
BINOMIAL ANDREWS-GORDON-BRESSOUD IDENTITIES

DENNIS STANTON

Abstract. Binomial versions of the Andrews-Gordon-Bressoud identities are

given.

1. Introduction

The Rogers-Ramanujan identities
∞∑
s=0

qs
2

(q; q)s
=

1

(q, q4; q5)∞
,

∞∑
s=0

qs
2+s

(q; q)s
=

1

(q2, q3; q5)∞

where

(A; q)n =

n−1∏
i=0

(1−Aqi), (A,B; q)n = (A; q)n(B; q)n,

were generalized to odd moduli at least five by the Andrews [1]. These identities
are called the Andrews-Gordon identities

(1)

∑
s1≥s2≥···≥sk≥0

qs
2
1+···+s2k+sk−r+1+···+sk

(q)s1−s2 · · · (q)sk−1−sk(q)sk

=
(qk+1−r, qk+2+r, q2k+3; q2k+3)∞

(q; q)∞
, 0 ≤ r ≤ k.

(If the base q is understood, we sometimes abbreviate (A; q)n as (A)n. We also
assume that 0 < q < 1. )

Bressoud [7],[9] gave a version of these identities for even moduli

(2)

∑
s1≥s2≥···≥sk≥0

qs
2
1+···+s2k+sk−r+1+···+sk

(q)s1−s2 · · · (q)sk−1−sk(q2; q2)sk

=
(qk+1−r, qk+1+r, q2k+2; q2k+2)∞

(q; q)∞
, 0 ≤ r ≤ k.

Bressoud’s beautiful and efficient proof [8] established both sets of identities
when r = 0. Moreover he had other closely related identities, for example, [9, (3.3),
p. 15]

(3)

∑
s1≥s2≥···≥sk≥0

qs
2
1+···+s2k−(s1+···+sj)

(q)s1−s2 · · · (q)sk−1−sk(q)sk

=

j∑
s=0

(qk+1+j−2s, qk+2−j+2s, q2k+3; q2k+3)∞
(q; q)∞

,

0 ≤ j ≤ k.
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The purpose of this paper is to examine Bressoud’s proof, and develop new
variations and generalizations of these Andrews-Gordon-Bressoud identities. The
new results are given §3, §4, and §5.

2. The motivating question

In [4], which was presented by George Andrews at the May 2015 UCF meeting in
honor of Mourad Ismail, Andrews reconsidered Bressoud’s elementary proof [8]. He
asked a specific question (see Question 2.6) about Bressoud’s proof that we answer
in this section.

We shall need a few of the relevant definitions and facts in a recapitulation
Bressoud’s simple proof [8]. We shall also use these facts in later sections. Bres-
soud’s key idea was to use the following Laurent polynomials, which have arbitrary
quadratic exponents.

Definition 2.1. Let

H2n(z, a|q) =

n∑
s=−n

[
2n

n− s

]
q

qas
2

zs.

Bressoud’s main lemma [8, Lemma 2], which allowed the quadratic exponent to
change, is next.

Lemma 2.2.
H2n(z, a|q)

(q; q)2n
=

n∑
s=0

qs
2

(q; q)n−s

H2s(z, a− 1|q)

(q; q)2s
.

This lemma may be iterated.

Proposition 2.3.

H2n(z, a + k + 1|q)

(q; q)2n
=

∑
n≥s1≥s2≥···≥sk+1≥0

qs
2
1+···s

2
k+1H2sk+1

(z, a|q)

(q)n−s1(q)s1−s2 · · · (q)sk−sk+1
(q)2sk+1

The value of a = 1/2 is nice because the polynomials H2n(z, 1/2|q) factor by the
q-binomial theorem.

(4) H2n(−zq1/2, 1/2|q) = (qz, 1/z; q)n.

