RATIOS OF JACKSON’S ¢-BESSEL FUNCTIONS AND ¢-LOMMEL
POLYNOMIALS

JANG SOO KIM AND DENNIS STANTON

ABSTRACT. In 1993 Delest and Fédou showed that a generating function for connected skew
shapes is given as a ratio J,41/J, of the Jackson’s third g-Bessel functions when a parameter
v is zero. They conjectured that when v is a nonnegative integer the coefficients of the
generating function are rational functions whose numerator and denominator are polynomials
in ¢ with nonnegative integer coefficients, which is a g-analog of Kishore’s 1963 result on
Bessel functions. The first main result of this paper is a proof of the conjecture of Delest
and Fédou. The second main result is a refinement of the result of Delest and Fédou: a
generating function for connected skew shapes with bounded diagonals is given as a ratio
of g-Lommel polynomials introduced by Koelink and Swarttouw. It is also shown that the
ratio Jy41/J, has two different continued fraction expressions, which give respectively a
generating function for moments of orthogonal polynomials of type R; and a generating
function for moments of usual orthogonal polynomials. Orthogonal polynomial techniques
due to Flajolet and Viennot are used.
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1. INTRODUCTION

The main objects of study in this paper are ratios of g-Bessel functions and g¢-Lommel
polynomials, and their combinatorial properties. Jackson defined three g-Bessel functions.
Delest and Fédou gave a combinatorial interpretation for a certain ratio of Jackson’s third g¢-
Bessel functions. We will extend their result and prove their conjecture in this case. We also
consider the other two Jackson’s ¢g-Bessel functions.

The Bessel functions J,(z) are defined by

(2/2)" 3 (==%/4)"

T@) = 50,51 2 i+ 1,

n>0
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It is well known [29, p. 54] that the Bessel functions generalize both sine and cosine functions:

2 sinz 2 cosz
Jia(z) = \/; SR J_12(2) = T L2

Therefore their ratio gives the tangent function:

Jl/Q(Z)
J_1/2(2)

A motivating example of this paper is the following result of Kishore [20], which was observed
by Lehmer [22] in 1945. We consider the ratio J,41(2)/J,(2) is a formal power series in z.

Theorem 1.1 (Kishore, [20]). We have

(1.2) u+1z Z Dn,, (7)271 17

where

(1.1) = tanz.

and Ny, 5 a polynomial in v with nonnegatwe integer coefficients.

Throughout this paper we use the standard notation for g-series:
(@;9)n = (1—a)(l—aq)...(1 —ag"™"),  (a;q)ec = (1 —a)(1 —ag)...,

A1,---5Qr;q)n n (2 s+i-r n
T¢s(a1a---7ar;bl>---7bs;qu): § ((Zb))((_l) q(2)> 2.
n>0 q,01,...,05;4)n

We also define [v]; = (1 — ¢¥)/(1 — q). Note that if n is a nonnegative integer, then [n], =
l+qg+---+q¢"h

In 1993 Delest and Fédou [6l, Conjecture 9] conjectured a g-analog of Kishore’s theorem using
Jackson’s third ¢g-Bessel functions, also known as Hahn—Exton ¢-Bessel functions [21].

Definition 1.2. The Jackson’s third q-Bessel functions J,(z;q) are defined by

(qVJrlaQ)ooZ +1 2
Ju(z3q) = ——5—101(0;¢"" ;4,¢27) .
(z9) G0 ( )
From the definition it follows that
(1.3) lim J,(2(1 - q);q) = Ju(22).
q—1-

The first main result of this paper is the following theorem, which is slightly more general
than the conjecture of Delest and Fédou [0 Conjecture 9]. See Remark for the original
statement of their conjecture.

Theorem 1.3. For any v (not a negative integer) we have

_ -1y
Ju+1((]— q zZ3 q Z 77« l’ 1/+1)nz2n71
J (1= q)zq~ Dy,

where each N, ,(q) is a polynomial in q,q” and [v], with nonnegative integer coefficients and

= ik + vl
k=1

)
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FIGURE 1. From left to right are shown the Young diagrams of the par-
titions (5,4,4,2) and (4,2,1) and the skew shapes (5,4,4,2)/(4,2,1) and
(4,4,2)/(2,1). The third diagram is not connected and the fourth diagram
is connected. If « is the fourth diagram, then col(a) = 4, row(a) = 3, and
area(a) = 7.

Note that by the ¢ — 17 limit of Theorem m with z replaced by —q~1z/2 recovers
the Kishore theorem, Theorem Our method of proof also works for the Jackson’s third
g-Bessel functions with the usual ¢ base instead of ¢~! and for Jackson’s g-Bessel functions, see
Theorems 2.6] and 3.2

Our second main result concerns combinatorial properties of the ratio of Jackson’s third
g-Bessel functions. We first introduce necessary definitions.

Definition 1.4. A partition is a sequence o = (01,09, ...,0,) of positive integers with
012> 0222 0p.

The Young diagram of a partition o is a left-justified array of squares in which the ¢th row has
0, squares.

If o0 and p are partitions such that the Young diagram of p is contained in that of o, the
skew shape o /p is defined to be the set-theoretic difference of their Young diagrams. Two skew
shapes are considered as the same skew shape if one is obtained from the other by translation.

A skew shape o/p is connected if for any two squares u and v in o/p there is a sequence
Ug, U1, - . ., ug of squares in o/p such that ug = u, up = v and for each 1 < ¢ < k the squares u;
and u;_1 share an edge.

Denote by CS the set of all nonempty connected skew shapes. For a € CS, let col(«) be the
number of nonempty columns in «, row(«) the number of nonempty rows in «, and area(«) the
number of squares in a. See Figure [I]

Two skew shapes are considered to be equal if one is obtained from the other by translation.
For example, the skew shape (4,4,2)/(2,1) in Figure [I| is the same as (5,4,4,2)/(5,2,1) or
(5,5,3)/(3,2,1).

Delest and Fédou [0] showed that a generating function for connected skew shapes can
be written as a ratio of Jackson’s third ¢-Bessel functions. Bousquet-Mélou and Viennot [4]
generalized their result by adding one more parameter.

Theorem 1.5 ([6] for v = 0 and [4] for general v). We have

v ol V\row(o areal« v JV Z; q_l
Z (¢"2%)° 1( )(q ) (@) gareale) — _g z%
a€eCSs v(z3q7h)

In fact Delest and Fédou [6] (for v = 0), and Bousquet-Mélou and Viennot [4] state their
results in the following equivalent form:

2. 2
Z xcol(a)yrow(a)qarea(a) _ qry . 161 (qu Y;q,q :L') )
l—qy  1¢1(05qy;4,q7)

acCS
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Bousquet-Mélou and Viennot [4] also showed that

col(o row( o area(« qmy
(1.4) Z T 1( )y ( )q (o) — q3xy
aecs 1= q@+y) - '

T
1—q2(ﬁc+y)—q /

We note that in [4, Corollary 4.6] the sequence of the coefficients of (x 4+ y) in the continued
fraction (1.4) was inadvertently written g, q>,¢°, ..., where the correct sequence is ¢, ¢, ¢>, . . ..
We also note that there are similar results in [2].

The second main result of this paper is a finite version of Theorem [1.5| using g-Lommel
polynomials. We first recall the connection between Bessel functions and Lommel polynomials.

