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Abstract. Rodrigues formulas for very well-poised basic hypergeometric series of
any order are given. Orthogonality relations are found for rational functions with an
arbitrary number of parameters which generalize the Askey–Wilson polynomials and
Rahman’s 10φ9 biorthogonal rational functions. A pair of orthogonal rational functions
of type RII is identified. Elliptic analogues of some of these results are also included.
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1. Introduction

The Askey–Wilson polynomials are classical orthogonal polynomials which depend
on five parameters. These polynomials lie at the top of the Askey scheme of classical
orthogonal polynomials, and have an expression as a balanced basic hypergeometric
series. An alternative representation is given by a very well-poised basic hypergeometric
series. Although they have been generalized to polynomials in several variables, in one
variable, the only known basic hypergeometric generalization is to a set of biorthogonal
rational functions given by Rahman [12], which has six parameters. An elliptic version
due to Spiridonov [20] has seven parameters

This work started as an attempt to understand the Rahman biorthogonal rational
functions, where they live, and what is the correct level of generality. Our efforts led to
a biorthogonal system of very-well poised series with an arbitrary number of parame-
ters. The orthogonality relation, Theorem 4.2, contains the Askey–Wilson and Rahman
results as special cases. We also give an elliptic version of Theorem 4.2 in Theorem 8.9.

The key idea is the realization that a general set of very well-poised basic hypergeomet-
ric series always have Rodrigues formulas. The Rodrigues formula plays an important
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role in the theory of classical orthogonal polynomials [16], [22]. By a Rodrigues-type
representation of a sequence of functions fn(x), we mean representing fn as

fn(x) =
cn

g0(x)
T ngn(x), n = 0, 1, · · · ,(1.1)

where the cn’s are constants and T is a linear operator which does not depend on n.

In [10] it is shown that Watson’s transformation of a balanced terminating 4φ3 to
a very well-poised 8φ7 is the Rodrigues formula for the Askey–Wilson polynomials.
This transformation gives two possible expressions of the Askey-Wilson polynomials.
This motivated us to explore Rodrigues type formulas for the 10φ9 biorthogonal rational
functions Rn and Sn of [12], and consider orthogonality relations for higher order very
well-poised series.

In Theorem 3.4 we give a Rodrigues formula of the type (1.1) for a 2m+8W2m+7

function (see Definition 3.3) which generalizes Rahman’s rational functions Rn and Sn.
We then provide a general orthogonality relation for a 2m+8W2m+7, Theorem 4.2, which
generalizes Rahman’s biorthogonality relation. A polynomial orthogonality for a 10W9 is
given in Theorem 6.5. Our analysis is completely analogous to polynomials orthogonal
with respect to varying weights. There is extensive literature in this area, a sample of
which is in [18].

Rahman and Suslov [14] have a Rodrigues type formula for a 10φ9 function, but their
formulas do not resemble the classical Rodrigues formula. Indeed instead of T n the
Rahman-Suslov formulas involve TnTn−1 · · ·T1, where Tj is linear but depends on j. In
[9] Ismail and Rahman gave a three term recurrence relation of type RII for the Rahman
functions.

The paper is organized as follows. After preliminary material is introduced in §2, in §3
we define the rational functions and give the Rodrigues formula. The orthogonality rela-
tion is established in §4. The polynomial behavior of our rational functions is determined
in §5. The special case of 10φ9’s is considered in §6, where Rahman’s biorthogonality
results are reproven. Asymptotics are given in §7. The elliptic generalizations of our
main results are given in §8. Section 9 establishes a three term recurrence relation for a
system of polynomials {Un(x; t)} we introduce in §6.

The recurrence relations for the biorthogonal rational functions in this work are of
the type RII and are associated with RII continued fractions introduced by Ismail and
Masson in [8]. Zhedanov [23] pointed out that they arise in a generalized eigenvalue
problem and the biorthogonality is between solutions to adjoint generalized eigenvalue
problems.

2. Preliminaries

We shall use the notation and terminology in [1], [6], and [7] for basic hypergeometric
series. In this section we collect the results to be used in the rest of the paper.

We shall use the inner product associated with the Chebyshev weight (1− x2)−1/2 on
(−1, 1), namely

< f, g >:=

∫ 1

−1
f(x) g(x)

dx√
1− x2

.
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The operator we iterate for the Rodrigues formulas is the Askey–Wilson operator Dq,
(see [7])

(Dqf)(x) = 2
f̆(q1/2z)− f̆(q−1/2z)

(q1/2 − q−1/2)(z − 1/z)

where x = (z+1/z)/2 = cos θ, f(x) = f̆(z), z = eiθ. It must be noted that x = (z+1/z)/2
makes z and 1/z interchangeable. However to specify which branch of the Riemann
surface we assume that |z| ≥ |1/z|. Indeed |z| = |1/z| if and only if x ∈ [−1, 1], in which
case we put x = cos θ for a unique θ ∈ [0, π] and z = eiθ. The operator Dq was first
introduced in [2].

Observe that the definition of Dq requires f̆(z) to be defined for
∣∣q±1/2z∣∣ = 1 as well

as for |z| = 1. In particular Dq is well-defined on H1/2, where

Hν :=
{
f : f((z + 1/z)/2) is analytic for qν ≤ |z| ≤ q−ν

}
.

The key fact of Cooper [4, Prop. 1q] which we shall use is that the nth iterate of the
Askey–Wilson operator may be expanded via very well-poised series.

Proposition 2.1. The nth iterate of the Askey–Wilson operator Dq satisfies

Dnq f(x) =
(−2/z)nq

1
2(n

2)

(q1/2 − q−1/2)n(1/z2; q)n

n∑
k=0

(q−n, z2q−n; q)k
(qz2, q; q)k

1− z2q−n+2k

1− z2q−n
qnkf̆(q(2k−n)/2z).

The right side of Proposition 2.1 is invariant under z → 1/z, this is reversing the finite
series.

3. Rodrigues formulas and very well-poised series

In this section we give in Theorem 3.4 a Rodrigues formula for the general very well-
poised basic hypergeometric series

2m+8W2m+7(q
−nz2; q−n, a1z, · · · , am+4z, q

1−nz/b1, · · · , q1−nz/bm; q, Z1),

where

Z1 = q2−nb1 · · · bm/a1 · · · am+4.

