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1. Introduction

Andrews [1] proved the terminating basic hypergeometric identity

5φ4

 q−N , ρ1, ρ2, b, c

ρ1ρ2q
−N/a, e, f, g

∣∣∣∣∣∣ q, q
 =

(aq/ρ1, aq/ρ2; q)N
(aq, aq/ρ1ρ2; q)N

×
N∑
n=0

(q−N , ρ1, ρ2, a; q)n(1− aq2n)

(q, aq/ρ1, aq/ρ2, aqN+1; q)n(1− a)

(
aqN+1

ρ1ρ2

)n
un,

(1.1)

where N is a non-negative integer, qabc = efg, and

un = 4φ3

q−n, aqn, b, c
e, f, g

∣∣∣∣∣∣ q, q
 . (1.2)

(We use the usual basic hypergeometric notation, as in [2], [7] and [10].)

In this paper we show that Andrews’ identity (1.1) is one of many sim-

ilar expansion formulas which follow from expanding an Askey–Wilson basis

(beiθ, be−iθ; q)n in the Askey–Wilson polynomials. The expansions established

here, Theorem 2.2 and Corollary 2.5, are reminiscent of the Fields and Wimp ex-

pansions of hypergeometric functions in hypergeometric polynomials, [6], which

are stated and proved in the monographs [10] and [18]. These expansions were

extended in [5]. Gessel and Stanton, [8], developed q-Lagrange expansions and

applied their results to give q-analogues of some of these results.

Our main tool is an expansion formula due to Ismail and Rahman [11],

Proposition 2.1. Section 2 contains expansions which generalize Andrews’ re-

sult. Section 3 has new generating functions for the Askey–Wilson polynomials.

In Section 4 we give the integral evaluations which follow from our expansion

formulas. Section 5 is devoted to an expansion of general functions in polyno-

mials of Askey–Wilson type. The main result of §5 is the expansion (5.2). We

also show that the expansion (5.2) implies a generalization of earlier results of

q-analogues of plane wave expansions, see (5.5). Section 6 contains expansions

of little and big Jacobi type polynomials and derived as limiting cases of the

expansion of Section 5.
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Recall that with x = cos θ, the Askey–Wilson polynomials are defined by

[10]

pn(x; t | q) = t−n1 (t1t2, t1t3, t1t4; q)n

×4φ3

q−n, t1t2t3t4qn−1, t1eiθ, t1e−iθ
t1t2, t1t3, t1t4

∣∣∣∣∣∣ q, q
 .

(1.3)

Throughout this work we will set z = eiθ.

2. Askey-Wilson expansions

In this section we establish a general expansion in Askey-Wilson polynomials,

Theorem 2.2, which generalizes Andrews’ result (1.1).

We shall use the Ismail-Rahman [11] result alluded to in the introduction,

which expands an Askey-Wilson basis in terms of Askey-Wilson polynomials.

Proposition 2.1. For any non-negative n,

(beiθ, be−iθ; q)n =

n∑
k=0

fn,k(b, t)pk(x; t|q),

where

fn,k(b, t) =
(−b)kq(

k
2)(q; q)n(b/t4, bt4q

k; q)n−k
(q, t1t2t3t4qk−1; q)k(q; q)n−k

×4φ3

 qk−n, t1t4q
k, t2t4q

k, t3t4q
k

bt4q
k, t1t2t3t4q

2k, q1+k−nt4/b

∣∣∣∣∣∣ q, q
 ,

(2.1)

When b = t4, the explicit formula for fn,k simplifies considerably. Indeed all

the terms in the 4φ3 which appear in fn,k are zero except the last one. In this

case we find

fn,k(t4, t) =
(−t4)k(q; q)n(t1t4q

k, t2t4q
k, t3t4q

k)n−k
(q, t1t2t3t4qk−1; q)k(q, t1t2t3t4q2k; q)n−k

q(
k
2). (2.2)

We first explore applications of (2.2). It is clear from (2.2) that

∞∑
n=0

(t4z, t4/z; q)n
(q; q)n

Λnζ
n

=

∞∑
k=0

pk(x; t|q) (−t4ζ)kq(
k
2)

(q, t1t2t3t4qk−1; q)k

∞∑
n=0

Λn+k
(t1t4q

k, t2t4q
k, t3t4q

k)n
(q, t1t2t3t4q2k)n

ζn.

