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Abstract

Instabilities of nonlinear waves on unbounded domains manifest themselves in different ways.
An absolute instability occurs if the amplitude of localized wave packets grows in time at each
fixed point in the domain. In contrast, convective instabilities are characterized by the fact that,
even though the overall norm of wave packets grows in time, perturbations decay locally at each
given point in the unbounded domain: wave packets are convected towards infinity. In experiments
as well as in numerical simulations, bounded domains are often more relevant. We are interested
in the effects that the truncation of the unbounded to a large but bounded domain has on the
aforementioned (in)stability properties of a wave. These effects depend upon the boundary conditions
that are imposed on the bounded domain. We compare the spectra of the linearized evolution
operators on unbounded and bounded domains for two classes of boundary conditions. It is proved
that periodic boundary conditions reproduce the point and essential spectrum on the unbounded
domain accurately. Spectra for separated boundary conditions behave in quite a different way: first,
separated boundary conditions may generate additional isolated eigenvalues. Second, the essential
spectrum on the unbounded domain is in general not approximated by the spectrum on the bounded
domain. Instead, the so-called absolute spectrum is approximated that corresponds to the essential
spectrum on the unbounded domain calculated with certain optimally chosen exponential weights.
We interpret the difference between the absolute and the essential spectrum in terms of the convective
behavior of the wave on the unbounded domain. In particular, it is demonstrated that stability of the
absolute spectrum implies convective instability of the wave, but that convectively unstable waves
can destabilize under domain truncation. The theoretical predictions are compared with numerical

computations.
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1 Introduction

We are interested in the stability properties of nonlinear waves such as fronts and pulses on unbounded
and bounded domains. On unbounded domains, an instability can manifest itself in different ways. The
physics literature distinguishes between two different kinds of instability, namely absolute and convective
instabilities. An absolute instability occurs if perturbations grow in time at every fixed point in the
domain. Convective instabilities are characterized by the fact that, even though the overall norm of the
perturbation grows in time, perturbations decay locally at every fixed point in the unbounded domain;
in other words, the growing perturbation is transported, or convected, towards infinity. In experiments
as well as in numerical simulations, bounded domains are often more relevant. From a physical point of
view, it is then interesting and important to understand how absolute and convective instabilities manifest
themselves on large bounded domains under various boundary conditions. A possible conclusion would be
that convective instabilities disappear on bounded domains, while absolute instabilities persist. It turns

out, however, that there are convective instabilities that survive the truncation to a bounded domain.

Understanding the spectral properties of waves under domain truncation amounts to identifying and
capturing those instabilities that survive domain truncation, and to calculating and comparing the spectra
of the relevant linearized operators on such domains. These are the issues we set out to explore in this
article. Our main result establishes that it is not absolute and convective instabilities but what we call
remnant and transient instabilities, see below, that determine the spectral (in)stability of waves under
domain truncation. Before we explain these instabilities in more details and outline our approach, we

comment more on our motivation to study these issues.

Physical situations in which the aforementioned issues are relevant include, for instance, fluid flows in
finite containers [9, 43] and the break-up of spiral waves as observed in experiments [28] and numerical
simulations [5, 6, 42]. In open flows, the difference between absolute and convective instabilities is
important; this problem has been studied intensively for modulation equations such as the complex
Ginzburg-Landau equation; see, for instance, [3, 13, 14, 43]. Part of our motivation comes from the
break-up of spiral waves in two-dimensional excitable and oscillatory media [5, 6]. Spirals can break up
either near the core or else in the far-field; the difference between these instabilities is the direction towards
which unstable eigenmodes convect and transport. An interesting issue is to predict these instabilities,
and the direction of transport, from spectral properties of the asymptotic wave trains of the spiral; this

will be discussed in a forthcoming paper using the techniques introduced here.

A second reason for investigating the behavior of spectra under domain truncation is the fact that it
is in general quite difficult to calculate the spectrum of the linearization about a given nonlinear wave
analytically. Thus, one has to resort to numerical techniques which typically require that the unbounded
domain is replaced by a bounded domain, supplemented with appropriate boundary conditions. There
is then, however, no guarantee that the true spectrum on the unbounded domain is recovered as domain
truncation is not a regular perturbation. In particular, the spectrum on the bounded domain may well

depend upon the choice of boundary conditions.

1.1 Different instability mechanisms on unbounded domains

We begin by reviewing the different instability mechanisms that we are interested in on the unbounded
domain R. As mentioned above, absolute instabilities occur if perturbations grow in time at every fixed
point in the domain. Convective instabilities are characterized by the fact that perturbations decay
locally at every fixed point in the unbounded domain even though the overall norm of the perturbation

grows in time.



There are, however, other ways of differentiating between instabilities on unbounded domains. We refer
to the situation where every unstable mode travels to either left or right but not simultaneously to the left
and right as a transient instability. Note that a convective instability allows waves to split into two wave
packets that travel simultaneously to the left and right. In contrast, transiently unstable modes have a
preferred direction of transport. We expect that transiently unstable waves are convectively unstable but

not necessarily vice versa.

We outline how convective and transient instabilities can be captured mathematically on the unbounded
domain R. Suppose that we linearize a certain partial differential equation (PDE) about a pulse, say.
We then investigate the resulting linear PDE operator £ on the real line using the space L?(IR) with
norm || - ||. The spectrum of the operator £ is the disjoint union of two sets: the point spectrum that
consists of all 1solated eigenvalues with finite multiplicity, and its complement which we refer to as the
essential spectrum. If part of the essential spectrum lies in the right half-plane, then there is typically
a continuum of unstable modes present. The essential spectrum can be computed using the dispersion
relation d(A, v) = 0 that relates temporal eigenvalues A and spatial eigenvalues v: the dispersion relation
is calculated by substituting u(z,t) = e***? into the PDE w; = Lou which is the linearization about
the asymptotic rest state of the pulse. We remark that our notation of dispersion relation differs slightly

from the physics convention where A and v are replaced by iw and —ik, respectively.

In certain cases, the essential spectrum induces a convective instability. Suppose that part of the essential
spectrum lies in the right half-plane. In many situations, it can be shown that a wave is convectively
unstable if the dispersion relation d(), v) does not have any double roots in v for A in the closed right half-
plane; see [3, 9] and the references therein. A wave becomes absolutely unstable if a temporal eigenvalue

A for which the dispersion relation has a spatial double root crosses into the right half-plane.

To describe transient instabilities, it is convenient to introduce exponential weights; see [40]: for any

given real number 7, define a new norm || - ||, by

o0
= [ e uo) da,
—oo
and denote by Lg (R), equipped with the norm || - ||,;, the space of functions u(x) for which e’ u(z) is
in L?(R). Note that the norms || - ||, for different values of 7 are not equivalent to each other. We then
consider £ as an operator on L% (R) and compute its spectrum using the new norm || - ||, for appropriate
values of 1. The key is that, for > 0, the norm || - ||, penalizes perturbations at +oo while it tolerates
perturbations (which may in fact grow exponentially with any rate less than 7) at —oco. Thus, if an
instability is of transient nature so that it manifests itself by modes that travel towards —oco, then the
essential spectrum calculated in the norm || - ||, should move to the left as > 0 increases. Indeed, as the
perturbations travel towards —oo, they are multiplied by €’ which is small as # — —oco and therefore
reduces their growth or even causes them to decay. Exponential weights have been used to study a variety
of problems posed on the real line such as reaction-diffusion operators [40], conservative systems such as

the KdV equation [32], and generalized Kuramoto-Sivashinsky equations that describe thin films [11, 12].

As mentioned above, convective and transient instabilities are not identical: an example of a convectively
unstable wave that is not transiently unstable is given in Example 2 in Section 3.3. What happens in this
example is that perturbations travel to both +0o and —oco at the same time. Such instabilities cannot
be removed by exponential weights since we would need n > 0 to get rid of modes travelling to the left
but n < 0 to handle the modes that travel to the right. This might seem to be a minor point but is in
fact of importance when the domain is truncated to a bounded interval; see below. We refer to Figure 1

where we 1llustrate absolute as well as transient and convective instabilities.

Finally, we say that a wave is remnantly unstable if the spectrum of £, computed in the space L% (R),



(b) (c)

Figure 1: The dotted waves are the initial data uo(x) to the linearized equation u; = Lu, while the solid waves
u(x, t) represent the solution at a fixed positive time ¢; the horizontal axis is #, the vertical axis corresponds
to the value of u(z,t) at x. Picture (a) illustrates an absolute instability where the solution to the linearized
equation grows without bounds at each given point z in space as time tends to co. Plot (b) illustrates transient
instabilities: the solution u(z,t) grows but also travels in one direction so that u(z,¢) actually decays for each
fixed value of = as t — co. The operator £ would have stable spectrum in the norm || - ||,; for a certain n > 0.
Finally, picture (c) shows a convectively unstable pattern that is not transiently unstable: the solution u(z,t)
consists of two waves that grow while travelling in opposite directions. Such an instability cannot be stabilized

by using the norm || - ||,. Typically, the group velocities of the two waves would differ in modulus as shown here.

is unstable for any choice of 7. Thus, remnantly unstable modes are modes which are not affected by
exponential weights. We can capture remnant and absolute instabilities by computing what we call the
absolute spectrum: roughly speaking, the absolute spectrum X, is defined as the set of complex numbers
A for which the resolvent £ — A 1s not invertible in L% (R) for any choice of 7; see Section 3.2 for a more
precise definition. In fact, the absolute spectrum can be computed using only the asymptotic coefficients
of the linear operator £, that is, it depends only upon the asymptotic rest states of the underlying wave.
The absolute spectrum captures remnant instabilities: the absolute spectrum moves into the right half-
plane if, and only if, the wave experiences a remnant instability. As the absolute spectrum contains any
points A for which the dispersion relation has double spatial roots, we can also use it to capture absolute
instabilities. Such temporal eigenvalues A correspond to unstable eigenmodes with zero group velocity.
Absolute and remnant instabilities would be identical if the rightmost unstable temporal eigenvalue A in
the absolute spectrum always corresponds to an eigenmode with zero group velocity; there 1s, however,
the possibility that the most unstable eigenmode in the absolute spectrum has non-zero group velocity;

see Examples 2 and 3 in Section 3.3.

In summary, upon using exponentially weighted norms, the essential spectrum may move to a different
location. The new location of the essential spectrum is determined by a balance between the growth in
amplitude and the speed of advection associated with each eigenmode on the one hand and the rate g

that is being used in the weight on the other hand.

1.2 Instabilities on large bounded domains

Next, we consider the relevant PDE operator on a large but bounded interval with appropriate boundary
conditions. The distinction between point and essential spectrum then disappears. We may, however,
define the extrapolated essential spectral set X2, that consists of all complex numbers that are approached
by infinitely many eigenvalues as the interval approaches the entire real line. In other words, rather than
investigating how the essential spectrum breaks up under domain truncation, we consider the inverse
problem by determining the asymptotic location of eigenvalues on the bounded interval as the domain
size tends to infinity. The first result, Theorem 4 in Section 5.2, demonstrates that the essential spectrum
Yess and the extrapolated essential spectral set 3£, are equal to each other provided we use periodic
boundary conditions; this requires that the nonlinear wave is a pulse and not a front. In other words,

with periodic boundary conditions, the essential spectrum of pulses is well approximated under domain



truncation. The second result, Theorem 5 in Section 5.3, shows that the sets Y. and Xg,; are in general
different if separated boundary conditions are used. Thus, no matter how large we choose the interval
length, the resulting spectrum will never be close to the spectrum on the real line. In fact, we demonstrate
that, for separated boundary conditions, the extrapolated essential spectral set X2, is typically equal to
the absolute spectrum X,1s. The reason that the spectrum on the real line is not well approximated by the
spectrum on bounded intervals is related to the existence of transiently unstable eigenmodes. We had seen
that we can shift the transient part of the essential spectrum by using exponential weights. As mentioned
above, this amounts to changing the underlying function space as these norms are not equivalent to
the standard L?-norm. On bounded intervals, however, these norms are all equivalent to each other
since €"7 is then bounded away from zero and from infinity. Thus, we expect that, if the operator is
stable in an exponentially weighted norm, then it should also be stable on large bounded intervals. In
other words, even if it is unstable on the real line, it will be stable on bounded intervals provided it
is also stable on the real line considered with exponential weights. Heuristically, transiently unstable
eigenmodes transport perturbations towards either 400 or —oo; on bounded intervals, the perturbations
then disappear through the boundary. This also explains why the essential spectrum is recovered upon
using periodic boundary conditions: the transient modes transport perturbations towards the boundary
as before but they get fed in on the other endpoint of the interval through the boundary conditions.
It also explains why convective instabilities may lead to instabilities on bounded domains: if there are
unstable eigenmodes that transport perturbations to the left and other modes that transport to the right,
then these modes may couple through the boundary conditions; even for separated boundary conditions,

this may lead to an instability on bounded intervals; see Example 2 in Section 3.3.

An interesting consequence of these remarks is a characterization of the so-called pseudo-spectrum.
Roughly speaking, for arbitrary small ¢ > 0, the e-pseudo-spectrum of an operator £ on a bounded
domain consists, by definition, of all complex numbers such that the associated resolvent (£ — A)~! has
norm larger than 1/e. It has been used in linear numerical analysis; see, for instance, [44] for more
background information. Our results imply that the pseudo-spectrum on large domains typically inter-
polates between the absolute spectrum X, and the essential spectrum Yegs: for fixed interval length
L, the e-pseudo-spectrum of £ approaches the absolute spectrum as € — 0; on the other hand, for fixed
€ > 0, the pseudo-spectrum converges, as L. — 0o, to an open set whose closure contains the essential
spectrum. See Section 4.4. The reason is that the resolvent on the real line is invertible only in some
exponentially weighted norm. Even though all these norms are equivalent on bounded intervals, their
equivalence constants approach infinity exponentially fast in terms of the interval length. Thus, the norm
of the resolvents also grows exponentially in terms of the interval length. For the constant-coefficient

convection-diffusion operator uz; + cu,, this fact has been established in [34].

It remains to consider the effects of domain truncations on isolated eigenvalues. Again, we have to
distinguish between periodic and separated boundary conditions. In Theorem 2 in Section 4.2, we prove
that eigenvalues persist with their multiplicity under periodic boundary conditions. Furthermore, all
the eigenvalues for the operator on the bounded interval originate from eigenvalues on the real line.
Thus, periodic boundary conditions recover not only the essential spectrum but also the point spectrum

accurately.

The case of separated boundary conditions is again quite different. There are three issues that have
to be dealt with. Firstly, given an isolated eigenvalue on the real line, we may ask for its persistence
when truncating to a bounded interval. Secondly, additional eigenvalues could be created through the
boundary conditions. The third issue is as follows. We have seen that the essential spectrum may shift
upon using exponential weights. In the region between the original and the shifted essential spectrum,

additional eigenvalues may arise. The associated eigenfunctions are bounded in the || - ||, norm that was



used to shift the spectrum but are unbounded in the original L?-norm. It is then possible that these new
eigenvalues, which are often referred to as resonance poles, persist upon domain truncation. The reason
is that the exponential weights do not matter on any bounded interval. All these issues are taken care
of in Theorem 3 in Section 4.3.2. Resonance poles indeed persist under domain truncation in addition to
eigenvalues of the operator in the original L?-norm. Furthermore, it is possible that additional eigenvalues
are created through the boundary conditions, and we give precise conditions on when this phenomenon

occurs and how many eigenvalues are created.