The first application of Proposition 2.1 uses

f̆(z; a,b) =
m∏
i=1

(biz, bi/z; q)∞
(aiz, ai/z; q)∞

,

where a = (a1, . . . , am) and b = (b1, . . . , bm). Note that

f̆(qk−n/2z; qn/2a, qn/2b) = f̆(z; a,b)
m∏
i=1

(aiz; q)k(ai/z; q)n−k
(biz; q)k(bi/z; q)n−k

.
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Proposition 3.1. The functions

rn(x; a,b) =
(−2/z)nq

1
2(n

2)

(q1/2 − q−1/2)n(1/z2; q)n

m∏
i=1

(ai/z; q)n
(bi/z; q)n

× 2m+4W2m+3(q
−nz2; q−n, a1z, · · · , amz, q1−nz/b1, · · · , q1−nz/bm; q, Z2),

where

Z2 =
b1 . . . bm
a1 . . . am

qn

satisfy the Rodrigues formula

rn(x; a,b) =
1

f̆(z; a,b)
Dnq (f̆(z; qn/2a, qn/2b)).

The next application incorporates an Askey–Wilson weight into ğ.

Definition 3.2. Let

ğ(z; a,b) =
2i(z2, q/z2; q)∞

∏m
i=1(biz, bi/z; q)∞

z
∏m+4

i=1 (aiz, ai/z; q)∞
,

where a = (a1, . . . , am+4) and b = (b1, . . . , bm).

Note that ğ(z; a,b) involves theta products, θ(a) := (a, q/a; q)∞, which satisfy θ(aqp) =

(−1)pq−(p
2)θ(a), for all p ∈ Z, see Section 8.

Observe that

ğ(qk−n/2z; qn/2a, qn/2b) = ğ(z; a,b)

∏m+4
i=1 (aiz; q)k(ai/z; q)n−k∏m
i=1(biz; q)k(bi/z; q)n−k

z2n−4k(−1)nq−(2k−n
2 )qn/2−k.

Definition 3.3. For a non-negative integer n define

pn(x; a,b) =
(2z)nq−

1
2(n+1

2 )

(q1/2 − q−1/2)n(1/z2; q)n

∏m+4
i=1 (ai/z; q)n∏m
i=1(bi/z; q)n

× 2m+8W2m+7(q
−nz2; q−n, a1z, · · · , am+4z, q

1−nz/b1, · · · , q1−nz/bm; q, Z1),

where

Z1 =
b1 . . . bm
a1 . . . am+4

q2−n.

Theorem 3.4. The functions pn(x; a,b) satisfy the Rodrigues formula

pn(x; a,b) =
1

ğ(z; a,b)
Dnq (ğ(z; qn/2a, qn/2b)).

It must be noted that ğ(z; a,b) is not symmetric in z → 1/z but is antisymmetric.
Moreover if h(z) satisfies h(1/z) = −h(z) the so does the quotient

h(q1/2z)− h(q−1/2z)

z − 1/z
.

and its iterates. This implies that the functions pn(x; a,b) are symmetric in z and 1/z,
hence they are functions of x.

We shall refer to these polynomials as the IRS polynomials.
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4. Orthogonality of very-well poised series

In this section we use Theorem 3.4 and q-integration by parts to give an orthogonality
relation for pn(x; a,b) in Theorem 4.2. When m = 0 Theorem 4.2 is the orthogonality
relation for Askey–Wilson polynomials.

To derive orthogonality from a Rodrigues formula we need an appropriate integra-
tion by parts formula. Brown, Evans and Ismail proved the following analogue of q-
integration by parts in [3, (1.12)].

Theorem 4.1. The Askey–Wilson operator Dq satisfies

< Dq f, g >=
π
√
q

1− q

[
f

(
1

2

(
q1/2 + q−1/2

))
g(1)− f

(
−1

2

(
q1/2 + q−1/2

))
g(−1)

]
− < f,

√
1− x2Dq

(
g(x)

(
1− x2

)−1/2)
>,

for f , g ∈ H1/2.

Let

h(x, a) =
∞∏
k=0

(1− 2axqk + a2q2k) = (aeiθ, ae−iθ; q)∞, x = cos θ,

and

w(x; a,b) =
h(2x2 − 1, 1)√

1− x2

∏m
i=1 h(x, bi)∏m+4
i=1 h(x, ai)

.

If m = 0, w(x; a,∅) is the Askey–Wilson weight function.

Theorem 4.2. Assume that |aj| < 1, 1 ≤ j ≤ m + 4, the aj’s are real or appear in
conjugate pairs. Then for any polynomial π(x) of degree at most n− 1,∫ 1

−1
pn(x, a,b)π(x)w(x; a,b)dx = 0.

Proof. Note that w(x; a,b) = ğ(z; a,b). We first assume that |ajq−n/2| < 1 for 1 ≤
j ≤ m + 4. Use Theorem 3.4 and Theorem 4.1 n times. Each boundary term in the
formula for q-integration by parts is 0 because of the presence of the factor

√
1− x2. The

action of Dq on products of factors of the type 1/h(x, a) produces products of factors of
the type 1/h(x, q−1/2a). The analyticity assumptions in Theorem 4.1 are satisfied since
ğ(z; a,b) = 0 if z = qj/2 for any integer j. The restriction |ajq−n/2| < 1 can be removed
by analytic continuation since 1/h(x, a) is analytic in a in the open unit disc and for all
x ∈ [−1, 1]. �

5. Polynomial nature of pn(x; a,b)

From Definition 3.3 it would appear that

qn(x; a,b) :=
m∏
j=1

(bjz, bj/z; q)npn(x; a,b)
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has poles at the zeros of (1/z2; q)n. However these singularities are removable. The
main result of this section is Corollary 5.7 which establishes the polynomial character
of qn(x; a,b).

We shall use the Rodrigues formula to give an inductive proof of this fact. First we
reformulate the Rodrigues formula as a recursive procedure.

Proposition 5.1. For any positive integer n we have

qn(x; a,b) =
1

ğ(z; a, qnb)
Dq(ğ(z; q1/2a, qn−1/2b)qn−1(x; q1/2a, q1/2b)).