(2.3)
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An interesting special case is when

Λn =
(a1, · · · , ap−1; q)n

(t1t4, t2t4, t3t4, b1, · · · , bp−3; q)n
.

We state the result as our main theorem.

Theorem 2.2. We have the following expansion

p+1φp

 a1, · · · , ap−1, t4z, t4/z

t1t4, t2t4, t3t4, b1, · · · , bp−3

∣∣∣∣∣∣ q, ζ


=

∞∑
k=0

pk(x; t|q) (a1, · · · , ap−1; q)k
(t1t4, t2t4, t3t4, b1, · · · , bp−3; q)k

× (−t4ζ)kq(
k
2)

(q, t1t2t3t4qk−1; q)k
p−1φp−2

 qka1, · · · , qkap−1
qkb1, · · · , qkbp−3, t1t2t3t4q2k

∣∣∣∣∣∣ q, ζ
 .

Remark 2.3. The Andrews formula (1.1) is the case p = 4 in Theorem 2.2

with the parameter identification

a1 = q−N , a2 = ρ1, a3 = ρ2, b1 = ρ1ρ2q
−N/a, ζ = q.

In this case the 3φ2 can be summed by the q-Pfaff–Saalschütz theorem, [7,

(II.12)].

Remark 2.4. Another application of Theorem 2.2 is to set

a1 = q−N , a2 = c1c2c3t4q
N−1, aj = tj−2t4 for 3 ≤ j ≤ 5,

bk = t4ck for 1 ≤ j ≤ 3.

Theorem 2.2 solves the connection relation between pN (x; t4, c1, c2, c3|q) and

pk(x; t|q). The connection coefficient is a multiple of a 5φ4 and was first found

in the Askey–Wilson memoir [3].

Upon setting z = t1 in Theorem 2.2, we have the next corollary.
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Corollary 2.5. We have the following identity

pφp−1

 a1, · · · , ap−1, t4/t1
t2t4, t3t4, b1, · · · , bp−3

∣∣∣∣∣∣ q, ζ


=

∞∑
k=0

(a1, · · · , ap−1, t1t2, t1t3; q)k
(t2t4, t3t4, b1, · · · , bp−3; q)k

× (−t4ζ/t1)kq(
k
2)

(q, t1t2t3t4qk−1; q)k
p−1φp−2

 qka1, · · · , qkap−1
qkb1, · · · , qkbp−3, t1t2t3t4q2k

∣∣∣∣∣∣ q, ζ
 .

We note that by equating coefficients of ζn on both sides of the equation in

Corollary 2.5 is equivalent to the sum of a terminating very well poised 6φ5, [7,

(II.21)]

Remark 2.6. One may take Λn to be 0 unless n ≡ a (mod b) for fixed integers

a, b, a > 0, b ≥ 0. This leads to hypergeometric expansions where the differences

of consecutive parameters in a certain group is 1/b.

We now return to the general expansion formula Proposition 2.1. Since the

coefficient of pk(x; t|q) is a single sum, if we multiply by a function of n, and

then sum over n, the coefficient of pk(x; t|q) is a double sum. We state this

result.

Proposition 2.7. We have the expansion

∞∑
n=0

Λn
(q, bt4; q)n

(bz, b/z; q)n =

∞∑
k=0

pk(x; t|q) (−b)kq(
k
2)

(q, bt4, t1t2t3t4qk−1; q)k

×
∞∑
s=0

(t1t4q
k, t2t4q

k, t3t4q
k; q)s

(q, bt4qk, t1t2t3t4q2k; q)s

(
b

t4

)s ∞∑
n=0

(b/t4; q)n
(q; q)n

Λn+k+s.

We next make two different choices for Λn’s in Proposition 2.7. First let

Λn =
(A; q)n
(B; q)n

(
Bt4
bA

)n
.

Then the sum over n on the right side of Proposition 2.7 is evaluable by the

q-analogue of Gauss’s theorem [7, (II.7)], and the coefficient of pk(x; t|q) is a

single sum. Thus we have established Theorem 2.8 which we will now state.
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Theorem 2.8. We have the expansion formula

3φ2

A, bz, b/z
bt4, B

∣∣∣∣∣∣ q, Bt4bA


=

(B/A,Bt4/b; q)∞
(B,Bt4/bA; q)∞

∞∑
k=0

(A; q)k
(bt4, Bt4/b; q)k

(
Bt4
bA

)k
(−b)kq(

k
2)

(q, t1t2t3t4qk−1; q)k

×4φ3

 Aqk, t1t4q
k, t2t4q

k, t3t4q
k

bt4q
k, t1t2t3t4q

2k, qkBt4/b

∣∣∣∣∣∣ q, BA
 pk(x; t|q).