So we have

Theorem 2.4. [Bressoud [8, (14)]]

(5)

H2n(−zq1/2, k + 3/2| q)

(q; q)2n

=
∑

n≥s1≥s2≥···≥sk+1≥0

qs
2
1+···s

2
k+1(qz, 1/z; q)sk+1

(q)n−s1(q)s1−s2 · · · (q)sk−sk+1
(q)2sk+1

We now take the n→∞ limit of Theorem 2.4. The right side has a clear limit.
For the left side we show that Definition 2.1 has a limit as an infinite product when
n→∞.

If 0 < q < 1 and −n ≤ s ≤ n, we have[
2n

n− s

]
q

≤ 1

(q; q)∞
,
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because the q-binomial coefficient

[
2n

n− s

]
q

is the generating function for partitions

inside an (n − s) × (n + s) rectangle, and right side is the generating function for
all partitions. For any fixed integer s this also shows that

lim
n→∞

[
2n

n− s

]
q

=
1

(q; q)∞
.

So the n→∞ limit in (2.1) converges uniformly

(6)

lim
n→∞

H2n(−z, a|q) =
1

(q; q)∞
lim
n→∞

n∑
s=−n

qas
2

(−z)s

=
(q2a, zqa, qa/z; q2a)∞

(q)∞
,

using the Jacobi Triple Product identity.
We obtain

Corollary 2.5. For a non-negative integer k,

(q2k+3, zqk+2, qk+1/z; q2k+3)∞
(q; q)∞

=
∑

s1≥s2≥···≥sk+1≥0

qs
2
1+···s

2
k+1(qz, 1/z; q)sk+1

(q)s1−s2 · · · (q)sk−sk+1
(q)2sk+1

.

Note that Corollary 2.5 immediately gives the Andrews-Gordon identities (1) for
r = 0. If z = 1, this choice of z forces sk+1 = 0. The choice of z = qr does give the
right side of the Andrews-Gordon identities (1), but not the left side. There is an
extra sum over sk+1, and the power of q does not match.

Andrews’ Question 2.6. Is there a simple way to understand why the choice of
z = qr eliminates the sk+1 sum and replaces it with a power of q?

We now answer Andrews’ question, and we will use this answer in subsequent sec-
tions. The ingredient we need appeared in a paper of Garrett, Ismail and Stanton,
[10].

Proposition 2.7. For any c,

H2n(−qc, c|q) = qnH2n(−qc−1, c|q).

To answer Andrews’ question, start with H2n(−qr+1/2, k+3/2|q), apply Lemma 2.2
k− r + 1 times to obtain H2sk−r+1

(−qr+1/2, r + 1/2|q). Next apply Proposition 2.7

once to obtain qsk−r+1H2sk−r+1
(−qr−1/2, r + 1/2|q). This is the linear exponent in

q we need. The remaining exponents arise from again applying Lemma 2.2 followed
by Proposition 2.7. The final sum on sk+1 is now eliminated, because the final term
becomes H2sk+1

(−q1/2, 1/2|q) = (q, 1; q)sk+1
, which forces sk+1 = 0.

3. New Andrews-Gordon identities

In this section we prove two new Andrews-Gordon identities for odd moduli.
The first has binomial factors.
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Theorem 3.1. For 0 ≤ j, r ≤ k, and j + r ≤ k,∑
s1≥s2≥···≥sk≥0

q−s1−···−sj (1 + qs1+s2)(1 + qs2+s3) · · · (1 + qsj−1+sj )

(q)s1−s2 · · · (q)sk−1−sk(q)sk

× qs
2
1+···+s2k+sk−r+1+···+sk

=

j∑
s=0

(
j

s

)
(qk+1−r+j−2s, qk+2+r−j+2s, q2k+3; q2k+3)∞

(q; q)∞
.

Moreover, the j factors of q−s1 and q−si(1 + qsi−1+si), 2 ≤ i ≤ j may be replaced
by any j-element subset of {q−s1} ∪ {q−si(1 + qsi−1+si) : 2 ≤ i ≤ k − r}.