The Lommel polynomials R, ,(z) are polynomials in z~! defined by Ry, (2) =1, Ry, (2) =
2v/z, and for n > 0,

2(n+v
(1.5) Rus10(2) = %Rn,y(z) — Rp1u(2).
The Bessel functions and the Lommel polynomials are related by the recurrence
(1.6) Join(2) = Rnw(2)Ju(2) = Ro—1,041(2)Ju-1(2).

Hurwitz’s theorem [14, Theorem 6.5.4] says that the Bessel function J, (z) is obtained as a limit
of the Lommel polynomials R,, ,,+1(z):

- (2/2)"Rnv41(2) _
1.7 lim —————— = (2/2)7"J,(2).
(1.7) Jim SIS ey (2
Thanks to Hurwitz’s theorem one can regard Lommel polynomials as a finite analog of Bessel
functions. Note that the ratio of Bessel functions in Kishore’s theorem is the limit of a ratio of
Lommel polynomials:

JV+1(Z) — lim Rn,VJr?(Z)

Ju(z) n—0o0 Rn-&-l,l/-'rl(z).

In this paper we study g-analogs of these ratios. Koelink and Swarttouw [2I] (4.18)] intro-
duced the following g-Lommel polynomials.

(1.8)

Definition 1.6. The g-Lommel polynomials R, . (z;q) associated to the Jackson’s third g¢-
Bessel functions J, (z; ¢) are the Laurent polynomials in z defined by R_1 ,(2;¢) = 0, Ry, (2;q) =
1, and for m > 0,

(19) Rm+1,u(z; Q) = (Z + Z71(1 - qy+m)) Rm,u(z; Q) - Rm—l,v(z; Q)'

In this paper we will consider J,(z;¢™ ') and Ry, (2;¢7 ") instead of J,(2; q) and Ry, . (2;q)-
Koelink and Swarttouw [21], (4.12), (4,24)] showed that these ¢-Lommel polynomials satisfy the
following properties analogous to (1.6)) and ([1.7):

(1.10) Joim (207" = R (2547 ) (2507 ") = R—1,041 (2507 ) Juca (23071,
—1 —1 1—v
Cm N R
(111) W%E;I})oz RmW(Z,Q )_ (2’2;(]71)00 Jl/—l(z7q )

By (1.11)) we have a g-analog of (|L.8]):

(112) lim Rnyi2(207") Jusalziq™h)

n—oo Ryi141(25¢71) J(z97Y)




RATIOS OF JACKSON’S ¢-BESSEL FUNCTIONS AND ¢-LOMMEL POLYNOMIALS 5

FIGURE 2. A diagonal of a skew shape in CS=3.
Note that
Joa(zg) 2 11 (07 R g1
Jo(z3q7Y)  1—qt 11 (07l g7 122)
(1.13) _ Mz 161 (05¢77%50,7722)

1= g1 161 (0,05 q,¢"+122)
where the last equality holds as formal power series in z whose coefficients are rational functions
in ¢ and ¢”. Therefore one may consider (|1.12) as an equation in the ring of formal power series
in z, ¢!, and ¢7¥, or in #, ¢, and ¢".

Before stating our second main result we need one more definition.

Definition 1.7. For a connected skew shape «, a diagonal is the set of squares in row 7 and
column j such that i — j = k for a fixed (not necessary positive) integer k. Let CSS™ denote
the set of connected skew shapes in which every diagonal has at most m squares. See Figure

Using Flajolet’s theory of continued fractions [9] we show the following finite version of (1.4)).

Proposition 1.8. For any positive integer m, we have

col(ox row (o areal« qu
le()y (@) gareala) — p”
l-¢?@+y) —. ¢y
1—gmti(z +y)

The second main result of this paper is the following finite version of Theorem [1.5

acCssm 1—qlz+y) —

Theorem 1.9. For any positive integer m, we have

L1
Z (quz2)col(a) (qu)row(a)qarea(a) _ _quz Rm,u+2(zv q _)1 ]
weGagm Rit1,0+1(25971)
If we take the limit m — oo in Theorem by (1.12), we obtain Theorem
Note that Theorem [1.5| and (1.4) give

v Juri(zig7h) q
(1.14) —q"z T, a ) = 352
1—q(q” +¢"2%) -

2u+1z2

21/+5Z2
1—q?(¢" +¢/2%) — ——

In Theorem we show that this continued fraction is a generating function for moments
of orthogonal polynomials of type R;. We will show in Theorem that the same ratio
Jur1(z;¢71)/J,(2;¢71) can also be expressed as a generating function for moments of usual
orthogonal polynomials.
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Fédou [8, Theorem 2] gave several combinatorial interpretations for the ratio, and inverse,
of Jackson’s third g-Bessel function. Barcucci et al. [2] used steep convex polyominoes to give a
combinatorial interpretation for a ratio of Jackson’s first g-Bessel function. Barcucci et al. [3]
Theorem 4.3] used permutation statistics for another combinatorial interpretation for a ratio of
Jackson’s first g-Bessel function. They also gave interpretations for functions closely related to
g-Bessel functions in both papers. Li [23] Proposition 4.5] gave a combinatorial meaning to the
coefficients of the power series expansion of l/Jél)(z; q). Aval et al. [I] and Jin [I6] considered
the combinatorics of 1/.Jy(2).

The remainder of this paper is organized as follows. In Section [2] we prove the ¢-Kishore
theorem (Theorem using Jackson’s third ¢-Bessel function and its analogous result with
the usual ¢ base instead of ¢~ . In Section [3| we prove another ¢-Kishore theorem using Jack-
son’s first and second ¢-Bessel functions. In Section [4] we review basic results on orthogonal
polynomials of type R; and continued fractions. Using these results, in Section [5| we prove The-
orem |1.9|and show that the ratio J,1+1(z;¢71)/J,(2;¢71) is a generating function for moments
of orthogonal polynomials of type R;. In Section [6] we show that this ratio can also be written
as a generating function for moments of usual orthogonal polynomials. Finally in Section [7] we
propose some open problems.

2. THE ¢-KISHORE THEOREM FOR JACKSON’S THIRD ¢-BESSEL FUNCTION

In this section we prove Theorem and an analogous result, Theorem [2.6] with the usual
q base instead of g~1.

Kishore [20] proved Theorem by finding a recurrence relation for the coefficient of z™.
He did this using differential equations for Bessel functions. We will use similar methods using
g-differential equations to prove Theorem

We now review some facts about g-derivatives. Recall that the g-derivative Dy(f(x)) is
defined by

Dy(f(a)) = 1D = Ilam),

T —qx
and it satisfies the following properties:

Dy(z") = [n]ga" ™",

Dq(f(2)g(x)) = Do(f(x))g(x) + f(qz)Dg(g()),
Dq< 1 ) _ _Dq(f(w)).
f(x) f(x) fqz)
In order to prove Theorem we introduce some notation. By , we have
(L= q)z1q7Y)  —¢" 12101 (0;¢"72%5q, (1 — q)%2%¢"1?)
J((1=q)zq7Y) [+ 1g 191 (03¢ + ¢, (1 — q)222¢q7+1)

Let © = q2? and define 6, (z), F(x), and ju,(q) by

QV(x):l(bl (0 7qa(1_q Zq ) (1_Q) )

(q”“,q)n
V 1
F(x) = + Z pn(q)x™,
n>0
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so that

(2_1) JV+1((1 - q)z;q_l) — Z,U/n n 2n.

Ju(1=q)zq7") V+1q S0

We give a recurrence relation for uy,(q).