The second choice for Λn in Proposition 2.7 is

Λn =
(q−N , A; q)n

(B, q1−NAb/Bt4; q)n
qn.

This time the n-sum is evaluable by the q-Pfaff-Saalschütz theorem, [7, (II.12)].

Theorem 2.9. The expansion of a general terminating 4φ3 in the Askey-Wilson

polynomials is given by

4φ3

 q−N , A, bz, b/z

bt4, B, bAq
1−N/Bt4

∣∣∣∣∣∣ q, q


=
(B/A,Bt4/b; q)N
(B,Bt4/Ab; q)N

N∑
k=0

(−t4)kq(
k+1
2 )(q−N , A; q)k

(q, bt4, t1t2t3t4qk−1, Bt4/b, q1−NA/B; q)k
pk(x; t)

×5φ4

 q−N+k, Aqk, t1t4q
k, t2t4q

k, t3t4q
k

bt4q
k, Bt4q

k/b,Aqk+1−N/B, t1t2t3t4q
2k,

∣∣∣∣∣∣ q, q
 .

In Theorem 2.9 if we replace A by AqN−1, we can then identify parameters

a2, a3 such that the 4φ3 in Theorem 2.9 is a multiple of pN (x; b, a2, a3, t4). As

such Theorem 2.9 is equivalent to a connection coefficient problem solved in

[3]. We also note that although Theorem 2.8 is the limiting case N → ∞ of

Theorem 2.9, Theorem 2.8 is not available in the literature.

Remark 2.10. If we specialize Theorem 2.9 to

b = t2, B = t1t2, z = t3.

the 5φ4 in Theorem 2.9 reduces to a balanced 3φ2 which is again evaluable by the

q-Pfaff-Saalschütz theorem [7, (II.12)]. The resulting identity is the terminating
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case of the Watson transformation [7, (III.18)]. The nonterminating case Wat-

son transformation [7, (III.18)] follows by analytic continuation in the variable

d = qN .

We record an inverse to the expansion formula Proposition 2.1. The proof

uses the connection relation for the Askey–Wilson basis, which is [9], [10],

(az, a/z; q)m
(q, ab; q)m

=

m∑
k=0

(bz, b/z; q)k
(q, ab; q)k

(a/b; q)m−k
(q; q)m−k

(a
b

)k
. (2.4)

Theorem 2.11. The inverse relation to Proposition 2.1 is

pn(x; t) = t−n1

4∏
j=2

(t1tj ; q)n

n∑
k=0

(q−n, t1t2t3t4q
n−1, bz, b/z; q)k

(q, t1t2, t1t3, t1t4; q)k

(
qt1
b

)k

×4φ3

qk−n, bt1qk, t1t2t3t4qn+k−1, t1/b
t1t2q

k, t1t3q
k, t1t4q

k,

∣∣∣∣∣∣ q, q
 .

Proof. We take a = t1 in (2.4) and use (1.3).

3. Askey-Wilson generating functions

In this section we give two generating functions for Askey-Wilson polyno-

mials: Theorem 3.1, which follows from Proposition 2.1, and Theorem 3.2, for

which we provide an independent proof.

Theorem 3.1. The Askey–Wilson polynomials have the generating function

(beiθ, be−iθ; q)∞
(bt4, b/t4; q)∞

=

∞∑
k=0

(−b)kq(
k
2)

(q, bt4, t1t2t3t4qk−1; q)k
pk(x; t|q)

×3φ2

 t1t4qk, t2t4qk, t3t4qk
bt4q

k, t1t2t3t4q
2k

∣∣∣∣∣∣ q, bt4
 (3.1)

and satisfy the relationship

(t1z, t1/z, t1t2t3t4; q)∞
(t1t2, t1t3, t1t4; q)∞

=

∞∑
k=0

(−t1)k(t1t2t3t4/q; q)k
(q, t1t2, t1t3, t1t4; q)k

q(
k
2) 1− t1t2t3t4q2k−1

1− t1t2t3t4/q
pk(x; t|q)

(3.2)
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Proof. To prove (3.1) we let n→∞ in Proposition 2.1. Taking the limit inside

the sum is justified by Tannery’s theorem, [4], the discrete analogue of the

Lebesgue dominated convergence theorem. We omit the details. The identity

(3.2) is the case b = t1 of (3.1), because the 3φ2 becomes a 2φ1 and is summed

by the q-Gauss theorem [7, (II.8)].

