundary 
ondition u(L) = 0: lo
alized initial 
onditions growalong 
hara
teristi
s x = �t until they disappear through the boundary x = �L; in fa
t, the expli
itsolution is given by u(x; t) = et u0(x + t). With in
reasing sensitivity, stability depends then more andmore on the nonlinear terms. We refer also to [44℄ for a dis
ussion.The remaining part of this se
tion 
ontains the pre
ise statements of the relevant hypotheses and theresults. Most of it is rather te
hni
al and 
an be skipped by the reader; we do not use any of these resultsin the following se
tions.Throughout this se
tion, we assume that � =2 �abs. We begin by 
hoosing weights � = (��; �+) so thatRe ��i1(�) > ��� > Re ��i1+1(�); see Se
tion 4.3.1. It is then a 
onsequen
e of Theorem 3 that T sepL (�)is invertible for all L � L� if, and only if, ~D�(�) 6= 0 and ~D1(�) 6= 0. In this situation, we have toestimate the solution u(x) to dudx = A(x;�)u+ B(x)h(x); u(�L) 2 Q� (4.6)on the interval (�L;L) in terms of h(x). The reason why we restri
t to right-hand sides of the formB(x)h(x) is that we are primarily interested in resolvent estimates for the underlying PDE operator thatwe had 
ast as a �rst-order operator. All of our results, however, are also true, and in fa
t easier to prove,in the 
ase of general right-hand sides; see below.Next, we 
onsider the equation in the weighted spa
e. We shall then establish estimates of the solutionv(x) to dvdx = (A(x;�) + �(x))v +B(x)g(x); v(�L) 2 Q� (4.7)on the interval (�L;L) in terms of g(x), where �(x) = �+ for x > 0 and �(x) = �� for x < 0 has been
hosen above. The fun
tions u and v as well as h and g are then related viau(x) = e��(x)xv(x); g(x) = e�(x)xh(x): (4.8)Sin
e ~D1(�) 6= 0, the equation dvdx = (A(x;�) + �(x))v (4.9)has an exponential di
hotomy on Rwith evolution operators ~'s(x; y;�) and ~'u(x; y;�) so that the esti-mates in De�nition 2.1 are met for I = R. In parti
ular, we havej ~'s(L; 0;�)j � Ke�~�s+L; j ~'s(0;�L;�)j � Ke�~�s�L (4.10)and the analogous estimates for ~'u. The stable and unstable subspa
es of the asymptoti
 matri
esA�(�) + �� are denoted by ~Es;u� (�). Similarly, the spe
tral proje
tions of A�(�) + �� belonging to thestable and unstable spe
tral sets are denoted by ~P s;u� (�).The general solution to v0 = (A(x;�) + �(x))v +B(x)g(x)23



is given byv(x) = Z x�L ~'s(x; y;�)B(y)g(y) dy + Z xL ~'u(x; y;�)B(y)g(y) dy + ~'s(x;�L;�)as� + ~'u(x; L;�)au+ (4.11)where as� 2 ~Es�(�) and au+ 2 ~Eu+(�) are arbitrary.It remains to satisfy the boundary 
onditions v(�L) 2 Q�. Sin
e ~D�(�) 6= 0, we have~Eu+(�) � Q+ = Cn ; ~Es�(�) �Q� = Cn : (4.12)Hen
e, the boundary 
onditions are equivalent to the equationP ( ~Eu+(�); Q+)"Z L�L ~'s(L; y;�)B(y)g(y) dy + ~'s(L;�L;�)as� + ~'u(L;L;�)au+# = 0; (4.13)P ( ~Es�(�); Q�)"� Z L�L ~'u(�L; y;�)B(y)g(y) dy + ~'s(�L;�L;�)as� + ~'u(�L;L;�)au+# = 0;where P (X;Y ) is the proje
tion with range X and null spa
e Y . By Theorem 1, ~'u(L;L;�) and~'s(�L;�L;�) are e��̂L-
lose to the spe
tral proje
tions ~P u+(�) and ~P s�(�), respe
tively, where �̂ =minf�; ~�u� + ~�s�g. Exploiting (4.10), we getP ( ~Eu+(�); Q+)h~'s(L;�L;�)as� + ~'u(L;L;�)au+i =P ( ~Eu+(�); Q+)hO(e�(~�s�+~�s+)L)as� + ( ~P u+(�) + O(e��L))au+iP ( ~Es�(�); Q�)h ~'s(�L;�L;�)as� + ~'u(�L;L;�)au+i =P ( ~Es�(�); Q�)h( ~P s�(�) + O(e��L))as� + O(e�(~�u�+~�u+ )L)au+i:Using this equation, we see that (4.13) has a unique solution given by au+as� ! = (1 + O(e��L)) 1 O(e�(~�s�+~�s+)L)O(e�(~�u�+~�u+)L) 1 ! (4.14)�0BB� P ( ~Eu+(�); Q+) Z L�L ~'s(L; y;�)B(y)g(y) dy�P ( ~Es�(�); Q�) Z L�L ~'u(�L; y;�)B(y)g(y) dy 1CCAwhere � = minf�̂; ~�s� + ~�s+ + ~�u� + ~�u+g, and we have the estimatejas�j+ jau+j � Ckgkfor some 
onstant C that is independent of L for L � L�.It remains to relate the resolvent estimates for the v-equation (4.7) to resolvent estimates for the u-equation (4.6). If we 
an 
hoose �� = 0, then the above analysis demonstrates that the inverse of T sepL (�)is bounded uniformly in L. Indeed, note that the integral operators in (4.11) are uniformly bounded in Ldue to the exponential de
ay of the evolution operators ~'s;u. Uniform bounds of the other two summandsin (4.11) follow again from the bounds on as� and au+ above. We summarize this result in the followingproposition.Proposition 1 Assume that �� =2 �abs and that Re ��i1+1 < 0 < Re ��i1 . Furthermore, we assume thatD�(��) 6= 0 and D1(��) 6= 0. There are then positive 
onstants Æ, C and L� su
h that the inverse ofT sepL (�) is bounded by C uniformly in L � L� for all � 2 UÆ(��).24



If, on the other hand, we have to 
hoose non-zero values for one or both of the rates ��, then we expe
tthat the inverse of T sepL (�) a
tually in
reases exponentially as L in
reases. The reason is that eventhough the unweighted and weighted norms are equivalent on (�L;L), the equivalen
e 
onstants growexponentially in L.We have u(x) = e��(x)x�Z x�L ~'s(x; y;�)e�(y)yB(y)h(y) dy+ (4.15)Z xL ~'u(x; y;�)e�(y)yB(y)h(y) dy + ~'s(x;�L;�)as� + ~'u(x; L;�)au+�where (as�; au+) are given by au+as� ! = (1 + O(e��L)) 1 O(e�2~�sL)O(e�2~�uL) 1 ! (4.16)� P ( ~Eu+(�); Q+) R L�L ~'s(L; y;�)e�(y)yB(y)h(y) dy�P ( ~Es�(�); Q�) R L�L ~'u(�L; y;�)e�(y)yB(y)h(y) dy ! :Here, ~�s;u = minf~�s;u� g. First, we 
onsider the 
ase that the eigenvalues of A+(�) satisfy the 
onditionRe �+i1+1 < Re �+i1 < 0. Afterwards, we investigate the 
ase 0 < Re �+i1+1 < Re �+i1. The analogous
ases for A�(�) are handled in the same fashion; upon reversing the spatial variable x 7! �x, we end upwith one of the aforementioned 
ases for the eigenvalues of A+(�).Thus, assume that Re �+i1+1 < ��+ < Re �+i1 < 0 so that we have �+ > 0.Hypothesis 4 We assume that Re �+i1+1 < Re�+i1 < 0 and that Re �+i1 < Re �+i1�1. Furthermore, weassume that there is a ve
tor h+ 2 Cn su
h that(P ( ~Eu+(�); Q+) ~P s+(�) � ~P u+(�))B+h+has a non-zero 
omponent in the eigendire
tion of A+(�) asso
iated with the simple eigenvalue �+i1 wherewe express ve
tors with respe
t to a basis that 
onsists of (generalized) eigenve
tors of A+(�).The above hypothesis 
an be interpreted as requiring that a 
ertain transmission 
oeÆ
ient is non-zero.In the situation 
onsidered here, we have �+ > 0 so that the rest state at x = 1 sustains waves thattravel to the left. The above hypothesis guarantees that the boundary 
ondition at x = L emits su
hwaves: sin
e the waves grow as they travel to the left, we expe
t that the resolvent grows as L in
reases.Proposition 2 Assume that Hypothesis 4 is met. The inverse of T sepL (�) grows exponentially with rateequal or bigger than jRe �+i1j.The growth rate of the resolvent is not optimal; see Remark 4.5 below.Proof. We de�ne h(x) by h(x) = h+ for L � � � x � L and zero otherwise. Hen
e, the integrands ofthe integrals above are zero whenever x < L � �. Furthermore, we have�����Z LL�� ~'s(L; y;�)e�+(y�L)B(y)h(y) dy � ~P s+(�)B+h+������+ (4.17)�����Z LL�� ~'u(L � �; y;�)e�+ (y�L)B(y)h(y) dy � ~P u+(�)B+h+������ � C(h+)(�2 + e��̂L)25