Proposition 2.1. We have

v

_ _ q
po(q) =1, m(q) = m,
and for n > 2,
n—1
g+ gy n+ Ugpn(@) = > ¢ ik 1(@pn—k(@) + 1+ " )pn-1(q).
k=2

Proof. The values of pp and p1 can be checked easily from the definition. We claim that for
n > 2,
g v +1lg

(22) v+l

Dy(a" " F(2)) = "' F(2)Fgz) + (1 = ¢"*)F(2) + [v + 1]3 /2q”,

from which the proposition follows by equating the coefficients of 2”1 on both sides.
Note that

1/+1)n(1 _ q)2n
D, (z"110, 1( =z q\2 4
o i LZO (@ D)n (4% )0

[V + 1],19,] (qz)

and

Dq(ev(x)) _ 6‘1,(1‘) - QV(CICU) . 1 )x iq(g) (-1)”(.%‘(1”)"(1 _ q)Qn

(¢ Dn-1(a"T1 )

_ _(1 _ q>qv q(g)( 1)77,( qu+1)n(1 _ q)2n
L—grtt —~ (¢ @) (a5 q)n
_qy

N v+ 1]q01/+1( )

By the properties of ¢-derivative and the above two identities, we have

Dy (#"*F(x)) = D, (W)

_ 1 xu+1 " L xu+1 N
=D, <9V(x)> Ov41(z) + HV(qx)DQ( 0,11(2))

eV(qx) B 9,,(%) xu+19 1(1,) xu[y + 1]40V(qx)
0, (x) x —qx vt 0, (qx)

] Oy 1(2)a" 10,41 (2) + 2" [v + 1],

Op1(x)z" T (" 10,51 (g2) + (1 — ¢" )0, (q2)) + 2" [v + 1],
q

@ T F (1) F(qa) + ¢"(1 — q)2" F @) + 2" [v + 1],



8 JANG SOO KIM AND DENNIS STANTON

Then (2.2) follows upon multiplying by ¢~ [v + 1],/z* 1. O
We are now ready to prove Theorem which is stated again below.

Theorem 2.2. For any v (not a negative integer) we have

Ju1((1 —q)z; q ) Z N y-i-l)nZQn—l7
Ju((1=q)zq~ D,
where each Ny, ,(q) is a polynomial in q,q" and [v], with nonnegative integer coefficients and
n
H [k + V] L"/k

Proof. By (2.1)), Theorem [1.3| can be rewritten as

v+1 e e
q z n.2n Nn,V(q) (v+1)n 2n—1 Nn+1’V(q) (v+1)(n+1) ,2n+1
tn(q)q"2"" = el z = I a—) z )
[V + 1](1 nzZ:O ; Dn,V(q) n=0 Dn-}-l,y(Q)
or equivalently, for each n > 0,
n NTL 14
(2.3) (@) _ Noti(@)
v +1]g  Dniiv(q)
Let dy, = Dyy1(g) = [1151 v + KIS and 8, = Nui1,0(0) = pa(@)da/q™ [0 + 1]g. Then
we must show that 3, is a polynomial in ¢, ¢”, and [v], with nonnegative integer coefficients.

We prove this by induction on n. If n = 0, we have Sy = 1. If n = 1, we also have 5, = 1
since in(q) = ¢¥/[v + 14lv + 2]4 and di = [v + 1]2[v + 2], Let n > 2 and suppose that the
claim is true for all 1 < k£ < n. By multiplying both sides of the equation in Proposition by
dn/q "V [y + 12[v 4+ n + 1], we obtain

dn
dna1lv+n+1],

n—1
d
= v+k n 1 bin
n kZ:Qq Bk_ll@n_kdk71dn7k[u+n+ 1]q +( +q )5n—1

It is straightforward to check that for 2 < k <n —1,

d, dyn
dp—1dn—ilv +n+1],’ dn—1lv+n+1],

are polynomials in ¢, ¢”, and [v], with nonnegative integer coefficients using the fact [v + j], =
[V]q + ¢”[jlq- Therefore 3, is also a polynomial with nonnegative coefficients, which completes
the proof by induction. O

Remark 2.3. Delest and Fédou [6] in fact considered the following modified ¢-Bessel functions.
For a nonnegative integer v, let

n+v v
(~1)7q(amt @ (- gy : )
T, (z;q) = = 101 (036" 50, (1 - 0)*q"2)
2 T, o, )
where [n],! = [1]4[2]4-- - [n]g- Then the original form of the conjecture in [6, Conjecture 9]

states that

o0

V+1xq Z q
q

n=1
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where N,, ,(q) and D,, ,(¢) are as in Theorem [1.3] It is straightforward to check that

Tyq1(x59) /2 —1/2JV+1((1_Q)xl/zq_1/2§q_l)

T, (x:q) L= gat g g
which shows that their conjecture follows from Theorem [T.3]

For the rest of this section as corollaries of Theorem we give two more g-analogs of
Kishore’s theorem using the usual ¢ base instead of ¢~*. Replacing ¢ by ¢! in (2.1]), we obtain

Jo1 (=g Yz —v=ly 1\ —n om
24 Jj(((l( - qgl);;q;]) B _[Vq+ g1 ;Jﬂn(q e

If we replace z by —qz in (2.4)) we obtain

Jori((1—g)zq) 1
L((=q)zq)  [v+1]

(2.5) Zﬂn(q_l)anQn—H-

q n>0

Therefore by replacing ¢ by ¢~ ! in Proposition and using the fact [v+1],-1 = ¢7"[v+1],
we obtain the following recurrence relation for i, (¢=1).

Proposition 2.4. We have

1 1 ql/+1
- = ]‘7 B = )
NO(q ) Ml(q ) [V+ 1}q[V+2}q
and for n > 2,
n—1
v+ 1glv+n+ Ugpn(a™) =Y a" F 1@ Vi@ + 1+ ¢ pna(g7 ).
k=2

Using the recurrences in Propositions [2.1|and [2.4] the following relation between y,,(¢~1) and
tn(q) is easily shown by induction.

Proposition 2.5. Forn > 1,
pnla™h) = ¢~ (g).
Now we can prove a second g-analog of Kishore’s theorem.

Theorem 2.6. For any v (not a negative integer) we have

Ju-{—l((l_q)Z;Q) _ _ Py Nn,l/(q) n+uz2n71
(T ErE D Y5 AL

n>1

where N, ,(¢) and D,, ,,(q) are the same polynomials given in Theorem .



10 JANG SOO KIM AND DENNIS STANTON

Proof. By Proposition [2.5] and (2.3)), we have

JVJrl((]' —q)Z,q) 1 n 2n+1
= z+ tn (g q
J((1=qzq)  [v+1, ,;
1
_ 2+ qn+lf(n71)uﬂn(q)22n+l
[v+1 n%:l
1 14+v n+l—(n—1)v 2n+1
= z — z 4+ n z
oL q > g pn(q)

n>0

1
1 - q 2+ z : ﬂ+ l/ n+1+1122n+1
n>0 Dy

nu
1*q2+z n+u2n 17
nu

as desired. 0
Comparing Theorems [I.3] and [2.6] we obtain the following corollary.