Proof. The case n = 1 is the case n = 1 of Theorem 3.4. The inductive step follows from

pn+1(x; a,b) =
1

ğ(z; a,b)
Dn+1
q

[
ğ(z; q(n+1)/2a, q(n+1)/2b)

]
=

1

ğ(z; a,b)
Dq
[
ğ(z; q1/2a, q1/2b)pn(x; q1/2a, q1/2b)

]
=

1

ğ(z; a,b)
Dq
[
ğ(z; q1/2a, qn+1/2b)qn(x; q1/2a, q1/2b)

]
.

Multiplying both sides by
∏m

j=1(bjz, bj/z; q)n+1 gives the desired result for n+ 1. �

In Theorems 5.3 and 5.6 we find the leading term of qn(x; a,b) and the next lemma
enables us to do this.

We denote the coefficient of zm in a Laurent polynomial c(z) by [zm]c(z).

Lemma 5.2. Let c(z) be a Laurent polynomial with degrees bounded between −m − 2

and m+ 2, and let f̆(z) be a symmetric Laurent polynomial of degree k. Then

c(z)f̆(q1/2z)− c(1/z)f̆(q−1/2z)

z − 1/z

is a symmetric Laurent polynomial of degree m+ 1 + k, with leading coefficient

(qk/2[zm+2]c(z)− q−k/2[z−m−2]c(z))[zk]f̆(z).

Proof. The poles at z = 1 and z = −1 are cancelled by zeros of the numerator (since

f̆(±q1/2) = f̆(±q−1/2) by the symmetry of f̆), and thus the result is a Laurent poly-

nomial, the symmetry of which follows from the symmetry of f̆ . The claim about the
leading coefficient follows by dividing by zm+1+k and taking the limit z →∞. �

Theorem 5.3. For any a, b, qn(x; a,b) is a polynomial in x of degree at most (m+1)n.
The inequality on the degree is strict if and only

b1 · · · bm = qn−1+sa1 · · · am+4,

for some 0 ≤ s ≤ n− 1.

Proof. First it is useful to note that

c(z) =
ğ(zq1/2; aq1/2,bqn−1/2)

ğ(z; a,bqn)
,
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implies that

c(1/z) =
ğ(zq−1/2; aq1/2,bqn−1/2)

ğ(z; a,bqn)
.

A straightforward induction using Proposition 5.1 and Lemma 5.2 with

c(z) = −q
−1/2

z2

m∏
i=1

(1− biqn−1/z)
m+4∏
j=1

(1− ajz),

f̆(z) = qn−1(x; q1/2a, q1/2b), k = (n− 1)(m+ 1)

shows that qn(x; a,b) has degree ≤ (m+ 1)n, with leading coefficient

2(m+1)nqm(n
2)

n−1∏
s=0

(a1 · · · am+4q
n−1+s − b1 · · · bm),

and the result follows. �

If one experiments with the special cases when the degree bound is not attained, one
finds that for otherwise generic parameters such that

b1 · · · bm = qn−1+sa1 · · · am+4

for some 0 ≤ s ≤ n−1, qn(x; a,b) has degree nm+s. Unfortunately, the above inductive
argument does not suffice to give this stronger bound, though it does allow one to reduce
to the case s = 0. To resolve this case, we need a stronger version of Proposition 5.1.
This requires an operator identity satisfied by the Askey–Wilson operator, which we now
state.

Lemma 5.4. Let

φ̆n(z; a) = (az, a/z; q)n.

The Askey–Wilson operator satisfies the operator identity

Dl+mq =
1

φ̆m(z; q−m/2v)
Dlqφ̆l+m(z; q−(l+m)/2v)Dmq

1

φ̆l(z; q−l/2v)
.

Proof. We verify that both sides give the same result when applied to φ̆s(z; q−l/2v). We
use

Dqφ̆n(z; a) =
2a(1− qn)

q − 1
φ̆n−1(z; aq1/2), Dq

1

φ̆n(z; a)
=

2a(1− qn)

1− q
1

φ̆n+1(z; aq−1/2)
,

and

φ̆l(z; q−l/2v)φ̆s(z; ql/2v) = φ̆s+l(z; q−l/2v),

φ̆l+m(z; q−(l+m)/2v)

φ̆l+m+s(z; q−(l+m)/2v)
=

1

φ̆s(z; q(l+m)/2v)

φ̆s+l(z; qm/2v)φ̆m(z; q−m/2v) = φ̆s+l+m(z; q−m/2v).

After treating the cases s ≥ l and s < l separately one completes the proof. �
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Remark 5.5. Apply Lemma 5.4 to a function f . Comparing coefficients of f(qj−(l+m)/2)
on both sides of Proposition 2.1 gives a special case of Jackson’s 8φ7 summation, [6,
(II.22)].

This allows us to prove the following result, from which the claim about qn(x; a,b)
follows immediately.

Theorem 5.6. Let f(z) be a symmetric Laurent polynomial of degree k, and define

hn(z; a,b) =
1

ğ(z; a, qnb)
Dnq (ğ(z; qn/2a, qn/2b)f(z)).

Then hn(z; a,b) is a symmetric Laurent polynomial of degree at most (m + 1)n + k.
Moreover, if for some s with 0 ≤ s ≤ n− 1,

b1b2 · · · bm = qn−1+s+ka1a2 · · · am+4.

then hn(z; a,b) has degree at most mn+ s+ k.

Proof. If s 6= 0, the claim follows by the argument of the previous induction. Propo-
sition 5.1 holds with qn(x; a,b) replaced by hn(z; a,b). Thus the leading term of
hn(z; a,b) is a nonzero multiple of a1 · · · am+4q

n+1 − b1 · · · bm times the leading term
of hn−1(z; q1/2a, q1/2b). If a and b satisfy the hypothesized restriction with parameters
n and s, then q1/2a and q1/2b satisfy the same relation with parameters n− 1 and s− 1.
Thus by induction hn−1(z; q1/2a, q1/2b) has degree at most m(n− 1) + s− 1 +k. Lemma
5.2 implies hn(z; a,b) has degree at most

m(n− 1) + s− 1 + k +m+ 1 = mn+ s+ k.