One may ask for a version of Theorem 3.1 in which the infinite products in

z are in the denominator.

Theorem 3.2. The Askey–Wilson polynomials have the generating function

1

(beiθ, be−iθ; q)∞
=

∞∑
n=0

pn(x; t|q)cn(t, b), (3.3)

where

cn(t, b) =
bn (t2t3t4bq

n; q)∞

(q, t1t2t3t4qn−1; q)n
∏4
j=2(tjb; q)∞

×3φ2

 qnt2t3, q
nt2t4, q

nt3t4

q2nt1t2t3t4, q
nt2t3t4b

∣∣∣∣∣∣ q, t1b
 .

(3.4)

Proof of Theorem 3.2. We use two facts to prove Theorem 3.2.

The first fact is the orthogonality relation [10] for Askey-Wilson polynomials∫ 1

−1
pm(x; t | q) pn(x; t | q)w(x; t | q) dx = A(t)hn(t) δm,n, (3.5)

hn(t) =

(q; q)n
∏

1≤j<k≤4
(tjtk; q)n(t1t2t3t4q

n−1; q)n

(t1t2t3t4; q)2n
, (3.6)

w(x; t) = w(x; t1, t2, t3, t4 | q) =
(e2iθ, e−2iθ; q)∞

4∏
j=1

(tjeiθ, tje−iθ; q)∞

1√
1− x2

, −1 < x < 1.

(3.7)

Here we have assumed that max{|t1|, |t2|, |t3|, |t4|} < 1.
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The second fact is Theorem 3.5 in [14] (with x4 ↔ x5)

(q; q)∞
2π

∫ π

0

w(cos θ;x1, x2, x3, x4)

(x5eiθ, x5e−iθ; q)∞
sin θ dθ

=
(x1x2x3x4, x2x3x4x5, x1x5; q)∞∏

1≤r<s≤5(xrxs; q)∞
3φ2

 x2x3, x2x4, x3x4

x1x2x3x4, x2x3x4x5

∣∣∣∣∣∣ q, x1x5
 .

(3.8)

The integral (3.8) is a special case of the Nassrallah–Rahman integral [7, (6.3.2)]

but the form (3.8) is more convenient to use.

For symmetry we replace b by t5. We shall find the coefficient cn(t, t5) of

pn(x; t|q) using orthogonality, setting

∞∑
n=0

cn(t, t5)pn(x; t|q) =
1

(t5eiθ, t5e−iθ)∞
.

Such a formula exists because the right-hand side is ∈ L2[w, [−1, 1]]. Moreover

cn(t, t5)hn(t)A(t) =

∫ 1

−1

w(x, t)

(t5eiθ, t5e−iθ; q)∞
pn(x; t|q)dx

Therefore, using (1.3) we see that

cn(t, t5)hn(t)A(t) =
(t1t2, t1t3, t1t4; q)n

tn1

n∑
k=0

(q−n, t1t2t3t4q
n−1; q)k

(q, t1t2, t1t3, t1t4; q)k
qk

×
∫ π

0

1

(t5eiθ, t5e−iθ; q)∞
w(cos θ; t1q

k, t2, t3, t4) sin θdθ.

The integral is now evaluated by (3.8) and we obtain

(q; q)∞
2π

cn(t, t5)hn(t)A(t) =
(t1t2, t1t3, t1t4; q)n

tn1

n∑
k=0

(q−n, t1t2t3t4q
n−1; q)k

(q, t1t2, t1t3, t1t4; q)k
qk

× (qkt1t2t3t4, t2t3t4t5, q
kt1t5; q)∞∏5

j=2(qkt1tj ; q)∞
∏

2≤r<s≤5(trts; q)∞
3φ2

 t2t3, t2t4, t3t4

qkt1t2t3t4, t2t3t4t5

∣∣∣∣∣∣ q, qkt1t5
 .