Corollary 2.7. For any v (not a negative integer) we have

Tt =g 2507 _ o Jen(L=9)z0)
Ju(—(1 = q)g¥/?z;¢7) Ju((1 = q)z;q)
Proof. By Theorems [1.3] and [2.6] we have

—v/2

—(1=qq "z

%(277,71)2277,71

Jyr1(—(1 — ’/z; -1 Nno(q) ¢,
+1(=( 7)q q )72 ,()q(ﬂ)q

Jo(-(L=q)q™22q7) = Dnu(q)

_ Now(q) -
_ v/2 5 v+n 2n—1
=4q q z

Z “ Dn.(q)

_ v ( Qe —dza)
‘ < 0 —pzg U ‘”)’

as desired. ]

We note that Corollary can also be proved directly by finding the coefficients of z2++!

on both sides.
Combining Definition and (|1.13)) gives

Jrni(1=0)za7) _ 1 Jos1(g¥ T2 (1 - g)2; )
Ju((1=q)zq7") Ju(q2(1 = q)z;q)
By Theorem and ([2.6) we obtain a third g-analog of Kishore’s theorem.

(2.6)

Theorem 2.8. For any v (not a negative integer) we have

JV+1((1_q)q1/22 q (u 1)/22 nV q n 271 1
Ju((1=q)z9) =1 D (@)’ ’

where N, ,,(¢) and D,, ,,(q) are the same polynomials given in Theorem .
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3. THE ¢-KISHORE THEOREM FOR JACKSON’S FIRST ¢-BESSEL FUNCTION

In this section we give a g-analog of Kishore’s theorem, which uses Jackson’s first g-Bessel
function. There is an identical theorem for Jackson’s second g-Bessel function. The arguments
are similar to those in the previous section.

Definition 3.1. Jackson’s first q-Bessel function g (z; q) and second q-Bessel function J,E2)(z; q)
are defined by

(3.1) I (z19) = m(z/%”z% (0,0;¢" % q,—2%/4),
(2) I a) = L0 oy (i),

From the definitions it follows easily that, for k = 1,2,
lim J¥ (z(1—q);q) = J,(x).
q—1—

There is a simple connection between Jl(,l)(z; q) and Jl(,z)(z; q), see [14, Theorem 14.1.3]:
(3.3) (=2°/4;9) o IV (2:9) = I (23 ).

By (3.3), in order to compute the ratio Jl(,]i)l(z; q)/JlEk)(z; q) for k = 1,2, it suffices to consider

only the first g-Bessel function. This is the reason only Jl(,l)(z; q) appears in this section.

Theorem 3.2. For any v (not a negative integer) we have

(1) o0 .
(34) Jqul((]- - q Z; q _ Z n V q (u+1)(n 1) ( )2 ! ,
51)((1 - q Z; q n=1 q 2

where each N,(Lll),(q) is a polynomial in q,q” and [v], with nonnegative integer coefficients and

=

Dyw(q) = [ 1k +vig"™.

=~
Il

1
As in the previous section we introduce some notation. By definition we have
T~ @)z q) _2/2 261(0,0,¢""% ¢, —(1 - 9)*2%/4)
Jl(, )((1 —q)z;q) [V + 1] 201 (0,05¢" 15 g, —(1 — )222/4)
Let # = 22/4 and define 65" (), F() (), and p (q) by
0 () = 261 (0,0;¢" 5, —(1 — ¢)°x)
0(1)

FO(z) = O i1(2) _ 1D (q)z™,
( o () 2 @

so that

I (1= @)z 9) :
(35) S S G
v ((1—Q)Z,Q) 1 >0

We first show a recurrence relation for p,.
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Proposition 3.3. We have ugl)(q) =1 and forn > 1,

e+ 1], v+n+ 160 (g Zq (@1 ().

Proof. We claim that

v+1 q v+1 v+1 2
D, a ) = P Fan) +

)

from which the proposition follows by equating the coefficients of 2”~! on both sides.
The g-product rule implies

[v+1]

! ey (270 ()
e Dol o) = (e ()
_ vt 1y Dy(@ Oy (x) ) 1
(3.6) = (qx)u+1 0, (z) + v+ 1]q91,+1(q )Dq (GV(x)) )
Since
Dy(x" 0,41 (x X (L1)(] — g)2ngn—1 1 _ gvtntl
( xu+1+1( ) = nZ:O ( (q? qgn(qquz;q)n 1q7 P =[v+1],0,(x)/z

and

Dy(1/0,(z)) = (1/0,(x) — 1/0,(qx))/(1 — @)z
__ 0(qz) — by (2)
(1—q)z0,(x)0, (qx)

1 "”1(1—61)2"1—61"
- )0, (q ; (G On(@than 1—9q
1 N
~ 0,@)0,(q2) v+ 1, & (0@ %5 0)n
1 vt1(z)

0
v+ g 0u()0, (2q)

we see that (3.6 becomes

[v+1], v+ 107 6ui1(2)0,41(g2)

D V+1F —
gy D) = S T 08, wa)
v +1]3
as required. O

Proof of Theorem[3.3 By (3.5)) we have
1
D (q) (f)Qn - i Mq(uﬂ)(nq) (§>2”*2
2 D, V(Q) 2 ’
n=1 ’
Let dn = D1, (q) = "“[ + RSV and g, = N,

1 (q)d,
g ey +1],

(g). Then we need to show that

ﬁn:
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is a polynomial in ¢, ¢" and [v], with nonnegative integer coefficients. We prove this by induction
on n. It is true for n = 0 since [y = 1.

For the inductive step let n > 1 and suppose that fj is a polynomial in ¢,¢", and [v], for
all 0 < k < n. Multiplying both sides of the equation in Proposition by dn/q(”+1)(”_1) v+
12[v + n +1]4, we obtain

n—1 k
q"dp
3.7 L, = E 1 — -
(3.7) b poars dkdn,l,k[v—i—n-l-l]qﬁkﬁ 1=k

It is easy to check that for 0 < k <n —1,

dn,
dkdn_l_k[u +n 4+ 1](1

is a polynomial in ¢,¢” and [v], with nonnegative integer coefficients. Then by induction
hypothesis (3.7) shows that £, is also such a polynomial, completing the proof. O

As in the previous section we can also obtain a similar result using the base ¢~!. Replacing

q by ¢! in (3.5), we obtain

o —1 2’2”.
(3.8) J,Sl)((l — ¢ Vzq7Y) v+, TLZO‘un (@)

Jﬁ?l((l—q_l)z;q_l) q"z/2 Z (1)

Using Proposition [3.3] it is easy to show that for n > 0,
(3.9) pD(g) = ¢ P ().
Replacing z by —g¢z in (3.8) and using (3.9) gives

T —aza) _ g
Jo (1 —q)z;971) [v+1], =
By (3.5) and (3.10)),
) KO =gz _ ey (0= a0

q .
L= za ) T = 9 /2z:q)
Therefore by Theorem and (3.11]) we obtain an analogous result of Theorem

Theorem 3.4. For any v (not a negative integer) we have

(€] L1 oo ar(1) _
']1/ ((1_q zq Nn,u vn— z\2n—1
(312 ) oy g (3)7
S ((T=q)zq7) nm vl

where Nr(Lll),(q) and Dy, ., (q) are the same polynomials given in Theorem .

4. ORTHOGONAL POLYNOMIALS OF TYPE R; AND CONTINUED FRACTIONS

In this section we review basic results in [I5] and [19] on orthogonal polynomials of type Ry
and continued fractions, which will be used in the next section. We begin by introducing some
notation for continued fractions.



14 JANG SOO KIM AND DENNIS STANTON

Definition 4.1. For sequences a; and b;, let

f(o) o w i ()
i-O(bi) a1 T\ b ay

bp + —mM8M bp + ——
b1+..

by + . am
4+ e
The following lemma will be used later.