We remark that we do not give asymptotic expansions of isolated eigenvalues in the interval length L
of the underlying bounded interval as . — oo. Such expansions can, however, be obtained using the
approach utilized here; see, for instance, [37] for expansions of eigenvalues for the linearization about a

pulse under periodic boundary conditions.

The main techniques that we use to demonstrate the persistence of eigenvalues are the Evans function [1]
for bounded intervals [19, 21] applied with exponential weights [40]. Domain truncation for the absolute
and essential spectrum are investigated using exponential dichotomies [16, 29, 33, 35]; implicitly, we also
use extensions of the Evans function across the essential spectrum [25]. We emphasize that we prove our
results for A in bounded subsets of the complex plane. Thus, we do not establish resolvent estimates for

large A; in particular examples, such estimates are typically obtained on a case-by-case basis.

Finally, we mention related results. In [8], the persistence of eigenvalues under domain truncation has
been investigated for reaction-diffusion operators under periodic and separated boundary conditions.
The authors also provided error estimates for the dependence of the eigenvalues on the interval length L.
The results established in [8] apply only to eigenvalues that are to the right of the essential spectrum;
resonance poles or the behavior of the essential spectrum itself were not discussed. A general reference

for boundary-value problems is [4].

In addition, there is a tremendous amount of articles in the physics literature where absolute and con-
vective instabilities have been investigated; see, for instance, [3, 43] to name but two. In many of these
articles, absolute and convective instabilities were investigated for the complex Ginzburg-Landau equa-
tion. The results typically characterize the onset to instability by the crossing of a double root of the
dispersion relation through the imaginary axis into the right half-plane. As we already mentioned above,
this criterion is in general not correct even though it gives the right answer in almost all the cases we
are aware of. Our contribution is firstly the correct criterion for instability on large bounded domains
through the notions of remnant and transient instabilities and, secondly, a characterization of the entire
spectrum, and not only of the double roots of the dispersion relation, on bounded domains. This allows
for a comparison of numerical calculations with theoretical predictions. In addition, the systematic use
of exponentially weighted norms allows us to predict the absolute or convective nature of instabilities

including the direction of transport.

This article is organized as follows. The set-up and most of the relevant definitions are given in Section 2.
In Section 3, we introduce the various notions of spectrum that we shall use. The behavior of point
spectrum under domain truncation is discussed in Section 4. Section 5 contains the results for the
essential spectrum. Numerical simulations for the KdV equation and the Gray-Scott model are presented

in Section 6. The last section contains conclusions and a discussion of open problems.

2 Operators, boundary conditions, and exponential dichotomies

In this section, we introduce our precise set-up as well as all necessary definitions that we shall use.



2.1 The coefficient matrix

Throughout this article, we assume that A(z;\) € RYXY is a matrix-valued function of (z,\) € R x C
of the form

Ax; A) = A(x) + AB(=).

Most of our results are valid for more general A(xz; A); we note, however, that eigenvalue problems arising
from evolutionary equations are typically of the above type. We assume that A(xz; A) satisfies the following

hypothesis.

Hypothesis 1 The matrices A(z;\) € RV*N are smooth in x € R and analytic in A € C. Furthermore,

the following conditions are met.

e Asymptotically constant coefficients. There are positive constants K and @, independent of v and

A, and matrices Ay (A) that depend analytically on A\ such that
1A A) — Ax (V)] < Ke~¥ll
as x — +oo.

o Well-posedness. There is a number p > 0 and an inleger i € N such that, for all X with Re X > p,
the asymptotic matrices Ay (X) are hyperbolic (i.e. they have no spectrum on iR ), and the dimension

of their generalized unstable eigenspaces is equal to 1.

The second condition above is satisfied for eigenvalue problems that arise from evolution equations. It

guarantees that the essential spectrum is to the left of the line Re A = p for some finite number p.

We emphasize that most of our results hold in more generality; for instance, it suffices that A(z; ) is

asymptotically periodic in x.

Throughout this paper, we label eigenvalues of Ay (A) according to their real part, and repeated with
their multiplicity, i.e.

RevE(A) > RevE(A) > ... > Revi_ (A) > Rev(N). (2.1)
In particular, choose A so that Re A is large. Using Hypothesis 1(ii), we see that
RevE(\) >...> Reyio(/\) >0> Reyio_l_l(/\) > ... >Rervi()).

We refer to A and I/]:»t as the temporal and spatial eigenvalues, respectively. For every fixed temporal

eigenvalue A, the spatial eigenvalues I/]:»t are the roots of the characteristic polynomials

di (v, A) = det[y — AL (N)]
of Ax(A). The dependence between spatial and temporal eigenvalues is commonly referred to as the
dispersion relation, where w = —iA is considered as a function of k& = iv.
2.2 The operator on the real line

On the unbounded real line R, we consider the family 7 of linear operators

T« HY (R, V) — L*R, ),  ur— — —A(;Nu (2.2)

X



for A € C, where H' is the usual Sobolev space of L?-functions that have a weak derivative which is in
L2,
As mentioned in the introduction, it is often convenient to consider the operators 7 (A) on exponentially

weighted function spaces; see [40, 31]. Thus, for arbitrary n = (n_,n4) € R? we set

0 00
ME, = n-£12 4 n+€)2
WOl = [ w@e-tPaes [ e ac
Ol = O+l ()l

We may then consider the operator
TN« Hy(R,CV) — LR, CY), v = Al ). (2.3)
For any function v defined on R, let

e"-%y(x) for x<0

e y(z) for x> 0.

(Jyv)(2) = {
The maps
JH:H$—>H1, v Jyv and Jn:Li—>L2, v Jyv
are then linear isomorphism, and the operator 77(A) can be written as

du

TN - HY (R, ) — LR, V), U — a—A(g/\)u—n()u, (2.4)
where
n— for =<0
= 2.
n(x) { nyg for =z >0. (2:5)

Indeed, we have
TN = T

In the following, we omit the tilde and denote both operators by 77(A).

2.3 The operators on the bounded interval (-1, )

Alternatively, we could consider the operators on the bounded interval (—L, L) for large numbers L. In
this case, we introduce boundary conditions at the endpoints of the interval. For periodic boundary

conditions, a suitable function space 1s

Hy ((_L’L)’CN) = Hl((_L’L)’CN) NA{y; u(_L) = U(L)},

per

and we consider the operator

TN - HE (=L, L),CY) — L*((~L, L), CN), ur— — — A A)u. (2.6)

per dx

Separated boundary conditions can be realized by choosing appropriate subspaces @4 and @_ of CV.
We assume that these subspaces satisfy the following hypothesis.

Hypothesis 2 (Separated boundary conditions) We assume that
dimQ_ =i, dim@Qs =N — iy

where the asymptotic Morse index i, has been introduced in Hypothesis 1.



The correct function space for separated boundary conditions is then given by
Hslep((_L’ L)a CN) = Hl((_La L), CN) N {u; u(—L) € Q- and U(L) €Qq+},
and we are interested in the operator

TrP(\) » HL (=L, L),CN) — L*((~L, L),C"), ur— — — A A)u. (2.7)

sep dx

Example 1 Consider the convection-diffusion problem U; = U, + cU, together with the associated

eigenvalue problem AU = U, + cU,. Upon writing the eigenvalue problem as a first-order system, we

see that V = 2 and
- 0 1 0 0 R
A= , B = , A(x; ) = A+ AB (2.8)
0 —c 1 0

so that u = (uy,us)? = (U,U;)T € R% Dirichlet and Neumann boundary conditions are given by
U(£L) =0 and U,(£L) = 0, respectively, and can be realized using the subspaces QP = span{(0,1)7}
and QY = span{(1,0)7}. ]

Note that, for separated boundary conditions, the integer io, is singled out as the number of boundary
conditions at the right endpoint of the interval (=L, L); observe that the number of boundary conditions
at x = &L 1s the codimension of Q}1. Furthermore, we emphasize that exponential weights do not affect

separated boundary conditions but that they change periodic boundary conditions.

2.4 Exponential dichotomies

The main tool that we use below to investigate the spectral properties of the family 7 are exponential

dichotomies of the associated ordinary differential equation

d
d—u:A(x;/\)u (2.9)

X

for u e CN.

Definition 2.1 (Exponential dichotomies) Let [ = Rt R~ or R, and fir \. € C. We say that (2.9),
with A = A« fized, has an exponential dichotomy on I if there exist positive constants K, k5 and k" and

a family of projections P(z) defined and continuous for @ € I such that the following is true.

o For any fired y € I and ug € CV, there erists a solution ¢*(x,y)ug of (2.9) with initial value
(v, y)ug = P(y)uo for x =y, and we have

" (2, y)| < K™l
forallx >y with x,y € I.

o For any fired y € I and ug € CN, there exists a solution ¢"(x,y)ug of (2.9) with initial value
My, y)ug = (1 — P(y))ug for x =y, and we have

" (2, y)| < K™l

forallx <y withz,y € I.



e The solutions ¢°(x,y)ug and ©" (x, y)ug satisfy

(2, y)ug € R(P(z)) foral >y withe,yel
Mz, y)ug € N(P(2))  forall w<ywithz,yel.

The (z-independent) dimension of N(P(x)) is referred to as the Morse index i(A\.) of the exponential
dichotomy on I. If (2.9) has exponential dichotomies on R and on R™, the associated Morse indices
are denoted by iy () and i_ (X)), respectively.

The existence of exponential dichotomies of (2.9) is related to hyperbolicity of the asymptotic matrices
Ay (A); recall that A(z; A) converges to Ay (A) as @ — Foo. If AL (A) is hyperbolic, then we denote by
E}"(N) the associated stable and unstable eigenspaces. Furthermore, we denote the spectral projections

of Ag (M) associated with the stable and unstable eigenvalues by P§(A) and P} ()), respectively.

Statement 1 (Coppel [16]) Fiz A. € C. Equation (2.9) has an exponential dichotomy on RY if, and
only if, the matriz Ay (L) is hyperbolic. In this case, the Morse index iy (\.) is equal to the dimension
dim Y () of the generalized unstable eigenspace of Ay (N.). The same statements are true on R~ with
Ay (AL) replaced by A_(AL).

Finally, (2.9) has an exponential dichotomy on R if, and only if, it has exponential dichotomies on BT
and R~ with projections Py (x) so that R(P1(0)) @ N(P_(0)) = CV; this requires in particular that the
Morse indices iy (M) and i_(\.) are equal.

In fact, we can say more about the asymptotic behavior of exponential dichotomies and their dependence
on A. We denote by ¢(x, y; A) the evolution operator to (2.9) with initial time y. Recall that we ordered
the eigenvalues I/]:»t(/\) of AL (N); see (2.1). Let Us(As) be the ball in € with center A, and radius 4.

Theorem 1 ([16, 35, 33]) Fiz A, € C and assume that Ay (\.) is hyperbolic. There are then numbers
k%, KL and § >0 so that, with iy =iy (A),

Rewf(\) > i} > 0> =y > Revy, (),

for all X € Us(Ay). Furthermore, there is a K > 1 so that, for every A € Us(A.), there are evolution
operators ¢S (x,y; \) and Y (x,y; \), defined for x,y > 0 and analytic in X, such that, for x,y € RT,

ox, 1, A) = @5 (x50 + 94 (2,4, A)
S (x,y; A < Ke #3le—yl T >
||SD+( » Ys )H = ol Y,
I (2, y; M| < Kemrdle=vl y >,
Y(x,x; A) — PY(A < K(e fl#l 4 emo+lely
Y+ + =

where 0 appeared in Hypothesis 1 and oy = k% +kY 15 a lower bound for the gap, in the real part, between
the stable and unstable spectral sets of Ay (A).

The matrices % (x,2;\) and @Y (x,2;\) are complementary projections, and we define the subspaces
ES (x5 0) = R(#% (z,2;A)) of dimenfion N —iy and EY (x; A) = R(¢Y. (%, x; X)) of dimension iy.. For any
subspace I of CN with EX (Mo B = CN | there is a constant C' such that

dist(p(z, 0; N E, BL (V) < C(e~ 1ol pemo+lely 2 >0,

where B} (A) = R(P}(A)). (We refer to Section 4.1 for a definition of the distance between subspaces).

Finally, ¢ (x,y; ) and ¢4 (,y; A) are unique up to the choice of EY(0;\): any other analytic choice
of a complement of E5 (0;\) leads to evolution operators with the above properties. Furthermore, these

evolution operators are exponential dichotomies in the sense of Definition 2.1.



The same statements are true on R~ with Ay (A) replaced by A_(X). Furthermore, if (2.9} has an
exponential dichotomy on R, then the operators defined above can be chosen to be analytic in A for all

z,y € R.
Proof. The proofs can be found in [35, Section 1.1] and [33, Sections 2.2 and 3.4]. ]

Remark 2.1 We emphasize that the above results can be extended to the case where the asymptotic
matriz Ay (A) has also spectrum on the imaginary azis. The evolution operator can then be written as
the sum o(x,y; M) = 5 (2, 43 A) + 05 (2, 4, A) + @' (2, 5 A) of evolution operators that depend analytically

on X. The operators @5 and @Y satisfy the same estimates as before, while we have in addition
1% (@, g M| < Kemsl=vl oz y >0

for fizred 0 < kS < min{k% , kY }. This statement can be proved by applying Theorem 1 twice to (2.9) with
A replaced by A+n forn >0 and n < 0 close to zero, respectively. We omat the details and instead refer
to [38].

The following theorem proved by Palmer relates Fredholm properties of the operator 7 (A) to properties

pertaining to the existence of dichotomies of (2.9).

Statement 2 (Palmer [29, 30]) Fiz A € C. If (2.9) has exponential dichotomies on RT and R~ then
T(A) is Fredholm with index i_(X) — iy (X). Conversely, if T(X) is Fredholm, then (2.9) has exponential
dichotomies on Rt and R~ with associated Morse indices i (X\) and i_()), respectively, and the difference
i—(A) — it (A) is the Fredholm index of T(X). Finally, T(A) is invertible if, and only if, (2.9) has an
exponential dichotomy on R. If T 1s invertible, we denole by i = iy = i_ the spalial Morse index of T
that is given by the dimension dim E¥(0; \) of the unstable subspace E"(0; ) of the associated dichotomy.

As a consequence of Statement 2 and the above discussion, 77(A) is Fredholm if, and only if, the matrices
Ay (A) + na are both hyperbolic. The Fredholm index is then given by the difference of the dimensions
of the generalized unstable eigenspaces of Ay (A) + 4.

3 Spectra on the unbounded real line

3.1 Point and essential spectrum

We consider the family of operators 7 with parameter A. The spectrum of the operator 7 (A) for fixed A

is of no interest to us; instead, we consider the so-called B-spectrum, see [23, Ch. IV], of % — 121(9:)

Definition 3.2 (Spectrum) We say that A is in the spectrum ¥ of T if T () is not invertible. We say
that A € X is in the point spectrum Xp; of T, or alternatively that A € ¥ is an eigenvalue of T, if T(A)

is a Fredholm operator with index zero. The complement £\ Xy =: Xegs is called the essential spectrum.

