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Many finite sets in combinatorics have both cyclic symmetry and a natural gen-
erating function. Surprisingly often the generating function evaluated at roots of
unity counts symmetry classes. We call this the cyclic sieving phenomenon.

More precisely, let C be a cyclic group generated by an element c of order n
acting on a finite set X . Given a polynomial X(q) with integer coefficients in a
variable q, say that the triple (X,X(q), C) exhibits the cyclic sieving phenomenon
(CSP) if for all integers d, the number of elements fixed by cd equals the evaluation
X(ζd) where ζ = e

2πi

n . In particular, X(1) is the cardinality of X , so that X(q)
can be regarded as a generating function for X .

In the proto-example,X is the collection of all k-elements subsets of {1, 2, . . . , n},
and X(q) is the renowned q-binomial coefficient or Gaussian polynomial

(1) X(q) =

[

n
k

]

q

:=
[n]!q

[k]!q[n− k]!q

where [m]!q := [m]q[m − 1]q · · · [2]q[1]q and [m]q := 1 + q + q2 + · · · + qm−1. Let
the generator c of C act by cycling the elements of a k-subset modulo n. One then
finds [1, Thm. 1.1(b)] that this triple (X,X(q), C) exhibits the CSP. For example,
taking n = 4 and k = 2, one has c acting as shown here:
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One can compute X(q) = 1+ q+2q2+ q3+ q4 from (1). Note that X(1) = 6, while
X((e

2πi

4 )2) = X(−1) = 2 counts the two subsets {{1, 3}, {2, 4}} fixed by c2, and
X(e

2πi

4 ) = 0 = X((e
2πi

4 )3) since no two-element subset is fixed by c or c3.
The CSP was first defined in [1]. It has proven to be remarkably ubiquitous –

see, for example, B. Sagan’s excellent survey [3]. The special case of a CSP when
C has order 2 was known as J. Stembridge’s q = −1 phenomenon [4]. He gave
interesting examples involving enumeration of plane partitions and Young tableaux.

Stembridge emphasized the value of a single q-formula X(q) encompassing both
the cardinality of X as X(1), and a second enumeration X(−1) of a symmetry
class within X . A CSP triple (X,X(q), C) generalizes his idea. The polynomial
X(q) packages as its nth root-of-unity evaluations, or equivalently in its residue
class modulo qn − 1, all of the information about the cyclic action of C on X . In
fact, given (X,C) there is always a unique (but generally uninteresting) choice of
a polynomial X(q) of degree at most n − 1 completing the triple, as the CSP is
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equivalent [1, Prop. 2.1(ii)] to the assertion that X(q) ≡
∑n−1

i=0 aiqi mod qn − 1,
where ai is the number of orbits of C on X in which the stabilizer cardinality
divides i. Thus a CSP interprets combinatorially the coefficients of X(q) when
reduced mod qn − 1, e.g., a0 counts the total number of orbits on X , while a1
counts the number of free orbits. Our proto-example with n = 4 and k = 2 has
X(q) ≡ 2 + q + 2q2 + q3 mod q4 − 1, so a0 = 2 counts the two orbits in total, and
a1 = 1 counts the free orbit.

Here is a second example from [1]. Let X be the set of triangulations of a regular
(n+ 2)-gon, with C a cyclic group of order n+ 2 rotating triangulations, and let

X(q) =
1

[n+ 1]q

[

2n
n

]

q

,

a q-Catalan number considered by P.A. MacMahon. Then (X,X(q), C) exhibits
the CSP [1, Thm. 7.1]. For example, when n = 4, the four orbits of triangulations
are represented by
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while X(q) =
1

[5]q

[

8
4

]

q

= 1 + q2 + q3 + 2q4 + q5 + 2q6 + q7 + 2q8 + q9 + q10 + q12

≡ 4 + q + 3q2 + 2q3 + 3q4 + q5 mod q6 − 1,
so that a0 = 4 counts the four orbits, of which a1 = 1 of them is free (the fourth
orbit), while a2 = 3 orbits (the first, second, fourth) have stabilizer size dividing 2,
and a3 = 2 orbits (the third, fourth) have stabilizer size dividing 3.

It was conjectured by the authors, and verified by S.-P. Eu and T.-S. Fu, that
this triangulation example generalizes to a CSP triple (X,X(q), C) in which X is
the collection of clusters in a cluster algebra of finite type W à la S. Fomin and
A. Zelevinsky, where C is generated by a deformed Coxeter element, and X(q) is a
q-analogue of the Catalan number for W .