Lemma 4.2. For any sequences {a; : 0 < i < m}, {b; : 0 <i<m}, and {¢; : =1 < i < m},

we have
IT% aiy _ 1 f& a;Ci—1C;
i=0 \ b; c_1 i=0 bic; '

Proof. By multiplying ¢; to by the numerator and denominator of the ith fraction, we obtain

ap apCo
= )
a a1€pC1
bO + - bOCO +
b + . A bici1 + | GyrCrr—1Cm
g om .oy GmCm—1Cm
b, bmCm

which is equivalent to the equation in the lemma. O

Ismail and Masson [I5] introduced orthogonal polynomials of type R; generalizing the usual
orthogonal polynomials.

Definition 4.3. A family of polynomials p,,(z), n > 0, is called (monic) orthogonal polynomials
of type Ry if they satisfy the three term recurrence relation: p_;(z) = 0, po(z) = 1, and for
n >0,

Pr+1(z) = (2 = bp)pn(z) — (@nz + Ap)pp-1(),

for some sequences b = {by }x>0, @ = {ak }k>0, and A = {Ag}r>0. In this case we say that p,,(z)
are the orthogonal polynomials of type R; determined by the sequences b, a, A.

The usual (monic) orthogonal polynomials are orthogonal polynomials of type Ry determined
by sequences b, a, A with a,, = 0 for all n. If A\, = 0 for all n, then the orthogonal polynomials
of type R; becomes orthogonal Laurent polynomials, see [I7] [I8] for more details on orthog-
onal Laurent polynomials. In the next section we will see that the g-Lommel polynomials
{Rn(z)}n>0 are orthogonal polynomials type Ry with A, = 0.

For any sequence a = {ay }k>0, let da = {day }x>0 denote the sequence obtained by shifting
the index up by 1, i.e., dar = ag41. Given orthogonal polynomials p,(z) of type R; we consider
two other sequences {0p,(x)} and {p}(z)} of polynomials associated to it as follows.

Definition 4.4. Let {p,(z)} be the orthogonal polynomials of type R; determined by the se-
quences b, a, A. We define {0p,,(z)},>0 to be the orthogonal polynomials of type R; determined
by db,da,d\, and define

pr(x) = 2"p,(1/x).

We will see that the quantities u=™(b,a,)\) and p,(b,a,)) in the following definition are
closely related to orthogonal polynomials of type R;.
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Definition 4.5. Let b = {bx}r>0, @ = {ar}r>0, and A = {Az} x>0 be sequences. For m > 0,
we define u="(b,a, \) and s, (b,a, \) by

<m ]'
Z,u (b,a,A\)z" = e
"0 1~ bor — a1z + A1z !
L — by asz + Aoz
! L—baz— .  apz+ A2’
' 1—0b,2
_ 1 I”% —aiz — N\i2? ’
—apz — )\022 =0 1—10b;2
> pin(b,a, N)z" !
Hn 0, Qs A)2 =
a1z + A 22
n20 1—b02— ! ! 2
asz + Aoz
1—byz— ——
1—b22’—..

1 f% —aiz — N\i2? .
—apz — )\022 =0 1-— blZ

The continued fractions in the above definition are formal power series in z whose coefficients
are polynomials in the elements of b, a, and A. The infinite continued fraction always converges
in this formal power series ring.

The following theorem can be proved using standard techniques in continued fractions, see
[19] for a proof. The quantities p,(b,a,A) in this theorem are called the moments of the
orthogonal polynomials of type R;. This result for the usual orthogonal polynomials, the case
ap = 0, is well known and Viennot [28] developed Flajolet’s [] combinatorial theory in this case
using Motzkin paths. Kamioka [I8, Proof of Lemma 3.3] gave a combinatorial model for the
case A, = 0 using Schréder paths. Flajolet’s theory can also be applied to the general case. A
combinatorial model for the general case is given in [I9] using certain lattice paths generalizing
both Motzkin paths and Schroder paths.

Proposition 4.6. Let p,(x) be the type Ry orthogonal polynomials determined by the sequences
b,a, and . Then for m >0,

é
pm Z‘u<m b a, )\
Py (@ n>0
1
lim P (@) Z,un (b,a, Nz
m—oo P ( =

5. RATIOS OF ¢-LOMMEL POLYNOMIALS

In this section we prove Theorem which gives a combinatorial interpretation for the
ratio Ry v12(2;¢7 1) /Rimng1,0+1(2;¢7 ") of g-Lommel polynomials. We also show that the ratio
Jui1(z;071) /T, (257 1) is a generating function for moments of orthogonal polynomials of type
R;.

We first show that the g-Lommel polynomials R, , (x; q) give rise to orthogonal polynomials
of type R;. Then using Proposition we interpret the ratio of g-Lommel polynomials as a
continued fraction. We show that the continued fraction is a generating function for Motzkin
paths of bounded height. Finally, we use a bijection between Motzkin paths and connection
skew shapes to obtain the theorem.
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Define modified q-Lommel polynomials fim,y(m; q) by

$7’1’L/2

Ryu(x:q) = Ry (2712 9).

(@"; @) m
Then, by (1.9)), we have Eoyy(z;q) =1, E_Lu(:c;q) =0, and for m > 0,

~ 1 ~ x ~
Rm—&-l,u(xvq) - <x + 1—q”+m> Rm,u(xa CI) - (1 — qy+m_1)(1 — qy+m)Rm—1,u(x7 Q)a

-1

which is equivalent to the recurrence in [21 (4.20)]. By replacing ¢ by ¢~* in the above

recurrence we obtain
(5.1)

. 1 unrm - 1 q2u+2m 1$ . 1
Riyrp(@iq) = (37 - 1_ql,+m> Ryy(xiq77) — d—gtm )= qy+m)Rm—1,u(x§97 )-

Theorem 5.1. Let b = {b,}n>0, @ = {an}tn>0, and A = {\, }n>0, where

qu+n+1 q21/+2n+1
bn = T a1 ap = ) )\n =0.
1 _ qu+n+1 (1 _ qy+n)(1 _ qu+n+1)
Then
R ,,+2(z;q’1) ¢tz <
5.2 : (b,a,\)z
( ) Rm+1,z/+l(z;q V+1 T;)M
JV+1(z;q 1 2
5.3 = n(bya, \)z"".
(5:3) Jy(z;qfl) ”H ,;OM “

Proof. Let p,(x) = Enwﬂ(x;q*l). Then by (5.1), p,(x) are orthogonal polynomials of type
R; determined by b, a, and A\, and we have

~ m/2
* m m — x —
P () = 2" pm(1/2) = 2™ R 1 (1/3 g 1):—(q_y_l;q_l)mRm,u+1($1/2;q h,
m/2
* _ z /2, —1
me(l’) - (q_V_Q;q_l)mRm,y-‘rQ(x / 4 )

By Proposition [£.6]
2 g

m n 5p:n(x) —v— — RmJ, 2($
Z:LI’TSI (b 7>\I :7:(17(] 1)‘r 1/2 - 1/2.q_1)3

Rm+1,u+1($

n>0 Py ()

which gives the first identity with z = 2*/2. By taking the limit and using (1.12) we obtain the
second identity. O

Now we review Flajolet’s theory [9] on continued fraction expressions for Motzkin path
generating functions.

Definition 5.2. A Motzkin path is a lattice path from (0,0) to (n,0) consisting of up steps
(1,1), down steps (1,—1), and horizontal steps (1,0) that never goes below the z-axis. A 2-
Motzkin path is a Motzkin path in which every horizontal step is colored red or blue. The height
of a 2-Motzkin path is the largest integer y for which (x,y) is a point in the path.