For example, the binomial factors could occur as the last j of the first k − r
summation indices instead of the first j indices, namely

j−1∏
t=0

q−sk−r−t(1 + qsk−r−1−t+sk−r−t).

A corollary of Theorem 3.1 is an identity which contains the Andrews-Gordon
identities (1) when j = 0 and Bressoud’s identities (3) when r = 0.

Theorem 3.2. For 0 ≤ j, r ≤ k, and j + r ≤ k,∑
s1≥s2≥···≥sk≥0

qs
2
1+···+s2k−(s1+···+sj)+(sk−r+1+···+sk)

(q)s1−s2 · · · (q)sk−1−sk(q)sk

=

j∑
s=0

(qk+1−r+j−2s, qk+2+r−j+2s, q2k+3; q2k+3)∞
(q; q)∞

.

We need a new fact about the Laurent polynomials H2n(z, a|q).

Proposition 3.3. For a non-negative integer n,

H2n(zq, a + 1|q) + H2n(q/z, a + 1|q)

(q; q)2n
=

n∑
s=0

qs
2−s(1 + qn+s)

(q; q)n−s

H2s(z, a|q)

(q; q)2s
,

Proof. Note that the left side of Proposition 3.3 is invariant under z → 1/z so

it does have an expansion in terms of H2s(z, a|q). If the coefficient of zkqak
2

is
computed for each side, we must show[

2n
n− k

]
q

qkqk
2

+

[
2n

n− k

]
q

q−kqk
2

=

n∑
s=k

qs
2−s(1 + qn+s)

(q)2s

(q)2n
(q)n−s

[
2s

s− k

]
q

.

The s-sum for the term qn+s is summable as a product by a limiting case of the
q-Vandermonde sum, see [11, p. 354, (II.6)]. The s-sum for the term 1 is nearly
summable, it is a sum of two products. Putting these terms together yields the two
terms on the left side. The details are not given. �

We need some functions which generalize the H2n(z, a|q).

Definition 3.4. For a non-negative integer j, let

F (0)
n (z, a) = H2n(z, a|q), F (j+1)

n (z, a) = F (j)
n (zq, a) + F (j)

n (q/z, a), j ≥ 0.
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Proposition 3.3 can be rewritten using these new functions. The proof is by
induction on j.

Proposition 3.5. For non-negative integers n and j,

F
(j+1)
n (z, a + 1)

(q; q)2n
=

n∑
s=0

qs
2−s(1 + qn+s)

(q; q)n−s

F
(j)
s (z, a)

(q; q)2s
,

Iterating Proposition 3.5 is the next Proposition.

Proposition 3.6. For a non-negative integer n and a positive integer j,

F
(j)
n (z, a)

(q)2n
=

∑
n≥s1≥s2≥···≥sj≥0

qs
2
1−s1(1 + qn+s1)

(q)n−s1

j∏
t=2

qs
2
t−st(1 + qst−1+st)

(q)st−1−st

F
(0)
2sj

(z, a− j)

(q)2sj
.

Finally the functions F also satisfy Lemma 2.2 because the H functions do.

Proposition 3.7. For a non-negative integer n and a positive integer j,

F
(j)
n (z, a)

(q; q)2n
=

n∑
s=0

qs
2

(q; q)n−s

F
(j)
s (z, a− 1|q)

(q; q)2s
.

Any of these functions may be written as a linear combination of F
(0)
n (z, a) =

H2n(z, a|q).

Proposition 3.8. For any non-negative integer j,

F (j+1)
n (z, a) =

j∑
s=0

(
j

s

)(
F (0)
n (zqj+1−2s, a) + F (0)

n (qj+1−2s/z, a)
)
.