uniformly in � and L, where �̂ = minf�; ~�u� + ~�s�g. Using these expressions in (4.16), we obtainau+ = e�+LhP ( ~Eu+(�); Q+) ~P s+(�)B+h+� +O(�2 + e�
L)i; (4.18)where 
 = minf�̂; ~�u�; ~�s�g. Evaluating (4.15) at x = 0, we getu(0) = �e�+L ~'u(0; L� �;�) Z LL�� ~'u(L � �; y;�)e�+ (y�L)B(y)h(y) dy + ~'s(0;�L;�)as� + ~'u(0; L;�)au+and therefore, upon substituting (4.18),u(0) = e�+L ~'u(0; L;�)h( ~P u+(�)�P ( ~Eu+(�); Q+) ~P s+(�))B+h+�+O(�2+e�
L)i+ ~'s(0;�L;�)as�: (4.19)Sin
e (4.9) has an exponential di
hotomy on R, the subspa
es R( ~'s(x; x;�)) and N( ~'s(x; x;�)) have anangle that is bounded away from zero uniformly in x, and we may restri
t to the �rst summand for alower bound. Next, observe that ~'u(0; L;�) satis�es (4.9). Therefore, e�+L ~'u(0; L;�) is the evolution ofthe original u-equation, i.e. of (4.9) with � = 0. Exploiting Hypothesis 4, and using the results in [15,Se
tion 3.8℄, it is then not hard to see thatju(0)j � CejRe �+i1 jLwhere C > 0 does not depend upon L. Thus, it follows that the inverse of T sepL (�) grows exponentiallywith rate equal or bigger than jRe�+i1 j.It remains to investigate the 
ase 0 < Re �+i1+1 < ��+ < Re �+i1 that leads to �+ < 0.Hypothesis 5 We assume that 0 < Re �+i1+1 < Re �+i1 and that Re �+i1+2 < Re �+i1+1. Furthermore,we assume that there is a ve
tor h+ 2 Cn su
h that ~P s+(�)B+h+ has a non-zero 
omponent in theeigendire
tion of A+(�) asso
iated with the simple eigenvalue �+i1+1 where we express ve
tors with respe
tto a basis that 
onsists of (generalized) eigenve
tors of A+(�).Here, we have �+ < 0 so that the rest state at x = 1 sustains waves that travel to the right whilegrowing. The above hypothesis guarantees that these waves still grow when the boundary 
onditions atx = L are imposed.Proposition 3 Assume that Hypothesis 5 is met. The inverse of T sepL (�) grows exponentially with rateequal or bigger than jRe �+i1+1j.Proof. De�ne h(x) by h(x) = h+ for L+ � � � x � L+ and zero otherwise for some large L+ that wespe
ify below. Thus, any integrands that 
ontain h(x) are non-zero only for x between L+ � � and L+.We have �����Z L+L+�� ~'s(L+; y;�)e�+(y�L+)B(y)h(y) dy � ~P s+(�)B+h+������ � C(h+)(�2 + e��̂L) (4.20)uniformly in � and L. From (4.16), we obtainjas�j � C(L+; �; h+): (4.21)Evaluating (4.15) at x = L, we getu(L) = e��+L ~'s(L;L+;�) Z L+L+�� ~'s(L+; y;�)e�+yB(y)h(y) dy + ~'s(L;�L;�)as� + ~'u(L;L;�)au+!26



and therefore, upon substituting (4.20) and (4.21),u(L) = e��+L�e�+L+ ~'s(L;L+;�)� ~P s+(�)B+h+ + O(�2 + e��̂L + e�~�s�L)� + ~'u(L;L;�)au+�; (4.22)where the O(: : :)-term depends upon the 
hoi
e of L+ and h+ but not on L. Again, it suÆ
es to 
onsiderthe norm of u(L) in the stable 
omponents; see the proof of Proposition 2. Exploiting Hypothesis 4, andusing the results in [15, Se
tion 3.8℄, we see thatju(L)j � CejRe �+i1+1jLupon 
hoosing �rst L+ large enough, and then L large 
ompared to L+. The 
onstant C is stri
tlypositive and does not depend upon L.Remark 4.5 In fa
t, if �+ and �� have the same sign, then the inverse of T sepL (�) typi
ally growsexponentially with a rate that is the sum of the rates established in the above propositions. If �+ and�� have opposite signs, then the resolvent typi
ally grows exponentially with the larger of the rates thatappear in the above propositions.5 The essential spe
trum under trun
ationIn this se
tion, whi
h 
ontains our main results, we investigate the fate of the essential spe
trum whenT is repla
ed by T perL or T sepL . Re
all that the spe
trum of TL on the bounded interval (�L;L) 
onsistsof eigenvalues; see Lemma 4.1. Throughout this se
tion, we assume that Hypotheses 1, 2 and 3 are met.5.1 Extrapolated essential spe
tral sets on bounded intervalsRather than attempting to des
ribe in detail how the essential spe
trum breaks up and trying to tra
kindividual eigenvalues, we fo
us on the asymptoti
 shape of the set that 
onsists of the a

umulationpoints of eigenvalues of TL as L!1.De�nition 5.7 (Extrapolated essential spe
tral set) We say that �� is not in the extrapolated es-sential spe
tral set �eext of the family fT sepL gL (or fT perL gL) if there exists a neighborhood U (��) � C of��, an integer ` and a positive number L� su
h that Dsep (or Dper) has at most ` zeros in U (��) forL � L�.Roughly speaking, the extrapolated essential spe
tral set 
onsists of those points where in�nitely manyeigenvalues of TL a

umulate as L !1. Note that the extrapolated essential spe
tral set of the familyTL as de�ned above is 
losed sin
e its 
omplement is open by de�nition.Example 1 (
ontinued) The essential spe
trum �ess of the operator Lu = uxx + 
ux on R is given bythe 
urve � = �k2+ 
ik for k 2 R. The spe
trum of the operator L on the interval (�L;L) with periodi
boundary 
onditions is given by � = ��2k2L2 + i
�kL ; k 2Z:Thus, as L ! 1, ea
h point in �ess is an a

umulation point, and we have �eext = �ess. For Diri
hletor Neumann boundary 
onditions, however, we have �eext = (�1;�
2=4℄, and therefore �eext 6= �ess.Instead, we observe that �eext = �abs. It is instru
tive to 
he
k that the eigenfun
tions of T sep withDiri
hlet or Neumann 
onditions 
onverge, as L!1, to the absolute eigenmodes of T that we 
omputedin Se
tion 3.2 . 27