Example 1 (continued) We decompose A(z;A) = A4 AB as in (2.8). The spectrum of T then

coincides with the spectrum of the associated elliptic differential operator £ = % + c%. [ |

In particular, A ¢ Y if, and only if, (2.9) has exponential dichotomies on RT and on R~ with equal
Morse index. The essential spectrum is determined by the asymptotic matrices Ay (A): T(A) is Fredholm
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if, and only if, the spectra of Ay (A) and A_()) are disjoint from the imaginary axis; the Morse indices
i1 (A) are given by the dimensions of the unstable eigenspaces of Ay (A).

For any A in the point spectrum, we define the multiplicity of A as follows. Recall that A(xz; A) is of the

form A(z; A) = A(z) + AB(x). Suppose that A is in the point spectrum of 7, where

d -
TO) = L — () = AB(z).
so that N(7 (X)) = span{ui(x)}. We say that A has multiplicity ¢ if there are functions wu;(z) for

j=2,...,0s0 that
d

= s
da

for 7 = 2,..., ¢ but no solution to

(A(x) + AB(2))uj + B(x)u;-,

%u — (A(z) + AB(2))u + B(e)us.

Here, we assumed that the functions u; belong to the same function space that may include boundary
conditions. Finally, we say that an arbitrary eigenvalue A of 7 has multiplicity ¢ if the sum of the

multiplicities of a maximal set of linearly independent elements in N(7(A)) is equal to £.

Next, we discuss stability in exponentially weighted spaces. Choose A to the right of the essential
spectrum. As before, we label eigenvalues of Ay (A) according to their real part and repeated with their

multiplicity. For any A to the right of the essential spectrum, we then have

Rev® (A)>0> Reyio_l_l(/\)

Too
due to Hypothesis 1(ii). These inequalities are satisfied upon varying A until A touches the boundary of the
essential spectrum where at least one of these eigenvalues crosses the imaginary axis. Using exponential
weights n = (n—,n4) has the effect of replacing the matrices Ag(A) by AL (A) + na. Thus, A is to the
right of the essential spectrum of 7" provided the eigenvalues of Ay () satisfy

RevE (A) > —ns > RevE L ().

ioo

We give several different notions of stability, and begin with spectral stability.

Definition 3.3 (Spectral stability) We say that T is stable if ¥ is contained in the open left half-
plane. We say that T s unstable if part of its spectrum X lies in the closed right half-plane.

The next definition measures stability up to exponential weights. We restrict the allowed set of exponential
weights to make them compatible with the asymptotic behavior of spatial eigenvalues for large A > 0 as

expressed in Hypothesis 1(ii).

Definition 3.4 (Transient and remnant instability) Suppose that Xess is not contained in the open
left half-plane. We then say that T is transiently unstable if there are exponential weights n(X) such that
T”(A)(/\) 1s wnvertible with spatial Morse index i for every A in the closed right half-plane; we say that

T is remnantly unstable if it is not transiently unstable.

We refer to Statement 2 in Section 2.4 for the definition of the spatial Morse index.
We emphasize that the weight 7 that we use to invert 77 (A\) may depend upon A; in other words, we do

not require that the spectrum of 77 lies in the open left half-plane for some choice of 7.

Note that, despite its name, we really consider a transient instability as some kind of stability: if a wave
is transiently unstable, it is stable in an exponentially weighted norm. In such a norm, unstable modes

that travel sufficiently fast in one preferred direction are considered to be stable.
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In Section 3.3, we shall compare transient instabilities with convective instabilities. Convective insta-
bilities are related to the absence, in the right half-plane, of temporal eigenvalues A that correspond
to certain spatial double roots v of the dispersion relation di(A,v) = 0; this latter condition typically

implies pointwise stability.

Example 1 (continued) Without exponential weights, we have

0 1
Ay = A_ =
(1)

and the associated eigenvalues v satisfy v? +cv — A =0, ie. 1o = —§ & «/% + A. Therefore, v € iR

2
if, and only if, A = —k? + ick for some k € R; by the arguments above, this gives the essential spectrum
Yess = {—k? +ick; k € R} with “eigenfunctions” e*7(1,ik)T. Using weights induced by ny = n_ = 7, the
essential spectrum is shifted to A = —k” 4 n(n— ¢) 4+ ik(c — 2n) with “eigenfunctions” e(*=me (1 ik —n)T.
This curve is shifted furthest to the left if n? —nc is minimal. Thus, = ¢/2 gives the optimal weight, and
we have Re A < —c?/4. This corresponds to the point where the characteristic polynomial v% +cv — A has
a double root in the complex plane. Note that the convection term cu, with ¢ positive has the effect that
localized initial conditions travel to the left. Exponential weights with 5 positive are compatible with
such temporal behavior as these weights penalize solutions that travel to the right and favor solutions

that travel to the left. ]

Finally, we remark that the point spectrum is often defined as the set of all isolated eigenvalues with
finite multiplicity, 1.e., as the set ipt of those A for which 7(A) is Fredholm with index zero, the null
space of 7 (A) is non-trivial, and T(:\) is invertible for all A in a small neighborhood of A.

The sets Xy and ipt differ in the following way. The set of A for which 7(X) is Fredholm with index zero
is open. Take a connected component C of this set, then the following alternative holds. Either 7(A) is
invertible for all but a discrete set of elements in C, or else T(A) has a non-trivial null space for all A € C.

We assume that the latter case does not occur.
Hypothesis 3 (Isolated Eigenvalues) Eigenvalues in C\ Xegs are isolated with finite multiplicity.

In the connected component of C\ Xeg that contains large positive real numbers, eigenvalues are typically

isolated; see, for instance, [1] for the relevant argument.

3.2 Absolute spectrum

On bounded domains with separated boundary conditions, it is not the essential spectrum but what we
call the absolute spectrum that is important. We remark that the absolute spectrum is not a “spectrum”
in that it is not defined as the set of complex numbers for which a certain operator is not invertible;

nevertheless, the absolute spectrum gives information about the spectra of certain operators.

Definition 3.5 (Absolute spectrum) The subset E:bs of C consists exactly of those X for which
Re I/Z»to(/\) = Re 1/{';0_'_1(/\). Analogously, X is in X3, if, and only if, Rev; (A) = Rev;_,,(A). Finally,

we say that X is in the absolute spectrum Yans of T if X is in E:bs or in X (or in both).

In other words, if A € X.ps, then there are numbers ni such that Re I/Z»:l;(/\) > —n+ > Re Vzt+1(/\)'
In particular, if we ignore point spectrum, then 7 is transiently unstable if, and only if, its absolute

spectrum 1is contained in the open left half-plane.
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In particular, for constant-coefficient matrices A(z; A) = Ao (), we have that 7 is transiently unstable

if, and only if, its absolute but not its essential spectrum is contained in the open left half-plane.

Example 1 (continued) Recall that

0 1
Ap=A = .

with spatial eigenvalues v » = —%:I:« / % + A. Thus, we have Xgps = (—o0, —%] since then Revy = Revs.
In particular, we have Yegs # Xaps except when ¢ = 0. The absolute eigenmodes for the absolute spectrum
are e(_c/z‘Hk)x(l, —c/2+1k)T where k € R. Growing exponentially as @ — —co, they reflect the transport

to the left that is induced by the linear drift term cu,. [ |

Typically, we expect that Yaps # Yess. One exception are reversible systems that admit a symmetry
z +— —z. In this case, whenever a spatial eigenvalue crosses from right to left, then, by symmetry,
another spatial eigenvalue crosses simultaneously from left to right. Thus, for reversible systems, we
expect that Yaps = Yess. An example is the diffusion operator ug, without convection; see Example 1

above with ¢ = 0.

3.3 Convective instability and pointwise decay

Convective instability is defined as follows. As before, we label the eigenvalues of Ay(A) according to

their real part so that
RevE(\) > ... > Reyio(/\) > Reyio_l_l(/\) > ...>Rervi()).

We denote by pq, the largest real number such that there exists a A, € C with Re Ax = pqp, so that
I/»to(/\*) = 1/{';0_'_1(/\*) or I/Z»;(/\*) = I/Z»;_H(/\*). Note that A, always corresponds to a spatial double root

K3

v of one of the dispersion relations dy (A, ) = 0 (recall that replacing A = iw and v = —ik with spatio-

wt—kx)

temporal behavior el( gives the standard form of the linear dispersion relation at the asymptotic

dx
T dv
involve the spatial eigenvalues with index ., and iy + 1, is often called the pinching condition; see [9].

states, with group velocity i—‘g = ). The above criterion on the double root, namely that is has to

Definition 3.6 (Convective and absolute instability) Suppose thal Y.s is not contained in the
open left half-plane. We then say that T 1is convectively unstable if pq, < 0, while we say that T 1s
absolutely unstable if pa, > 0.

We shall see below that convective instability sometimes implies pointwise stability: perturbations grow
in function space but decay pointwise for each fixed z. In other words, they are convected away. The
different spectra that we used as well as their characterization in terms of the asymptotic matrices are

illustrated in Figure 2.

The next example demonstrates that, even for constant matrices A(A), the operator may be remnantly
unstable but not absolutely unstable: this means that, even though there are no double spatial eigenvalues
for A in the closed right half-plane, we cannot move the temporal spectrum into the left half-plane by

using exponential weights.

Example 2 Consider the operator £

()= Corsrprn o) (3.1)
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Figure 2: A schematic picture of the various spectra that we defined and their relationship to the spatial spectra
of the matrix A4 (A) = A_(X) that we plotted as inlets. The essential spectrum of 77 is denoted by X; the
dotted line in the spatial spectra consists of all spatial complex numbers with real part —n. The two circles in

the absolute spectrum mark the temporal eigenvalues that correspond to spatial double roots.

as well as the associated eigenvalue problem

0:U1 = AU
—(02 4 1)?Usy — 0, U AUs.

Eigenvalues v of the spatial dynamics solve the characteristic equation
(v =N+ 1) +v+2)=0.

Double roots occur if v is a double root of one of the factors or if the roots of the two factors coincide.
It is not hard to verify that all double roots that arise as collisions of unstable eigenvalues v and stable
eigenvalues vs occur at values of A in the open left half-plane; see Figure 3. On the other hand, the
essential spectrum cannot be pushed into the open left half-plane by means of exponential weights since
the different signs of the transport terms in the two components of £ would always lead to an instability
in one of the two components. Therefore, adding eU/; to the first component of £ and el; to the
second produces an instability which, for € > 0 sufficiently small, does not disappear when introducing
exponential weights even though all relevant spatial double roots occur for A in the open left half-plane.
As we shall see below, this instability is also present on any large bounded interval provided we couple the
two components appropriately through the boundary conditions; in fact, generic choices of the boundary

conditions will produce such an instability. [ |

Example 3 The same phenomenon can be observed in a Turing-Hopf instability of a reaction-diffusion
system provided a small drift term is added to destroy the reflection symmetry. In a Turing-Hopf
instability, the first unstable modes are travelling waves of the form sin(wt — kx) and sin(wt + kz) with
non-zero k and w. One of these modes travels to the left, the other one to the right. The superposition of
these waves is a standing wave sin(wt) cos(kx) that corresponds to a double root in the dispersion relation;
in other words, the most unstable eigenmodes have zero group velocity. Adding a linear drift term cu,
to the equation transforms these eigenmodes into sin(wt — (k — ¢)x) and sin(wt + (k + ¢)), respectively,

which have non-zero group velocity. The spatial eigenvalues +i(k — ¢) and +i(k 4 ¢) are non-resonant,
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Figure 3: The thick curves correspond to the essential spectrum of the operator (3.1) while the inlets represent
the spatial spectra in the different regions. The two spectral curves intersect at A = 1. At this point, the spatial
eigenvalues on the imaginary axis are 1 =1 and 2 = —i which are not equal. Hence, there are no double spatial

eigenvalues v for A on (or to the right of) the imaginary axis, even though A =i is in the absolute spectrum.

and the system 1s therefore convectively unstable. On the other hand, the presence of waves that travel
to the left and to the right shows that the instability cannot be suppressed in exponentially weighted

spaces; hence, the operator is not transiently unstable. [ |

We conclude this chapter with a brief digression on pointwise stability; we refer to [9] for more details and
references regarding this topic. Suppose that 7 (A) is invertible so that (2.9) has an exponential dichotomy
on R with evolution operators ¢"*(z, y; A). We can then construct the Green’s function G(z,y; A) of the

operator T (A) in the following fashion. The solution of T (A)u = h is given explicitly by

u(z) = / Gl y: Mh(y) dy

where

—p ()
Glz,y;A) = Sps(x’yf N
Oz, y;A)  for x>y

Using the Green’s function, the solution of the linear initial-value problem of
Jpu — A(x;0)u=0 (3.2)
can be constructed via Laplace transform in ¢. Recall that A(z; A) is given by
A(w; \) = A(x) + AB(x),

and define )
u(a:,t):—r/eM/G(x,y;/\)B(y)uo(y)dyd/\
Tl T R’

where the contour I is to the right of X; the precise shape of I' depends on the type of the problem. For
parabolic problems, I' can be chosen to include a sector of the left A-half-plane; for hyperbolic problems,
I is a vertical line, and the integral is understood to be the principal value. Under reasonable convergence
assumptions, and under certain compatibility conditions on ug(x), the function u(x,t) then satisfies the
PDE (3.2) with initial data u(z,0) = ug(z).

If the contour I' can be deformed continuously into a contour that is contained in the left half-plane
without changing the value of the integral, the zero-solution is pointwise stable. This follows, for instance,

from the Riemann-Lebesgue Lemma:

1
a0 < 5

//eith(x,y;iw)B(y)uo(y)dwdy —0
EJR
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as t — oo.

To deform the contour, we need analyticity of G in A for A in the right complex half-plane and suitable
decay estimates for large values of A. Typically, stability, or at least convective instability of the essential
spectrum, is necessary for analyticity of G in A, since multiple eigenvalues typically create branch points
of . Sufficient conditions are given by convective instability together with the absence of embedded
point spectrum. However, an additional condition, known as the Gap Lemma, is needed in order to be
able to continue the Green’s function into regions where hyperbolicity (and exponential dichotomies) is
lacking. Roughly speaking, the Gap Lemmastates that analytic continuation is possible if the exponential
convergence of the coefficients of A(z;A) is faster than the lack of hyperbolicity that is created by the
unstable and stable part of the overlapping spectrum of Ay (A); see [22, 25]. Necessary and sufficient

conditions do not seem to be known.

4 Persistence of isolated eigenvalues and resonance poles with

finite multiplicity

In this section, we begin our investigation of the spectrum of 7z on the bounded interval (—L, L); see
(2.6) and (2.7). The goal is to characterize the spectra of 7z for large values of L. Before we continue,

we point out that Fredholm properties no longer classify the spectrum.

Lemma 4.1 The operators Tr(A) on the bounded interval (—L, L) with periodic or separated boundary

conditions are Fredholm with index zero for all X.