Proof. By induction on j we have

F (j+1)
n (z, a) =

j−1∑
s=0

(
j − 1

s

)(
F (0)
n (zqj+1−2s, a) + F (0)

n (qj−1−2s/z, a)
)

+

j−1∑
s=0

(
j − 1

s

)(
F (0)
n (qj+1−2s/z, a) + F (0)

n (zqj−1−2s, a)
)

=

j∑
s=0

F (0)
n (zqj+1−2s, a)

((
j − 1

s

)
+

(
j − 1

s− 1

))

+

j∑
s=0

F (0)
n (qj+1−2s/z, a)

((
j − 1

s− 1

)
+

(
j − 1

s

))

=

j∑
s=0

(
j

s

)(
F (0)
n (zqj+1−2s, a) + F (0)

n (qj+1−2s/z, a)
)
.

�

We have two expressions for F
(j)
n (z, a): Propositions 3.8 and 3.6. The proof of

Theorem 3.1 uses these two expressions after taking a limit as n → ∞. We record
the appropriate n→∞ limit of Proposition 3.8.
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Proposition 3.9. If j is a non-negative integer,

lim
n→∞

F (j+1)
n (−z, a) =

1

(q)∞

j+1∑
s=0

(
j + 1

s

)
(q2a, zqa+j+1−2s, qa−j−1+2s/z; q2a)∞.

Proof. Applying (6) and Proposition 3.8 we have

lim
n→∞

F (j+1)
n (−z, a) =

1

(q)∞

j∑
s=0

(
j

s

)(
(q2a, zqa+j+1−2s, qa−j−1+2s/z; q2a)∞

+ (q2a, qa+j+1−2s/z, zqa−j−1+2s; q2a)∞
)

=
1

(q)∞

j+1∑
s=0

((
j

s

)
+

(
j

j + 1− s

))
(q2a, zqa+j+1−2s, qa−j−1+2s/z; q2a)∞

=
1

(q)∞

j+1∑
s=0

(
j + 1

s

)
(q2a, zqa+j+1−2s, qa−j−1+2s/z; q2a)∞.

�

Proof of Theorem 3.1. We see from Proposition 3.9 that the right side of Theo-
rem 3.1 is

lim
n→∞

F (j)
n (−z, k + 3/2), z = q−1/2−r.

or at z = qr+1/2 since all functions are symmetric under z → 1/z. We apply
Proposition 3.7 to obtain j sums and a factor of

F
(0)
2sj

(−z, k + 3/2− j)

(q)2sj
=

H2sj (−z, k + 3/2− j|q)

(q)2sj
.

Now we are in the realm of the Andrews-Gordon proof in section 2. We finish the
proof as before, by applying Lemma 2.2 k − r times, and then inserting the linear
factors r times.

Since the functions F
(j)
n (z, a) also satisfy Proposition 3.7, we could apply Propo-

sition 3.7 anytime before we use Proposition 3.5 in the first k − r iterates. This
gives the arbitrary choice of the binomials. �

Next we derive Theorem 3.2 from Theorem 3.1. The idea is take an appropriate
linear combination of Theorem 3.1 to replace the binomial factors in Theorem 3.1
by a single term q−s1−s2−···−sj . For example if j = 3,

(7) q−s1−s2−s3(1 + qs1+s2)(1 + qs2+s3)− q−s3(1 + qs2+s3)− q−s1 = q−s1−s2−s3

yields, for the right side of Theorem 3.1,

3∑
s=0

(
3

s

)
(qk+1−r+3−2s, qk+2+r−3+2s, q2k+3; q2k+3)∞

(q; q)∞

− 2

1∑
s=0

(
1

s

)
(qk+1−r+1−2s, qk+2+r−1+2s, q2k+3; q2k+3)∞

(q; q)∞

=

3∑
s=0

(qk+1−r+1−2s, qk+2+r−1+2s, q2k+3; q2k+3)∞
(q; q)∞



BINOMIAL ANDREWS-GORDON-BRESSOUD IDENTITIES 7

as predicted by Theorem 3.2.
The version of (7) we need for general j uses edges in a graph which is a path

from 1 to j: 1− 2− 3− · · · − j. A pair of edges in this graph do not overlap if they
do not share a vertex. For a set E of non-overlapping edges let

wt(E) =
∏

i/∈E,i≥2

q−si(1 + qsi−1+si)×

{
q−s1 if 1 /∈ E

1 if 1 ∈ E.