Denote by Motzs the set of all 2-Motzkin paths and by MOtZQSm the set of all 2-Motzkin
paths with height at most m.
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a2

ba

C3

ds

az

C2

do

by

C2

do

C1

d1

FIGURE 3. A 2-Motzkin path p in Motzs® with wt(p;a,b,c,d)

bo

a3bobibacicacsdidids. The blue horizontal edges are represented by double

edges.

FIGURE 4. The boundary paths U(«) and D(«) for the connected skew shape
a=(8,7,7,7,4,3)/(4,3,3).
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For sequences {a,}, {bn},{cn}, and {d,}, define the weight wt(p;a,b,c,d) of a 2-Motzkin
path p to be the product of a,, (resp. b,, ¢,, and d,) for each red horizontal step (resp. blue

horizontal step, up step, and down step) starting at height n, see Figure

Flajolet’s theory [9] proves the following lemma.

Lemma 5.3. Given sequences a,b, c,d, we have

Z Wt(p;aabu c, d) =

<m
pEMotzy

17@071)07

Cod1

1—a1—b— .

'_1,am,

cm—ldm

Observe that a connected skew shape a € CS is determined by the two boundary paths
starting from the bottom-left point to the top-right point consisting of north steps and east
steps, which form the boundary of «. Let U(a) be the upper boundary path and D(«) the
lower boundary path, see Figure

There is a well known bijection between 2-Motzkin paths and connected skew shapes.

Definition 5.4 (The map ¢ : Motzy™ — CSS™). Let p € Motzy. Then ¢(p) = a is the
connected skew shape whose upper and lower boundary paths wu,d are constructed by the

following algorithm.

(1) The first step of u (resp. d) is a north (resp. east) step.

(2) Fori=1,2,..

.,m, where n is the number of steps in p, the (i + 1)st steps of v and d
are defined as follows.

(a) If the ith step of p is an up step, then the (i + 1)st step of u (resp. d) is a north

(resp. east) step.
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Y Y

| . <

nt1 "D nA+1 .D_ nt 1 'D_ n41 "D

x T

FIGURE 5. From left to right are shown the pairs of steps in U(a) and D(«)
corresponding to a red horizontal step, a blue horizontal step, an up step, and
a down step starting at height n in p when ¢(p) = . The number of squares
whose centers are on the line connecting the starting points of the steps in
U(a) and D(«) is n+ 1. In each diagram an x (resp. y) is written when a new
column (resp. row) is created.

(b) If the ith step of p is a down step, then the (i + 1)st step of u (resp. d) is a east
(resp. north) step.
(c) If the ith step of p is a red horizontal step, then the (i + 1)st steps of w and d are
both north steps.
(d) If the ith step of p is a blue horizontal step, then the (i + 1)st steps of v and d are
both east steps.
(3) Finally, the last (the (n + 2)nd) step of u (resp. d) is an east (resp. north) step.

For example, if p is the 2-Motzkin path in Figure [3] then ¢(p) is the connected skew shape
« in Figure [

Proposition 5.5. The map ¢ : Motzgm — CS=™ isa bijection. Moreover, if a,b,c, and d are
the sequences given by a, = ¢" "y, b, = ¢" Tz, ¢, = ¢"ay, and d,, = ¢" L, and if 4(p) = «,
then

xcol(a)yrow(oz)qarea(a) = qry - Wt(p; a, b, c, d)
Proof. One can easily prove this by the observation that if the ith step of p starts at height n,
then the number of squares whose centers are on the line connecting the starting points of the
(2 + 1)st steps of U(c) and D(«) is n + 1, see Figure [5} We omit the details. O

Proposition [I.8] in the introduction follows from Lemma [5.3 and Proposition [5.5] Now we
can easily prove Theorem in the introduction. Let us state the theorem again.

Theorem 5.6. For any integer m > 1, we have

a1
Z (quz2)col(a) (qu)row(a)qarea(a) _ _quz Rm,u+2(zv q )

acCssm Bmi1pa(z471)

Proof. Let z = ¢”2% and y = ¢”. Then by Proposition the left hand side of the equation is

collax Trow(o area( o qu
(54) Y geelle)yow(a) gareate)
necs=" - gz +y) -

Py

l=@le+y)—. ¢y
L—gm+i(z +y)
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Using Theorem Definition and Lemma [4.2f with ¢; = 1 — ¢" "', we obtain that the
right hand side of the equation is

2v+1 2

v+1 Z‘u<m b a, A

n>0

Rinta(z47")
Rm+1,u+1(z§q71) 1 —q

- In% VAL (] qrri) (1 — grtitl)
=0 1— qutitlz2 /(1 — gvtith)

B K — vttt 2 - I% —g¥ gy
1 — gqutitl — grtit1z2 ToiZo\1-— gt (z +y) ’

which is the same as the right hand side of (5.4). O

6. ¢-NORLUND AND HEINE CONTINUED FRACTIONS

In the previous section we have shown that the ratio J,41(2;¢71)/J,(2;¢71) is a generating
function for moments of orthogonal polynomials of type R;. In this section we show that this

ratio can also be written a generating function for moments of usual orthogonal polynomials.
Recall from (1.13) that

Jop1(zig™h)  —q"tle 161 (054715 q,q7222)
Jo(zq7Y) L —gvtt 1 (0597 g, g1 22)

Our strategy is to find two continued fraction expressions for the ratio of 1¢;’s in the above
equation using the ¢-Norlund continued fraction and Heine’s continued fraction.
First we state the ¢-Norlund fraction [B, (19.2.7)].

Lemma 6.1 (¢-Noérlund fraction). We have

201 (a,b;¢;q, 2) _1—C—(a+b—ab—abq)zJr U g ()
201 (ag,bg; cq; q,2) l1—c L—cm=1\€m + dmz

where

em(2) = (1 —ag™)(1 = bg™)(cz — abg™2*)g™ ",
em =1—cq™
dpm = —(a +b— abg™ — abg™)g™

The ¢-Norlund fraction can be restated in the form of a continued fraction for type R;
orthogonal polynomials.

Proposition 6.2 (¢-Norlund fraction restated). We have

201 (aq,bg; g3 ¢, 2) 1
2¢1 (a7b; C;QVZ) a12’+)\122
1-— boZ — T h 5
asgz z
1— b12 — 2 2

].—bQZ— .
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where

(a+b— abg™ — abg™*1)g™

bm: )

1—cq™
o — (1 —ag™)(1 —bg™)cg™
" (1—cgm1)(1 —cqm)
y = (L= ag™)(L = bg™)abg™
m T

(1 —cgm 1) (1 —cqg™)

Proof. By taking the inverse on each side of the equation in Lemma [6.1] we obtain

201 (aq,bg;c5¢,2) _ 1—c & ( cm(2) >

2¢1 (a’7 b7 G q, Z) B CO(Z) m=0 \ €&, + dmz

(6.1)

Applying Lemma with ¢; = 1/(1 — ¢¢*) and m — oo yields

201 (aq, bg; cq;q,2) (1 —cq t)(1—¢) f% ( em(2)/(1 —cqg™ 1) (1 — cq™) )
em/(1—cq™) +dmz/(1 = cq™) )

2(7251 (aab; C;Qaz) CO(Z) m=0

which is the same as the desired identity. O

Heine’s contiguous relation [7, 17.6.19] is

(I-0b)(a—c0)z 9
b: cq: _ b:c: — ba: . )
2¢1 (GCL 70(17%2) 2¢1 (a/a ac7qu) (1 *C)(l *Cq) Qd)l (O'Q7 q; cq 76172)
Equivalently,
(6.2) 201 (aq, bycq;q,2) 1

201 (a,b5¢54,2) | A=dla=0)z 26 (bg,aq; cq®;q,2)
(I=c)(1—cq) 201(b,aq;cq;q,2)

Applying (6.2)) iteratively, we obtain Heine’s continued fraction, which is a g-analog of Gauss’s
continued fraction.

