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Abstract. We describe various aspects of the Al-Salam-Chihara q-Charlier polyno-
mials. These include combinatorial descriptions of the polynomials, the moments, the
orthogonality relation and a combinatorial proof of Anshelevich’s recent result on the
linearization coefficients.

1. Introduction

The classical Charlier polynomials Ca
n(x) have been studied combinatorially by several

authors [5, 8, 14]. Recall [4] that these polynomials are defined by

Ca
n(x, a) =

n∑

k=0

(
n

k

)
(−a)n−kx(x− 1) · · · (x− (k − 1)) (1.1)

and satisfy the three term-recurrence relation

Ca
n+1(x, a) = (x− a− n) Ca

n(x)− anCa
n−1(x), n ≥ 0, (1.2)

where Ca
0 (x) = 1, Ca

−1(x) = 0.
A q-version Ca

n(x; q) of these polynomials was studied in [6]. The three-term recurrence
relation was

Ca
n+1(x; q) = (x− aqn − [n]q) Ca

n(x; q)− aqn−1[n]q Ca
n−1(x; q),

where [n]q = 1+q+· · ·+qn−1, Ca
0 (x; q) = 1, Ca

−1(x; q) = 0. The explicit formula analogous
to (1.1) is given by

Ca
n(x; q) =

n∑

k=0

[
n

k

]

q

(−a)n−kq(
n−k

2 )
k−1∏
i=0

(x− [i]q).

The linearization coefficients for the Charlier polynomials are given by quotients of
factorials (see (1.5)). The combinatorial study of the q-analogues Ca

n(x; q) in [6] included
finding their linearization coefficients, which were given by a double sum, not quotients
of factorials, and as a polynomial in q and a did not have positive coefficients (see [6,
Theorem 3]).
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Anshelevich [2] has recently considered a q-analogue of the three-term recurrence (1.2)
for Ca

n(x + a, a) and proved that the linearization coefficients of the corresponding poly-
nomials are polynomials of a and q with positive integer coefficients (see Theorem 6).

The aim of this paper is to study the combinatorial aspects of a new q-analogue of
Charlier polynomials, which is a re-scaled version of Anshelevich’s q-polynomials and turns
out to be a special re-scaled version of the Al-Salam-Chihara polynomials. We shall give
a combinatorial proof of Anshelevich’s result by using the combinatorial interpretations
of the polynomials and their moments. It is inspired by the beautiful proofs for other
classical orthogonal polynomials in [7, 10].

This paper is organized as follows: in the next two sections we give the definitions
and combinatorial interpretations of the new q-Charlier polynomials and their moments,
Corollary 3 and Theorem 4. The explicit linearization coefficients are given in §4 in
Corollary 8. We then give the killing involution in §5. We present a variation Ĉn(x|q)
of the polynomials Cn(x, a; q) in §6, which has the advantage to include the q-Hermite
polynomials in [10] as a special case.

We collect here some well-known facts about Charlier polynomials.
The generating function is

∞∑
n=0

Ca
n(x)

tn

n!
= e−at(1 + at)x. (1.3)

The moment sequence µn is given by the following formula:

µn = L(xn) =
∞∑

x=0

xne−a ax

x!
=

n∑

k=1

S(n, k)ak, (1.4)

where S(n, k) denotes the Stirling number of the second kind. The orthogonality reads:

L(Ca
m(x)Ca

n(x)) =
∞∑

k=0

Ca
m(k)Ca

n(k)
e−aak

k!
= n!anδmn.

The linearization coefficient cn3
n1n2

is defined by:

Ca
n1

(x)Ca
n2

(x) =
∑
n3

cn3
n1n2

Ca
n3

(x).

By orthogonality we have cn3
n1n2

= L(Ca
n1

(x)Ca
n2

(x)Ca
n3

(x))/L(Ca
n3

(x)Ca
n3

(x)).
For Charlier polynomials it is easy to derive from (1.3) and (1.4) that

∞∑
n1,...,nk=0

L(Ca
n1

(x) . . . Ca
nk

(x))
tn1
1

n1!
. . .

tnk
k

nk!
= ea(e2(t1,...,tk)+...+ek(t1,...,tk)),

where ei is the elementary symmetric function of degree i. It follows that

L(Ca
n1

(x)Ca
n2

(x)Ca
n3

(x)) =
∑

l

n1!n2!n3!a
l+n3

l!(n3 − n1 + l)!(n3 − n2 + l)!(n1 + n2 − n3 − 2l)!
. (1.5)
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In the general case the above generating function implies that L(Ca
n1

(x) . . . Ca
nk

(x)) (k ≥ 1)
is a polynomial in a with positive integer coefficients; a combinatorial interpretation of
this coefficient has been given [8, 14].