Here are the three possible sets of non-overlapping edges E for j = 3,

E =∅, wt(E) = q−s1−s2−s3(1 + qs1+s2)(1 + qs2+s3),

E =1− 2, wt(E) = q−s3(1 + qs2+s3),

E =2− 3, wt(E) = q−s1 .

These are the three terms in (7).

Lemma 3.10. We have∑
E

(−1)|E|wt(E) = q−s1−s2−···−sj ,

where the sum is over all non-overlapping edge sets E of 1− 2− 3− · · · − j.

Proof. Again we do an induction on j. Suppose E is a set of non-overlapping edges
for 1− 2− 3− · · · − (j + 1). If the last edge j − (j + 1) is in E, the remaining edges
are non-overlapping for j − 1, so by induction∑

E,j−(j+1)∈E

(−1)|E|wt(E) = −q−s1−s2−···−sj−1 .

If the last edge j − (j + 1) is not in E, the remaining edges are non-overlapping for
j, so by induction∑

E,j−(j+1)/∈E

(−1)|E|wt(E) = q−sj+1(1 + qsj+sj+1)q−s1−s2−···−sj .

Because

−q−s1−s2−···−sj−1 + q−sj+1(1 + qsj+sj+1)q−s1−s2−···−sj = q−s1−s2−···−sj+1

we are done. �

Proof of Theorem 3.2. It remains to show that the linear combination given by
Lemma 3.10 gives the correct constants for the infinite products on the right side
of Theorem 3.2 (namely 1).

There are
(
j−t
t

)
such non-overlapping E with t edges, where 2t ≤ j, and therefore

j − 2t vertices not in E. So the right side becomes

[j/2]∑
t=0

(
j − t

t

)
(−1)t

j−2t∑
s=0

(
j − 2t

s

)
(qk+1−r+j−2t−2s, qk+2+r−j+2t+2s, q2k+3; q2k+3)∞

(q; q)∞

The coefficient of

(qk+1−r+j−2u, qk+2+r−j+2u, q2k+3; q2k+3)∞
(q; q)∞

for 0 ≤ u ≤ j is ∑
s,t,s+t=u

(
j − t

t

)
(−1)t

(
j − 2t

s

)
= 1
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by the Chu-Vandermonde evaluation, namely(
j

u

)
2F1

(
−u, u− j

−j

∣∣∣∣ 1) = 1

for 0 ≤ u ≤ j. �

4. New Bressoud-Type Identities for Even Moduli

The Bressoud identities for even moduli can be proven the same way. The only
change is to replace (4) by

H2s(−1, 1|q)

(q)2s
=

1

(q2; q2)s
.

Here we state (without proof) the analogous binomial results for even moduli.

Theorem 4.1. For 0 ≤ j, r ≤ k, and j + r ≤ k,∑
s1≥s2≥···≥sk≥0

q−s1−···−sj (1 + qs1+s2)(1 + qs2+s3) · · · (1 + qsj−1+sj )

(q)s1−s2 · · · (q)sk−1−sk(q2; q2)sk

× qs
2
1+···+s2k+sk−r+1+···+sk

=

j∑
s=0

(
j

s

)
(qk+1−r+j−2s, qk+1+r−j+2s, q2k+2; q2k+2)∞

(q; q)∞
.

Moreover, the j factors of q−s1 and q−si(1 + qsi−1+si), 2 ≤ i ≤ j may be replaced
by any j-element subset of {q−s1} ∪ {q−si(1 + qsi−1+si) : 2 ≤ i ≤ k − r}.

Again using Lemma 3.10 we have the version without binomial coefficients.