Write the 3φ2 as a sum over s and interchange the k and s sums to see that

(q; q)∞
2π

cn(t, t5)hn(t)A(t) =
(t1t2, t1t3, t1t4; q)n(t1t2t3t4, t2t3t4t5; q)∞

tn1
∏4
j=2(t1tj ; q)∞

∏
2≤r<s≤5(trts; q)∞

×
∞∑
s=0

(t2t3, t2t4, t3t4; q)s
(q, t1t2t3t4, t2t3t4t5; q)s

(t1t5)s
n∑
k=0

(q−n, t1t2t3t4q
n−1; q)k

(q, qst1t2t3t4; q)k
qk(s+1).
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The k sum is an evaluable terminating 2φ1, [7, (II.7)], and we obtain

(q; q)∞
2π

cn(t, t5)hn(t)A(t) =
(t1t2, t1t3, t1t4; q)n(t1t2t3t4, t2t3t4t5; q)∞

tn1
∏4
j=2(t1tj ; q)∞

∏
2≤r<s≤5(trts; q)∞

×
∞∑
s=0

(t2t3, t2t4, t3t4; q)s
(q, t1t2t3t4, t2t3t4t5; q)s

(t1t5)s
(qs+1−n; q)n

(qst1t2t3t4; q)n
.

Thus s ≥ n, so shift s by n. Therefore the left-hand side in the above equation

is the statement of the theorem.

An attractive special case of Theorem 3.2 is a corollary due to Kim and

Stanton [16].

Corollary 3.3. The continuous dual q-Hahn polynomials pn(x; t1, t2, t3|q) have

the generating function

∞∑
k=0

pk(x; t1, t2, t3|q)
(q, bt1t2t3; q)k

bk =
(bt1, bt2, bt3; q)∞

(beiθ, be−iθ, bt1t2t3; q)∞

Proof. Take t2 = 0 in Theorem 3.2 and relabel the tj ’s. The 3φ2 becomes a 1φ0

which we sum by the q-binomial theorem.

Corollary 3.4. For any positive integer n, pn(z, t|q) = 0 if

z = −γ, t1 = γ, t2 = γ3, t3 = γ5, t4 = 0, γ = e2πi/6.

Corollary 3.5. Let ω be a primitive cubic root of unity. Then

n∑
k=0

[
n

k

]
q

1

(c3; q)k
pk(−1/2; c, ωc, ω2c|q) =

0 if 3 - n,
(q,q2;q3)n/3

(c3q,c3q2;q3)n/3
if 3|n.

(3.9)

Proof. Multiply the equation in Corollary 3.3 by (bt1t2t3; q)∞/(b; q)∞ then ex-

pand (qkbt1t2t3; q)∞/(b; q)∞ by the q-binomial theorem. Set

t1 = c, t2 = cω, t3 = cω2, x = cos(2π/3)

and equate the coefficients of like powers of b.
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4. Integrals

The expansions in §2 can be changed into integral evaluations using the

orthogonality relation (3.5), and equations (3.6)-(3.7).

Proposition 2.1 becomes∫ π

0

(beiθ, be−iθ; q)n(e2iθ, e−2iθ; q)∞
4∏
j=1

(tjeiθ, tje−iθ; q)∞

pk(cos θ; t|q) dθ

=
(−b)kq(

k
2)(q; q)n(b/t4, bt4q

k; q)n−k
(q; q)n−k

2π(t1t2t3t4q
2k; q)∞

(q; q)∞
∏

1≤r<s≤4(trtsqk; q)∞

×4φ3

 qk−n, t1t4q
k, t2t4q

k, t3t4q
k

bt4q
k, t1t2t3t4q

2k, q1+k−nt4/b

∣∣∣∣∣∣ q, q
 .

(4.1)

In view of (3.1), the limiting case n→∞ of (4.1) is∫ π

0

(beiθ, be−iθ, e2iθ, e−2iθ; q)∞
4∏
j=1

(tjeiθ, tje−iθ; q)∞

pk(cos θ; t|q) dθ

= (−b)kq(
k
2)(b/t4, bt4q

k; q)∞
2π(t1t2t3t4q

2k; q)∞
(q; q)∞

∏
1≤r<s≤4(trtsqk; q)∞

×3φ2

 t1t4qk, t2t4qk, t3t4qk
bt4q

k, t1t2t3t4q
2k

∣∣∣∣∣∣ q, bt4
 .

(4.2)

When b = t1, for example, the 3φ2 in (4.2) sums. The result is known because

it is the constant term in the expansion of pk(x; t1, t2, t3, t4) in pk(x; 0, t2, t3, t4),

see [3], or [10].

We record the analogous results for Proposition 2.7 and Theorem 2.2.