Proof. This can be readily seen by considering 77 (A) as a compact perturbation of % with periodic or

separated boundary conditions. [ |

Hence, it suffices to locate eigenvalues of 7;. We begin by studying the persistence of eigenvalues and
resonance poles under domain truncation. In addition, we show that separated boundary conditions can

sometimes generate additional eigenvalues on (-1, L).

Our strategy is to use various versions of the Evans function. Each Evans function is designed to track
isolated eigenvalues with finite multiplicity of one of the operators that we are interested in. We shall
then show that the Evans functions defined for bounded intervals are small perturbations of the Evans
function that is associated with the entire real line. Since all these functions are analytic, we can then

conclude that eigenvalues persist with their multiplicity.

Throughout the remainder of this paper, we denote by Us(As) the ball in C with center A. and radius J.

4.1 Evans functions

Let E+()\) be two subspaces of CV that depend analytically on A such that n_ + ny = N where

ny := dim Fy (A) is independent of A. Choose vectors vfc(/\), cen v?fi(/\) such that

Ex(\) =span{vi()),...,vE (V)}

» Yng

and v;t(/\) is analytic in A for all j; this is possible due to [26, Ch. 11.4.2]. We then define
E_(A)AEL(A) :=det[v7 (A), ..., v, (A),v(N),. .., v;i'Jr(/\)] e C.

Note that this function is analytic in A. In addition, its zeros and the order of its zeros do not depend
on the choice of the bases; in fact, any two such functions differ by a product with a non-zero analytic

complex-valued function. In this sense, the function depends only on the two subspaces.
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Remark 4.2 We shall often use the following argument: if E1(\) and E2()\) are two subspaces of CV that
depend analytically on A € Uss(As) so that dim E1(A)+dim E2(X) = N, then either dim(E1(A)N E2(A)) >
0 for all X € Uss(Ai) or else Ey(A) @ E2(A\) = CV for all A € Us(A.) except for at most finitely many
A € Us(As). This statement follows immediately from analyticity of the determinant E1(A) A Ea(A) in
A € Uas(As).

The following remark, which will be used repeatedly below, shows that the dependence of D on the
subspaces /4 1s continuous in an appropriate sense: we say that two k-dimensional subspaces E and E

of CN are e-close provided |e — é| < ¢ for all unit vectors ¢ € E and é € E.

Remark 4.3 Suppose that, for some A, € C,
DO = E-(A) A B4 (A) = (A = A)’ + O(A = A1)

for some £ > 0. Suppose that Ei(/\) and Ey(A) are e-close to each other, with € sufficiently small,
uniformly for all X near \.. By Rouché’s theorem, we then have that

D) = E_(A) A E4())

has £ zeros (counted with multiplicity) near M., and these zeros are et close to \,.

Assume that D()) is an analytic function. We denote by ord(A., D) the order of A. as a zero of D(A). If
the order is finite, then it is equal to the winding number of D(A) about any sufficiently small circle in C
that 1s centered at A..

4.2 Periodic boundary conditions

We begin by investigating the behavior of eigenvalues under domain truncation for periodic boundary
conditions. We demonstrate that eigenvalues persist with their multiplicity without any additional as-

sumptions and that no additional eigenvalues are created.
Throughout this section, we assume that AL (A) are equal to each other, and denote Ay (A) = Ag(A).

Our proofs are based upon the Evans function. Eigenvalues of 7 can be found by seeking bounded

solutions to

u' = A(z; Mu. (4.1)

For A ¢ Yes, the asymptotic matrix Ag(A) is hyperbolic. Equation (4.1) then has exponential dichotomies
on Rt and R~, and we denote the associated z-dependent stable and unstable subspaces defined for
r€RT and 2z € R~ by EY"(x;A) and E>"(x; \), respectively; see Section 2.4. Thus, for every A ¢ Y,

we can define the Evans function
Do (A) = EXL(0; A) A Ej_(O; A). (4.2)

Note that the dimension of the subspaces that appear in the wedge products in (4.2) add up to N due
to the assumption on A. It has been proved in [1, 20] that ord(A., Do) is equal to the multiplicity of A,

as an eigenvalue of 7.

Next, for every A ¢ g, we define
Dper(A) = det[p(0, —L; A) — (0, L; A)], (4.3)

where @(x,y; A) is the A-dependent linear evolution operator to (4.1) with initial time y. It has been
proved in [18] that A, is an eigenvalue of 77" with multiplicity £ if, and only if, A, is a zero of Dper ()
of order /.

17



Theorem 2 (Periodic boundary conditions) Assume that M. ¢ Yegs and that ord(As, Deo) = £ for
some £ > 0. For every small § > 0, there is then an L, > 0 such that T has precisely { eigenvalues
(counted with multiplicity) in the §-neighborhood Us(A) of Ax in C for every L > L.. For { > 0, these
eigenvalues are e~ 2%L/¢ _close to Ay for all L > L.. Here, k = min{x", K%} is the distance of the spectrum

of Ao(As) from the imaginary axis.

The statement regarding the persistence of eigenvalues with their multiplicity has been proved first in [19]
using a topological construction that involved Chern numbers. For the sake of completeness, we include a
shorter proof that illustrates in addition that the eigenvalues on the unbounded and the bounded interval

are exponentially close; see also [8].

Proof. The strategy is to show that Do, () and Dper(A) are e~ 28L_cloge to each other for all A close to
Ax. Recall that
Dper(A) = det[p(0, —=L; A) — (0, L; A)].

Since As ¢ Yo, the matrices Ag(A) are hyperbolic for A close to A, and we denote their stable and
unstable eigenspaces by E&(A) and Ef(A), respectively. Let ip = dim Ef (As). Recall that E" (z; A) and

E% (2; M) consist of precisely those solutions to
u' = A(z; Nu

that converge to zero as # — —oo and # — oo, respectively. The Evans function D, (A) measures non-
trivial intersections of these subspaces evaluated at # = 0; see (4.2) and Section 4.1. To capture these
and {v;" () izig41,....v of E2(052)

intersections, if they exist, we choose analytic bases {v; (A)}iz1, g

and F5 (0; A), respectively.
We shall use that, due to Theorem 1, the spaces E}"(L;A) and E>"(—L;\) are e=fL_close to EZ"(N)
where 0 = min{0, x* + £"}.
For every i with 1 < i < g, there are then unique vectors w} (\) € EY(L;A) and w; () € E®(—L; A)
such that

(=L, 0:0)v7 (A) = wi (A) = wi (V),

since Ky (L;A) and E® (—L; ) are e~9L close to E§(A) and Ej(A), respectively, (see above), and since
the direct sum of the latter two spaces is CV. Since EY(—L;}) is also e"%L-close to EY()), see again

above, we have
lwf (V)] < le(=L,0; N7 (M), wi (V)] < e (=L, 0; A)vy (A)]-

We conclude that wi (A) is of the order e™*"L  while w; (A) is of the order e~ (4" Finally, for
1 <@ <1g, we define
ui(A) = wi (A) = (=L, 0 A) vy (A) + wi (V).

Analogously, for indices i with iy + 1 < i < N, there are unique vectors w(A) € EY(L; A) and w; () €
E® (=L; A) such that
ui(A) = —wi (A) = —(L,0;\)of (A) — wi ().

For i + 1 < i < N, the vectors w; (\) are of the order e™*'L  while w (}) is of the order e~ (0+r7)L
Using the estimates above and the definition of vfc(/\), it is not hard to verify that the vectors u;(A) with
1 < i< N form a basis of C. We conclude that

(QD(O, _L; /\) - QD(O, L; /\))ul(/\) =
_ om0+ 000, =L Vw (4) = (0, L AwF (V) 1< i<
L at ) + (0, Ly wit (A) — (0, —L; Aw; (A) iv+1<i<N

K3

)+
)+
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where the terms involving w(\) are of the order e=2 with x = min{x", x*}. On the other hand, we

have
Deoo(A) = det[v] (A), ..., v; (A), U;I:)+1(/\)’ vk (V]

y Y4

Invoking Remark 4.3 then proves the statement. ]

Upon using the results in [24], it follows from [36] that the rate of convergence in the above theorem is

optimal.

4.3 Separated boundary conditions

In this section, we investigate the behavior of eigenvalues under domain truncation for separated boundary

conditions.

4.3.1 The set-up

Throughout this section, we fix an element A, that does not belong to the absolute spectrum X,s. Since
As is not in the absolute spectrum, we find weights n = (n_, n4) such that the eigenvalues I/]:»t(/\) of Ay (A)
satisfy

Re I/Z»:l;(/\) > —nt > Re I/Z»ﬂ;_l_l(/\)
for all A in a small d.-neighborhood Us, (A«) of Ax with Us, (Ax) N Xaps = 0. We fix these weights from
now on and vary A in the Us, (As). In particular, the operator 77(A) is Fredholm with index zero for
any such A, and the associated asymptotic Morse indices are both equal to i.,. We then consider the

equation

d
== (Al ) + (@), (1.4)
where n(x) = ny for # > 0 and n(z) = n- for # < 0; see (2.5).

Notation. Any quantity that refers to the weighted equation (4.4) has a superscript ™.

Thus, the evolution operator of (4.4) is denoted by @(x,y; A). The asymptotic matrices Ay (A) + ni are
hyperbolic, and we denote by ch’u(/\) their stable and unstable subspaces. Also, by hyperbolicity of the
asymptotic matrices Ax(A) 4+ 1+, (4.4) has exponential dichotomies on R¥ with z-dependent stable and

unstable subspaces Elu(x; A), and we can construct an analytic Evans function for 77 by

Do (A) = E™(0; \) A ES(0; \)

for A € Us, (A+). We also define

Dyep(A) = 00, =L; N)Q- A0, L; \)Q4
D_(\) = Q_AE*()) (4.5)
Di(N) = Qi AEL(N.

Note that the dimension of the subspaces that appear in the wedge products in (4.5) add up to N due

to the assumption on A. This is the set-up that we use below.

We point out that the Evans function Dse, does not depend upon the choice of the weight. Indeed,
solutions u(z) to the original equation (4.1) and v(x) to (4.4) only differ by multiplication by the scalar
") Thus, the direction of solutions is not changed, and, in particular, the z-evolution of subspaces is

independent of the weight.
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We briefly comment on the dependence of the other Evans functions on the choice of our weight. Through
the separated boundary conditions, a canonical dimension, namely i.,, 1s selected via the number of
boundary conditions at the endpoints of the interval; see Hypothesis 2. The relevant information that
we require is a spectral decomposition of the spatial spectrum Y1 of the original asymptotic matrices
A1 (X) into two spectral sets T3" which is induced by a gap in the real part (that is, the spectral sets
T%" are such that Revi < Rev} for any two elements 5 € Y5 and v} € T4 ); most importantly, the
associated generalized “stable” and “unstable” eigenspaces have dimension ¢, and N — i, respectively.
One way of obtaining these eigenspaces is by introducing a weight so that the spectral decomposition is
given by eigenvalues with negative and positive real part. Afterwards, this decomposition i1s extended
dynamically to #-dependent subspaces of (4.4), and the resulting subspaces are then used to construct an
Evans function. Again, weights allow us to construct these z-dependent subspaces by using exponential
dichotomies. None of these constructions, however, depends really upon the weights: what we require
is that we can distinguish solutions by their growth or decay rate (corresponding to the spectral gap)
and that the spaces of initial data leading to these solutions have the correct dimension, namely the one
selected by the boundary conditions. As we already mentioned, the z-evolution of subspaces does not

depend on the weight.

4.3.2 The persistence and generation of eigenvalues and resonance poles

We discuss the persistence of eigenvalues under domain truncation as well as the potential generation
of additional eigenvalues through the boundary conditions. Throughout this section, we use the set-up

itroduced in Section 4.3.1 above.

Eigenvalues of TLsep can be found as zeros of the function Deep(A).

Lemma 4.2 ([21]) Assume that A, ¢ Zabs, then M. is an eigenvalue of T;F with multiplicity ¢ if, and
only if, Ax 15 a zero of Deep(A) of order £.

Proof. For the case of eigenvalues of reaction-diffusion equations with separated boundary conditions,
the proof can be found in [21, Prop. 4.1]. The proof for the more general situation considered here is the

same, save for notation, and we omit it. [ |

For separated boundary conditions, eigenvalues and resonance poles persist with their multiplicity pro-
vided the boundary conditions satisfy appropriate transversality conditions. The situation where these

conditions are violated 1s discussed below.

Lemma 4.3 Assume that M\, & Xaps. Choose a weight 1) as in Section 4.3.1, and suppose that Di(/\*) #0
and ord(A., Doo) = { for some £ > 0. For every small § > 0, there is then an L, > 0 such that T;** has
precisely £ eigenvalues (counted with multiplicity) in Us(A.) for every L > L.. Forl > 0, these eigenvalues
are e~ 9L/t ¢close to A, for all L > L., where 0 = min{o1}, and o = Re I/Zt(/\*) —Re Viﬂ;+1(/\*) are the

spectral gaps of the matrices Ay (As).

For reaction-diffusion systems, this lemma has been proved in [8] for A, to the right of the essential
spectrum. Note that the rate of convergence proved in [8] is smaller than the rate that we establish
here. The reason for the improved rate is that we can always balance the distance from the stable and
unstable part of the spectrum to the imaginary axis by adjusting the weights. In contrast to the case of
periodic boundary conditions, this does not change the boundary conditions. Again, our rate is optimal,
see [36], except when the boundary conditions @_ and @4 happen to coincide with the unstable and
stable subspaces EE(/\*) and Ej_(/\*), respectively.
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Proof. The proof is similar to the one given above for periodic boundary conditions. We consider the

weighted equation (4.4) and use the notation introduced in Section 4.3.1. Recall that
Dsep(/\) = @(Oa _La /\)Q— A @(Oa La A)624-

Choose an analytic basis {v}"(/\)}jzlpr_iw of Ej_(O;/\). Since D+(/\) # 0 for all A close to A, by
assumption, we have

Qi@ EL(N) =CV.
Since E* % (L;A) and EY % (L; A) converge to ES % (A) and EY 1 (A), respectively, exponentially fast as L — oo,
see Theorem 1, there are unique vectors w; T\ € EY 4 (L; A) such that

Qs+ = span{gB(L,O;/\)v}"(/\) + w}"(/\); J=1,.. i}

As in Theorem 2, we obtain that

20, L; M@y = span{v}"(/\) + (0, L; A)w}"(A); J=1,.. i}

As a consequence, ¢(0, L; \)@Q4 and Ej_(O; A) are e~7+L_close to each other. By the same argument, we
have that ¢(0, —L; A)@_ and EE(O; A) are e~?-L_close to each other. Since

Do (A) = E™(0; \) A E(0; 0,
the statements of the lemma follow from Remark 4.3 and Lemma 4.2. [ ]

Remark 4.4 In the set-up of the above lemma, we have that an eigenfunction u(x) to the original
equation (4.1) on the interval (=L, L) typically satisfies

|U(—L)| e Rel/l_w (A)L’ |U(L)| S eReV;"w+1()\)L

In particular, the convective properties of resonance poles manifest themselves via the growth of the
associated eigenmodes at @ = L depending on the direction of transport. The remark is a consequence

of the proof of the previous lemma.

Next, we investigate eigenvalues that are created by separated boundary conditions near points where

either Dy or D_ vanishes.