Theorem 4.2. For 0 ≤ j, r ≤ k, and j + r ≤ k,∑
s1≥s2≥···≥sk≥0

qs
2
1+···+s2k−(s1+···+sj)+(sk−r+1+···+sk)

(q)s1−s2 · · · (q)sk−1−sk(q2; q2)sk

=

j∑
s=0

(qk+1−r+j−2s, qk+1+r−j+2s, q2k+2; q2k+2)∞
(q; q)∞

.

The case j = 0 in Theorem 4.2 is given by Bressoud [9, (3.4), p. 15] while r = 0 is
[9, (3.5), p. 16].

5. Overpartitions

Finally, for completeness, we give two analogous results for overpartitions, see
[3]. Proposition 2.7, which is used to insert linear exponents, requires a special
choice of z. But in the two results of this section we have a general z, so we cannot
insert the linear factors as before.

The first result is a binomial version of Corollary 2.5.
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Theorem 5.1. For 0 ≤ j ≤ k + 1,∑
s1≥s2≥···≥sk+1≥0

q−s1−···−sj (1 + qs1+s2)(1 + qs2+s3) · · · (1 + qsj−1+sj )

(q)s1−s2 · · · (q)sk−sk+1

(−z,−q/z; q)sk+1

(q)2sk+1

× qs
2
1+···+s2k+1

=

j∑
s=0

(
j

s

)
(−zqk+1+j−2s,−qk+2−j+2s/z, q2k+3; q2k+3)∞

(q; q)∞
.

Moreover, the j factors of q−s1 and q−si(1 + qsi−1+si), 2 ≤ i ≤ j may be replaced
by any j-element subset of {q−s1} ∪ {q−si(1 + qsi−1+si) : 2 ≤ i ≤ k + 1}.

Theorem 5.2. For 0 ≤ j ≤ k + 1,∑
s1≥s2≥···≥sk+1≥0

qs
2
1−s1+···+s2j−sj+s2j+1+···+s2k+1

(q)s1−s2 · · · (q)sk−sk+1

(−z,−q/z; q)sk+1

(q)2sk+1

=

j∑
s=0

(−zqk+1+j−2s,−qk+2−j+2s/z, q2k+3; q2k+3)∞
(q; q)∞

.

We mention a different expansion for the infinite product in Theorem 5.2 when
j = 0. This final result comes from a version of the Laurent polynomials H2n(z, a|q)
with an odd index. We do not develop the corresponding results here.

Theorem 5.3. If k is a non-negative integer,∑
s1≥s2≥···≥sk+1≥0

qs
2
1+···+s2k+1+s1+···+sk+1

(q)s1−s2 · · · (q)sk−sk+1

(−qk+1/z)sk+1+1(−zq−k)sk+1

(q)2sk+1+1

=
(−zqk+1,−qk+2/z, q2k+3; q2k+3)∞

(q; q)∞
.

If k = 0 in Theorems 5.2 and 5.3, we have the curious result (see [3, (5.1)])

(8)

(−zq,−q2/z, q3; q3)∞
(q)∞

=

∞∑
s=0

(−z,−q/z; q)s
(q)2s

qs
2

=

∞∑
s=0

(−zq)s+1(−1/z)s
(q)2s+1

qs
2+s.

6. Remarks

The Andrews-Gordon identities have combinatorial interpretations for integer
partitions, three of which are (see [2]):

(1) those with modular conditions on parts,
(2) those with difference conditions on parts,
(3) those with conditions on iterated Durfee squares.

This paper offers no insightful versions of these results for the binomial versions
given here.

Berkovich and Paule [5],[6] have versions of the Andrews-Gordon identities where
the linear forms are also modified.
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Griffin, Ono, and Warnaar [12] give new infinite families (e.g. [12, Theorem 1.1])
of Rogers-Ramanujan identities. See [12, (2.7)] for the Andrews-Gordon-Bressoud
identities in their paper.

Seo and Yee [13] combinatorially study singular overpartitions, whose generating
function is given by j = 0 in Theorem 5.1 with a special choice of z.
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