As we shall see in the next se
tions, the behavior of the essential spe
trum in this example is rathertypi
al.5.2 Periodi
 boundary 
onditionsWe assume that A+(�) = A�(�) and denote these matri
es by A0(�). Furthermore, we impose periodi
boundary 
onditions.Proposition 4 Under the above hypothesis, and Hypotheses 1 and 3, the spe
trum of T perL satis�es�eext � �ess.Proof. It suÆ
es to show that, if � =2 �ess, then there is a neighborhood U � C of � and numbersL� > 0 and ` � 0 su
h that T perL has at most ` eigenvalues in U for L > L�. This, however, follows fromTheorem 2.The example in the previous se
tion suggests that the extrapolated spe
tral set �exte is in fa
t equal to�ess. We show that this is indeed the 
ase under the following assumption.Hypothesis 6 (Redu
ible essential spe
trum) The subset Sper, de�ned below, of the essential spe
-trum �ess is dense in �ess. Here, �� 2 Sper � �ess provided spe
(A0(��))\ iR= fi!(��)g with geometri
and algebrai
 multipli
ity equal to one and d!d� j�� 6= 0 where i!(�) is the eigenvalue of A0(�) that is 
loseto i!(��) for � 
lose to ��.It is important to note that the redu
ible essential spe
trum Sper 
onsists of regular 
urve segments.Theorem 4 If Hypotheses 1, 3 and 6 are met, then the spe
trum of T perL satis�es �eext = �ess.Proof. Sin
e �eext is 
losed, it suÆ
es to show that �� 2 Sper implies �� 2 �eext.Thus, we �x some �� 2 Sper, and denote by Ess0 (��), E
0(��) and Euu0 (��) the stable, 
enter and un-stable eigenspa
es of A0(��). Exploiting Hypothesis 6, there are x-dependent subspa
es E
s+ (x;��) andE
u� (x;��) that 
onsist of those initial values in CN that lead to solutions of (2.9),ddxu = A(x;�)u; (5.1)whi
h are bounded on [x;1) and (�1; x℄, respe
tively; see [15℄. All aforementioned spa
es 
an be
ontinued analyti
ally in � for � 
lose ��: in parti
ular, we have the generalized eigenspa
es Ess0 (�),E
0(�) and Euu0 (�) of A0(�), as well as the x-dependent spa
es E
s+ (x;�) and E
u� (x;�) that 
onsist ofall initial 
onditions whi
h lead to solutions to (5.1) that are of the order O(e�jxj) for x > 0 and x < 0,respe
tively, for some small �xed � > 0. For � 
lose to ��, we denote by i!(�) the unique eigenvalue ofA0(�) that is 
lose to i!(��).We begin by investigating the interse
tion Ess+ (0;�)\E
u� (0;�) for � 2 Sper 
lose to ��. We 
laim that thisinterse
tion is trivial ex
ept possibly for �nitely many elements � near ��. To prove this 
laim, we argueby 
ontradi
tion: if our 
laim is wrong, then Remark 4.2 implies that the interse
tion Ess+ (0;�)\E
u� (0;�)has non-zero dimension for all � in a small open neighborhood U� of ��. Next, re
all that the set Spernear �� is the 
urve that 
onsists of pre
isely those values of � for whi
h !(�) is real. In parti
ular, Sperdivides U� into two open sets B1 and B2, say, so that U� is the disjoint union of B1, B2 and U� \ Sper.Sin
e d!d� j�� 6= 0 by Hypothesis 6, we have that Re i!(�) > 0 for all � in either B1 or B2; suppose thatRe i!(�) > 0 for � 2 B1, say. Therefore, we 
on
lude that E
u� (0;�) 
onsists of all initial 
onditions that,28



for � 2 B1, lead to solutions to (5.1) that de
ay exponentially as x!�1 sin
e i!(�) is then an additionalunstable eigenvalue of A0(�). We are now in a position to rea
h the desired 
ontradi
tion: we assumedthat the interse
tion Ess+ (0;�) \ E
u� (0;�) has non-zero dimension for all � in an entire neighborhoodof ��. For � 2 B1, any solution of (5.1) asso
iated with an initial 
ondition in this interse
tion de
aysexponentially as jxj ! 1; thus, any su
h � is an eigenvalue in a region where T (�) is Fredholm withindex zero. This 
ontradi
ts Hypothesis 3.In summary, we 
on
lude that the interse
tion Ess+ (0;�) \ E
u� (0;�) and, by the same argument, theinterse
tion E
s+ (0;�) \ Euu� (0;�) are trivial for � 2 Sper 
lose to �� ex
ept possibly for �nitely manyelements �. After removing these ex
eptional elements from the set Sper, the resulting set is still densein �ess. We 
an therefore assume that the aforementioned interse
tions are trivial at ��, and thereforealso in a open neighborhood of �� in C .As a 
onsequen
e, the interse
tionE
s+ (0;�) \E
u� (0;�) = spanfu�(0;�)gis one-dimensional for every � near �� andu�(0;�) =2 Euu� (0;�) \Ess+ (0;�):It follows then from [35℄ or [25, Lemma 2.2℄ that there is a small Æ > 0, 
ertain 
onstants #�(�) 2 C , andve
tors a0(�) 2 E
0(�) with a0(�) 6= 0 so that the solution u�(x;�) to (5.1) 
an be expressed asu�(x;�) = a0(�)ei(!(�)x+#� (�)) +O(e�Æjxj) (5.2)for x 2 R. In parti
ular, we haveEss+ (x;�)�Euu� (x;�)� spanfu�(x;�)g = CN (5.3)for all � 
lose to ��.Next, we seek solutions u(x) of (5.1) that satisfy u(�L) = u(L). It is a 
onsequen
e of Remark 2.1 and(5.3) that any solution u(x) to (2.9) 
an be written in the formu(x) = 'ss(x;�L;�)a� + 'uu(x; L;�)a+ + u�(x;�)bwhere a� 2 Ess0 (�), a+ 2 Euu0 (�) and b 2 C are arbitrary. Here, the evolution operators 'ss(x;�L;�)and 'uu(x; L;�) satisfyj'ss(x;�L;�)j � Ke�Æjx+Lj; j'uu(x; L;�)j � Ke�Æjx�Lj (5.4)for jxj � L, where Æ > 0 is a small positive 
onstant. Thus, it suÆ
es to �nd (a�; b) and � so thatP ss(�L;�)a� + 'uu(�L;L;�)a+ + u�(�L;�)b = 'ss(L;�L;�)a� + P uu(L;�)a+ + u�(L;�)b; (5.5)where P ss(�L;�) = 'ss(�L;�L;�); P uu(L;�) = 'uu(L;L;�)are O(e�ÆL)-
lose, for some Æ > 0 that is independent of L, to the spe
tral proje
tions P ss(�) and P uu(�),respe
tively, of A0(�); see again Remark 2.1. Exploiting this fa
t together with the estimates (5.4), wesee that (5.5) is equivalent to(P ss(�) + O(e�ÆL))a� +O(e�ÆL)a+ + u�(�L;�)b = O(e�ÆL)a� + (P uu(�) + O(e�ÆL))a+ + u�(L;�)b;29



where we repla
ed Æ by minfÆ; �g. Substituting (5.2) and using the de�nition of a+ and a�, we obtain(id+O(e�ÆL))a� +O(e�ÆL)a+ + a0(�)(e�i(!(�)L+#� (�)) +O(e�ÆL))b =O(e�ÆL)a� + (id+O(e�ÆL))a+ + a0(�)(ei(!(�)L+#+ (�)) +O(e�ÆL))b:We 
an write this equation, whi
h is linear in (a�; a+; b), in 
omponents a