2. The new q-Charlier polynomials

We define the new q-Charlier polynomials Cn(x, a; q) by

Cn+1(x, a; q) = (x− a− [n]q) Cn(x, a; q)− a[n]q Cn−1(x, a; q). (2.1)

The first values of these polynomials are

C1(x, a; q) = x− a,

C2(x, a; q) = x2 − (2 a + 1)x + a2,

C3(x, a; q) = x3 − (q + 3 a + 2)x2 + (aq + 3 a2 + 2 a + q + 1)x− a3.

The explicit formula which is analogous to (1.1) is

Cn(x, a; q) =
n∑

k=0

[
n

k

]

q

qk(k−n)(−a)n−k

k−1∏
i=0

(
x− [i]q + a(q−i − 1)

)
. (2.2)

This is a re-scaled version of the Al-Salam-Chihara polynomials Qn(x, α, β; q) [12, p.
80–81]:

Cn(x, a; q) =

(
a

1− q

)n/2

Qn

(
1

2

√
1− q

a

(
x− a− 1

1− q

)
,

−1√
a(1− q)

, 0; q

)
.

Since the generating function of the Al-Salam-Chihara polynomials is known, we derive
that ∞∑

n=0

Cn(x, a; q)
tn

n!q
=

(−t; q)∞
(
√

a(1− q)teiθ,
√

a(1− q)te−iθ; q)∞
,

where n!q = [n]q[n− 1]q . . . [2]q[1]q and

cos θ =
1

2

√
1− q

a

(
x− a− 1

1− q

)
.

We can give a combinatorial interpretation for the q-Charlier polynomials from a result
due to Simion and Stanton [13].

Consider a subset B of [n] and a permutation σ on [n] \ B. Then σ consists of fixed
points and cycles of length > 1:

C = (k0, k1, k2, . . . , ks), where ks > max{k0, k1, · · · ks−1}.
For any k ∈ [n] \B, let w(k) = 0 if k is the maximum of its cycle, otherwise k = kj is on
a cycle C as above, then

w(k) = k − 1− |{i : j < i < s, ki < kj}| −
∑

cycles Q, max(Q)>ks

(# of points on Q less than k).
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Let w(B, σ) =
∑

k∈[n]\B w(k) and let cyc(σ) be the number of cycles of σ.

Example 1. Let n = 9, B = {2, 9} and σ = (6)(4 7)(3 5 1 8) (in cycle notation with
maximum at last). Then we have cyc(σ) = 3 and

w(B, σ) = (3− 1− 1) + (5− 1− 1) + (1− 1) + (4− 1− 2) = 5.

Theorem 1. We have

Cn(x, a; q) =
∑

(B,σ)

(−1)n−cyc(σ)a|B|xcyc(σ)qw(B,σ).

where B ⊂ [n] and σ is a permutation on [n] \B.

Proof. This is the r = 1, s = 0, t = q, u = 1 special case of the quadrabasic Laguerre
polynomials [13, p.313]. ¤

We now assume that each permutation π of [n] is represented as a product of disjoint
cycles, π = σ1σ2 · · ·σk, where the cycles are written in the descending order of their
maxima and each σi has its maximum at the first position. A pair (i, j), i > j, is called a
Charlier-inversion in π = σ1σ2 · · ·σk if i is not a maxima of any cycles of π and i appears
to the left of j in π. For instance, (6, 2), (6, 4), (6, 5), (6, 1), (6, 3), (2, 1), (4, 1) and (4, 3)
are all Charlier-inversions in π = (8 6 2)(7 4)(5 1 3). Let Cinv(π) denote the number of
Charlier-inversions in π.

Definition 2. (Charlier-labeling of permutations) A Charlier-labeling of a permutation
π = σ1σ2 · · ·σk is a labeling of integers and cycles in π satisfying the following rules:

• Each integer in π is labeled −1.
• Each cycle of length 1 is labeled either −x or a.
• Each cycle of length > 1 is labeled −x.

A permutation with a Charlier-labeling is called a Charlier-permutation.