It remains only to establish the s = 0 case, namely to show that if

b1b2 · · · bm = qn−1+ka1a2 · · · am+4,

then hn(z; a,b) has degree at most mn+ k.

We shall use Lemma 5.4 to derive another recurrence for hn(z; a,b)

hn+1(z; a,b) =
1

ğ(z; (qna1, a′), qn+1b)

×Dq(ğ(z; (qn+1/2a1, q
1/2a′), qn+1/2b)hn(z; (q−1/2a1, q

1/2a′), q1/2b)),

(5.1)

where a = (a1, a
′) = (a2, a2, · · · , am+4). It must be noted that (5.1) is a raising operator

relation for hn.

To prove (5.1) apply Lemma 5.4 with (l,m) = (1, n) and v = qn/2a1 to give the
operator identity

1

ğ(z; a, qn+1b)
Dn+1
q ğ(z; qn/2+1/2a, qn/2+1/2b)

=

(
1

ğ(z; (qna1, a), qn+1b)
Dqğ(z; (qn+1/2a1, q

1/2a), qn+1/2b)

)
(

1

ğ(z; (q−1/2a1, q1/2a), qn+1/2b)
Dnq ğ(z; (qn/2−1/2a1, q

n/2+1/2a), qn/2+1/2b)

)
.
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Suppose by induction that hn(z; A,B) has degree mn+ k whenever

B1B2 · · ·Bm = qn−1+kA1A2 · · ·Am+4.

Suppose that

b1b2 · · · bm = qn−1+ka1a2 · · · am+4.

holds. We must show that hn+1(z; a,b) has degree at most m(n+ 1) + k.

We now use Lemma 5.2 with

c(z) = −q
−1/2

z2
(1− a1qnz)

m+4∏
i=2

(1− aiz)
m∏
j=1

(1− bjqn/z)

f̆(z) = hn(z; (q−1/2a1, q
1/2a′), q1/2b)

to conclude that hn+1(z; a,b) has degree at mostm+1 more than hn(z; (q−1/2a1, q
1/2a′), q1/2b).

Moreover the leading term of hn+1(z; a,b) is a multiple of b1 . . . bm − qn+ka1 · · · am+4,
which is zero. So the degree of hn+1(z; a,b) is at mostmmore than hn(z; (q−1/2a1, q

1/2a′), q1/2b).
We see that (A,B) = ((q−1/2a1, q

1/2a′), q1/2b) satisfies the hypothesized relation for n.
So by induction the degree of hn(z; (q−1/2a1, q

1/2a′), q1/2b) is at most mn + k, and the
degree of hn+1(z; a,b) has degree at most mn+ k +m = m(n+ 1) + k. �

Corollary 5.7. If b1b2 · · · bm = qn−1+sa1a2 · · · am+4 for some s, 0 ≤ s ≤ n − 1, then
qn(x; a,b) is a polynomial in x of degree at most mn+ s.

6. Rahman’s biorthogonal 10φ9’s

In this section we derive Rodrigues formulas and the biorthogonality relation [12, §3]
for Rahman’s very-well poised 10φ9’s from Theorem 3.4 and Theorem 4.2. We also give
a polynomial orthogonality in Theorem 6.5.

Rahman’s [12] biorthogonal rational functions which depend upon five parameters
t = (t1, t2, t3, t4, t5). The functions are denoted by Rn and Sn and given by

Rn(x; t | q) = 10W9(t
2
1t2t3t4t5/q; t1t3t4t5, t1t2t4t5, t1t2t3t5, t1z, t1/z, t1t2t3t4q

n−1, q−n; q; q),

Sn(x; t | q) = 10W9(t1/t5; q/t2t5, q/t3t5, q/t4t5, t1z, t1/z, t1t2t3t4q
n−1, q−n; q; q).

First we rewrite Rahman’s functions as another 10W9 function, our pn(x; a,b). Bailey’s

10φ9 transformation [6, (III.28)] is

10φ9

(
A, qA1/2, −qA1/2, B, C, D, E, F, λAqn+1/EF, q−n

A1/2,−A1/2, qA/B, qA/C, qA/D, qA/E, qA/F,EFq−n/λ,Aqn+1

∣∣∣∣ q, q)
=

(qA, qA/EF, qλ/E, qλ/F ; q)n
(qA/E, qA/F, qλ/EF, qλ; q)n

×10φ9

(
λ, qλ1/2, −qλ1/2, λB/A, λC/A, λD/A, E, F, λAqn+1/EF, q−n

λ1/2,−λ1/2, qA/B, qA/C, qA/D, qλ/E, qλ/F,EFq−n/A, λqn+1

∣∣∣∣ q, q) ,
(6.1)

where λ = qA2/BCD.
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Proposition 6.1. The Rahman functions are given by

Rn(x; t | q) =cnpn(x; a, b1), a = (t1, t2, t3, t4, t5q
1−n), b1 = t1t2t3t4t5 = T,

cn(x) =

(
q − 1

2

)n
q

1
2(n

2) (t1T ; q)n
(t1t2, t1t3, t1t4, q1−nt1t5; q)n

tn1

Sn(x; t | q) =dnpn(x; a, b1), a = (t1, t2, t3, t4, t5q
−n), b1 = t1t2t3t4t5/q = T/q,

dn(x) =

(
q − 1

2

)n
q

1
2(n

2) (Tz/q, T/qz; q)n
(q−nzt5, q−nt5/z; q)n

(q−nt5/t1; q)n
(t1t2, t1t3, t1t4, T/qt1; q)n

tn1 .

Proof. Both assertions follow from two applications of (6.1).

It must be noted that one of the parameters in a in Proposition 6.1 depends on n.

For Rn use A = t21t2t3t4t5/q, B = t1/z, C = t1t3t4t5, D = t1t2t3t5 followed by
A = t1t2t4z/q, B = qn−1t1t2t3t4, C = 1/t3t5, D = t1t2t4t5.

For Sn use A = t1/t5, B = t1/z, C = q/t2t5, D = q/t3t5 followed by A = t1t2t3z/q,
B = q/t4t5, C = qn−1/t1t2t3t4, D = t1t2t3t5/q. �

Thus we have Rodrigues formulas for the Rahman functions.