Lemma 4.4 Assume that A ¢ T.ps. Choose a weight n as described in Section 4.5.1. Suppose that
D_(/\*) #0, [)OO(/\*) # 0 and ord(As, l~)+) =L for some £ > 0. For every d > 0 sufficiently small, there
is then an L. > 0 such that T;*" has precisely £ eigenvalues (counted with multiplicity) in Us(\s) for every
L > L.. In addition, these eigenvalues are e=*+-/*_close to \, for all L > L,. Here, ay = min{f, o}

where 8 appears in Hypothesis 1, and o has been introduced in Lemma 4.3.
We have an analogous lemma in the case that D+(/\*) # 0, Doo(/\*) # 0 and ord(A., D_) =/

Proof. The general set-up is as in Section 4.3.1. We write

Dup(V) = 2(0,~L;NQ- A B0, L ) Qs
— det[p (OL/\)] B(L,—L; Q- /\Q+)

and note that 1s suffices to determine the number of zeros of the function
QB(L’ _L; /\)Q— A Q-l—
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since det[@(0, L; A)] # 0 for all L and A. Since Q_ @ Es_(/\*) = CN by assumption, it follows that
(0, —L; \)Q_ is e~ L-close to EE(O; A) uniformly for A close to A.; see the proof of Lemma 4.3. Since
[)OO(/\*) # 0, we see that EE(O;/\) & Ej_(O;/\) = CV. Hence, we can conclude that ¢(L,—L;\)Q_ is
e~7+L_close to Ei(L; \), and therefore e~ ™n{%.9+1 _close to Ei(/\) uniformly in A; see the arguments
in the proof of Lemma 4.3. Since D+(/\) =Q+ A Ei(/\), the statements of the lemma follow again from
Remark 4.3 and Lemma 4.2. ]

The general case where Dy and De, vanish for the same value of A is treated in the following theorem.

Theorem 3 (Separated boundary conditions) Assume that M. ¢ Xaps. Choose a weight 1 as de-
seribed in Section 4.3.1. Suppose that ord(/\*,[)i) =Ly and ord(/\*,[)oo) = Lo for some £+ and {o.
For every small § > 0, there is then an Ly > 0 such that T;™" has precisely (_ + (4 + (o eigenvalues
(counted with multiplicity) in a §-neighborhood of A for every L > L.. If either {3 =0 or {o, = 0, then

error estimates for the eigenvalues on (—L, L) are given in Lemmas 4.3 and 4.4, respectively.

Proof. Recall that, if Di(/\) # 0, then Dgep(A) and Doo(/\) are e~7L-close to each other uniformly in L
and A; see the proof of Lemma 4.3. Hence, there is a §, > 0 such that, for every 0 < § < d,, there are
numbers L, and e, > 0 with |Dgep(A)| > € for all L > L. and all A with [A — A,| = J. In particular,
the number of zeros of Dy inside the §-neighborhood Us(A«) is independent of L for L > L. In the

following, we fix such a ¢ and the associated €. > 0.

Next, choose a subspace Q4 so close to Q4 that [Dy(\) — Dy (V)] < 5 for A with [\ — A.| = J but such
that Q4 @ Ei(/\*) = CN. Here, Dy(\) = Q1 A Ei(/\) Hence, the number of zeros of D, (\) inside
Us(As) is also equal to £4.

Similarly, choose a subspace Q_ with analogous properties; in addition, we require that Q_ is chosen
such that D_()) # 0 whenever Dy (\) = 0 for A € Us(\). Such a choice is clearly possible since D, ())
has only finitely many zeros in Us(A.).

As a consequence of the above arguments, there is a number L, that depends on ¢ and the above choices
of Qi such that Dgep(A) and ﬁsep(/\) are e~7%-close to each other for all A with |\ — A\,| = ¢ and all
L> E*; indeed, both functions are e~?“-close to Doo(/\). Thus, Deep(A) and ﬁsep(/\) have the same
number of zeros in Us(A,) for all L sufficiently large. Due to Lemmas 4.3 and 4.4, ﬁsep(/\) has precisely
{_ + €4 + Lo zeros in Us(AL) since Doo(/\) has not changed, and ﬁi(A) and Doo(/\) have no common

zeros by construction. This completes the proof. [ |

4.4 Resolvent estimates for periodic and separated boundary conditions

In this section, we establish estimates for the inverse of the operator 71 (A) posed on the interval (=L, L).

For periodic boundary conditions, it is a consequence of the results presented in [8, 27] that the inverse
of TP(A) is bounded uniformly in L for A away from the point and essential spectrum of 7 posed
on R. Alternatively, the proofs given below for separated boundary conditions can be adapted in a

straightforward fashion to the case of periodic boundary conditions.

We therefore concentrate on the case of separated boundary conditions. Our main result in this section is
that, under certain assumptions which are stated below, the norm of the inverse of 7, (\) grows expo-
nentially in L for any fixed A for which ¢y (A) or i_ (A) differs from .o ; recall that iy (A) are the asymptotic
Morse indices of the matrices Ay (A). Roughly speaking, the inverse of 7;"(\) grows exponentially for
every A that is to the left of the boundary of the essential spectrum while being close to it: note that the

boundary of the essential spectrum is given as the union of algebraic curves. For the operator uz, + ug,
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this fact has been proved in [34]. Besides its importance for the stability and convergence of numerical
algorithms for the computation of spectra, the exponential growth of the resolvent in the region to the
left of the essential spectrum has the following interesting consequence: suppose that 7;" corresponds
to the eigenvalue problem of the linearization about a certain nonlinear wave that is only transiently un-
stable. Since the resolvent grows as the interval length increases, the sensitivity of the wave with respect
to small initial perturbations increases also. The large norm of the resolvent predicts a large constant in
front of the exponential decay factor of the semigroup. Before the system picks up the exponential decay
predicted from spectral information, there will be a long intermediate regime where solutions first grow
in norm while travelling to one end of the domain, a phenomenon which is most easily illustrated in the
pure convection problem u; = ug; +u with boundary condition (L) = 0: localized initial conditions grow
along characteristics * = —¢ until they disappear through the boundary « = —17L; in fact, the explicit
solution is given by u(z,t) = e’ ug(x + ¢). With increasing sensitivity, stability depends then more and

more on the nonlinear terms. We refer also to [44] for a discussion.

The remaining part of this section contains the precise statements of the relevant hypotheses and the
results. Most of it is rather technical and can be skipped by the reader; we do not use any of these results

in the following sections.

Throughout this section, we assume that A ¢ ¥,ps. We begin by choosing weights n = (-, n4) so that
Re I/Z»ﬂ;(/\) > —n+ > Re Vio_l_l(/\); see Section~4.3.1. It is then~a consequence of Theorem 3 that 7,7 (\)
is invertible for all L > L. if, and only if, DL (A) # 0 and Dy (A) # 0. In this situation, we have to

estimate the solution u(z) to

du

L= Alz; \u+ B(z)h(z), u(+lD) € Qx (4.6)
on the interval (=L, L) in terms of h(z). The reason why we restrict to right-hand sides of the form
B(z)h(z) is that we are primarily interested in resolvent estimates for the underlying PDE operator that
we had cast as a first-order operator. All of our results, however, are also true, and in fact easier to prove,

in the case of general right-hand sides; see below.

Next, we consider the equation in the weighted space. We shall then establish estimates of the solution

v(x) to
dv

L = A@A) +nx))v+ Be)g(e),  v(£L) € Qx (4.7)

on the interval (—L, L) in terms of g(), where n(z) = n4 for # > 0 and n(z) = n_ for # < 0 has been

chosen above. The functions u and v as well as A and g are then related via

u(e) = e 1%(x),  g(x) = "@h(2). (4.8)
Since Doo(/\) # 0, the equation
L (A )+ () (19)

has an exponential dichotomy on R with evolution operators @°*(x,y; A) and ¢"(z, y; A) so that the esti-

mates in Definition 2.1 are met for I = R. In particular, we have
|3°(L,0; 0| < Ke™™+F, |2°(0, —L; A)| < Ke™"=F (4.10)

and the analogous estimates for ¢". The stable and unstable subspaces of the asymptotic matrices
Ax(A) + ny are denoted by ch’u(/\) Similarly, the spectral projections of At (A) + nt belonging to the
stable and unstable spectral sets are denoted by pi’u(/\).

The general solution to

v' = (A A) + n(@)v + Blx)g(x)
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is given by
v(z) = /_xL ¢ (2, ;M) B(y)g(y) dy + /Lx ¢ (@, y; A)By)g(y) dy + &°(w, —L; AJaZ + @"(w, L; A)al (4.11)
where a® € E® () and ayj € Ei(/\) are arbitrary.
It remains to satisfy the boundary conditions v(+L) € Q4. Since Di(/\) # 0, we have
EY M@ Qe =C",  E(N)eQ-=C". (4.12)

Hence, the boundary conditions are equivalent to the equation

P(EY (M), Q4) V_L@S(L,y;A)B(y)g(y)dy+¢S(L,—L;A)as_ +¢“(L,L;A)ai] = 0, (413)
P(E®()),Q-) l— /_L P (=L, y; \)B(y)g(y) dy + ¢° (=L, —L; A)aZ +¢u(—L,L;A)ai] = 0,

where P(X,Y) is the projection with range X and null space Y. By Theorem 1, ¢%(L, L;A) and
P*(—L,—L;\) are e"?f-close to the spectral projections ﬁi(/\) and ]53(/\), respectively, where § =
min{d, &} + &% }. Exploiting (4.10), we get

P(E(V), Q4) {sﬁs(L, —L; A)aZ + gau(L,L;A)ai] -

P(EL(), @4)[0(eF=H#0E)as 4 (BR(N) + O(e™*))at
P(E2(A),Q-) {sﬁs(—L, —L;\)as + gau(—L,L;A)aﬂ -

PUE (0).Q) [(P2(3) + O™ ))a” + O(e= 2+ )ay |

Using this equation, we see that (4.13) has a unique solution given by

al o (RS 4+75)L
(ai’) = (1+O(e‘“))(O(e_(gilﬁw) ot : )) (4.14)
PIESON.@4) [ (L N B()
—P(E>(V), Q) / L) Bladato) dy

where § = min{é, RS 4+ k% 4+ kY + KL}, and we have the estimate
a2 |+ |ay | < Clgl|

for some constant C' that is independent of L for L > L,.

It remains to relate the resolvent estimates for the v-equation (4.7) to resolvent estimates for the u-
equation (4.6). If we can choose 4 = 0, then the above analysis demonstrates that the inverse of 7,7 ()
is bounded uniformly in L. Indeed, note that the integral operators in (4.11) are uniformly bounded in L
due to the exponential decay of the evolution operators ¢*>". Uniform bounds of the other two summands
in (4.11) follow again from the bounds on a® and a} above. We summarize this result in the following

proposition.

Proposition 1 Assume that A ¢ Xaps and that Re Vzt+1 < 0 < Re I/Z»:l;. Furthermore, we assume that
Di(A) £ 0 and Do (M) # 0. There are then positive constants 6, C' and L. such that the inverse of
TP (A) is bounded by C uniformly in L > Ly for all X € Us(\s).
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If, on the other hand, we have to choose non-zero values for one or both of the rates iy, then we expect
that the inverse of 7;°"(\) actually increases exponentially as L increases. The reason is that even
though the unweighted and weighted norms are equivalent on (=L, L), the equivalence constants grow

exponentially in L.

We have
we) = e ([ B ) i (0.5
/Lx &Mz, y; /\)e”(y)yB(y)h(y) dy + @°(z, —L; N)a® + ¢ (=, L; /\)ai)
where (a® ,aY) are given by

(*) = <1+o<e-“>>(o(e_;uL) o )) (1.16)

( P(EL(N), Q4) [1, (L, s Ne ¥ B(y)h(y) dy )
—P(E5(N), Q) [T, @ (— L. y; Ne" W B(y)h(y) dy )

Here, %" = min{s3"}. First, we consider the case that the eigenvalues of A ()) satisfy the condition
Re I/Z»‘;_I_1 < Re 1/27';0 < 0. Afterwards, we investigate the case 0 < Re 1/{';0_'_1 < Re 1/27';0. The analogous
cases for A_(A) are handled in the same fashion; upon reversing the spatial variable z — —z, we end up

with one of the aforementioned cases for the eigenvalues of A (A).

Thus, assume that Re I/Z»‘;_I_1 < —ny < Reyi” < 0so that we have n, > 0.

ioo

Hypothesis 4 We assume that Re Vito+1 < Revt < 0 and that Rev’ < Re I/Z»to_l. Furthermore, we

oo oo

assume that there is a vector hy € C* such that

(P(ES(N), Q4)PL(N) = PY(N) By hs

+

has a non-zero component in the eigendirection of Ay (X) associated with the simple eigenvalue v;*  where

we express vectors with respect to a basis that consists of (generalized) eigenvectors of Ay (N).

The above hypothesis can be interpreted as requiring that a certain transmission coefficient is non-zero.
In the situation considered here, we have ny > 0 so that the rest state at 2 = oo sustains waves that
travel to the left. The above hypothesis guarantees that the boundary condition at @ = L emits such

waves: since the waves grow as they travel to the left, we expect that the resolvent grows as L increases.

Proposition 2 Assume that Hypothesis 4 is met. The inverse of T;F(X\) grows exponentially with rate
equal or bigger than | Re 1/27';0 .

The growth rate of the resolvent is not optimal; see Remark 4.5 below.

Proof. We define h(z) by h(z) = by for L — p < & < L and zero otherwise. Hence, the integrands of
the integrals above are zero whenever & < L — p. Furthermore, we have

L
| SN D B dy - PO By hp| + (4.17)

L—p

L .
| = e DB dy — PEN) B | < Clhs) (6 + 70

L—p
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uniformly in p and L, where § = min{f, &} + &% }. Using these expressions in (4.16), we obtain
af = "L [P(EL(N), Q1) PLN) Byhyp+O(p +e77)] (4.18)

where v = min{0, kY, k% . Evaluating (4.15) at @ = 0, we get

L

u(0) = —e”+Lg5u(0, L—p; /\)/ L —p,y; /\)e”+(y_L)B(y)h(y) dy + &°(0, —=L; A)as + @"(0, L; N)al
L-p

and therefore, upon substituting (4.18),
u(0) = P+E (0, L ) [(PE ) = PUES(N), Q1) P () By p O(p? 7)) + 35(0, ~Li Nja®. (4.19)

Since (4.9) has an exponential dichotomy on R, the subspaces R(&°(z, z; A)) and N(&°*(z, #; A)) have an
angle that is bounded away from zero uniformly in z, and we may restrict to the first summand for a
lower bound. Next, observe that @4(0, L; \) satisfies (4.9). Therefore, "+ 31 (0, L; A) is the evolution of
the original u-equation, i.e. of (4.9) with » = 0. Exploiting Hypothesis 4, and using the results in [15,
Section 3.8], it is then not hard to see that

Ju(0)] > Cel Revi I

where C' > 0 does not depend upon L. Thus, it follows that the inverse of 7;°"()) grows exponentially
with rate equal or bigger than | Re 1/27';0 . n

It remains to investigate the case 0 < Re 1/27';0_'_1 < —n4 < Re 1/27';0 that leads to n4 < 0.