Let τ denote a Charlier-permutation with underlying permutation π. Identify Cinv(τ)
with Cinv(π). Define the weight of τ , w(τ), to be the product of qCinv(τ) and all the
labels of integers and of cycles in τ . Since only 1-cycles are allowed two different choices
for a label, if π has f fixed points, there are 2f distinct Charlier-permutations with π
as an underlying permutation. We represent each cycle in a permutation as a sequence
starting with the maximum, enclosed with a pair of parentheses. The cycles in a Charlier-
permutation are represented in the same way except that 1-cycles with label a are enclosed
with a pair of brackets.

For each pair (B, σ) in Theorem 1, where B ⊂ [n] and σ a permutation of [n] \ B,
one can associate a Charlier-permutation τ of [n] as follows: each element of B gives rise
a 1-cycle with brackets, each cycle (a1a2 . . . al) of σ gives rise a cycle (alal−1 . . . a1) of τ
with reverse order and the maximal element at the first position. It is not hard to see
that w(B, σ) = Cinv(τ). For instance, the Charlier-permutation corresponding to the
pair (B, σ) in the above example is τ = [9](8 1 5 3)(7 4)(6)[2] with weight

(−1)9(−x)3a2q0+3+1+1 = a2q5x3,
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because there are nine integers of label −1, three cycles of label −x, two cycles of label
a, five Charlier-inversions, i.e. (5, 3), (5, 4), (5, 2), (3, 2), (4, 2).

One can restate Theorem 1 as follows.

Corollary 3. The q-Charlier polynomial Cn(x, a; q) is the generating function of Charlier-
permutations of [n]:

Cn(x, a; q) =
∑

τ

w(τ),

where τ runs through all permutations of [n].

3. The moments

For the Charlier polynomials Ca
n(x), the nth moment µn is the generating function for

set partitions of {1, 2, · · · , n} according to the number of blocks (see (1.4)). There is a
natural q-analogue for the polynomials Ca

n(x; q) [6, Eq. (3.1)], whose nth moment is

µn =
n∑

k=1

Sq(n, k)ak.

Note that Sq(n, k) is the most natural q-analogue of the Stirling numbers of the second
kind, and may also be interpreted as a generating function for set partitions with k blocks
according to a q-statistic. It has a remarkably simple expression as a single sum [6, Eq.
(3.3)]. In this section we identify an appropriate q-statistic on set partitions which yields
the nth moment µn for Cn(x, a; q), and give an explicit formula for it.

Recall that if π is a partition of M = {1, . . . , m}, then a crossing of π is a quadruple
(a, b, c, d) of elements of M such that a < b < c < d, the elements a, c are in some
block of the partition and b, d are in another block. For two elements e and f of M ,
with e < f , we say that f follows e in π if e and f belong to the same block of π, and
there is no element g of this block with e < g < f . We define a restricted crossing to
be a crossing (a, b, c, d) such that c follows a and d follows b. Similarly a nesting is a
quadruple (a, b, c, d) of elements of M such that a < b < c < d, the elements a, d are in
some block of the partition and b, c are in another block. We define a restricted nesting
to be a nesting (a, b, c, d) such that d follows a and c follows b. The restricted crossings
and nestings have a natural interpretation in the graphic line representation of partitions.
This representation consists in drawing the m points on the x-axis in the plane and, if f
follows e, joining the point e and f by an arc above the x-axis.

For instance, the graph of π = {1, 6, 10} − {2, 3, 9} − {4, 7} − {5, 8} is the following:

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

Let rc(π) (resp. rn(π)) be the number of restricted crossings (resp. restricted nestings)
of a partition π. The number of blocks of π is denoted by block(π). For the above π
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we have block(π) = 4, rc(π) = 7 and there are rn(π) = 3 restricted nestings, namely
(1, 2, 3, 6), (3, 4, 7, 9), (3, 5, 8, 9).

We can derive the combinatorial interpretation of the moments from the continued
fraction expansion of the ordinary generating functions of partitions with respect to the
corresponding statistics (see [3, 11]) and the three-term recurrence relation (2.1).

Theorem 4. The nth-moment of the q-Charlier polynomials Cn(x, a; q) is

µn(a) := Lq(x
n) =

∑
π∈Πn

ablock(π)qrc(π) =
∑
π∈Πn

ablock(π)qrn(π),

where Πn denotes the set of partitions of [n] := {1, . . . , n}.
The first values of µn(a) are as follows:

µ1(a) = a, µ2(a) = a+a2, µ3(a) = a+3a+a3, µ4(a) = a+(6+q)a2+6a3+a4.

It is possible to derive an explicit formula for the moments from the known measure for
the Al-Salam-Chihara polynomials and facts about q-Hermite polynomials. We do not
give the details of this calculation.