Lemma 6.3 (Heine’s fraction). We have

201 (ag, bscq34,2) _ 1
201 (a,b;¢;q,2) 1 Bz

where

(1—ag")(b—cq")g" "
(1 —cg® 1) (1 —cqg?)’

(1 —bg")(a —cq")q"
1 —cq?)(1 = cq?ntt)’

BZn =

52n+1 - (

Now we give two different continued fraction expressions for a ratio of 1¢;’s.
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Proposition 6.4. We have

(6.3) 161 (05459, 92) 1
101 (05654, 2) a1z
1-— boZ -
1—biz— e
LA S
1
(6.4) =
)\12
1= A
z
1 _ 2
1 —_
where 4
B cq21—1 B q7
a; = . —, by = ———,
(1 —=cq=")(1 —cq’) 1—cq'
and ‘ A
Ny Cqufl \ _ qZ
Y e (e T (T ) (1= e

Proof. We use the well known fact [I1], p.5]:

. z
lim 7‘¢s (ala-"aaT;blv"'7bs;q7a) :T—1¢S (CLQ,...,G/’,«;bl,...,bs;q,Z).
1

a1 —00
Equation (6.3)) (resp. Equation (6.4)) is obtained by replacing b +— 0, z — z/a and sending a

to infinity in Proposition (resp. Lemma . O

Using Proposition [6.4] we obtain two different continued fraction expressions for the ratio
Jor1(z;¢71Y)/Ju(2;q7 1), one of which is given in Theorem [5.1

Theorem 6.5. Let b,a, \,b',a’, N be the sequences given by

qu+n+1 q2V+2n+1
bn = Hm7 ap = (1 _ qy+n)(1 _ qy+n+1)7 >\n = 0,
, , . g2r it / i
b, =a, =0, 2 = (1 — qvt2i)(1 — grr2itly’ 2i+1 = A= o — g
Then
Jori(zig7) g7z )

(65) cqg—1 = +1 Z/j‘n(b’av)‘)z "

']I/(Z7 q ) ql/ — 1 >0

¢tz
o0 = g 2 pen(Va )2
n>0

Proof. The first identity (6.5)) has been already proved in Theor Alternatively, applying

(6.3) to (1.13) gives another proof of (6.5). Applying (6.4]) to (1.13]) gives the second identity
(6.6)- O

Note that the above theorem shows that J,.1(z;¢71)/J,(2;¢7 1) is (up to a scalar multipli-
cation) the moment generating function for both orthogonal polynomials of type R; and usual
orthogonal polynomials. Using Flajolet’s theory on continued fractions one obtains two combi-
natorial interpretations for the coefficients in the series expansion of this ratio. Note also that
we get a similar result for the ratio J,11(2;q)/J.(2;q) if we replace ¢ by ¢~* in Theorem [6.5
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Remark 6.6. By replacing a — 0, 2 +— 2/b and sending b to infinity in Lemma [6.3] we obtain

6.7) 101 (05¢4;4,2) _ 1
101(0i60,2)  diz ’
A
R
1 —
where
N - qn—l ) - Cq3n
T (e (I —e) T (T e (1 - eg? )

One can easily check that (6.7)) is equivalent to (6.4]) using the fact
101 (05¢59,2) = 101 (0;¢ 7 Y5q7 g7 e M),
which implies
101 (039¢59,92) _ 101 (0307 e g7t g7 el s)
101 (05654, 2) 161 (0;¢71 71, g e 1z)

Remark 6.7. Recall (1.1)) that the ratio Jy/2(2)/J_1/2(2) is the tangent function. The tangent
numbers or (odd) Euler numbers Fa,11 are defined by

o0
E 2n+1
tanx = E %
= (2n +1)!

The following g-analog of tangent numbers has been studied in several papers [10}, 12} 13| 24, 26]:

i B3y (@)™t w161 (00¢% 6% P2?) gy Jipla VP ?)
(4 @)2nt1 1—q  1¢1(0;¢;¢2 22) J_1y2(q 1 2m3472)

n=0
where the last equality follows from (1.13). Hwang et al. [13, (30),(31)] found two continued
fractions for this generating function, which are both special cases of Theorem [6.5] There are
combinatorial objects related to this generating function such as alternating permutations and
skew semistandard Young tableaux [13| 24, 27]. It would be interesting to generalize these
results for an arbitrary v.

The ratio of two 1¢;’s in Proposition [6.4] is related to J,11(2;¢71)/J,(2;¢71). Similarly, we
can consider the ratio corresponding to

Iz 272 201 (0,0,4" %5 q,—22/4)
Jl(/l) (Z, q) 1- qy+1 2¢1 (07 0; CI”H; q, _22/4) ’
where Jél)(z;q) is Jackson’s ¢-Bessel function defined in (3.1). In this case, both Heine’s

fraction (Lemma and the ¢-Norlund fraction (Proposition with a = b = 0 give the
same continued fraction:

(6.8)

(6.9) 261 (0,05 ¢cq; q, 2) _ 1
201(0.0:65,2) awz
1_ asz
1_
where
7cqn71
an =

(1 —cq 1)1 —cqn)
Applying to we obtain the following theorem.
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Theorem 6.8. Let b, a, A be the sequences given by
qy+n

(1 =gt (1 —gvntt)’

bn:)\nzoa Uy =

Then

J(},'_)l(Z' q) 2/2 < zz)"
v ’ = n b;a7>‘ e .
By~ Tma eV

Equivalently, letting b/, a’, X' be the sequences given by
v+n

bo—a — P q
nT =l T I gy

we have

W .. n
Bl RS ) ()
g )(Z§(I) 1—q"* n>0 2

Note that as before the above theorem shows that J

23

y+1(Z;Q)/J51)(z;q) is (up to a scalar

multiplication) the moment generating function for orthogonal polynomials, which gives a com-

binatorial interpretation for the coefficients in the series expansion of this ratio.

7. OPEN PROBLEMS

Recall that Kishore’s theorem is a statement about the power series coefficients of the ratio

Jus1(x)/Ju(x) of two Bessel functions. We conjecture the following finite version of Kishore’s

theorem on a ratio of Lommel polynomials R, ,(z) defined in the introduction.

Conjecture 7.1. Let

Rm,y+2($) :i NS:’;) (§)2n+1
Rm-&-l,u—i—l(aj) D,S;r;) 2 ’

n=0

where
m

DE) = [+ & + 1)/ mend),
k=0
n+1J {n—l—m—%—i—l

f(m,nk) = maquﬂ A D if k # m/2,
1 if k=m/2.

Then N,(L?;) is a polynomial in v with nonnegative integer coefficients.

By (1.8) Conjecture implies Kishore’s Theorem.
In Section [6] we saw that the ratio
Jog1(zq7h) _ —qv 1z 141 (054725 q,q"122?)
Jo(ziq7t) 1 —q"tt 161 (0;¢F g, g+ 22)

has two generalizations, the g-Norlund continued fraction and Heine’s continued fraction. These

two generalizations seem to have a similar property as follows.