Theorem 6.2. The Rahman functions have the Rodrigues formulas

c−1n Rn(x; t | q) =
1

ğ(z; a, b1)
Dnq (ğ(z; qn/2a, qn/2b1)),

a =(t1, t2, t3, t4, t5q
1−n), b1 = t1t2t3t4t5

d−1n Sn(x; t | q) =
1

ğ(z; a, b1)
Dnq (ğ(z; qn/2a, qn/2b1)),

a =(t1, t2, t3, t4, t5q
−n), b1 = t1t2t3t4t5/q

We next show that Rahman’s biorthogonality follows from Theorem 4.2.

Theorem 6.3. If n 6= m, T = t1t2t3t4t5, then∫ 1

−1
w(x; (t1, t2, t3, t4, t5), T )Rn(x; t | q)Sm(x; t | q)dx = 0,

holds for |tj| < 1, 1 ≤ j < 5, and max{|t5q−m|, |t5q−n|} < 1.

Proof. First assume that n > m. Then from Theorem 4.2 and Proposition 6.1 we have

0 =

∫ 1

−1
w(x; (t1, t2, t3, t4, t5q

1−n), T )Rn(x; t | q)π(x)dx

=

∫ 1

−1
w(x; (t1, t2, t3, t4, t5), T )Rn(x; t | q) π(x)

(q1−nt5z, q1−nt5/z; q)n−1
dx

for any polynomial π(x) of degree at most n−1. By Corollary 5.7 with m = 1 and s = 0,
we can choose π(x) to be a multiple of

pm(x; (t1, t2, t3, t4, q
−mt5), T/q)(Tz/q, T/qz; q)m(q1−nt5z, q

1−nt5/z; q)n−1−m
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which by Proposition 6.1 is a multiple of

Sm(x; t | q)(q1−nt5z, q1−nt5/z; q)n−1.

Next suppose that n < m. From Theorem 4.2 and Proposition 6.1 we have

0 =

∫ 1

−1
w(x; (t1, t2, t3, t4, t5q

−m), T/q)Sm(x; t | q)(q−mzt5, q
−mt5/z; q)m

(Tz/q, T/qz; q)m
π(x)dx

=

∫ 1

−1
w(x; (t1, t2, t3, t4, t5), T )Sm(x; t | q) π(x)

(Tz, T/z; q)m−1
dx

for any polynomial π(x) of degree at most m−1. This time use Corollary 5.7 with m = 1
and s = 0, and choose π(x) to be a multiple of

pn(x; (t1, t2, t3, t4, q
1−nt5), T )(Tz, T/z; q)n(Tzqn, T qn/z; q)m−1−n

which by Proposition 6.1 is a multiple of

Rn(x; t | q)(Tz, T/z; q)m−1,

and the proof is complete. �

Rahman [13] gave the orthogonality relation when the parameters are not necessarily
small, and in general the orthogonality relation has a discrete part. One can derive such
a relation using contour integration instead of integration on [−1, 1].

One may ask for a polynomial orthogonality relation for a 10W9. We provide one for
polynomials in x of degree n (see Theorem 6.5).

Definition 6.4. Let

Un(x; t | q) =zn
(Tzqn−1; q)n

(1/z2; q)n

5∏
i=1

(ti/z; q)n

×10W9(q
−nz2; t1z, t2z, t3z, t4z, t5z, zq

2−2n/T, q−n; q; q)

Note that Definition 6.4 is equivalent to

Un(x; t | q) = αnpn(x; t, qn−1T )(Tzqn−1, T qn−1/z; q)n, T = t1t2t3t4t5,

where αn is a non-zero constant. Thus Corollary 5.7 with m = 1 and s = 0 shows that
Un(x; t | q) is a polynomial in x of degree n.

Theorem 6.5. Assume that |tj| < 1, 1 ≤ j ≤ 5, the tj’s are real or appear in conjugate
pairs. Then the polynomials Un(x; t | q) of degree n satisfy the orthogonality relation∫ 1

−1
Un(x; t | q)Um(x; t | q) w(x; t, T )∏2n−2

k=0 (1− 2Txqk + T 2q2k)
dx = 0, n > m.

Proof. This follows directly from Theorem 4.2 using

w(x; t, T qn−1) =
w(x; t, T )

(Tz, T/z; q)n−1
, αnpn(x; t, qn−1T ) =

Un(x; t | q)
(Tqn−1z, T qn−1/z; q)n

.

This completes the proof. �
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The polynomials Un are symmetric in the parameters ti. If t5 = 0 (and thus T = 0)
Theorem 6.5 is the orthogonality relation for Askey–Wilson polynomials. We note that
t5 = 0 does give the Askey–Wilson polynomials with the symmetric normalization

Un(x; (t1, t2, t3, t4, 0), 0) = pn(x; t|q).

A three-term relation for Un, generalizing the Askey–Wilson three-term recurrence, is
given in §9.

7. Asymptotics

In this section we give in Theorem 7.2 the large n asymptotics of the polynomials
Un(x; t, T ). Although these polynomials are not, strictly speaking, orthogonal polyno-
mials, we show that orthogonal polynomial techniques can lead one to guess an orthog-
onality relation such as Theorem 6.5.

The following theorem relates the asymptotics of orthonormal polynomials to the
weight function, see [22, Chapter 12].

Theorem 7.1. Assume that {pn(x)} are orthonormal with respect to a weight function

w on [−1, 1] and that
∫ 1

−1 | ln f(cos θ)|dθ <∞, f(x) = w(x)
√

1− x2. Let

D(z) = exp

[
1

4

∫ π

−π
ln f(cos θ)

1 + ze−iθ

1− zeiθ
dθ

]
, |z| < 1.

Then

lim
n→∞

z−npn(x) =
1√

2π D(1/z)
,

where x ∈ C \ [−1, 1] and x = (z + 1/z)/2, |z| > 1. Moreover the radial limit exists,
limr→1− D(reiθ) = D(eiθ) and w(cos θ) = |D(eiθ)|2/ sin θ.

It must be noted that Theorem 7.1 contains information only on the absolutely contin-
uous component of the orthogonality measure and gives no information on the discrete
part.

When we do not know the weight function w but do know asymptotics of pn(x),
Theorem 7.1 will provide a good candidate for the weight function.