Let θ0 = 1, and for odd values of m ≥ 1 let

θm =

bm/2c∑

k=0

(
m

k

) bm/2c−k∑

l=0

(−1)m−l(a(1− q))k+l

(2
√

a(1− q))m

1− qm−2k

1− qm−2k−l

[
m− 2k − l

l

]

q

q(
l
2),

while for even values of m ≥ 1 let

θm =

bm/2c−1∑

k=0

(
m

k

) bm/2c−k∑

l=0

(−1)m−l(a(1− q))k+l

(2
√

a(1− q))m

1− qm−2k

1− qm−2k−l

[
m− 2k − l

l

]

q

q(
l
2)+

1

2m

(
m

m/2

)
.

Proposition 5. The nth-moment of the q-Charlier polynomials Cn(x, a; q) is given by

µn(a) = u−n

n∑
m=0

(
n

m

)
(−v)n−mθm,

where

u =
1

2

√
1− q

a
and v = −a(1− q) + 1

2
√

a(1− q)
.

4. The orthogonality relation and the linearization of products

The orthogonality of the q-Charlier polynomials reads as follows:

Lq(Cn(x, a; q)Cm(x, a; q)) = n!qa
nδmn.

In this section we state Anshelevich’s linearization result, which generalizes the orthogo-
nality relation, in Theorem 6, and explicitly evaluate the coefficients in Corollary 8.

Set n = n1 + n2 + · · ·nk. Denote by

πn1,n2,...,nk
∈ Πn
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the partition whose blocks are intervals of consecutive integers of lengths n1, n2, . . . , nk.
Denote

Π(n1, n2, . . . , nk) = {π ∈ Πn : π has no singleton and π ∧ πn1,n2,...,nk
= 0̂},

the partitions without singleton and inhomogeneous with respect to πn1,n2,...,nk
, that is,

the collection of all partitions which do not put together elements of the k distinguished
subsets in the same block. Thus π = {1, 6, 10} − {2, 3, 9} − {4, 7} − {5, 8} ∈ Π(2, 4, 4).

In 2005 Anshelevich [2] considered the re-scaled version Cn(x + a, a; q) and proved the
following

Theorem 6 (Anshelevich). The linearization coefficients of q-Charlier polynomials are
the generating functions of the inhomogeneous partitions:

Lq (Cn1(x, a; q) · · ·Cnk
(x, a; q)) =

∑

π∈Π(n1,n2,...,nk)

qrc(π)ablock(π). (4.1)

For example, if k = 3 and n1 = n2 = 2 and n3 = 1, then

Π(2, 2, 1) = {{(1, 3, 5)(2, 4)}, {(1, 4, 5)(2, 3)}, {(2, 3, 5)(1, 4)}, {(2, 4, 5)(1, 3)}}.
It is easy to see that the corresponding generating function in (4.1) is

a2q2 + a2 + a2q + a2q = a2(1 + q)2.

If k = 2, equation (4.1) gives the orthogonality relation. When k = 3, there is an explicit
formula for the generating function in (4.1).

Theorem 7. We have

∑

π∈Π(n1,n2,n3)

qrc(π)tblock(π) =
∑

l≥0

n1!qn2!qn3!q tl+n3q(
n1+n2−n3−2l

2 )

l!q(n3 − n1 + l)!q(n3 − n2 + l)!q(n1 + n2 − n3 − 2l)!q
.

Proof. First we verify the q = 1 case, and then give an argument for the q case.
Let N1 = [n1], N2 = [n1 + n2] \ [n1] and N3 = [n1 + n2 + n3] \ [n1 + n2]. The type of a

subset S of [n1 + n2 + n3] is defined to be the triple (|S ∩N1|, |S ∩N2|, |S ∩N3|).
Consider the inhomogeneous partitions of the colored set [n1+n2+n3] without singleton.

Let a, b, c and d be respectively the numbers of blocks of type : A = (1, 1, 1), B = (1, 1, 0),
C = (1, 0, 1) and D = (0, 1, 1). Then

a + b + c = n1, a + b + d = n2, a + c + d = n3.

Solving the equations and setting b = l we get

a = n1 + n2 − n3 − 2l, c = n3 − n2 + l, d = n3 − n1 + l.