ording to the dire
t-sumde
omposition Ess0 (�) �Euu0 (�) �E
0(�) = CNand solve the �rst two 
omponents for (a�; a+) as a fun
tion of b. We arrive at the equation(e�i(!(�)L+#�(�)) + O(e�ÆL))b = (ei(!(�)L+#+(�)) + O(e�ÆL))bwhi
h, after dividing by b, is equivalent to the redu
ed equatione2i!(�)L = ei(#� (�)�#+(�)) +O(e�ÆL): (5.6)To solve this equation, it suÆ
es to �nd all solutions to2!(�)L = #�(�) � #+(�) + O(e�ÆL) + 2�nwhere n 2Zis arbitrary. Dividing by 2L, we get!(�) = �nL + 12L (#�(�)� #+(�)) + O(e�ÆL):Sin
e !(��) is real, there are unique numbers n0(L) 2 N and r(L) 2 [0; 1) su
h thatn0(L) + r(L) = !(��)L� :Thus, �n0(L)L = !(��)� �r(L)L ;and upon setting n = n0(L) +m, we obtain the equation!(�) = !(��) + 12L (2�(m � r(L)) + #�(�) � #+(�)) + O(e�ÆL): (5.7)Sin
e d!d� (��) 6= 0, equation (5.7) 
an be solved with respe
t to � for � near �� for every L suÆ
ientlylarge and all m 2 N su
h that m=L is smaller than some 
onstant � > 0. In parti
ular, (5.7) has O(L)di�erent solutions. This proves that �� is indeed in the extrapolated essential spe
tral set �eext.5.3 Separated boundary 
onditionsFinally, we 
onsider separated boundary 
onditions. We show that �eext is again determined by spe
tralproperties of T on R but does in general not 
oin
ide with �ess. Roughly speaking, separated boundary
onditions stabilize up to an optimal exponential weight. Throughout this se
tion, we on
e again use theset-up and the notation introdu
ed in Se
tion 4.3.1.Hypothesis 7 (Non-degenerate boundary 
onditions) There is a dis
rete (possibly empty) set C �C with no a

umulation points in C so that Q�� ~Es�(�) = CN and Q+� ~Eu+(�) = CN for all � =2 �abs[C.Re
all that ~Es;u� (�) have been de�ned in Se
tion 4.3.1. Note that the hypothesis above is often violatedwhen we 
onsider systems of de
oupled equations together with boundary 
onditions that also de
ouple.An example is the operator introdu
ed in Example 2 with either Diri
hlet or Neumann 
onditions. It ispossible to adapt the results to su
h 
ases, but we do not pursue this here.30



Proposition 5 Assume that Hypotheses 1, 2 and 7 are met. Furthermore, assume that T � satis�esHypothesis 3 for every � 2 R2. Under these assumptions, we have �eext � �abs.Proof. If � =2 �abs, then T �(�) is Fredholm with index zero for an appropriately 
hosen weight � 2 R2.Considering T �(�) on L2, we have to repla
e (2.9) by the equationddxv = (A(x;�) + ��)v: (5.8)The asso
iated operator on L2, whi
h we again denote by T �(�), is then also Fredholm with index zero.Note that v(�) has to satisfy the same boundary 
onditions at x = �L as u(�). We have therefore redu
edthe problem to a setting that is similar to the 
ase of periodi
 boundary 
onditions. Isolated eigenvaluesof �nite multipli
ity persist with their multipli
ity provided the boundary 
onditions are transverse to thestable and unstable eigenspa
es of A+(�) and A�(�), respe
tively; see Lemma 4.3. Norms on the �niteinterval (�L;L) are equivalent, and invertibility of the v-equation therefore implies invertibility of theu-equation. If the boundary 
onditions are not transverse, only �nitely many eigenvalues are generated,and their number, 
ounting multipli
ity, is independent of L; see Theorem 3. This 
ompletes the proofof the proposition.We remark that, for reversible systems, we expe
t that �abs = �ess. In general, however, we have�abs 6= �ess; see Se
tion 3.2. In the remaining part of this se
tion, we prove that �eext = �abs under thefollowing additional assumption.Hypothesis 8 (Redu
ible absolute spe
trum) The subset Ssep, de�ned below, of the absolute spe
-trum �abs is dense in �abs. Here, �� 2 Ssep � �abs provided one of the following two 
onditions ismet:(i) Pulses (i.e. A+(�) = A�(�) =: A0(�) for all �):Re �i1�1(��) > Re �i1(��) = Re �i1+1(��) > Re �i1+2(��)with �i1(��) = ��0 + i!1(��) and �i1+1(��) = ��0 + i!2(��) where !1(��) 6= !2(��) andd(!1�!2)d� j�� 6= 0.(ii) Fronts: either Re �+i1�1(��) > Re �+i1(��) = Re �+i1+1(��) > Re �+i1+2(��)with �+i1(��) = ��+ + i!1(��) and �+i1+1(��) = ��+ + i!2(��) where !1(��) 6= !2(��) andd(!1�!2)d� j�� 6= 0 while Re ��i1(��) > ��� > Re��i1+1(��)for some ��, or vi
e versa.We observe that the redu
ible absolute spe
trum Ssep 
onsists of regular 
urve segments.Theorem 5 Assume that Hypotheses 1, 2, 7 and 8 are met. Furthermore, assume that Hypothesis 3 issatis�ed for T � for every � 2 R2. We then have �eext = �abs.Proof. We have to show that �� 2 Ssep implies �� 2 �eext. We again 
onsider (5.8) using the weights�� that appear in Hypothesis 8. In 
ontrast to the notation introdu
ed in Se
tion 4.3.1, we omit in thisproof the ~ that referred to quantities 
omputed with respe
t to (5.8). In other words, for the sake ofsimpli
ity, we assume that � = 0 (possibly after 
hanging the equation appropriately). We then use the31



notation and 
onventions introdu
ed in the proof of Theorem 4; in fa
t, the proofs for separated andperiodi
 boundary 
onditions are quite similar. Finally, we restri
t ourselves to the 
ase of fronts; theproof for pulses pro
eeds in a similar fashion.First, we 
laim that we 
an assume that Q� � Es�(��) = CN . Indeed, suppose that Q� and Es�(��)have a non-trivial interse
tion. Sin
e Ssep 
onsists lo
ally of regular 
urve segments, we 
an vary � inSsep near ��. As a 
onsequen
e, the subspa
es Q� and Es�(�) interse
t either only at the origin for any� 
lose to �� with � 6= ��, or else they interse
t non-trivially for all � in an open neighborhood of ��due to analyti
ity of Es�(�) in �; the latter 
ase, however, 
ontradi
ts Hypothesis 7. Thus, the �rst 
aseo