Theorem 4.1. We have the integral evaluation∫ π

0

[ ∞∑
n=0

Λn(bz, b/z; q)n
(q, bt4; q)n

]
pk(cos θ; t|q) (e2iθ, e−2iθ; q)∞

4∏
j=1

(tjeiθ, tje−iθ; q)∞

dθ

=
2π(−b)kq(

k
2)(t1t2t3t4q

2k; q)∞
(bt4; q)k(q; q)∞

∏
1≤r<s≤4(qktrts; q)∞

×
∞∑
s=0

(t1t4q
k, t2t4q

k, t3t4q
k; q)s

(q, bt4qk, t1t2t3t4q2k; q)s

(
b

t4

)s ∞∑
n=0

(b/t4; q)n
(q; q)n

Λk+n+s.

11



In particular we get the following corollary

Corollary 4.2. The following evaluation holds

∫ π

0
p+1φp

 a1, · · · , ap−1, t4eiθ, t4e−iθ

t1t4, t2t4, t3t4, b1, · · · , bp−3

∣∣∣∣∣∣ q, ζ
 pk(cos θ; t|q) (e2iθ, e−2iθ; q)∞

4∏
j=1

(tjeiθ, tje−iθ; q)∞

dθ

=
2π(a1, · · · , ap−1; q)k

(b1, · · · , bp−3; q)k

(−t4ζ)kq(
k
2)(t1t2, t1t3, t2t3; q)k∏

1≤r<s≤4(trts; q)∞

×(t1t2t3t4q
2k; q)∞ p−1φp−2

 qka1, · · · , qkap−1

qkb1, · · · , qkbp−3, t1t2t3t4q2k

∣∣∣∣∣∣ q, ζ
 .

5. An Expansion with Arbitrary Coefficients

We consider Proposition 2.1 when b = t4 so fn,k is given by (2.2). In this

section we give another proof of this result and generalize it to sums involving

arbitrary sequences. This extends the following formula of Verma [20]

∞∑
m=0

ambm
(zw)m

m!

=

∞∑
n=0

(−z)n

n! (γ + n)n

( ∞∑
r=0

bn+r z
r

r! (γ + 2n+ 1)r

)[
n∑
s=0

(−n)s(n+ γ)s
s!

asw
s

]
,

(5.1)

from Jacobi type polynomials to Askey–Wilson type polynomials. Verma also

noted a Laguerre type expansion where w is replaced by w/γ, bn is replaced by

γbn and γ →∞.

We now go back to (2.3) and observe that {(t4z, t4/z; q)n} is a basis for the

space of polynomials, hence we can replace (t4z, t4/z; q)n by An(t4z, t4/z; q)n

and (2.3) will remain valid as long as the series on both sides converge. This

establishes the following expansion theorem.

12



Proposition 5.1. We have the general expansion

∞∑
n=0

(az, a/z; q)n
(q; q)n

AnBnζ
n

=

∞∑
k=0

(−ζ)kq(
k
2)

(q, Cqk−1; q)k

 k∑
j=0

(q−k, Cqk−1; q)j
(q; q)j

Aj(az, a/z; q)jq
j


×

[ ∞∑
n=0

Bn+kζ
n

(q, Cq2k; q)n

]
.

(5.2)

Proposition 5.1 writes a triple sum as a single sum. Another way to prove

Proposition 5.1 is to use matrix inversion. In [8, Theorem 3.2] the explicit

matrix A has an explicit inverse, namely

Ak,j =
(Cq2j−1; q)k−j

(q; q)k−j
q−kj , (A−1)s,k =

(C; q)2s−1(1− Cq2k−1)

(q; q)s−k(C; q)s+k
q(

s−k+1
2 )(−1)s−k.

Indeed the product A−1A is the identity matrix. Using this result, the right

side of Proposition 5.1 reduces to a single sum, which is the left side.

Ismail and Zhang [15] introduced the q-exponential function

Eq(cos θ;α) :=
(α2; q2)∞
(qα2; q2)∞

∞∑
n=0

(−ieiθq(1−n)/2,−ie−iθq(1−n)/2; q)n
(−iα)n

(q; q)n
qn

2/4.(5.3)

In [13, (6.7)] the following expansion for Eq was established,

Eq(cos θ;α) =

(
−α; q1/2

)
∞

(qα2; q2)∞
2φ1

q1/4eiθ, q1/4e−iθ
−q1/2

∣∣∣∣∣∣ q1/2,−α
 . (5.4)

For proofs and details see Chapter 14 of [10].