The total number of blocks is equal to a+ b+ c+d = n3 + l, the power of t in Theorem 7.
Given an inhomogeneous partition π with a blocks of type A, b blocks of type B, c

blocks of type C, and d blocks of type D, the types of elements of [n1] form a multiset
permutation w1 of AaBbCc. Similarly we may define words w2 and w3 of lengths n2 and n3

as multiset permutations of AaBbDd and AaCcDd. The number of such words (w1, w2, w3)
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is given by a product of three trinomial coefficients. The number of ways to choose edges
to connect like types of letters is a factorial, so there is a total of

(
n1

a, b, c

)(
n2

a, b, d

)(
n3

a, c, d

)
(a!)2b!c!d!

=
n1!n2!n3!

l!(n3 − n1 + l)!(n3 − n2 + l)!(n1 + n2 − n3 − 2l)!
,

inhomogeneous partitions.
We include q in the above argument by keeping track of the possible restricted crossings

of π.
If π has words (w1, w2, w3), then some crossings are guaranteed from the wi, independent

of how the edges are attached to the letters.

• any occurrence in w1 of B preceding C or A preceding C gives a crossing,
• any occurrence in w2 of D preceding B, D preceding A, or A preceding B gives a

crossing,
• any occurrence in w3 of C preceding A or C preceding D gives a crossing.

The remaining crossings are

• crossings of edges of types ABAB and BABA, where the first two letters are in
w1 and the last two letters are in w2,

• crossings of edges of types ADAD and DADA, where the first two letters are in
w1 and the last two letters are in w3,

• crossings amongst edges of the same type.

Construct π in the following manner. Fix a word w2, the guaranteed crossings in w2 are
exactly the inversions in w2 if the letters are ordered BAD, thus the crossing generating
function for w2 is [1, p. 41] [

n2

a, b, d

]

q

.

Choose c of the positions in [n1] for the locations of C in w1, the C-inversions in w1

give the crossing generating function
[
n1

c

]

q

.

Also choose the c positions in w3 for C, the C-inversions in w3 contribute
[
n3

c

]

q

.

Match these 2c positions with c inhomogeneous edges, the crossing generating function is

c!q.
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Connect the a + b letters of w2 of type A or B to the remaining a + b positions of w1

in (a + b)! ways. The crossings here have type ABAB, BABA, and the same type AA,
BB. The generating function is

(a + b)!q.

Connect the a + d letters of w2 of type A or D to the remaining a + d positions of w3

in (a + d)! ways. The crossings here have type ADAD, DADA, and the same type AA,
DD. The generating function is

(a + b)!q.

Any pair of edges, each of type A, always has one remaining crossing which is not
accounted for, this is

q(
a
2).

Multiplying the above corresponding generating functions yields the formula. ¤

Corollary 8. We have the following linearization formula:

Cn1(x, a; q)Cn2(x, a; q) =
∑
n3

Kn1n2n3Cn3(x, a; q), (4.2)

where

Kn1n2n3 =
∑

l≥0

n1!qn2!q alq(
n1+n2−n3−2l

2 )

l!q(n3 − n1 + l)!q(n3 − n2 + l)!q(n1 + n2 − n3 − 2l)!q
.

Corollary 8 may also be proven using the Askey-Wilson integral, see [9, p. 422].

5. A Combinatorial Proof of Theorem 6

In this section we prove Theorem 6, using the combinatorial interpretation of the poly-
nomials given in Corollary 3 and the moments given in Theorem 4.

5.1. Generalized Charlier-permutations. We fix n = (n1, . . . , nk), where ni’s are
positive integers. Let n denote n1 + n2 + · · ·+ nk. For 1 ≤ i ≤ k, let Ni denote the set of
all integers j such that n1+· · ·+ni−1 < j ≤ n1+· · ·+ni, n0 = 0. Then [n] = N1∪· · ·∪Nk.
A generalized Charlier-permutation τ of type n is a sequence (τk, τk−1, . . . , τ1) where τi is
a Charlier-permutation of Ni. The weight of a generalized Charlier-permutation is the
product of the weights of its Charlier-permutations.