First we transform Un(x; t, T ) using (6.1) with A = q−nz2, B = t1z, C = t2z, and
D = t3z. The resulting expression may be written as

Un(x; t, T ) =
zn(q, t1t2, t1t3, t2t3, t4t5, q

nt1t2t3/z, Tq
n−1/z; q)n

(t1t1t3/qz; q)2n

×
n∑
k=0

(t1/z, t2/z, t3/z, t1t2t3/qz, q
n−1T/t4, q

n−1T/t5; q)n−k
(q, t1t2, t1t3, t2t3, qnt1t2t3/z, Tqn−1/z; q)n−k

t1t2t3 − zq1−2n+2k

t1t2t3 − zq1−2n

×(t4z, t5z; q)k
(q, t4t5; q)k

(qz)−2k.
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Therefore for |z| > 1 we have the limiting relation

lim
n→∞

z−n Un(x; t) = (t4t5; q)∞

3∏
j=1

(tj/z; q)∞ 2φ1(t4z, t5z; t4t5; q, 1/z
2)

Applying the q-analogue of Gauss’s theorem [6] we establish the following theorem.

Theorem 7.2. The large n asymptotics of Un for |z| > 1 is given by

lim
n→∞

z−n Un(x; t) =

∏5
j=1(tj/z; q)∞

(1/z2; q)∞
.

If the Un’s were orthogonal polynomials Theorem 7.1 would give

D(z) =
(1/z2; q)∞∏5
j=1(tj/z; q)∞

one would expect the weight function to be

(e2iθ, e−2iθ; q)∞

sin θ
∏5

j=1(tje
iθ, tje−iθ; q)∞

, θ ∈ [0, π].(7.1)

This agrees with Theorem 6.5 except for the part of the weight function which depends
on n. In fact the weight function in Theorem 6.5 is exactly analogous to the the problem
of varying weights in orthogonal polynomials, see for example [18]. If we let n → ∞
in the weight function in Theorem 6.5 we indeed get the quantity in (7.1). So the
asymptotics seems to give the n independent part of the weight function.

8. Elliptic analogues

In this section we give elliptic analogues of the main results of the previous sections.
An elliptic version of the iterated Askey–Wilson operator is given in Proposition 8.1.
An elliptic analogue of the polynomials qn(x; a,b) is given in Definition 8.4, and their
orthogonality relation is Theorem 8.9.

The operator identity, Lemma 5.4 above, satisfied by the Askey–Wilson operator, is a
limiting case of an identity satisfied by a family of elliptic difference operators. We recall
the elliptic analogue of the infinite q-shifted factorials, the elliptic Gamma function of
[17]

Γp,q(z) =
∏
j,k≥0

1− pj+1qk+1/z

1− pjqkz
,

which satisfies the recurrence

Γp,q(qz) = θp(z)Γp,q(z),

where
θp(z) =

∏
j≥0

(1− pj+1/z)(1− pjz).

This function, in turn, satisfies the following quasiperiodicity property:

θp(pz) = −z−1θp(z),
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making θp(exp(2π
√
−1z)) a theta function for the lattice 〈1, log(p)/2π

√
−1〉. We also

define finite elliptic shifted factorial by

θp(z; q)m =
Γp,q(q

mz)

Γp,q(z)
=

∏
0≤j<m

θp(q
jz).

The analogue of a polynomial of degree n in the elliptic context is a “symmetric
theta function” of degree n, a holomorphic function f such that f(1/z) = f(z) and
f(pz) = (pz2)−nf(z). As with polynomials, these form a vector space of dimension
n+ 1.

The most natural analogue of the Askey–Wilson operator is the operator Dq;p which
acts by

(Dq;pf)(z) =
f(q1/2z)

θp(z2)
+
f(q−1/2z)

θp(1/z2)
,

which manifestly preserves the space of functions invariant under z 7→ 1/z. This is not
quite a direct analogue, in so far as the limit as p → 0 is not quite the same operator
(the coefficients differ by powers of z), but is more convenient for dealing with questions
of orthogonality. The key point is that this operator is formally self-adjoint with respect
to the density

∆(z; p, q) =
(p; p)∞(q; q)∞

2

1

Γp,q(z2)Γp,q(1/z2)

dz

2π
√
−1z

,

the fixed part of the density of the elliptic beta integral [19]. To be precise, if f and g
are invariant under z 7→ 1/z, then the integral∫

S1

(Dq;pf)(z)g(z)∆(z)

is, by symmetry, equal to

2

∫
S1

f(q1/2z)g(z)θp(z
2)−1∆(z).

The change of variables z 7→ q−1/2/z makes this equal to

2

∫
|z|=q−1/2

f(z)g(q1/2z)θp(z
2)−1∆(z).

Moving the contour back to the unit circle and symmetrizing gives∫
S1

f(z)(Dq;pg)(z)∆(z),

assuming that there are no poles for 1 ≤ |z| ≤ q−1/2. (The possibility of poles is why we
refer to this as “formal” self-adjointness above.)

Unlike the Askey–Wilson operator, however, the powers of this operator are not well-
behaved; if we try to square the operator, we find that the two contributions to the
constant term are quasiperiodic, but with different multipliers, and thus the sum is not
even a (meromorphic) theta functions. However, in [15, §9], the second author introduced
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a family of multivariate operators satisfying an analogue of Lemma 5.4 above; in the
univariate case, this is the operator identity

Dl+m(q; p) =
Γp,q(q

−m/2vz)Γp,q(q
−m/2v/z)

Γp,q(qm/2vz)Γp,q(qm/2v/z)
Dl(q; p)

Γp,q(q
(l+m)/2vz)Γp,q(q

(l+m)/2v/z)

Γp,q(q−(l+m)/2vz)Γp,q(q−(l+m)/2v/z)

×Dm(q; p)
Γp,q(q

−l/2vz)Γp,q(q
−l/2v/z)

Γp,q(ql/2vz)Γp,q(ql/2v/z)
,

where D1(q; p) = Dq;p. The above identity is not explicitly stated in [15].