urs, and we 
an repla
e �� by any nearby � 2 Ssep. This proves our 
laim.As a 
onsequen
e, if we transport the subspa
e Q� using the evolution '(x;�L;�) asso
iated with (2.9),then, by hyperboli
ity of A�(�), the transported subspa
e '(0;�L;�)Q� is 
lose to Eu�(0;�) for all largeL.Next, 
onsider the situation at the right endpoint x = L of the interval (�L;L). By Hypothesis 8, wehave Ess+ (�) � spanfa1(�); a2(�)g � Euu+ (�) = CNfor all � near ��, where a1(�) and a2(�) are non-zero eigenve
tors ofA+(�) asso
iated with the eigenvalues!1(�) and !2(�). Using the roughness theorem for exponential di
hotomies [33, 35℄, we 
an 
ontinue any
ombination of these subspa
es to x-dependent invariant subspa
es of (2.9). In parti
ular, using also [25,Lemma 2.2℄, there are subspa
esEss+ (x;�)� spanfa1(x;�)g and Ess+ (x;�)� spanfa2(x;�)g (5.9)that 
onverge to the 
orresponding x-independent eigenspa
es of A+(�) as x!1. Note that E
s+ (x;�) is(N � i1 + 1)-dimensional, while Eu�(x;�) has dimension i1. Therefore, these two subspa
es interse
t ina non-trivial fashion; in fa
t, we may assume that Eu�(x;�) and E
s+ (x;�) interse
t transversely in a one-dimensional subspa
e whi
h is not 
ontained in either of the two spa
es appearing in (5.9). Otherwise,we rea
h a 
ontradi
tion to Hypothesis 3; see Remark 4.2 and [25℄.Hen
e, as a 
onsequen
e of the dis
ussion in the last few paragraphs, E
s+ (0;�) and the transportedsubspa
e '(0;�L;�)Q� interse
t in a one-dimensional subspa
e that is spanned by a ve
tor u�(0;�).The solution asso
iated with the initial 
ondition u�(0;�) 
an be written asu�(x;�) = a1(�)ei!1 (�)x + a2(�)ei!2(�)x +O(e��x) (5.10)as x!1, where � is again the rate of 
onvergen
e of A(x;�) as x!1, and a1(�) and a2(�) are 
ertainnon-zero eigenve
tors of A+(�) asso
iated with the eigenvalues i!1(�) and i!2(�). This expansion 
an beproved by using exponential weights and di
hotomies for an appropriate variation-of-
onstant formula;see, for instan
e, [35, 33℄ or [25, Lemma 2.2℄. In addition, we have'(L;�L;�)Q� = spanfu�(L;�)g+ Euu+ (�) + O(e�ÆL) (5.11)for all L suÆ
iently large. Here, and in the following, Æ denotes a small positive 
onstant determined by� and the rates of hyperboli
ity of A�(�).In the next step, we fo
us on the boundary 
onditions at the right endpoint of the interval. Arguing asabove, we 
an assume that Q+ = spanfv�g � ~Q+where v� 2 spanfa1(�); a2(�)g �Euu+ (�); v� =2 spanfaj(�)g �Euu+ (�) (5.12)32



for j = 1; 2 and ~Q+ �E
+(�)� Euu+ (�) = CN ; (5.13)otherwise, we rea
h a 
ontradi
tion to Hypothesis 3. In parti
ular, we havev� = a+1 (�) + a+2 (�) + vu� (�) (5.14)with a+j (�) 2 spanfaj(�)g for j = 1; 2 and vu� (�) 2 Euu+ (�). Note that a+j (�) is not equal to zero forj = 1; 2.It suÆ
es to �nd non-trivial interse
tions of Q+ and '(L;�L;�)Q�. Exploiting (5.10){(5.13) and usingLyapunov-S
hmidt redu
tion as in the proof of Theorem 4 (we omit the details), we arrive at the redu
edequation a1(�)(ei!1 (�)L +O(e�ÆL)) + a2(�)(ei!2(�)L + O(e�ÆL)) = r(a+1 (�) + a+2 (�))where r 2 C is arbitrary. In other words, we shall solvea1(�)(ei!1(�)L + O(e�ÆL)) = r a+1 (�) (5.15)a2(�)(ei!2(�)L + O(e�ÆL)) = r a+2 (�):Re
all that aj(�) and a+j (�) are not equal to zero for j = 1; 2. Thus, we 
an writea+j (�) = ja+j (�)jjaj(�)j ei#j (�)aj(�)for 
ertain 
omplex numbers #j(�) with j = 1; 2. The �rst equation in (5.15) 
an then be solved for r:r = ja1(�)jja+1 (�)je�i#1(�)(ei!1(�)L +O(e�ÆL)):Substituting this expression into the se
ond equation in (5.15), we obtainei!2(�)L + O(e�ÆL) = ja+2 (�)j ja1(�)jja2(�)j ja+1 (�)jei(#2(�)�#1(�))(ei!1 (�)L + O(e�ÆL));whi
h is equivalent to ei(!2(�)�!1(�))L = ja+2 (�)j ja1(�)jja2(�)j ja+1 (�)jei(#2(�)�#1(�)) +O(e�ÆL):This equation is exa
tly of the type 
onsidered in the proof of Theorem 4; see (5.6) and the dis
ussionfollowing it. Thus, the proof of the theorem is 
omplete.Remark 5.6 In the set-up of the above theorem, we have that an eigenfun
tion u(x) to the originalequation (5.1) on the interval (�L;L) with separated boundary 
onditions typi
ally satis�esju(�L)j � e�Re ��i1 (�)L; ju(L)j � eRe �+i1+1(�)LThe remark is a 
onsequen
e of the proof of the previous theorem.In parti
ular, the 
onve
tive properties of the absolute spe
trum manifest themselves via the growth ofthe asso
iated eigenmodes at x = �L depending on the dire
tion of transport. If the absolute eigenvalue� is indu
ed by unstable spatial eigenvalues �+i1(�) and �+i1+1(�), then the dire
tion of transport isto the right. Note that this requires that the formerly stable spatial eigenvalue �+i1+1(�) moves intothe right half-plane; we would therefore need �+ < 0 to stabilize the wave using exponential weights.Analogously, if the absolute eigenvalue � is indu
ed by stable spatial eigenvalues ��i1(�) and ��i1+1(�),then the dire
tion of transport is to the left. In the other 
ases, the absolute eigenmodes transporttowards x = 0, either from x = L if Re �+i1(�) < 0, or else from x = �L if Re ��i1+1(�) > 0; in these
ases, the instability would lead to a break-up of the wave near its 
ore, away from the asymptoti
 reststates. 33



5.4 Separated boundary 
onditions: the edge of the absolute spe
trumOften, the rightmost endpoint of the absolute spe
trum is given by a bran
h point, i.e. by a double rootof the dispersion relation. In that 
ase, it is of interest how well the edge of the absolute spe
trum isapproximated on bounded intervals. For the sake of brevity, we only 
onsider the 
ase of fronts. A similarresult under analogous assumptions is true for pulses.Hypothesis 9 (Non-degenerate double eigenvalue) Fronts: We have a double eigenvalue �+i1(��)= �+i1+1(��) with geometri
 multipli
ity one so thatRe �+i1�1(��) > Re �+i1(��) > Re�+i1+2(��)and the Jordan blo
k asso
iated with �+i1(��) is unfolded generi
ally upon varying � near ��. Let v+i1(��)denote the eigenve
tor of A+(��) asso
iated with �+i1(��). We assume thatspanfv+i1 (��)g � Euu+ (��)� Q+ = Cn ; (5.16)where Euu+ (��) is the eigenspa
e of A+(��) asso
iated with the unstable part of the spe
trum. Furthermore,we assume that �� =2 ��abs and that Es�(��) �Q� = Cn . Finally, we assume thatEu�(0;��)� spanfv+i1(0;��)g �Ess+ (0;��) = Cn ; (5.17)where v+i1(x;��) is a solution that 
onverges to v+i1(��) as x!1; see [15℄.Lemma 5.5 Assume that Hypotheses 1, 2 and 9 are met. In addition, suppose that �� is the rightmostpoint in the absolute spe
trum. There are then 
onstants b1;2 2 C with b1 6= 0 and Æ > 0 su
h that, if weorder the eigenvalues �j;L of T sepL that are 
losest to �� by their real part, then��� 1pj�j;L � ��j � (b1jL + b2)��� = O(e�ÆL)for all L large enough (depending on j).Proof. We pro
eed as in the proof of Theorem 5. Without loss of generality, we 
an assume thatRe �+i1 = 0 for � = ��. We write Ess+ , E
+ and Euu+ for the stable, 
enter and unstable eigenspa
es of A+,respe
tively, where the two-dimensional 
enter eigenspa
e 
orresponds to the two eigenvalues near �+i1 .We assumed that �� =2 ��abs and that D�(��) 6= 0. Hen
e, '(0;�L;�)Q� is exponentially 
lose toEu�(0;�) for all � 
lose to ��. In parti
ular, using (5.17), we see that'(0;�L;�)Q� \E
s+ (0;�) = spanfu�(0;�)g (5.18)where u�(0;�) is not equal to zero andu�(0;��) =2 spanfv+i1(0;��)g �Ess+ (0;��): (5.19)As a 
onsequen
e of (5.18), and pro
eeding as in the proof of Theorem 5, we have that'(L;�L;�)Q� = spanfu�(L;�)g � (Euu+ (�) + O(e�ÆL))for some Æ > 0. We seek those � 
lose to �� for whi
h '(L;�L;�)Q� has a non-trivial interse
tion withQ+. Thus, we are interested in the spa
eh spanfu�(L;�)g � (Euu+ (�) + O(e�ÆL))i \Q+: (5.20)34