The following are examples of generalized Charlier-permutations of type n = (2, 4, 3):

(9 7)(8) | (6 5)(4 3) | (2)(1), (9 7)(8) | (6 5)(4 3) | [2](1), (9 7)(8) | (6 4)(5 3) | (2 1),

(9 7)[8] | (6 4)(5 3) | (2 1), (9 8)[7] | (6 4)(5 3) | (2 1), (9 8)[7] | (6)(5 4)(3) | (2 1).
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5.2. Charlier-partitions. Combining generalized Charlier-permutations and moments
discussed in the previous sections, we want to interpret

Lq (Cn1(x, a; q) . . . Cnk
(x, a; q))

as the weight generating function of some objects. The weight of any generalized Charlier-
permutation can be regarded as a monomial in x of degree the number of cycles labeled−x.
Applying Lq to the monomial is equivalent to considering all possible partitions of such
cycles, where cycles are ordered as they appear in the generalized Charlier-permutation.
We call the resulting objects Charlier-partitions of n. A Charlier-partition is represented
as (τ, ν), where τ = (τk, τk−1, . . . , τ1) is a generalized Charlier-permutation and ν is a
partition of cycles labeled −x in τ . We regard each 1-cycle with label a as a block by
itself in ν. The weight of (τ, ν) is defined by

w(τ, ν) = qrc(ν)ablock(ν) w(τ)|x=1 .

Then clearly we have the following identity:

Lq (Cn1(x, a; q) · · ·Cnk
(x, a; q)) =

∑

(τ,ν)

w(τ, ν). (5.1)

Given a Charlier-partition (τ, ν) of n with τ = (τk, τk−1, . . . , τ1), we draw the corre-
sponding diagram on the plane as follows:

• The n integers in τ are arranged on the horizontal axis in the order they appear
in τ , one step apart.

• The 1-cycles with label a are framed with a box.
• The maximum in each cycle, except that in a box, is circled, so that we can recover

the cycle structure and labels.
• If a cycle σ follows a cycle σ′ in a block of ν, then we draw an arc above the

horizontal line between the last element of σ′ and the first element, that is also
the maximum of σ, making as few crossings as possible. The smallest number of
crossings agrees with the restricted crossings in ν, rc(ν).

• Draw a straight edge between two adjacent elements if and only if they are in the
same cycle.

Example 2. Let n = (3, 5, 5). Then (τ, ν) is a Charlier-partition of n, where

τ = ((13 11)(12 9)(10), (8 4 6)[7](5), (3 1)(2))

is a generalized Charlier-permutation of type n and

ν = {{(13 11), (8 4 6), (3 1)}, {(12 9), (5), (2)}, {(10)}}
is a partition of cycles of τ with weight −x. The corresponding diagram can be illustrated
as follows:

7654012313 11 7654012312 9 7654012310 /.-,()*+8 4 6 7 /.-,()*+5 /.-,()*+3 1 /.-,()*+2
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5.3. Involution. The weight function in Equation (5.1) has many cancelations. We
will give a combinatorial weight-preserving sign-reversing involution φ with fixed set
Π(n1, n2, . . . , nk) defined on the set of all Charlier-partitions of type n.

Let (τ, ν) be a Charlier-partition of n. The involution φ will be defined depending on
three different cases of (τ, ν).

Case 1. If (τ, ν) has a circled 1-cycle in a block by itself or a boxed 1-cycle, then
define φ(τ, ν) by picking up the smallest 1-cycle and switching its box to circle or vice
versa. Since a boxed 1-cycle contributes −a and a circled 1-cycle a, φ is weight-preserving
sign-reversing in this case.

Case 2. We now assume that (τ, ν) has no 1-cycles, boxed or circled in a block by itself.
Find the rightmost integer α, if it exists, in τ , say in τi, such that it has a neighbor β in
τi, along the straight edge or an arc, to its right.
Case 2.1. Assume that α and β are in the same cycle σ ending with α β, i.e. σ = (· · ·α β).
Since α is the penultimate entry in σ, β is not the maximum in σ. Suppose the contribution
of β to Cinv(τi) is j. Then τi is of the form

τi = (· · · ) · · · (· · ·α β)(tm)(tm−1) · · · (tj+2)(tj) · · · (t1)
with t1 < t2 < · · · < tm and tj+1 = β. Let τ ′i = (· · · ) · · · (· · ·α)(tm)(tm−1) · · · (t1). Integers
tm, tm−1, . . . , tj+2 are moved to the left by one step and β occupies the position of tj+2.
We make some changes on the diagram of (τ, ν) as follows, to obtain the diagram of the
Charlier-partition (τ ′, ν ′):

Algorithm: Stretch

• Initially, start with the diagram of (τ, ν) with all arcs and edges.
• Delete the straight edge between α and β in the diagram.
• Rearrange tm, tm−1, . . . , t1 in descending order, leaving the arcs and edges intact

in their present positions.
• For l from m − 1 down to m − j, make the arc arriving from left at the position

of tl to arrive at tl+1, if it exists; if there is no such arc at position tl and there
are no arcs at position tl+1, then make the arc arriving from right at position tl to
arrive at position tl+1.