From this, it is straightforward to deduce the analogue of Proposition 2.1. Indeed,
when m = 1, the simple fact that the right-hand side is independent of v means that the
residue at v = q1/2z must be 0, but this gives a first-order recurrence for the coefficients
of Dl(q; p). The leading coefficient is also straightforward to compute.

Proposition 8.1. The operator Dn(q; p) has the expansion

(Dn(q; p)f)(z) =
∑

0≤j≤n

(−1)jq−j(j−1)/2z2j
θp(q

n−2jz2)

θp(q−jz2; q)n+1

θp(q; q)n
θp(q; q)jθp(q; q)n−j

f(qn/2−jz)

As remarked after Lemma 5.4, this expression turns the operator identity into a
(Zariski dense) special case of the Frenkel-Turaev summation [5], the elliptic analogue
of Jackson summation.

Note that just as for n = 1, Dn(q; p) is formally self-adjoint with respect to the density
∆(z; p, q).

Theorem 8.2. Let f be a symmetric theta function of degree k, and let a be a sequence
of length 2m+ 4 satisfying

q(m+1)(n−1)+ka1 · · · a2m+4 = pm+1.

Then
1∏

1≤i≤2m+4 Γp,q(aiz)Γp,q(ai/z)
Dn(q; p)

∏
1≤i≤2m+4

Γp,q(q
n/2aiz)Γp,q(q

n/2ai/z)f(z)

is a symmetric theta function of degree mn+ k.

Proof. As before, this reduces easily to the case n = 1. In that case, we verify that
the resulting function has the correct symmetry and quasi-periodicity, so the only ob-
struction to being a theta function is the potential poles coming from zeros of θp(z

2).
By symmetry, however, the function must have even order at such points, and thus the
apparent simple poles are in fact removable singularities as required. �

Remark 8.3. To relate this to Theorem 5.6 above, note that the elliptic Gamma function
satisfies the reflection principle Γp,q(x)Γp,q(pq/x) = 1, and thus we can write a ratio of
elliptic Gamma functions as a product. Moreover, we can shift one of the parameters by
a factor of p at the cost of introducing some powers of q and z to the coefficients of the
operator (as Γp,q(px)/Γp,q(x) is quasiperiodic under q-shifts!).

Applying the operator when k = 0 in Theorem 8.2 to 1 gives a symmetric theta
function of degree mn.
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Definition 8.4. Let

qn(z; a; p) =
1∏

1≤i≤2m+4 Γp,q(aiz)Γp,q(ai/z)
Dn(q; p)

∏
1≤i≤2m+4

Γp,q(q
n/2aiz)Γp,q(q

n/2ai/z)(1)

Note that Proposition 8.1 implies that qn(z; a; p) has an expression as a “very-well-
poised balanced” elliptic hypergeometric series.

If we take m = −1, then we find that the operator decreases the degree. Since theta
functions of negative degree do not exist, we obtain the following result.

Corollary 8.5. If f(z) is a symmetric theta function of degree n− 1, then for any a,

Dn(q; p)

[
f(z)

θq(az)θq(a/z)

]
= 0.

Together with self-adjointness of Dn(q; p), Corollary 8.5 allows us to prove orthogo-
nality results. The simplest interesting case is a Rodrigues formula for the biorthogonal
functions of Spiridonov and Zhedanov, which are now defined.

Definition 8.6. For parameters satisfying t0t1t2t3u0u1 = pq, let

fn(z; t0, t1, t2, t3;u0, u1)

=
3∏
j=0

1

Γp,q(tjz, tj/z)

1

Γp,q(u0z)Γp,q(u0/z)Γp,q(pu1q1−nz)Γp,q(pu1q1−n/z)

×Dn(q; p)H(z),

where

H(z) = Γp,q(q
−n/2u0z)Γp,q(q

−n/2u0/z)Γp,q((pu1q
1−n/2)z)Γp,q((pu1q

1−n/2)/z)

×
3∏
j=0

Γp,q(q
n/2tjz)Γp,q(q

n/2tj/z).
(8.1)

Also, define a family of densities by

∆(z; a) :=
∏

1≤i≤2m+4

Γp,q(aiz)Γp,q(ai/z)∆(z).

Lemma 8.7. The function

θp((pq/u0)z; q)nθp((pq/u0)/z; q)nfn(z; t0, t1, t2, t3;u0, u1)

is a symmetric theta function of degree n, so that fn(z; t0, t1, t2, t3;u0, u1) is a symmetric
elliptic function. Next, suppose |t0|, |t1|, |t2|, |t3|, |q−nu0|, |q1−nu1| < 1. Then for any
symmetric elliptic function g such that

θp((pq/u1)z; q)n−1θp((pq/u1)/z; q)n−1g(z)

is holomorphic,∫
S1

fn(z; t0, t1, t2, t3;u0, u1)g(z)∆(z; t0, t1, t2, t3, u0, u1) = 0.

In particular, fn(z; t0, t1, t2, t3;u0, u1) is proportional to the elliptic biorthogonal function
of [21].
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Proof. We have

θp((pq/u0)z; q)nθp((pq/u0)/z; q)nfn(z; t0, t1, t2, t3;u0, u1) = qn(z; t0, t1, t2, t3, q
−nu0, q

1−npu1; p),

which is indeed a symmetric theta function of degree n. We can also write∫
S1

fn(z; t0, t1, t2, t3;u0, u1)g(z)∆(z; t0, t1, t2, t3, u0, u1)

=

∫
S1

[Dn(q; p)H(z)]
Γp,q(u1z)Γp,q(u1/z)

Γp,q((pu1/qn−1)z)Γp,q((pu1/qn−1)/z)
g(z)∆(z),

where H(z) is given by (8.1).

The conditions on the parameters ensure that the residue terms in the formal self-
adjointness do not appear (i.e., the integrand has no poles between the shifted contour
and the unit circle), so the integrand is

∆(z)Dn(q; p)
Γp,q(u1z)Γp,q(u1/z)

Γp,q((pu1/qn−1)z)Γp,q((pu1/qn−1)/z)
g(z).

may be rewritten as

∆(z)Dn(q; p)
Γp,q(u1z)Γp,q(u1/z)

Γp,q(pu1z)Γp,q(pu1/z)
θp((pq/u1)z; q)n−1θp((pq/u1)/z; q)n−1g(z).