Hypothesis 5 We assume that 0 < Re 1/;;_'_1 < Re 1/27';0 and that Re 1/27';0_'_2 < Re 1/27';0_'_1. Furthermore,
we assume that there is a vector hy € C' such that ﬁj_(/\)B+h+ has a non-zero component in the
eigendirection of A1 (A) associated with the simple eigenvalue I/Z»‘;_I_1 where we express vectors with respect

to a basis that consists of (generalized) eigenvectors of Ay (A).

Here, we have n4 < 0 so that the rest state at # = oo sustains waves that travel to the right while
growing. The above hypothesis guarantees that these waves still grow when the boundary conditions at

x = L are imposed.

Proposition 3 Assume that Hypothesis 5 is met. The inverse of T;F(X\) grows exponentially with rate
equal or bigger than | Re 1/{';0_'_1 |.

Proof. Define h(z) by h(z) = hy for Ly — p < @ < Ly and zero otherwise for some large L that we
specify below. Thus, any integrands that contain h(z) are non-zero only for  between Ly — p and L.

We have

L+ - ~
| P e 0 Bh) dy - PN Behip| < ClROG 4 (420)
L

+=p

uniformly in p and L. From (4.16), we obtain
|as—| S C(L+,p, h+) (421)

Evaluating (4.15) at = L, we get

Ly

u(L) = e+l (QBS(L, Ly; /\)/ S (Ly,y; Ne"YB(y)h(y)dy + ¢°(L, —L; A)a> + ¢ (L, L; /\)ai)
L

+=p
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and therefore, upon substituting (4.20) and (4.21),
u(L) = e~ n+L (e”+L+¢S(L, LN [PS(A)Byhy +0(p? + e 4 e F1)] 4 39 (L, L; /\)ai), (4.22)

where the O(...)-term depends upon the choice of Ly and h4 but not on L. Again, it suffices to consider
the norm of (L) in the stable components; see the proof of Proposition 2. Exploiting Hypothesis 4, and

using the results in [15, Section 3.8], we see that
[u(L)] 2 Cel el

upon choosing first Ly large enough, and then L large compared to Li. The constant C' is strictly

positive and does not depend upon L. [ |

Remark 4.5 In fact, if ny and n_ have the same sign, then the inverse of T, () typically grows
exponentially with a rate that is the sum of the rates established in the above propositions. If ny and
71— have opposite signs, then the resolvent typically grows exponentially with the larger of the rates that

appear in the above propositions.

5 The essential spectrum under truncation

In this section, which contains our main results, we investigate the fate of the essential spectrum when
T is replaced by 7/ or 7T;°". Recall that the spectrum of 77, on the bounded interval (—L, L) consists

of eigenvalues; see Lemma 4.1. Throughout this section, we assume that Hypotheses 1, 2 and 3 are met.

5.1 Extrapolated essential spectral sets on bounded intervals

Rather than attempting to describe in detail how the essential spectrum breaks up and trying to track
individual eigenvalues, we focus on the asymptotic shape of the set that consists of the accumulation

points of eigenvalues of 7 as L — oc.

Definition 5.7 (Extrapolated essential spectral set) We say that . is not in the extrapolated es-
sential spectral set X of the family {T7P Y (or {T1"} 1) if there exists a neighborhood U (M) C C of
A, an integer £ and a positive number Ly such that Deep (o1 Dper) has at most £ zeros in U(A.) for
L > L..

Roughly speaking, the extrapolated essential spectral set consists of those points where infinitely many
eigenvalues of 77 accumulate as L — oo. Note that the extrapolated essential spectral set of the family

71 as defined above is closed since its complement is open by definition.

Example 1 (continued) The essential spectrum Xegs of the operator Lu = ugy + cu, on R is given by
the curve A = —k? + cik for k € R. The spectrum of the operator £ on the interval (=L, L) with periodic
boundary conditions is given by

2k emk
7z T
Thus, as L — oo, each point in Y.g 1s an accumulation point, and we have Xf,, = Y. For Dirichlet

A= — keZ.

or Neumann boundary conditions, however, we have ¥¢, = (—oco,—c?/4], and therefore :¢,; # Y.
Instead, we observe that XS, = Yaps. It is instructive to check that the eigenfunctions of 7°°F with
Dirichlet or Neumann conditions converge, as L. — 0o, to the absolute eigenmodes of 7 that we computed

in Section 3.2 . [ ]

27



As we shall see in the next sections, the behavior of the essential spectrum in this example is rather

typical.

5.2 Periodic boundary conditions

We assume that A1 (A) = A_(A) and denote these matrices by Ag(A). Furthermore, we impose periodic

boundary conditions.

Proposition 4 Under the above hypothesis, and Hypotheses 1 and 3, the spectrum of TS satisfies
Yexe C Hess:

Proof. Tt suffices to show that, if A ¢ Y.s, then there is a neighborhood U C C of A and numbers
L. >0 and £ > 0 such that TLper has at most £ eigenvalues in U for L > L,. This, however, follows from
Theorem 2. ]

The example in the previous section suggests that the extrapolated spectral set X&' is in fact equal to

Yess. We show that this i1s indeed the case under the following assumption.

Hypothesis 6 (Reducible essential spectrum) The subset Sper, defined below, of the essential spec-
trum Tegs 15 dense in Yegs. Here, Ay € Sper C Xegs provided spec(Ap(As)) NIR = {iw ()} with geometric
and algebraic multiplicity equal to one and 3—‘; a. £ 0 where iw(A) is the eigenvalue of Ag() that is close

to iw(As) for A close to A..

It is important to note that the reducible essential spectrum Sper consists of regular curve segments.
Theorem 4 If Hypotheses 1, 3 and 6 are met, then the spectrum of TP satisfies L = Yegs.

Proof. Since XZ , is closed, it suffices to show that A, € Sper implies A, € X,

Thus, we fix some A € Sper, and denote by EF*(A.), Ef(A«) and E§"(A,) the stable, center and un-
stable eigenspaces of Ag(A«). Exploiting Hypothesis 6, there are z-dependent subspaces E$°(x; M) and
E(x; AL) that consist of those initial values in CN that lead to solutions of (2.9),

%u:A(r;/\)u, (5.1)

which are bounded on [#,00) and (—o0, z], respectively; see [15]. All aforementioned spaces can be
continued analytically in A for A close A.: in particular, we have the generalized eigenspaces E5(A),
E§(A) and EgU () of Ag(A), as well as the z-dependent spaces F$*(x;A) and E(x; A) that consist of
all initial conditions which lead to solutions to (5.1) that are of the order O(e"®l) for # > 0 and = < 0,
respectively, for some small fixed 7 > 0. For A close to A., we denote by iw(A) the unique eigenvalue of

Ap(A) that is close to iw(As).
We begin by investigating the intersection E%(0; A)NLE<"(0; A) for A € Sper close to Ax. We claim that this

intersection is trivial except possibly for finitely many elements A near A.. To prove this claim, we argue
by contradiction: if our claim is wrong, then Remark 4.2 implies that the intersection £5°(0; A)NE<%(0; A)
has non-zero dimension for all A in a small open neighborhood U, of A,. Next, recall that the set Sper
near A, is the curve that consists of precisely those values of A for which w(A) is real. In particular, Sper
divides U, into two open sets B; and Ba, say, so that U, is the disjoint union of B, Bz and U, N Sper.
a. 7 0 by Hypothesis 6, we have that Reiw(A) > 0 for all A in either By or Ba; suppose that
Reiw(A) > 0 for A € By, say. Therefore, we conclude that E<"(0; A) consists of all initial conditions that,

: dw
Since 53
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for A € By, lead to solutions to (5.1) that decay exponentially as # — —o0 since iw(A) is then an additional
unstable eigenvalue of Ag(A). We are now in a position to reach the desired contradiction: we assumed
that the intersection £%(0;A) N £°%(0; A) has non-zero dimension for all A in an entire neighborhood
of A.. For A € By, any solution of (5.1) associated with an initial condition in this intersection decays
exponentially as |#| — oo; thus, any such A is an eigenvalue in a region where 7(A) is Fredholm with

index zero. This contradicts Hypothesis 3.

In summary, we conclude that the intersection E%°(0;A) N F<(0;A) and, by the same argument, the
intersection £$*(0; A) N EY(0;A) are trivial for A € Sper close to A« except possibly for finitely many
elements A. After removing these exceptional elements from the set Sper, the resulting set is still dense
in Yess. We can therefore assume that the aforementioned intersections are trivial at A,, and therefore

also in a open neighborhood of A, in C.

As a consequence, the intersection
EF(0;A) N E(0; A) = span{u.(0; A) }
is one-dimensional for every A near A, and
u (03 A) ¢ E2(0;0) N EF(0; M),

It follows then from [35] or [25, Lemma 2.2] that there is a small § > 0, certain constants ¥4 (A\) € C, and
vectors ag(A) € E§(A) with ag(A) # 0 so that the solution u, (#; A) to (5.1) can be expressed as

e (23 X) = ag(N)el @M HE(0) L g(e=?lely (5.2)
for # € R. In particular, we have
EY (2 0) @ B2 (23 A) @ span{us(2; M)} = cN (5.3)

for all A close to A..

Next, we seek solutions u(x) of (5.1) that satisfy u(—L) = u(L). Tt is a consequence of Remark 2.1 and
(5.3) that any solution u(z) to (2.9) can be written in the form

u(z) = ¢ (z, —L; N)a_ + o™ (z, L; Nag + u.(z; A)b

where a_ € EF(A), ay € E§%(A) and b € C are arbitrary. Here, the evolution operators ¢*(z, —L; A)
and @™ (x, L; A) satisfy

% (w, = L; A)| < Ke~?loHH], o™ (2, L; A)| < Kem0lo=t (5.4)
for |z| < L, where § > 0 is a small positive constant. Thus, it suffices to find (a4,b) and A so that
P3(=L; Na- + " (=L, L; A)ay + ux (=L; \)b = (L, —L; Na— + P"™(L; Nag + u (L; M)b,  (5.5)

where

P3(=L; A) = (=L, —L; \), P (LX) = " (L, L; A)

are O(e™%F)-close, for some § > 0 that is independent of I, to the spectral projections P%*(\) and P (),
respectively, of Ag(A); see again Remark 2.1. Exploiting this fact together with the estimates (5.4), we
see that (5.5) is equivalent to

(P2(A) 4+ 0= ))a_ +O(e™" Jay + ua(=Ls \b = O™ Ja_ + (P (A) + O™ ))ay + u. (L A)b,
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where we replaced § by min{d, #}. Substituting (5.2) and using the definition of a4 and a_, we obtain

(id+0(eL))a_ + O(e™FYay + ap(N) (e HWMEFI =) L 0L )b =
O(e™*Lya_ + (Id+0(e™E))ag + ag(N) (e @MNEHI+ ) L 0oLy,

We can write this equation, which is linear in (a_,a4,d), in components according to the direct-sum
decomposition

ES(\) & By (\) @ Eg(\) =Y
and solve the first two components for (a_,ay) as a function of b. We arrive at the equation
(e—i(w(A)L+19_(>\)) + O(e—éL))b — (ei(w(A)L+19+(>\)) + O(e—éL))b
which, after dividing by &, is equivalent to the reduced equation
eZiw(A)L — ei(ﬂ_(A)—ﬂ+(>\)) + O(e_éL). (56)
To solve this equation, it suffices to find all solutions to
2w(N)L =0_(N) =04 () + O(e™%F) 4 27n

where n € Z is arbitrary. Dividing by 2L, we get

™ 1
A) = — 4+ —(I_(N) = 94 (\ —ohy.
o) =T Loy - o) + 0 )
Since w(A.) is real, there are unique numbers ng(L) € N and (L) € [0, 1) such that
AL
no(L) +r(z) = YOI
T
Thus,
g (L) — W) — nr(L) ’
L L
and upon setting n = ng(L) + m, we obtain the equation
1
S(N) = wl(h) + o= (2nlm = (L)) + V- (3) = 24(1) + O™, (5.7)
Since 3—‘;(/\*) # 0, equation (5.7) can be solved with respect to A for A near A, for every L sufficiently
large and all m € N such that m/L is smaller than some constant € > 0. In particular, (5.7) has O(L)
different solutions. This proves that A, is indeed in the extrapolated essential spectral set <., . n

5.3 Separated boundary conditions

Finally, we consider separated boundary conditions. We show that Xt , is again determined by spectral
properties of 7 on R but does in general not coincide with X.y. Roughly speaking, separated boundary
conditions stabilize up to an optimal exponential weight. Throughout this section, we once again use the

set-up and the notation introduced in Section 4.3.1.

Hypothesis 7 (Non-degenerate boundary conditions) There is a discrete (possibly empty) set C C
C with no accumulation points in C so that Q_ @Es_(/\) =CN and Q+®Ei(/\) = CN for all A ¢ Y.,sUC.

Recall that ch’u(/\) have been defined in Section 4.3.1. Note that the hypothesis above is often violated
when we consider systems of decoupled equations together with boundary conditions that also decouple.
An example 1s the operator introduced in Example 2 with either Dirichlet or Neumann conditions. It 1s

possible to adapt the results to such cases, but we do not pursue this here.
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Proposition 5 Assume that Hypotheses 1, 2 and 7 are met. Furthermore, assume that T" satisfies

Hypothesis 3 for every n € R%. Under these assumptions, we have ¥ C Saps.

Proof. If A ¢ Y.y, then 77()) is Fredholm with index zero for an appropriately chosen weight n € R2.
Considering 77()\) on L%, we have to replace (2.9) by the equation

Lo = (AN + e (5.8)

The associated operator on L?, which we again denote by 77 ()}, is then also Fredholm with index zero.
Note that v(-) has to satisfy the same boundary conditions at # = +1 as u(-). We have therefore reduced
the problem to a setting that is similar to the case of periodic boundary conditions. Isolated eigenvalues
of finite multiplicity persist with their multiplicity provided the boundary conditions are transverse to the
stable and unstable eigenspaces of A4 (A) and A_(X), respectively; see Lemma 4.3. Norms on the finite
interval (=L, L) are equivalent, and invertibility of the v-equation therefore implies invertibility of the
u-equation. If the boundary conditions are not transverse, only finitely many eigenvalues are generated,
and their number, counting multiplicity, is independent of L; see Theorem 3. This completes the proof

of the proposition. [ |

We remark that, for reversible systems, we expect that X,ps = Yegs. In general, however, we have
Yabs 7 Yess; see Section 3.2. In the remaining part of this section, we prove that X5, = ¥,pe under the

following additional assumption.

Hypothesis 8 (Reducible absolute spectrum) The subset S, defined below, of the absolute spec-
trum Xans ts dense in Mans. Here, A\ € Sgep C Xaps provided one of the following two conditions is

mel:
(i) Pulses (i.e. Ax(A) = A_(A) =: Ap(A) for all A):
Revi—1(As) > Revi (M) = Revi+1(As) > Reviy2(A)

with v; J(A) = —no + iw1(As) and vig41(A) = —no + wa(As) where wi(Ay) # wa(As) and
dlwr—wa) ) £0.

ax
(ii) Fronts: either

Reyi";o_l(/\*) > Reyito(/\*) = Reyi";o_l_l(/\*) > Re’/ito+2(/\*)
with 1/{';0(/\*) = —n4 + w1 (As) and 1/{';0_'_1(/\*) = —n4 + iwa(A.) where wi(A) # wa(A) and
dlnzwal ), £ 0 while

Rev; (Ac) > —n- > Rev_;(A\)

K3

for some ny, or vice versa.
We observe that the reducible absolute spectrum Sgep, consists of regular curve segments.