• Add an arc between α and tm−j.

Let φ(τ, ν) = (τ ′, ν ′). We need to show that φ is a weight-preserving sign-reversing
involution. The involution part will be clear after the next subcase is introduced. Clearly
we have w(τ ′, ν ′) = −w(τ, ν) when q = 1, since (τ ′, ν ′) has one more 1-cycle than (τ, ν),
contributing −1 to w(τ ′, ν ′). So it suffices to prove that the exponents of q in w(τ, ν) and
w(τ ′, ν ′) are the same. This can be done easily by induction on j. The loss in Charlier
inversions from τ to τ ′ exactly matches the gain in restricted crossings from ν to ν ′ for
all j.

The following are some examples with n = (3, 6, 2).
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7654012311
27654012310

1/.-,()*+9 /.-,()*+8 0
7 /.-,()*+6 /.-,()*+5 /.-,()*+4 /.-,()*+3 /.-,()*+2 /.-,()*+1 [[

¤¤7654012311
2

7654012310
1

/.-,()*+9 /.-,()*+8
0

/.-,()*+7 /.-,()*+6 /.-,()*+5 /.-,()*+4 /.-,()*+3 /.-,()*+2 /.-,()*+1

7654012311
37654012310

1/.-,()*+9 /.-,()*+8 0
7 /.-,()*+6 /.-,()*+5

2
/.-,()*+4 /.-,()*+3 /.-,()*+2 /.-,()*+1 [[

¤¤7654012311
37654012310

1
/.-,()*+9 /.-,()*+8

0
/.-,()*+7 /.-,()*+6

2 /.-,()*+5 /.-,()*+4 /.-,()*+3 /.-,()*+2 /.-,()*+1

7654012311 7654012310
1/.-,()*+9 /.-,()*+8 0

7 /.-,()*+6 /.-,()*+5
2

/.-,()*+4
3

/.-,()*+3 /.-,()*+2 /.-,()*+1 [[

¤¤7654012311 7654012310
1

/.-,()*+9 /.-,()*+8
0

/.-,()*+7 /.-,()*+6
2 /.-,()*+5

3

/.-,()*+4 /.-,()*+3 /.-,()*+2 /.-,()*+1
Three sets of (τ, ν) and (τ ′, ν ′) of type n = (3, 6, 2) with α = 8.

Case 2.2. We now assume that α and β are in different cycles. Clearly β forms a 1-cycle
and adjoins α by an arc. Moreover, all integers to the right of α in τi form 1-cycles and
are in descending order. Suppose there are exactly j integers between α and β. Then τi is
of the form τi = (· · · ) · · · (· · ·α)(tm)(tm−1) · · · (t1) with t1 < t2 < · · · < tm and tm−j = β.
Let τ ′i = (· · · ) · · · (· · ·α tj+1)(tm)(tm−1) · · · (tj+2)(tj) · · · (t1). Integers tm, tm−1, . . . , tj+2 are
moved to the right by one step and tj+1 occupies the position of tm. We make some changes
on the diagram of (τ, ν) as follows, to obtain the diagram of the Charlier-partition (τ ′, ν ′):

Algorithm: Compress

• Initially, start with the diagram of (τ, ν) with all arcs and edges.
• Delete the arc between α and β = tm−j in the diagram.
• For l from m− j to m− 1, make the arc arriving from left at the position of tl+1

to arrive at tl, if it exists; if there is no such arc at position tl+1 and there are no
arcs at position tl, then make the arc arriving from right at position tl+1 to arrive
at position tl.

• Rearrange tm, tm−1, . . . , tj+1 as tj+1, tm, tm−1, . . . , tj+2.
• Add a straight edge between α and tj+1.
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We let φ(τ, ν) = (τ ′, ν ′).
If (τ, ν) falls on Case 2.1 then (τ ′, ν ′) falls on Case 2.2 and vice versa. The algorithms

Stretch and Compress are inverses to each other. If the roles of (τ, ν) and (τ ′, ν ′) are
exchanged in the examples for algorithm Stretch, then they become examples of algorithm
Compress.

Case 3. Assume that (τ, ν) does not fall in Cases 1 and 2. All the cycles in (τ, ν)
are 1-cycles, every block in ν has at least two cycles, and each block of ν has at most
one element in Ni for each i = 1, 2, . . . , k. So ν is a partition in Π(n1, n2, . . . , nk). Let
φ(τ, ν) = (τ, ν). The Charlier-partition (τ, ν) becomes a fixed point of φ.