So what makes a generating function X(q) “natural”? To some extent, this is in
the eye of the beholder. Nevertheless, here are some conditions on X(q) arising in
many CSP’s encountered so far:

(i) X(q) is the statistic generating function for a map s : X → {0, 1, 2, . . .},
that is, X(q) =

∑

x∈X qs(x).
(ii) X(q) has a simple product formula.
(iii) X(q) at q = pd a prime power counts the points of a variety X(Fq) defined

over the finite field Fq.
(iv) X(q2) =

∑

i βi qi records the Betti numbers βi of a complex variety X(C).
(v) X(q) =

∑

i dimRi qi records the Hilbert series of some interesting graded
ring R = ⊕iRi.

(vi) X(q2) is, up to a power of q, the formal character of an SL2(C)-representation,
that is, the sum

∑

i dimVi qi where Vi is the weight space on which a diag-
onal matrix with eigenvalues (q, q−1) acts via the scalar qi.

Our proto-example has each of these natural properties.
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(i) After multiplying X(q) by q(
k+1
2 ), it is the statistic generating function for

k-subsets A by their sum s(A) =
∑

a∈A a.
(ii) The product formula for X(q) is given in (1).
(iii) X(q) counts the points in theGrassmannian of k-planes in an n-dimensional

vector space over Fq.
(iv) X(q2) records the Betti numbers for this Grassmannian over C.
(v) When the symmetric group Sn permutes polynomials in n variables, X(q) is

the Hilbert series for the quotient ring1 of the polynomials invariant under
Sk ×Sn−k after modding out the nonconstant polynomials invariant under
Sn.

(vi) q−k(n−k)X(q2) is the formal character for the kth exterior power of the
n-dimensional SL2(C)-irreducible.

In our triangulations example, the q-Catalan X(q) has an interpretation as in (i),
(ii), (iii), and a variation of (v). We know no interpretation like (iv) or (vi).

Some CSP’s in the literature are proven via a linear algebra paradigm [1, §2]. Such
proofs interpret X(q) as in (iv) or (v), giving a graded representation V = ⊕iVi of
the cyclic group C. One shows that X(ζd) equals the size of the cd-fixed subset of
X , by computing the trace of cd using two bases. The first basis is indexed by X
and permuted by c, so that the trace of cd is the size of the cd-fixed subset. The
second basis shows that c scales Vi by ζi, so that cd has trace X(ζd).

A pleasing situation where this paradigm works generalizes (v) above. It arises
from the invariant theory of finite subgroupsW of GLn(C) generated by reflections,
that is, elements whose fixed space is a complex hyperplane. T. Springer developed
a theory of regular elements in such groups, which are the elements c that have
an eigenvector fixed by none of the reflections of W . Using Springer’s main result,
one obtains [1, Thm. 8.2] a CSP triple from the coset space X := W/W ′ for any
subgroup W ′, with C generated by a regular element left-translating cosets, and
X(q) is the quotient of the Hilbert series for the W ′-invariant polynomials over the
Hilbert series for the W -invariant polynomials.

An intriguing CSP was conjectured by D. White involving rectangular Young
tableaux and the cyclic action of jeu-de-taquin promotion. It has now seen several
proofs via the linear algebra paradigm, first by B. Rhoades [2], and most recently
by B. Fontaine and J. Kamnitzer. Such insightful proofs are rarer than we would
like. Many known instances of CSP’s, such as the triangulations example, have only
been verified using a product formula for X(q) to evaluate X(ζd), and comparing
with known counts of symmetry classes.

We close with a perplexing example of this nature. Let X be the set of n × n
alternating sign matrices: the matrices with 0,±1 entries whose row and column
sums are all +1, and nonzero entries alternate in sign reading along any rows,

1This graded ring is isomorphic, after doubling degrees, to the cohomology of the Grassmannian
in (iv).
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columns. Here they are for n = 3:
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Let C be the cyclic group of order 4 whose generator c rotates matrices through 90
degrees. Let

X(q) =
n−1
∏

k=0

[3k + 1]!q
[n+ k]!q

.

This triple (X,X(q), C) exhibits the CSP, but we have no linear algebraic proof.
Furthermore, X(q) is only known as the generating function for descending plane
partitions by weight, and is not defined by a statistic on alternating sign matrices.
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