Conjecture 7.2. Let

S (e, by )z = 221 (ag, bg; cg; ¢, )
n>0 AT T 2¢1 (a,b;c;q,z)
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Then
Ynla,b,c) P,(a,b,c)
= —
b= T - eqh) 55
for some polynomial P, (a,b,c) in a,b, ¢, q with integer coefficients.

Conjecture 7.3. Let

b. .
Z’y;l(aabv C)Zn == 2¢1 (aq7 7cq’q’2).
et 201 (a, b5 ¢5.q, 2)

Then
Yrla,b,c) P! (a,b,c)

_ - ntl |
L=e T - egh)LF)
for some polynomial P/ (a,b,c) in a,b, ¢, q with integer coefficients.

Using Flajolet’s theory one can reinterpret the equality of the two continued fractions in
Proposition [6.4] completely combinatorially.

Problem 7.4. Find a combinatorial proof of the identity

1 1
1—bgz — e B 17L7
R ¥
1 1—byz—--- 1_...
where ) )
Cqu—l qz
ai = i1 i’ bi = ——,
(I —cq'=1)(1 —cq) 1—cq
and , ]
N qu’n—l ) _ qz
e ) N (R [

Finally we remark that more general ratios of hypergeometric series are considered in [25].
It would be interesting to see whether the results in this paper can be extended to these ratios.

ACKNOWLEDGMENTS

The authors would like to thank Xavier Viennot for references on combinatorics of g-Bessel
functions, and Mourad Ismail for information on the third ¢g-Bessel function.

REFERENCES

[1] J.-C. Aval, A. Boussicault, M. Bouvel, and M. Silimbani. Combinatorics of non-ambiguous trees. Advances
in Applied Mathematics, 56:78-108, 2014.

[2] E. Barcucci, A. Del Lungo, J. M. Fédou, and R. Pinzani. Steep polyominoes, g-Motzkin numbers and
g-Bessel functions. Discrete Math., 189(1-3):21-42, 1998.

[3] E. Barcucci, A. Lungo, E. Pergola, and R. Pinzani. Some permutations with forbidden subsequences and
their inversion number. Discrete Mathematics, 234(1-3):1-15, 2001.

[4] M. Bousquet-Mélou and X. G. Viennot. Empilements de segments et g-énumération de polyominos convexes
dirigés. Journal of Combinatorial Theory, Series A, 60(2):196-224, 1992.

[5] A. Cuyt, V. B. Petersen, B. Verdonk, H. Waadeland, and W. B. Jones. Handbook of continued fractions
for special functions. Springer, New York, 2008.

[6] M.-P. Delest and J.-M. Fédou. Enumeration of skew Ferrers diagrams. Discrete Math., 112(1-3):65-79,
1993.

[7] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.26 of 2020-03-15.
F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R.
Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.



(8]

(9]
(10]

(11]

(12]
(13]
(14]
(15]

[16]
(17]

(18]
19]
20]
(21]

(22]
23]

(24]

25]

[26]
27]

28]
29]

RATIOS OF JACKSON’S ¢-BESSEL FUNCTIONS AND ¢-LOMMEL POLYNOMIALS 25

J. Fédou. Combinatorial objects enumerated by g¢-Bessel functions. Reports on Mathematical Physics,
34(1):57-70, 1994.

P. Flajolet. Combinatorial aspects of continued fractions. Discrete Math., 32(2):125-161, 1980.

M. Fulmek. A continued fraction expansion for a g-tangent function. Sém. Lothar. Combin., 45:Art. B45b,
5, 2000/01.

G. Gasper and M. Rahman. Basic hypergeometric series, volume 96 of Encyclopedia of Mathematics and its
Applications. Cambridge University Press, Cambridge, second edition, 2004. With a foreword by Richard
Askey.

T. Huber and A. J. Yee. Combinatorics of generalized g-Euler numbers. J. Combin. Theory Ser. A,
117(4):361-388, 2010.

B.-H. Hwang, J. S. Kim, M. Yoo, and S.-m. Yun. Reverse plane partitions of skew staircase shapes and
g-Euler numbers. J. Combin. Theory Ser. A, 168:120-163, 2019.

M. E. H. Ismail. Classical and quantum orthogonal polynomials in one variable, volume 98 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge, 2009.

M. E. H. Ismail and D. R. Masson. Generalized orthogonality and continued fractions. J. Approz. Theory,
83(1):1-40, 1995.

E. Y. Jin. Heaps and two exponential structures. European Journal of Combinatorics, 54:87-102, 2016.
W. B. Jones and W. Thron. Survey of continued fraction methods of solving moment problems and related
topics. In Analytic theory of continued fractions, pages 4—37. Springer, 1982.

S. Kamioka. Laurent biorthogonal polynomials, g-Narayana polynomials and domino tilings of the Aztec
diamonds. J. Combin. Theory Ser. A, 123:14-29, 2014.

J. S. Kim and D. Stanton. Combinatorics of orthogonal polynomials of type R;. in preparation.

N. Kishore. The Rayleigh polynomial. Proc. Amer. Math. Soc., 15:911-917, 1964.

H. Koelink and R. Swarttouw. On the zeros of the Hahn-Exton ¢-Bessel function and associated g-Lommel
polynomials. Journal of Mathematical Analysis and Applications, 186(3):690-710, 1994.

D. H. Lehmer. Zeros of the Bessel Function Jy, (z). Math. Comp., 1:405-407, 1945.

Y. Li. A g-analogue and a symmetric function analogue of a result by Carlitz, Scoville and Vaughan.
Preprint, arXiv:1811.06180v1.

A. H. Morales, I. Pak, and G. Panova. Hook formulas for skew shapes II. Combinatorial proofs and enu-
merative applications. SIAM J. Discrete Math., 31(3):1953-1989, 2017.

M. Pétréolle, A. D. Sokal, and B.-X. Zhu. Lattice paths and branched continued fractions: An infinite
sequence of generalizations of the Stieltjes—Rogers and Thron-Rogers polynomials, with coefficientwise
Hankel-total positivity. https://arxiv.org/abs/1807.03271.

H. Prodinger. A continued fraction expansion for a g-tangent function: an elementary proof. Sém. Lothar.
Combin., 60:Art. B60b, 3, 2008/09.

R. P. Stanley. A survey of alternating permutations. In Combinatorics and graphs, volume 531 of Contemp.
Math., pages 165-196. Amer. Math. Soc., Providence, RI, 2010.

G. Viennot. Une théorie combinatoire des polynémes orthogonaux. Lecture Notes, UQAM, 1983.

G. N. Watson. A treatise on the theory of Bessel functions, second edition. Cambridge University Press,
1944.

DEPARTMENT OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY, SUWON, SOUTH KOREA
Email address: jangsookim@skku.edu

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA, USA
Email address: stanton@math.umn.edu


https://arxiv.org/abs/1811.06180v1
https://arxiv.org/abs/1807.03271

	1. Introduction
	2. The q-Kishore theorem for Jackson's third q-Bessel function
	3. The q-Kishore theorem for Jackson's first q-Bessel function
	4. Orthogonal polynomials of type RI and continued fractions
	5. Ratios of q-Lommel polynomials
	6. q-Nörlund and Heine continued fractions
	7. Open problems
	Acknowledgments
	References