We begin by tra
king u�(x;�) up to x = L. We denote by A
+ the restri
tion of A+ to the 
enter spa
eE
+. We 
laim that u�(L;�) = �eA
+(�)L + O(e�ÆL)�a+(�) (5.21)for some Æ > 0 that is independent of � and some non-zero ve
tor a+(�) 2 E
+(�). Indeed, uponusing exponential di
hotomies, we 
an redu
e the equation to an equation in R2. We 
an then use thevariation-of-
onstant formula and exponential weights; we refer to [35℄ for similar arguments. See also[15, Se
tion 3.8℄ for the 
ase when the equation does not depend upon parameters. In addition, we knowthat a+(��) 6= v+i1 (��) due to (5.19). Next, we 
onsider the spa
e Q+. Due to (5.16), we haveQ+ \ (E
+(�) �Euu+ (�)) = spanfq+(�)gfor some q+(�) 6= 0 with q+(��) =2 spanfv+i1(��)g �Euu+ (��):In other words, we have Q+ = spanfq+(�)g � ~Q+with ~Q+ \Euu+ (�) = f0g. Expression (5.20) then readsh spanfu�(L;�)g � (Euu+ (�) + O(e�ÆL))i \ h spanfq+(�)g � ~Q+i:Therefore, we have that u = ru�(L;�) + (id+O(e�ÆL))uuu+is in Q+ for appropriate 
hoi
es of r 2 R and uuu+ 2 Euu+ (�) if, and only if,u = ~rq+(�) + ~q+where ~r 2 Rand ~q+ 2 ~Q+. Using Lyapunov-S
hmidt redu
tion, i.e. upon proje
ting these equations intothe 
omplementary subspa
es ~Q+, Euu+ (�) and E
+(�), and solving the proje
ted equations in the formertwo spa
es, we �nally arrive at the redu
ed equationr�eA
+(�)La+(�) + O(e�ÆL)� = ~r�q+(�) + O(e�ÆL)� (5.22)where we used (5.21). Note that a+(�) and q+(�) are smooth and that both are 
ontained in E
+(�). Inaddition, neither of these ve
tors is equal to v+i1(��) for � = ��. Sin
e A
+(��) is a Jordan blo
k, we seethat eA
+(�)L 
orresponds to a linear se
ond-order s
alar operator, and (5.22) is the equation that appearswhen we seek the operator's eigenvalues. Thus, we 
an solve this equation by phase-plane analysis; weomit the details.6 Numeri
al 
omputationsTo illustrate and 
on�rm the results, we 
ompare our theoreti
al predi
tions with numeri
al 
omputations.The 
omputations are 
arried out for pulses in the generalized KdV equation and for fronts that arise inthe Gray-S
ott model. We 
on
lude with a brief dis
ussion on the impli
ations that our results have forthe numeri
al 
omputation of spe
tra on large intervals.35



6.1 The generalized KdV equationWe begin with the generalized KdV equation that is given byut + uxxx � 
ux + upux = 0; x 2 R; (6.1)where 
 is the wave speed and p is a parameter. This equation admits a family of pulses given byu(x) = �12
(p+ 1)(p+ 2)� 1p se
h 2p �xpp
2 � (6.2)for any positive values of 
 and p. The linearization of (6.1) about one of these pulses is equal toLv = �vxxx + (
� up)vx + pup�1uxv: (6.3)It has been shown in [31℄ that the pulses are marginally stable in R for p < 4 and unstable for p > 4.The instability is indu
ed by a simple unstable eigenvalue that appears for p > 4. For any p 6= 4, � = 0 isan eigenvalue with geometri
 multipli
ity one and algebrai
 multipli
ity two; the asso
iated eigenve
torsare ux and u
.To 
ompute the essential and the absolute spe
trum, we rewrite the eigenvalue problem Lv = �v aboutthe pulses as a �rst-order system. The asso
iated asymptoti
 matrix is given byA0(�) = 0B� 0 1 00 0 1�� 
 0 1CA : (6.4)Its three spatial eigenvalues �j(�) are the roots of the dispersion relationd(�; �) = � + �2(� � 
):In parti
ular, the asymptoti
 index i1 is equal to two, and we will need two boundary 
onditions atx = L and one boundary 
ondition at x = �L. Using the dispersion relation, the essential and absolutespe
tra of L 
an be 
omputed: �ess = iR; �abs = ��1;�2�
3� 32 � ; (6.5)see [32, Prop. 2.3℄. The absolute eigenmodes indu
e transport towards x = �1 sin
e, for � 2 �abs, thetwo spatial eigenvalues that have the same real part are lo
ated in the left half-plane. The dis
ussionafter Remark 5.6 then implies that the eigenmodes are exponentially growing as x!�1. This behavioris 
onsistent with 
 > 0.We �rst 
onsider p = 2, and also �x the wave speed 
 = 2. The pulses are then transiently unstable; see[32℄. On the bounded interval (�L;L), we 
onsider periodi
 boundary 
onditions as well as the separatedboundary 
onditions ux(�L) = 0; u(L) = 0; ux(L) = 0: (6.6)We begin by 
omparing the spe
tra of the operator L on the real line and the bounded interval (�L;L)with L = 7:5. Figure 4 shows that periodi
 boundary 
onditions indeed re
over the essential spe
trum.In addition, the two embedded eigenvalues at zero move away from the imaginary axis. For the separatedboundary 
onditions de�ned in (6.6), we re
over the absolute spe
trum; see Figure 5. As predi
ted,the two embedded eigenvalues at zero stay near the origin but split into two simple eigenvalues. It isstraightforward to show that the boundary 
onditions are non-degenerate near � = 0 so that no additionaleigenvalues are 
reated there. 36
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trum of L on the interval (�7:5; 7:5) with periodi
 boundary 
onditions. We dis
retized theoperator using a pseudo-spe
tral method with 700 Fourier modes. The resulting matrix-eigenvalue problems werealways solved using the routine dgeev from the lapa
k pa
kage [2℄.
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trum of L on the interval (�7:5; 7:5) with the separated boundary 
onditions (6.6). Wedis
retized the operator using one-sided �nite di�eren
es with 1500 equi-distant mesh points 
orresponding to astep size of h = 0:01.We then 
ompared the rate of 
onvergen
e with whi
h the embedded eigenvalues near zero approa
h zeroas L !1. The spatial eigenvalues �j(�) of the asymptoti
 matrix A0(�), see (6.4), at � = 0 are givenby �1(0) = 0; �2;3(0) = �p
:The spe
tral gap is therefore equal to p
. Sin
e the multipli
ity of the eigenvalue � = 0 is two, weexpe
t that the rate of 
onvergen
e is equal to p
=2. We 
al
ulated the temporal eigenvalues near zeronumeri
ally using the pa
kage auto97, see [17℄, and 
ontinued in the interval length L. The results areshown in Figure 6(a); the a
tual rate of 
onvergen
e is p
 and not the expe
ted p
=2. The reason forthe super-
onvergen
e is as follows: �rst, the eigenfun
tion of � = 0 on the real line 
onverges faster tozero as x!�1 than expe
ted; its exponential rate is p
 rather than 0. The same is true for the uniquebounded solution  (x) of the adjoint eigenvalue equation. The latter is true due to the Hamiltoniannature of the KdV equation. In fa
t, we have  (x) = rH(u(x)) where u(x) is the pulse and H(u) is theHamiltonian of the KdV equation. It is then a 
onsequen
e of the super-
onvergen
e results presented in[36℄ that the rate of 
onvergen
e is p
 and not p
=2.37
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h is twi
e the expe
ted rate of p2=2; this super-
onvergen
e phenomenon is explained in the main text. (b) The �rst three eigenvalues that approa
h the edge ofthe absolute spe
trum are 
ontinued in L. The slopes of the s
aled 
urves formed by these eigenvalues are givenby 0:40468, 0:20170 and 0:13498, respe
tively.
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Figure 7: (a) The spe
trum of L near zero on the interval (�7:5; 7:5) using the boundary 
onditions (6.8). Aspredi
ted, there are three eigenvalues near � = 0. (b) The resonan
e pole is shown as a fun
tion of the parameterp. The pole 
rosses the imaginary axis at p � 4.Next, we investigate the approa
h of eigenvalues to the edge of the absolute spe
trum lo
ated at�� = �2� 
3�32 � �1:089: (6.7)We expe
t that the 
onvergen
e is like j�� ��j � 1L2 :We therefore plotted pj�� ��j�1 over L, and expe
t to see a straight line. This is 
on�rmed in Fig-ure 6(b). Note that the slopes of the �rst three eigenvalues that we 
ontinued have a ratio of approximately1 : 12 : 13 as predi
ted; see Lemma 5.5.Next, we 
hange the boundary 
onditions toux(�L) = 0; ux(L) = 0; uxx(L) = 0: (6.8)38
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�������� �� � ��Figure 8: The spe
trum of L with periodi
 boundary 
onditions on the interval (�7:5; 7:5) for p = 3:5 (left)and p = 4:5 (right). The resonan
e pole is not visible in the left plot; the unstable pair of eigenvalues for p > 4,however, is 
aptured; see the plot to the right. We dis
retized the operator using a pseudo-spe
tral method with800 Fourier modes.
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������������������������������������������������������������������������������������������������������������������Figure 9: The s
aled error of the unstable eigenvalue, 
omputed numeri
ally for various values of L but for �xedp = 4:5, is plotted for (a) periodi
 and (b) separated boundary 
onditions (6.6). The eigenvalues are 
omparedwith the exa
t value �u = 0:766736 that we obtained using the boundary 
onditions (6.6) for large L�. Theslopes for the s
aled error are �0:84154 for periodi
 and �2:00403 for separated boundary 
onditions. Our theorypredi
ts the slopes 0:84143 and �1:99754, respe
tively.These boundary 
onditions are no longer non-degenerate. It is straightforward to show that D+(�) =�+ O(j�j2). We therefore expe
t three eigenvalues near � = 0. This is 
on�rmed in Figure 7(a).Finally, we return to the 
ase of the transverse boundary 
onditions (6.6). We shall 
on�rm that resonan
epoles, i.e. eigenvalues that are generated upon using exponential weights, show up on large intervals withseparated boundary 
onditions but are not visible for periodi
 boundary 
onditions. To this end, we varyp in the interval (2; 5). It has been shown in [31℄ that, at p = 4, a resonan
e pole 
rosses the imaginaryaxis from left to right at the origin, rendering the pulses unstable. For p > 4, this resonan
e pole isan ordinary eigenvalue that should then be pi
ked up by periodi
 boundary 
onditions. Our numeri
al
omputations 
on�rm that this is indeed the 
ase; see Figures 7(b) and 8. Re
all that our theory predi
tsthat the absolute spe
trum is �lled with eigenvalues as L !1. Thus, all but �nitely many eigenvalueswill stay to the left of the edge �� of the absolute spe
trum. Hen
e, a priori, we 
annot distinguishthe resonan
e pole from other eigenvalues until it emerges from the absolute spe
trum through the edge39