Theorem 5 Assume that Hypotheses 1, 2, 7 and § are met. Furthermore, assume that Hypothesis 3 is
satisfied for T" for every n € R2. We then have X5, = Saps.

Proof. We have to show that A, € Ssp implies A\, € £Z,,. We again consider (5.8) using the weights
n+ that appear in Hypothesis 8. In contrast to the notation introduced in Section 4.3.1, we omit in this
proof the ™ that referred to quantities computed with respect to (5.8). In other words, for the sake of
simplicity, we assume that 7 = 0 (possibly after changing the equation appropriately). We then use the
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notation and conventions introduced in the proof of Theorem 4; in fact, the proofs for separated and
periodic boundary conditions are quite similar. Finally, we restrict ourselves to the case of fronts; the

proof for pulses proceeds in a similar fashion.

First, we claim that we can assume that Q_ @ E® (\.) = CV. Indeed, suppose that Q_ and FE* (\.)
have a non-trivial intersection. Since Sgep consists locally of regular curve segments, we can vary A in
Ssep near A, As a consequence, the subspaces ()_ and E® (A) intersect either only at the origin for any
A close to A, with A # A, or else they intersect non-trivially for all A in an open neighborhood of A.
due to analyticity of £ (A) in A; the latter case, however, contradicts Hypothesis 7. Thus, the first case

occurs, and we can replace A, by any nearby A € Ssep. This proves our claim.

As a consequence, if we transport the subspace Q_ using the evolution ¢(x, —L; A) associated with (2.9),
then, by hyperbolicity of A_(A), the transported subspace (0, —L; A)@_ is close to E¥ (0; A) for all large
L.

Next, consider the situation at the right endpoint © = L of the interval (=L, L). By Hypothesis 8, we
have

EE(A) @ span{ai(A),a2(A)} & EYM(A) = cN

for all A near A, where a1 (A) and as(\) are non-zero eigenvectors of A4 (A) associated with the eigenvalues
w1(A) and wa(A). Using the roughness theorem for exponential dichotomies [33, 35], we can continue any
combination of these subspaces to z-dependent invariant subspaces of (2.9). In particular, using also [25,

Lemma 2.2], there are subspaces
E¥(x; A) @ span{ai(x; M)} and E¥(2; A) @ span{az(x; A) } (5.9)

that converge to the corresponding z-independent eigenspaces of Ay (A) as # — oco. Note that EF(x; M) is
(N —is + 1)-dimensional, while E (z; A) has dimension ic,. Therefore, these two subspaces intersect in
a non-trivial fashion; in fact, we may assume that £ (x;A) and E(x; A) intersect transversely in a one-
dimensional subspace which is not contained in either of the two spaces appearing in (5.9). Otherwise,

we reach a contradiction to Hypothesis 3; see Remark 4.2 and [25].

Hence, as a consequence of the discussion in the last few paragraphs, E$°(0;A) and the transported
subspace ¢(0,—L; A\)@Q_ intersect in a one-dimensional subspace that is spanned by a vector u.(0;A).

The solution associated with the initial condition u,(0; A) can be written as
us(z; ) = al(/\)eiwl(A)x + az(/\)ei‘”()‘)x + O(e_‘%) (5.10)

as £ — 00, where @ is again the rate of convergence of A(x;A) as ¥ = o0, and a1 (A) and a3 (A) are certain
non-zero eigenvectors of Ay (A) associated with the eigenvalues iw; (A) and iws(A). This expansion can be
proved by using exponential weights and dichotomies for an appropriate variation-of-constant formula;

see, for instance, [35, 33] or [25, Lemma 2.2]. In addition, we have
p(L, =L ) Q- =span{u(L; \)} + EY"(A) + O(e™*") (5.11)
for all L sufficiently large. Here, and in the following, 4 denotes a small positive constant determined by

¢ and the rates of hyperbolicity of Ay (A).

In the next step, we focus on the boundary conditions at the right endpoint of the interval. Arguing as

above, we can assume that
Q. = span{v.} & Q4

where

v € span{ay(A), az(A)} @ EY(A), ve & span{a;(A)} & E(A) (5.12)
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for j = 1,2 and
Oy & B (N @ B () = OV (5.13)
otherwise, we reach a contradiction to Hypothesis 3. In particular, we have
ve = af (A) + af (A) 4+ 0¥ () (5.14)
with a}"(/\) € span{a;(A)} for j = 1,2 and v (\) € EY"()). Note that a}"(/\) Is not equal to zero for
j=12.
It suffices to find non-trivial intersections of @4 and ¢(L,—L; \)@Q_. Exploiting (5.10)—(5.13) and using
Lyapunov-Schmidt reduction as in the proof of Theorem 4 (we omit the details), we arrive at the reduced
equation
a1 (A)(e“ V£ 0(e™)) + ar (W) (2N 4+ 0(e™F)) = r(af () + af (V)
where r € C is arbitrary. In other words, we shall solve
a(N) (TN O™y = rat()) (5.15)
as(N)(€“*ME L0y = raf(N).
Recall that a;(A) and a}"(/\) are not equal to zero for j = 1,2. Thus, we can write

laf (V)] 4y
at = 14 iP5 () g
;) laj (M) i)

for certain complex numbers ¥;(A) with j = 1,2. The first equation in (5.15) can then be solved for r:

lar(M)] _iy () [ aiws (W)L —3L
r= eT Wi (ghn + O(e™")).
laf (V)]

Substituting this expression into the second equation in (5.15), we obtain

+
iwa (AL —ony _ la3 (M) lar (V)] (B2 (M) =91(N) [ aiws (AL 5L
e +O0(e™) = —— "¢ (e + O(e™)),
|az(A\) fai (V)]

which is equivalent to

€

(w2 (M) —wi ()L _ |a§r(/\)| |a1(/\)|ei(z92(>\)—191(>\)) + O(e—éL)

|az(A\) fai (V)] '
This equation is exactly of the type considered in the proof of Theorem 4; see (5.6) and the discussion
following it. Thus, the proof of the theorem is complete. [ |

Remark 5.6 In the set-up of the above theorem, we have that an eigenfunction u(x) to the original

equation (5.1) on the interval (—L, L) with separated boundary conditions typically satisfies

|U(—L)| e Rel/l_w(A)L |U(L)| ~ eReV;"w+1()\)L

bl

The remark is a consequence of the proof of the previous theorem.

In particular, the convective properties of the absolute spectrum manifest themselves via the growth of

the associated eigenmodes at # = +L depending on the direction of transport. If the absolute eigenvalue
+

A is induced by unstable spatial eigenvalues v;” (A) and 1/27';0_'_1(/\), then the direction of transport is
to the right. Note that this requires that the formerly stable spatial eigenvalue 1/27';0_'_1(/\) moves into
the right half-plane; we would therefore need n4 < 0 to stabilize the wave using exponential weights.
Analogously, if the absolute eigenvalue A is induced by stable spatial eigenvalues v;_ (A) and v;__,(A),
then the direction of transport is to the left. In the other cases, the absolute eigenmodes transport
towards = 0, either from ¢ = L if Re 1/27';0(/\) < 0, or else from x = —L if Rev;_,,(A) > 0; in these
cases, the instability would lead to a break-up of the wave near its core, away from the asymptotic rest

states.
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5.4 Separated boundary conditions: the edge of the absolute spectrum

Often, the rightmost endpoint of the absolute spectrum is given by a branch point, 1.e. by a double root
of the dispersion relation. In that case, it is of interest how well the edge of the absolute spectrum is
approximated on bounded intervals. For the sake of brevity, we only consider the case of fronts. A similar

result under analogous assumptions is true for pulses.

Hypothesis 9 (Non-degenerate double eigenvalue) Fronts: We have a double eigenvalue vy (\.)

ioo

= 1/27';0_'_1(/\*) with geometric multiplicity one so that

Revit _1(A) > Revi (M) > Reyf L ,(A)

K3

and the Jordan block associated with I/Z»to(/\*) is unfolded generically upon varying A near A,. Let v;"w(/\*)
denote the eigenvector of Ay (A.) associated with 1/27';0(/\*). We assume that

span{vf (A)} & EY' (M) & Q4 = C7, (5.16)

where E{" (A« ) 1s the eigenspace of Ay (A«) associated with the unstable part of the spectrum. Furthermore,
we assume that M. ¢ X7, - and that E* (A.) @ Q- = C". Finally, we assume that

EE(O;/\*)@span{v?’w(o;/\*)}@Ej_s(O;/\*) =, (5.17)

where v;"w(x; As) is a solution that converges to v;"w(/\*) as ¥ — oo; see [19].
Lemma 5.5 Assume that Hypotheses 1, 2 and 9 are met. In addition, suppose that A\, is the rightmost
point in the absolute spectrum. There are then constants by 5 € C with by #£ 0 and & > 0 such that, if we

order the eigenvalues A 1, of T that are closest to Ay by their real part, then

(b1jL +bs)| = O(e™%F)

‘ 1
VAL = A

for all L large enough (depending on j).

Proof. We proceed as in the proof of Theorem 5. Without loss of generality, we can assume that

Re 1/27';0 =0 for A = A.. We write %%, £ and EY" for the stable, center and unstable eigenspaces of A4,
+

We assumed that A, ¢ X7, and that D_(A.) # 0. Hence, ¢(0,—L;\)@Q_ is exponentially close to
E2(0; A) for all A close to A,. In particular, using (5.17), we see that

respectively, where the two-dimensional center eigenspace corresponds to the two eigenvalues near v

(0, =L; M)Q- N EF(0; M) = span{u.(0; A)} (5.18)
where 4, (0; A) is not equal to zero and
u.(0; M) ¢ span{vi_ (0;A.)} & ES(0; A,). (5.19)
As a consequence of (5.18), and proceeding as in the proof of Theorem 5, we have that
AL, ~L; @ = spanfu, (L )} & (B2 (A) + O(e™))

for some ¢ > 0. We seek those A close to A, for which (L, —L; \)@_ has a non-trivial intersection with

Q+. Thus, we are interested in the space

span{u.(L; A)} @ (E{*(A) + O(e™")) | N Q4. (5.20)
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We begin by tracking u.(x;A) up to # = L. We denote by AS the restriction of AL to the center space
ES. We claim that
we(L; A) = [+ 4 0] ar (V) (5.21)

for some d > 0 that is independent of A and some non-zero vector ay(A) € ES(A). Indeed, upon
using exponential dichotomies, we can reduce the equation to an equation in R%2. We can then use the
variation-of-constant formula and exponential weights; we refer to [35] for similar arguments. See also
[15, Section 3.8] for the case when the equation does not depend upon parameters. In addition, we know
that ap(A) # v;"w(/\*) due to (5.19). Next, we consider the space Q4. Due to (5.16), we have

Q4 N (FS(N) ® F2 (V) = span{as (V)
for some ¢4 (A) # 0 with
1+ (V) ¢ span{ut ()} & B\,
In other words, we have
Q4 =span{q4(\)} & Q4
with Q4 N EY'(A) = {0}. Expression (5.20) then reads

span{u. (L; A)} & (B (V) + O(e™E)) | 0 [span{ar (0} & Q4.

Therefore, we have that

u=ru.(L; A) + (id —|—O(e_5L))uiu

is in Q4 for appropriate choices of € R and u}{" € E{"(}) if, and only if,
u=7rq4(A) + 4

where 7 € R and ¢4 € Q+. Using Lyapunov-Schmidt reduction, i.e. upon projecting these equations into
the complementary subspaces Q. , EYY(A) and ES (M), and solving the projected equations in the former

two spaces, we finally arrive at the reduced equation

rled*MEa (A) + 0(e™F)] = 74 () + O(e™*H)] (5.22)
where we used (5.21). Note that ay () and ¢4 (A) are smooth and that both are contained in £ (A). In
addition, neither of these vectors is equal to v;"w(/\*) for A = A.. Since Afl_(/\*) is a Jordan block, we see
that eA+(ME corresponds to a linear second-order scalar operator, and (5.22) is the equation that appears
when we seek the operator’s eigenvalues. Thus, we can solve this equation by phase-plane analysis; we

omit the details. ]

6 Numerical computations

To illustrate and confirm the results, we compare our theoretical predictions with numerical computations.
The computations are carried out for pulses in the generalized KdV equation and for fronts that arise in
the Gray-Scott model. We conclude with a brief discussion on the implications that our results have for

the numerical computation of spectra on large intervals.

35



6.1 The generalized KdV equation
We begin with the generalized KdV equation that is given by
Up + Uppy — cUy + uPuy =0, r€eR, (6.1)

where ¢ 1s the wave speed and p is a parameter. This equation admits a family of pulses given by

u(z) = %c(p—l— 1)(P+2)]%sech% (”’f) (6.2)

for any positive values of ¢ and p. The linearization of (6.1) about one of these pulses is equal to
Lv = —vpgp + (¢ — uP)vy + puP~ Ly, (6.3)

It has been shown in [31] that the pulses are marginally stable in R for p < 4 and unstable for p > 4.
The instability is induced by a simple unstable eigenvalue that appears for p > 4. Forany p 24, A =0 is
an eigenvalue with geometric multiplicity one and algebraic multiplicity two; the associated eigenvectors

are u, and u..
To compute the essential and the absolute spectrum, we rewrite the eigenvalue problem Lv = Av about
the pulses as a first-order system. The associated asymptotic matrix is given by

0
0

1
Ag(N) = 0
C

o = o
—_
>
e
=

—A
Its three spatial eigenvalues v;(A) are the roots of the dispersion relation
A\ v) = A+ v (v —¢).

In particular, the asymptotic index i, is equal to two, and we will need two boundary conditions at
z = L and one boundary condition at # = —L. Using the dispersion relation, the essential and absolute

spectra of £ can be computed:

Yegs = I]R, Yabs = (—OO, -2 (%) 5:| ) (65)
see [32, Prop. 2.3]. The absolute eigenmodes induce transport towards # = —oo since, for A € X,ps, the

two spatial eigenvalues that have the same real part are located in the left half-plane. The discussion
after Remark 5.6 then implies that the eigenmodes are exponentially growing as # — —oo. This behavior

1s consistent with ¢ > 0.

We first consider p = 2, and also fix the wave speed ¢ = 2. The pulses are then transiently unstable; see
[32]. On the bounded interval (—L, L), we consider periodic boundary conditions as well as the separated
boundary conditions

ugy(—L) =0, u(L) =0, ug (L) = 0. (6.6)

We begin by comparing the spectra of the operator £ on the real line and the bounded interval (—L, L)
with L = 7.5. Figure 4 shows that periodic boundary conditions indeed recover the essential spectrum.
In addition, the two embedded eigenvalues at zero move away from the imaginary axis. For the separated
boundary conditions defined in (6.6), we recover the absolute spectrum; see Figure 5. As predicted,
the two embedded eigenvalues at zero stay near the origin but split into two simple eigenvalues. It is
straightforward to show that the boundary conditions are non-degenerate near A = 0 so that no additional

eigenvalues are created there.
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Figure 4: The spectrum of £ on the interval (—7.5,7.5) with periodic boundary conditions. We discretized the
operator using a pseudo-spectral method with 700 Fourier modes. The resulting matrix-eigenvalue problems were

always solved using the routine DGEEV from the LAPACK package [2].
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Figure 5: The spectrum of £ on the interval (—7.5,7.5) with the separated boundary conditions (6.6). We
discretized the operator using one-sided finite differences with 1500 equi-distant mesh points corresponding to a
step size of h = 0.01.