Combining Cases 1, 2 and 3, the mapping φ is a weight-preserving sign-reversing invo-
lution on the set of all Charlier-partitions of type n with fixed set Π(n1, n2, . . . , nk). This
constitutes a combinatorial proof of Theorem 6.

6. A variation

Consider the polynomials Ĉn(x|q) defined by

Ĉn+1(x|q) = (x− b[n]q) Ĉn(x|q)− a[n]qĈn−1(x|q), n ≥ 0, (6.1)

where Ĉ0(x|q) = 1 and Ĉ−1(x|q) = 0. Then (see [3, 11]) the polynomials Ĉn(x|q) are

orthogonal with respect to the linear functional L̂q defined by

L̂q(x
n) = µ̂n =

∑

π∈Π′n

qrc(π)a|π|bn−2|π|,

where Π′
n is the set of partitions of [n] without singleton.

These polynomials may be obtained from Cn(x, a; q) as follows: let pn(x) be the poly-

nomial Cn(x + a, a; q) with a replaced by a/b2, then Ĉn(x|q) = bnpn(x/b). It follows from
(2.2) that

Ĉn(x|q) =
n∑

k=0

[
n

k

]
(−1)n−kqk2−kn

(a

b

)n−k
k−1∏
i=0

(
x +

a

b
q−i − b[i]q

)
. (6.2)

The first values of these polynomials are

Ĉ1(x|q) = x,

Ĉ2(x|q) = x2 − bx− a,

Ĉ3(x|q) = x3 − b(q + 2)x2 + (b2(1 + q)− 2a− aq)x + ab(1 + q).

Since the linearization coefficients are invariant by translation of x, we have

L̂q(
∏k

i=1 Ĉni
(x|q))

L̂q((Ĉnk
(x|q))2)

=
Lq(

∏k
i=1 Cni

(x, a; q))

Lq((Cnk
(x, a; q))2)

∣∣∣∣∣
a→a/b2

· bn1+n2+···nk−1−nk . (6.3)
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As L̂q(Ĉnk
(x|q)Ĉnk

(x|q)) = Lq(Cnk
(x, a; q)Cnk

(x, a; q)) = anknk!q, we derive immediately
from (6.3) and Theorem 6 the following

Theorem 9 (Anshelevich). The linearization coefficients of the polynomials Ĉn(x|q) are
the generating functions of the inhomogeneous partitions:

L̂q

(
Ĉn1(x|q) · · · Ĉnk

(x|q)
)

=
∑

π∈Π(n1,n2,...,nk)

qrc(π)a|π|bn1+···+nk−2|π|.

Anshelevich [2] presented the above theorem as a generalization of several other pre-
viously known results and proved it by the same method for Theorem 6. We have just
shown that Theorem 6 and Theorem 9 are actually equivalent.

Now Corollary 8 implies the following

Corollary 10. We have the following linearization formula:

Ĉn1(x|q) Ĉn2(x|q) =
∑
n3

K̂n1n2n3Ĉn3(x|q), (6.4)

where

K̂n1n2n3 =
∑

l≥0

n1!qn2!q albn1+n2−n3−2lq(
n1+n2−n3−2l

2 )

l!q(n3 − n1 + l)!q(n3 − n2 + l)!q(n1 + n2 − n3 − 2l)!q
.

When a = 1 and b = 0 the polynomials Ĉn(x|q) reduce to a family of q-Hermite polyno-
mials H̃n(x|q) (see [10, (2.11)]) and we get the corresponding combinatorial interpretation
for the linearization coefficients of the q-Hermite polynomials in [10]:

L̂q

(
H̃n1(x|q) · · · H̃nk

(x|q)
)

=
∑

π

qrc(π), (6.5)

where the summation is over all inhomogeneous 2-partitions π of [n1 + · · · + nk], i.e.,
inhomogeneous partitions of which each block contains only two elements.

In particular, when a = 1 and b = 0, identity (6.4) reduces to

H̃n1(x|q) H̃n2(x|q) =

min(n1,n2)∑

l=0

[
n1

l

]

q

[
n2

l

]

q

l!q H̃n1+n2−2l(x|q). (6.6)

7. Remarks

The q-Charlier polynomials in [6] have a natural q-Stirling number associated with their
moments, a simple explicit formula, but a complicated and non-positive linearization
formula. In contrast, Al-Salam-Chihara q-Charlier polynomials have a complicated q-
Stirling number associated with their moments, a complicated explicit formula, but the
most natural linearization formula.
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