�� � �1:089. This happens at p = 2:551; see Figure 7(b).We used the aforementioned resonan
e poles, 
al
ulated for p = 4:5, to illustrate the di�eren
e in the
onvergen
e rates for periodi
 and separated boundary 
onditions. We 
omputed the unstable eigenvaluesfor in
reasing values of L and 
ompared them with the \exa
t" unstable eigenvalue �u. The latter was
al
ulated using the boundary 
onditions (6.6) for a large value of L, namely L� = 40. The spatialeigenvalues of the matrix A0(�u), see (6.4), are�1 = 1:15612; �2 = 0:42071; �3 = �1:57683:Thus, from Theorem 2 and Lemma 4.3, we expe
t the 
onvergen
e rates 2� = 2minf�2; j�3jg = 0:84143for periodi
 and � = �2��3 = 1:99754 for separated boundary 
onditions. This is 
on�rmed by numeri
al
omputations using auto97; see Figure 9.6.2 The Gray-S
ott modelThe se
ond equation that we investigate is the Gray-S
ott model:ut = D1uxx � 
ux � uv2 + F (1� u) (6.9)vt = D2vxx � 
vx + uv2 � (F + k)v:Here, 
 denotes again the wave speed. In the parameter regime where � = 1� 4(F + k)2=F is positive,(6.9) has three di�erent homogeneous steady-states; the two that are of 
on
ern to us are 
ommonlyreferred to as the red and blue state:(ur; vr) = (1; 0); (ub; vb) = �12(1�p�); F2(F + k) (1 +p�)�: (6.10)If we 
hoose the parameters a

ording toD1 = 6:0� 10�5; D2 = 1:0� 10�5; 
 = �5:02063� 10�4; k = 0:05; F = 0:1; (6.11)then numeri
al 
omputations reveal that (6.9) admits a stationary front that 
onne
ts the blue state at�1 with the red state at +1. The front was 
omputed using the driver hom
ont [10℄ that is builtinto the pa
kage auto97 [17℄. We refer to Figure 12(a) for a plot of the two 
omponents of the front.In fa
t, sin
e 
 < 0, the front moves to the right towards the red state if 
onsidered in a non-moving
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tra of the red (left) and the blue (right) rest states are shown. Theessential spe
trum is plotted using thi
ker lines, while the absolute spe
tra are plotted with thin lines.40
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Figure 11: The spe
trum of L on the interval (0; 1). The thin lines indi
ate the lo
ation of the absolute spe
trumof the operator. We used 
entered �nite di�eren
es with 2000 equi-distant mesh points 
orresponding to a stepsize of h = 5� 10�4.
oordinate frame. It 
an be shown that the red state is stable, while the blue state is unstable for theaforementioned 
hoi
e of parameters. The linearization of (6.9) about the front is given byL =  D1�xx � 
�x � v2 � F �2uvv2 D2�xx � 
�x � 2uv � (F + k) ! : (6.12)We 
al
ulate its spe
trum on the interval (0; 1); note that, if we res
ale the equation so that the di�usion
onstants are of order one, then the length of the interval would be of the order 1 � 102. We used theboundary 
onditionsu(0) + v(0) = 0; ux(0) � vx(0) = 0; u(1) + v(1) = 0; ux(1) � vx(1) = 0: (6.13)Neumann boundary 
onditions violate Hypothesis 7 sin
e the two 
omponents of the operator (6.12)de
ouple at the red state.First, we 
omputed the absolute and essential spe
tra of the asymptoti
 homogeneous states. This wasdone by 
ontinuation within auto97. The results are shown in Figure 10. Note that absolute spe
trumis to the left of the essential spe
trum. The rightmost edge of the absolute spe
trum of the blue state
orresponds to a double spatial eigenvalue as does the rightmost point of the absolute spe
trum of thered state.We then 
omputed the spe
trum of the operator L on the interval (0; 1) with the boundary 
onditions(6.13); see Figure 11. The 
omputations 
on�rm that the spe
trum on the bounded interval asymptoteson the absolute and not on the essential spe
trum. The additional eigenvalue at zero is of 
ourse due totranslational invarian
e of (6.9).The absolute spe
trum of the blue state is 
aused by spatial eigenvalues that 
ross the imaginary axisfrom right to left. The exponential weight fun
tion is therefore given by e�x with � > 0, and we expe
tthat perturbations are 
onve
ted towards �1. In parti
ular, eigenfun
tions asso
iated with eigenvaluesof L on the bounded interval should be large at the left endpoint x = 0 of the domain. This is 
on�rmed inFigure 12(b), where the u-
omponent of a typi
al eigenfun
tion within the absolute spe
trum is plotted.41
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(b)uLFigure 12: (a) The left pi
ture 
ontains the u and v 
omponents of the front to the Gray-S
ott model as afun
tion of x. The parameters are 
hosen a