Proposition 5.2. The function Eq(cos θ;α) has the expansion

(q2t4; q4)∞
(−t; q)∞

Eq2(x; t) =

∞∑
k=0

tkqk
2/2

(q,−q, t2t3t4qk−1/2; q)k
pk(x; q1/2, t2, t3, t4|q)

× 3φ2

qk+1/2t2, q
k+1/2t3, q

k+1/2t4

−qk+1, t2t3t4q
2k+1/2

∣∣∣∣∣∣ q,−t
 .
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Proof. In (1.3) and (5.2) we set

a = t1 = q1/2, ζ = −t, C = q1/2t2t3t4,

Aj =
1

(q1/2t2, q1/2t3, q1/2t4; q)j
, Bj =

(q1/2t2, q
1/2t3, q

1/2t4; q)j
(−q; q)j

,

and establish the desired expansion

Rahman [19] chose a set of continuous q-Jacobi polynomials with

t = (q1/2, qα+1/2,−qβ+1/2,−q1/2),

defined by

P (α,β)
n (cos θ; q) =

(qα+1,−qβ+1; q)n
(q,−q; q)n

, 4φ3

q−n, qn+α+β+1, q1/2eiθ, q1/2e−iθ,

qα+1,−qβ+1,−q

∣∣∣∣∣∣ q, q
 .

Askey and Wilson [3] defined a set of continuous q-Jacobi polynomials by choos-

ing

t = (q1/4+α/2, q3/4+α/2,−q1/4+β/2, q3/4+β/2)

P (α,β)
n (cos θ|q) =

(qα+1; q)n
(q; q)n

4φ3

q−n, qn+α+β+1, q1/4+α/2eiθ, q1/4+α/2e−iθ,

qα+1,−q1/2+α/2+β/2,−q1+α/2+β/2

∣∣∣∣∣∣ q, q
 .

These polynomials are related by [3, (4.20),(4.21)]

P (α,β)
n (x|q2) = qαn

(q; q)n
(−qα+β+1; q)n

P (α,β)
n (x; q)

In [12, (6.1.3)], Eq(x; t) is expanded in continuous q-Jacobi polynomials. It

is clear that Proposition 5.2 generalizes such an expansion because it contains

one more free parameter.

Another interesting case of Proposition 5.1 is

a = t1, C = t1t2t3t4, Aj =
1∏4

k=2(t1tk; q)j
, Bj = Λj

4∏
k=2

(t1tk; q)j .

The result is the expansion (2.3).
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6. Big and Little q-Jacobi Polynomials

The Askey-Wilson polynomials contain, as special and limiting cases, many

other sets of polynomials. This is done in detail in [17]. Here we record two

limiting cases of Proposition 5.1.

Recall that the big and little q-Jacobi polynomials are defined by

Pn(x;α, β, γ) = 3φ2

q−n, αβqn−1, x
αqγq

∣∣∣∣∣∣ q, q
 , (6.1)

pn(x;α, β) = 2φ1

q−n, qn+1αβ

qα

∣∣∣∣∣∣ q, qx
 , (6.2)

respectively, see [10, (18.4.7)&(18.4.11)]. We now derive expansions in

Theorem 6.1. We have the following expansions in big q-Jacobi type polyno-

mials

∞∑
n=0

(x; q)n
(q; q)n

AnBnζ
n =

∞∑
k=0

(−ζ)kq(
k
2)

(q, Cqk−1; q)k

 k∑
j=0

(q−k, Cqk−1; q)j
(q; q)j

Aj(x; q)jq
j


×

[ ∞∑
n=0

Bn+kζ
n

(q, Cq2k; q)n

]
,

(6.3)

and little q-Jacobi type polynomial expansion

∞∑
n=0

xn

(q; q)n
AnBnζ

n =

∞∑
k=0

(−ζ)kq(
k
2)

(q, Cqk−1; q)k

 k∑
j=0

(q−k, Cqk−1; q)j
(q; q)j

Ajx
jqj


×

[ ∞∑
n=0

Bn+kζ
n

(q, Cq2k; q)n

]
,

(6.4)

Proof. In (5.2) we set z = a/x, then replace An by (−1)nxnq−(n
2)a−2nAn,

then let a → ∞. The result is (6.3). In (6.3) replace x by λx and An by

(−1)nq−(n
2)/λn and let λ→∞. This proves (6.4).
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