Because
Γp,q(u1z)Γp,q(u1/z)

Γp,q(pu1z)Γp,q(pu1/z)
=

1

θq(u1z)θq(u1/z)
,

the integrand vanishes by Corollary 8.5. �

Remark 8.8. The constant can be recovered from the fact that when z = t0, only one
of the n+ 1 terms in the Rodrigues formula is nonzero, so that

fn(t0; t0, t1, t2, t3;u0, u1) =
θp(t0t1, t0t2, t0t3, 1/t0u1; q)n

θp(pqt0/u0; q)n
.

Essentially the same argument gives the following more general orthogonality result.
When m = 1, this recovers the above orthogonality (for the numerator of fn, to be
precise).

Theorem 8.9. Let q(m+1)(n−1)∏
0≤i<2m+4 ai = pm, so that the function

qn(z; pa0, a1, . . . , a2m+3; p)

is a symmetric theta function of degree mn, and suppose |a0|, . . . , |a2m+3| < 1. Then for
any symmetric theta function g of degree n− 1,∫

S1

qn(z; pa0, a1, . . . , a2m+3; p)g(z)∆(z; a0, . . . , a2m+3) = 0.

Note that since the function
θq(bz)θq(b/z)

θq(az)θq(a/z)
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is periodic in q, it follows from Proposition 8.1 that the operator

a−nθq(q
−n/2az)θq(q

−n/2a/z)Dn(q; p)

[
1

θq(az)θq(a/z)

]
is independent of a.

In fact, the same theta functions satisfy a number of different orthogonality relations,
arising from the fact that

an0qn(z; pa0, a1, . . . , a2m+3; p) = an1qn(z; a0, pa1, . . . , a2m+3; p),

which in turn follows immediately from the above observation that

a−nθq(q
−n/2az)θq(q

−n/2a/z)Dn(q; p)

[
1

θq(az)θq(a/z)

]
is independent of a. It seems likely that these orthogonality relations determine qn (in-
deed, it should typically be enough to take the first m such relations), though to prove
this in general requires the computation of a fairly complicated determinant. The or-
thogonality relations impose linear conditions on qn, so for qn to be uniquely determined
requires that the restriction of these equations to some complement of 〈qn〉 has a minor
of full rank.

We also have the following analogue of Theorem 6.5.

Corollary 8.10. Let Un(z; t1, t2, t3, t4, t5; p) := qn(z; t1, t2, t3, t4, t5, p
2q2−2n/t1t2t3t4t5).

Then for m < n, and |tj| < 1 for all j, 1 ≤ j ≤ 6, we have∫
S1

Un(z)Um(z)θp(az, a/z; q)n−1−m∆(z; t1, t2, t3, t4, t5, pq
2−2n/t1t2t3t4t5) = 0.

Remark 8.11. Note here that the density depends on m in a crucial way, via the factor
θp(az, a/z; q)n−1−m as part of the density. Of course, in the limit p → 0, one may as
well take a = 0, and thus recover Theorem 6.5.

9. A Recursion Relation

Proposition 9.1. The polynomial Un(x) = Un(xn; t|q) satisfies the following 3-term
recurrence relation

Un+1 − An+1(1− q2n−2Tz)(1− q2n−2T/z)(1− q2n−3Tz)(1− q2n−3T/z)Un−1

− (Bn(1− t1/z)(1− t1z) + Cn))Un = 0,
(9.1)

where

An =
4∏
i=1

5∏
j=i+1

(1− titjqn−2)(1− qn−1)(−q8)/
5∏
i=1

(1− e5qn−2/ti)
N

D
, where

N =(q10 − e45q8n + e25(q
3n+5 − q5n+5)− e4q2n+8 + e25e4(q

6n+3 − q5n+3) + e5e3q
3n+6

+ e35e1q
6n+2 − e25e2q5n+4 + e5e1(q

3n+7 − q2n+7))

D =(q18 − e45q8n + e25(q
3n+10 − q5n+8)− e4q2n+14 + e25e4(q

6n+5 − q5n+6)

+ e5e3q
3n+11 + e35e1q

6n+4 − e25e2q5n+7 + e5e1(q
3n+12 − q2n+13));
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Cn =
5∏
j=2

(1− qnt1tj)
(1− q2n−1t2t3t4t5)(1− q2nt2t3t4t5)

t1(1− qn−1t2t3t4t5)

− An+1
(1− t21t2t3t4t5q2n−2)(1− t21t2t3t4t5q2n−3)(1− t2t3t4t5qn−2)t1∏5

j=2(1− qn−1t1tj)
.

Bn =
(
(1− t1t2qn)

5∏
j=3

(1− qnt2tj)
(1− q2n−1t1t3t4t5)(1− q2nt1t3t4t5)

(1− qn−1t1t3t4t5)t2

− An+1
(1− t1t22t3t4t5q2n−2)(1− t1t22t3t4t5q2n−3)(1− t1t3t4t5qn−2)t2∏5

j=3(1− qn−1t2tj)(1− t1t2qn−1)
− Cn

)
/(1− t1/t2)(1− t1t2).

and ej is the elementary symmetric function of t1, t2, t3, t4, t5 of degree j.

This was verified using computer algebraic techniques by Christoph Koutschan [11].

It must be noted that equation (9.1) when written in x, x = (z+ 1/z)/2 is of the form
of a recurrence relation of an RII fraction, [8, (3.1)]. In the notation of §3 of [8], the
interpolation points are

an+1 = [Tq2n−2 + q2−2n/T ]/2, bn+1 = [Tq2n−3 + q3−2n/T ]/2.

The interpolation points are also manifested in the orthogonality relation in Theorem
6.5. Moreover Un(x; t|q) can be evaluated at these special points. To see this use the
symmetry of Un in z and 1/z to put 1/z = Tq2n−2 in (6.2). Indeed we have

Un(xn; t|q) =
q2n(n−1)

T n

5∏
j=1

(Tqn−1/tj; q)n, xn =
1

2
[Tq2n−2 + q2−2n/T ].

Similarly we may just set z = Tq2n−3 in (6.2) and the 8W7 is now a sum of two terms, so
we can find a closed form expression for Un(yn; t|q), where yn = [Tq2n−3 + q3−2n/T ]/2.
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