ording to (6.11). (b) The u-
omponent of the eigenfun
tion of Lasso
iated with the eigenvalue � = �3:96�10�4�3:5 i�10�2 is plotted. This eigenvalue is 
lose to the rightmostedge of absolute spe
trum of the blue state.6.3 Numeri
al 
omputations of spe
tra on the real lineAs we have seen, only periodi
 boundary 
onditions generally 
apture the spe
trum of PDE operatorson the real line. One of the ex
eptions is the 
ase where the operator exhibits an additional reversibilitystru
ture so that the essential and the absolute spe
trum are in fa
t equal.For separated boundary 
onditions, the spe
trum that is 
omputed on the bounded interval is the ab-solute spe
trum plus the set of eigenvalues and resonan
e poles of the original operator. Additionaleigenvalues 
an be 
reated through the boundary 
onditions. To 
on�rm the numeri
al 
omputations,one 
ould therefore 
ompute the absolute spe
trum of the asymptoti
 states separately, either by usingthe spatial eigenvalues of the asymptoti
 matri
es or by numeri
ally 
omputing the spe
tra of the asymp-toti
 
onstant-
oeÆ
ient operators. A 
omparison with the spe
trum of the full operator then identi�esthe absolute spe
trum. Spurious eigenvalues generated by the boundary 
onditions 
an be identi�edusing di�erent boundary 
onditions and 
omparing those eigenvalues that are not related to the absolutespe
trum.Finally, we emphasize that our results are true asymptoti
ally as L ! 1, but that we do not haveestimates for how large L really has to be in order to resolve the absolute spe
trum over a large region inthe 
omplex plane. An additional diÆ
ulty is that the operator has to be dis
retized so that the spe
traalso depend upon the step size of the dis
retization s
heme. An example where these issues seem to playa role is the FitzHugh-Nagumo equation that has been used in [8℄ to illustrate domain-trun
ation resultsfor isolated eigenvalues. It appears as if the 
omputed spe
trum is 
lose to the absolute spe
trum onlyextremely near the imaginary axis. Our 
al
ulations show that the rest of the spe
trum is very sensitiveto variations of the length of the interval and the 
hoi
e of the number of mesh points.7 Con
lusions and dis
ussionOur results 
an be summarized as follows. As far as the original point spe
trum on the real line is
on
erned, eigenvalues persist under trun
ation with their multipli
ity. For separated boundary 
ondi-tions, however, additional eigenvalues 
an be 
reated when the boundary 
onditions are not transverseto 
ertain eigenspa
es. In addition, eigenvalues may appear in regions that were previously o

upied by42



essential spe
trum; these eigenvalues are often referred to as resonan
e poles. The essential spe
trum ofthe problem on the real line is re
overed under domain trun
ation only if periodi
 boundary 
onditionsare imposed. For separated boundary 
onditions, the spe
trum on the bounded intervals asymptotes ontothe absolute spe
trum as the endpoints of the interval tend to �1.We have taken three di�erent viewpoints towards stability for operators on the real line: L2-stability, 
on-ve
tive instability, and transient instability. As far as the essential spe
trum is 
on
erned, L2-stabilityimplies stability on all suÆ
iently large intervals with periodi
 boundary 
onditions, while transientinstability implies stability under separated boundary 
onditions. In parti
ular, separated boundary 
on-ditions 
an stabilize: transiently unstable patterns may be spe
trally unstable under periodi
 boundary
onditions, while they may be stable under separated boundary 
onditions. Conve
tive instability doesin general not imply stability under separated boundary 
onditions; see Example 2.Proving that solutions a
tually de
ay pointwise whenever the operator is 
onve
tively unstable is ingeneral a diÆ
ult endeavor for hyperboli
 or dispersive equations sin
e it requires to show the 
onvergen
eof �-integrals. Uniform bounds on the resolvent usually require a s
aling of the s
alar produ
t in RN forlarge �. For instan
e, the heat equation uxx = �u, when rewritten as ux = v; vx = �u, does not admituniform di
hotomies as �!1 with � 2 R sin
e the eigenve
tors (1;�p�)T are asymptoti
ally parallel;T (�)�1 is therefore not uniformly bounded in �. The 
orre
t (spa
e-time) s
aling is ux = p�v; vx = p�uwhi
h guarantees uniform di
hotomies.Our results are partial in the sense that they only 
onsider the e�e
t of the trun
ation on the linearizationas in [8℄. In general, the stationary solution of the nonlinear PDE itself is perturbed by the boundary
onditions. When the essential spe
trum does not 
ontain � = 0, these perturbations are often harmless.In many 
ir
umstan
es, the perturbed wave is e��L-
lose to the original wave; see [7℄. In this situation,our results are also true if the original wave is repla
ed by the perturbed wave. This is a 
onsequen
e ofthe estimates for exponential di
hotomies that were established in [35, 33℄.The approa
h using exponential di
hotomies is suitable for problems in one-dimensional domains wheredynami
al-systems properties prove parti
ularly useful. However, the results 
an be immediately general-ized to 
ylindri
al domains with multi-dimensional bounded 
ross-se
tion and to time-periodi
 solutionsof paraboli
 problems using a slightly generalized notion of di
hotomies and Morse indi
es; we refer to[27, 37, 38℄ for related results. In parti
ular, the absolute Morse indi
es 
onsidered here have to berepla
ed by relative Morse indi
es.In general, the absolute spe
trum seems to play an important role whenever boundary or, more generally,mat
hing 
onditions are imposed. An interesting example is the following situation: suppose that thetravelling-wave ODE admits a hetero
lini
 
y
le so that the �rst 
onne
tion is transversely 
onstru
tedwhile the other 
onne
tion is of 
odimension two. This situation is often 
alled a T-point. The inter-pretation for the PDE is then as follows. There are two homogeneous rest states so that one of them isstable while the other one is unstable. There are also two fronts that 
onne
t the �rst to the se
ond andthe se
ond to the �rst rest state, respe
tively. Furthermore, these fronts have the same wave speed. It isknown that, for nearby parameter values, the PDE exhibits pulses that 
onne
t the stable rest state toitself. An interesting issue is the stability of these pulses. Note that both fronts are unstable sin
e one oftheir asymptoti
 states is unstable. Also, the pulses have a long plateau along whi
h they are very 
loseto the unstable rest state. Numeri
ally, it appears as if the bifur
ating pulses 
an be stable, see [41, 45℄,even though in the limiting 
on�guration, i.e. for the hetero
lini
 
y
le, part of the essential spe
trum is
ontained in the right half-plane. Mat
hing or gluing the pulses from two fronts is similar to imposinga boundary 
ondition in the middle of the domain. We therefore expe
t that the stability propertiesof the pulse are not determined by the essential spe
trum of the unstable rest state but by its absolutespe
trum (whi
h 
an be stable even though the essential spe
trum is unstable). As shown in [39℄, this is43



indeed the 
ase.A
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