We then compared the rate of convergence with which the embedded eigenvalues near zero approach zero
as L — oo. The spatial eigenvalues v;(A) of the asymptotic matrix Ag()A), see (6.4), at A = 0 are given
by

v1(0) =0, vy 5(0) = £+/c.

The spectral gap is therefore equal to /c. Since the multiplicity of the eigenvalue A = 0 is two, we
expect that the rate of convergence is equal to \/c/2. We calculated the temporal eigenvalues near zero
numerically using the package AUT097, see [17], and continued in the interval length L. The results are
shown in Figure 6(a); the actual rate of convergence is v/c and not the expected \/c/2. The reason for
the super-convergence is as follows: first, the eigenfunction of A = 0 on the real line converges faster to
zero as ¥ — —oo than expected; its exponential rate is /c rather than 0. The same is true for the unique
bounded solution ¢(z) of the adjoint eigenvalue equation. The latter is true due to the Hamiltonian
nature of the KdV equation. In fact, we have ¢(z) = VH (u(x)) where u(z) is the pulse and H (u) is the
Hamiltonian of the KdV equation. It is then a consequence of the super-convergence results presented in
[36] that the rate of convergence is \/c and not /c/2.
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Figure 6: (a) For the separated boundary conditions (6.6), the slopes of the curves formed by the real and
imaginary parts of the eigenvalues that approach zero are given by —2.8275 and —1.4109, respectively. The
overall numerically computed slope is therefore —1.4109 which is twice the expected rate of \/5/2; this super-
convergence phenomenon is explained in the main text. (b) The first three eigenvalues that approach the edge of
the absolute spectrum are continued in L. The slopes of the scaled curves formed by these eigenvalues are given
by 0.40468, 0.20170 and 0.13498, respectively.
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Figure 7: (a) The spectrum of £ near zero on the interval (—7.5,7.5) using the boundary conditions (6.8). As
predicted, there are three eigenvalues near A = 0. (b) The resonance pole is shown as a function of the parameter

p. The pole crosses the imaginary axis at p ~ 4.
Next, we investigate the approach of eigenvalues to the edge of the absolute spectrum located at

A= —2 (g)_ ~ —1.089. (6.7)

We expect that the convergence is like

1
A — A & T3
—1 . . .. . .
We therefore plotted \/|A — As|  over L, and expect to see a straight line. This is confirmed in Fig-
ure 6(b). Note that the slopes of the first three eigenvalues that we continued have a ratio of approximately

1: % : % as predicted; see Lemma 5.5.

Next, we change the boundary conditions to
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Figure 8: The spectrum of £ with periodic boundary conditions on the interval (—7.5,7.5) for p = 3.5 (left)
and p = 4.5 (right). The resonance pole is not visible in the left plot; the unstable pair of eigenvalues for p > 4,
however, is captured; see the plot to the right. We discretized the operator using a pseudo-spectral method with

800 Fourier modes.
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Figure 9: The scaled error of the unstable eigenvalue, computed numerically for various values of L but for fixed
p = 4.5, is plotted for (a) periodic and (b) separated boundary conditions (6.6). The eigenvalues are compared
with the exact value A" = 0.766736 that we obtained using the boundary conditions (6.6) for large L.. The
slopes for the scaled error are —0.84154 for periodic and —2.00403 for separated boundary conditions. Our theory
predicts the slopes 0.84143 and —1.99754, respectively.

These boundary conditions are no longer non-degenerate. It is straightforward to show that Dy (\) =

A+ O(]A]?). We therefore expect three eigenvalues near A = 0. This is confirmed in Figure 7(a).

Finally, we return to the case of the transverse boundary conditions (6.6). We shall confirm that resonance
poles, i.e. eigenvalues that are generated upon using exponential weights, show up on large intervals with
separated boundary conditions but are not visible for periodic boundary conditions. To this end, we vary
p in the interval (2,5). Tt has been shown in [31] that, at p = 4, a resonance pole crosses the imaginary
axis from left to right at the origin, rendering the pulses unstable. For p > 4, this resonance pole is
an ordinary eigenvalue that should then be picked up by periodic boundary conditions. Our numerical
computations confirm that this is indeed the case; see Figures 7(b) and 8. Recall that our theory predicts
that the absolute spectrum is filled with eigenvalues as L. — oco. Thus, all but finitely many eigenvalues
will stay to the left of the edge A, of the absolute spectrum. Hence, a priori, we cannot distinguish

the resonance pole from other eigenvalues until it emerges from the absolute spectrum through the edge
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As & —1.089. This happens at p = 2.551; see Figure 7(b).

We used the aforementioned resonance poles, calculated for p = 4.5, to illustrate the difference in the
convergence rates for periodic and separated boundary conditions. We computed the unstable eigenvalues
for increasing values of L and compared them with the “exact” unstable eigenvalue A". The latter was
calculated using the boundary conditions (6.6) for a large value of L, namely L. = 40. The spatial

eigenvalues of the matrix Ag(A"), see (6.4), are
v1 = 1.15612, vo = 0.42071, vy = —1.57683.

Thus, from Theorem 2 and Lemma 4.3, we expect the convergence rates 2k = 2min{va, |vs|} = 0.84143
for periodic and ¢ = vy —r3 = 1.99754 for separated boundary conditions. This i1s confirmed by numerical

computations using AUT097; see Figure 9.

6.2 The Gray-Scott model
The second equation that we investigate is the Gray-Scott model:

wp = Dytgy — cuy — uv? + F(1 — u) (6.9)
v = Doty — CUp + uv® — (F+ k)v.
Here, ¢ denotes again the wave speed. In the parameter regime where A = 1 — 4(F + k)?/F is positive,

(6.9) has three different homogeneous steady-states; the two that are of concern to us are commonly

referred to as the red and blue state:

1 F
) = (1,0), o) = (= (1 = VA), =—=——~(1+VA)). 1
(e ) = (1,0), (un,w0) = (1= VA), g (14 V) (6.10)
If we choose the parameters according to
Dy =60x10"° Dy=10x10"% ¢=-5.02063%x 10"% k=0.05, F=0.1, (6.11)

then numerical computations reveal that (6.9) admits a stationary front that connects the blue state at
—oo with the red state at +00. The front was computed using the driver HoMcoNT [10] that is built
into the package AUT097 [17]. We refer to Figure 12(a) for a plot of the two components of the front.

In fact, since ¢ < 0, the front moves to the right towards the red state if considered in a non-moving

0.1 0.1
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-0.1 ' ' ' ' ' 0.1 I I ! | I
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Figure 10: The absolute and essential spectra of the red (left) and the blue (right) rest states are shown. The

essential spectrum is plotted using thicker lines, while the absolute spectra are plotted with thin lines.
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Figure 11: The spectrum of £ on the interval (0, 1). The thin lines indicate the location of the absolute spectrum
of the operator. We used centered finite differences with 2000 equi-distant mesh points corresponding to a step
size of h = 5 x 1074,

coordinate frame. It can be shown that the red state is stable, while the blue state is unstable for the

aforementioned choice of parameters. The linearization of (6.9) about the front is given by

_ _ 92 _ _
= D1 0pe — cOp — v F 2uv . (6.12)
v? DyOpy — Oy — 2uv — (F 4+ k)

We calculate its spectrum on the interval (0, 1); note that, if we rescale the equation so that the diffusion
constants are of order one, then the length of the interval would be of the order 1 x 10%2. We used the

boundary conditions
u(0) + v(0) = 0, uz(0) — vz (0) =0, u(1) +v(1) =0, ug (1) — vy (1) = 0. (6.13)

Neumann boundary conditions violate Hypothesis 7 since the two components of the operator (6.12)

decouple at the red state.

First, we computed the absolute and essential spectra of the asymptotic homogeneous states. This was
done by continuation within AUT097. The results are shown in Figure 10. Note that absolute spectrum
is to the left of the essential spectrum. The rightmost edge of the absolute spectrum of the blue state
corresponds to a double spatial eigenvalue as does the rightmost point of the absolute spectrum of the

red state.

We then computed the spectrum of the operator £ on the interval (0,1) with the boundary conditions
(6.13); see Figure 11. The computations confirm that the spectrum on the bounded interval asymptotes
on the absolute and not on the essential spectrum. The additional eigenvalue at zero is of course due to

translational invariance of (6.9).

The absolute spectrum of the blue state is caused by spatial eigenvalues that cross the imaginary axis
from right to left. The exponential weight function is therefore given by 7 with n > 0, and we expect
that perturbations are convected towards —oo. In particular, eigenfunctions associated with eigenvalues
of £ on the bounded interval should be large at the left endpoint # = 0 of the domain. This is confirmed in

Figure 12(b), where the u-component of a typical eigenfunction within the absolute spectrum is plotted.
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Figure 12: (a) The left picture contains the u and v components of the front to the Gray-Scott model as a
function of x. The parameters are chosen according to (6.11). (b) The u-component of the eigenfunction of £
associated with the eigenvalue A = —3.96 x 10™* —3.51 x 1072 is plotted. This eigenvalue is close to the rightmost

edge of absolute spectrum of the blue state.

6.3 Numerical computations of spectra on the real line

As we have seen, only periodic boundary conditions generally capture the spectrum of PDE operators
on the real line. One of the exceptions is the case where the operator exhibits an additional reversibility

structure so that the essential and the absolute spectrum are in fact equal.

For separated boundary conditions, the spectrum that is computed on the bounded interval is the ab-
solute spectrum plus the set of eigenvalues and resonance poles of the original operator. Additional
eigenvalues can be created through the boundary conditions. To confirm the numerical computations,
one could therefore compute the absolute spectrum of the asymptotic states separately, either by using
the spatial eigenvalues of the asymptotic matrices or by numerically computing the spectra of the asymp-
totic constant-coefficient operators. A comparison with the spectrum of the full operator then identifies
the absolute spectrum. Spurious eigenvalues generated by the boundary conditions can be identified
using different boundary conditions and comparing those eigenvalues that are not related to the absolute

spectrum.

Finally, we emphasize that our results are true asymptotically as L. — oo, but that we do not have
estimates for how large L really has to be in order to resolve the absolute spectrum over a large region in
the complex plane. An additional difficulty is that the operator has to be discretized so that the spectra
also depend upon the step size of the discretization scheme. An example where these 1ssues seem to play
a role is the FitzHugh-Nagumo equation that has been used in [8] to illustrate domain-truncation results
for isolated eigenvalues. It appears as if the computed spectrum is close to the absolute spectrum only
extremely near the imaginary axis. OQur calculations show that the rest of the spectrum is very sensitive

to variations of the length of the interval and the choice of the number of mesh points.

7 Conclusions and discussion

Our results can be summarized as follows. As far as the original point spectrum on the real line is
concerned, eigenvalues persist under truncation with their multiplicity. For separated boundary condi-
tions, however, additional eigenvalues can be created when the boundary conditions are not transverse

to certain eigenspaces. In addition, eigenvalues may appear in regions that were previously occupied by
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essential spectrum; these eigenvalues are often referred to as resonance poles. The essential spectrum of
the problem on the real line is recovered under domain truncation only if periodic boundary conditions
are imposed. For separated boundary conditions, the spectrum on the bounded intervals asymptotes onto

the absolute spectrum as the endpoints of the interval tend to +co.

We have taken three different viewpoints towards stability for operators on the real line: LZ-stability, con-
vective instability, and transient instability. As far as the essential spectrum is concerned, LZ-stability
implies stability on all sufficiently large intervals with periodic boundary conditions, while transient
instability implies stability under separated boundary conditions. In particular, separated boundary con-
ditions can stabilize: transiently unstable patterns may be spectrally unstable under periodic boundary
conditions, while they may be stable under separated boundary conditions. Convective instability does

in general not imply stability under separated boundary conditions; see Example 2.

Proving that solutions actually decay pointwise whenever the operator i1s convectively unstable is in
general a difficult endeavor for hyperbolic or dispersive equations since it requires to show the convergence
of I'-integrals. Uniform bounds on the resolvent usually require a scaling of the scalar product in R for
large A. For instance, the heat equation ugz, = Au, when rewritten as u, = v, v, = Au, does not admit
uniform dichotomies as A — oo with A € R since the eigenvectors (1, :I:\/X)T are asymptotically parallel;
T (A\)~! is therefore not uniformly bounded in A. The correct (space-time) scaling is uy = VAv, v, = VAu

which guarantees uniform dichotomies.

Our results are partial in the sense that they only consider the effect of the truncation on the linearization
as in [8]. In general, the stationary solution of the nonlinear PDE itself is perturbed by the boundary
conditions. When the essential spectrum does not contain A = 0, these perturbations are often harmless.
In many circumstances, the perturbed wave is e™?/-close to the original wave; see [7]. In this situation,
our results are also true if the original wave is replaced by the perturbed wave. This is a consequence of

the estimates for exponential dichotomies that were established in [35, 33].

The approach using exponential dichotomies is suitable for problems in one-dimensional domains where
dynamical-systems properties prove particularly useful. However, the results can be immediately general-
1zed to cylindrical domains with multi-dimensional bounded cross-section and to time-periodic solutions
of parabolic problems using a slightly generalized notion of dichotomies and Morse indices; we refer to
[27, 37, 38] for related results. In particular, the absolute Morse indices considered here have to be

replaced by relative Morse indices.

In general, the absolute spectrum seems to play an important role whenever boundary or, more generally,
matching conditions are imposed. An interesting example is the following situation: suppose that the
travelling-wave ODE admits a heteroclinic cycle so that the first connection is transversely constructed
while the other connection is of codimension two. This situation is often called a T-point. The inter-
pretation for the PDE is then as follows. There are two homogeneous rest states so that one of them is
stable while the other one is unstable. There are also two fronts that connect the first to the second and
the second to the first rest state, respectively. Furthermore, these fronts have the same wave speed. It 1s
known that, for nearby parameter values, the PDE exhibits pulses that connect the stable rest state to
itself. An interesting issue is the stability of these pulses. Note that both fronts are unstable since one of
their asymptotic states is unstable. Also, the pulses have a long plateau along which they are very close
to the unstable rest state. Numerically, it appears as if the bifurcating pulses can be stable, see [41, 45],
even though in the limiting configuration, i.e. for the heteroclinic cycle, part of the essential spectrum is
contained in the right half-plane. Matching or gluing the pulses from two fronts is similar to imposing
a boundary condition in the middle of the domain. We therefore expect that the stability properties
of the pulse are not determined by the essential spectrum of the unstable rest state but by its absolute

spectrum (which can be stable even though the essential spectrum is unstable). As shown in [39], this is
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indeed the case.
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