
BOOTSTRAPPING AND ASKEY-WILSON POLYNOMIALS

JANG SOO KIM AND DENNIS STANTON

Abstract. The mixed moments for the Askey-Wilson polynomials are found using a bootstrap-
ping method and connection coe�cients. A similar bootstrapping idea on generating functions
gives a new Askey-Wilson generating function. Modified generating functions of orthogonal
polynomials are shown to generate polynomials satisfying recurrences of known degree greater
than three. An important special case of this hierarchy is a polynomial which satisfies a four
term recurrence, and its combinatorics is studied.

1. Introduction

The Askey-Wilson polynomials [1] p
n

(x; a, b, c, d|q) are orthogonal polynomials in x which de-
pend upon five parameters: a, b, c, d and q. In [2, §2] Berg and Ismail use a bootstrapping method
to prove orthogonality of Askey-Wilson polynomials by initially starting with the orthogonality of
the a = b = c = d = 0 case, the continuous q-Hermite polynomials, and successively proving more
general orthogonality relations, adding parameters along the way.

In this paper we implement this idea in two di↵erent ways. First, using successive connection
coe�cients for two sets of orthogonal polynomials, we will find explicit formulas for generalized
moments of Askey-Wilson polynomials, see Theorem 2.4. This method also gives a heuristic for
a relation between the two measures of the two polynomial sets, see Remark 2.3, which is correct
for the Askey-Wilson hierarchy. Using this idea we give a new generating function (Theorem 2.9)
for Askey-Wilson polynomials when d = 0.

The second approach is to assume the two sets of polynomials have generating functions which
are closely related, up to a q-exponential factor. We prove in Theorem 3.1, Theorem 3.6, and
Theorem 3.15 that if one set is an orthogonal set, the second set has a recurrence relation of
predictable order, which may be greater than three. We give several examples using the Askey-
Wilson hierarchy.

Finally we consider a more detailed example of the second approach, using a generating function
to define a set of polynomials called the discrete big q-Hermite polynomials. These polynomials
satisfy a 4-term recurrence relation. We give the moments for the pair of measures for their
orthogonality relations. Some of the combinatorics for these polynomials is given in § 5. Finally
we record in Proposition 6.1 a possible q-analogue of the Hermite polynomial addition theorem.

We shall use basic hypergeometric notation, which is in Gasper-Rahman [6] and Ismail [7].

2. Askey-Wilson polynomials and connection coefficients

The connection coe�cients are defined as the constants obtained when one expands one set of
polynomials in terms of another set of polynomials.

For the Askey-Wilson polynomials [7, 15.2.5, p. 383]

p
n

(x; a, b, c, d|q) =
(ab, ac, ad)

n

an
4�3

✓
q�n, abcdqn�1, aei✓, ae�i✓

ab, ac, ad

���� q; q
◆
, x = cos ✓
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we shall use the connection coe�cients obtained by successively adding a parameter

(a, b, c, d) = (0, 0, 0, 0) ! (a, 0, 0, 0) ! (a, b, 0, 0) ! (a, b, 0, 0) ! (a, b, c, 0) ! (a, b, c, d).

Using a simple general result on orthogonal polynomials, we derive an almost immediate proof of
an explicit formula for the mixed moments of Askey-Wilson polynomials.

First we set the notation for an orthogonal polynomial set p
n

(x). Let L
p

be the linear functional
on polynomials for which orthogonality holds

L

p

(p
m

(x)p
n

(x)) = h
n

�
mn

, 0  m,n.

Definition 2.1. The mixed moments of L
p

are L

p

(xnp
m

(x)), 0  m,n.

The main tool is the following Proposition, which allows the computation of mixed moments
of one set of orthogonal polynomials from another set if the connection coe�cients are known.

Proposition 2.2. Let R
n

(x) and S
n

(x) be orthogonal polynomials with linear functionals L
R

and
L

S

, respectively, such that L
R

(1) = L

S

(1) = 1. Suppose that the connection coe�cients are

(1) R
k

(x) =
kX

i=0

c
k,i

S
i

(x).

Then

L

S

(xnS
m

(x)) =
nX

k=0

L

R

(xnR
k

(x))

L

R

(R
k

(x)2)
c
k,m

L

S

(S
m

(x)2).

Proof. If we multiply both sides of (1) by S
m

(x) and apply L

S

, we have

L

S

(R
k

(x)S
m

(x)) = c
k,m

L

S

(S
m

(x)2).

Then by expanding xn in terms of R
k

(x)

xn =
nX

k=0

L

R

(xnR
k

(x))

L

R

(R
k

(x)2)
R

k

(x)

we find

L

S

(xnS
m

(x)) = L

S

 
nX

k=0

L

R

(xnR
k

(x))

L

R

(R
k

(x)2)
R

k

(x)S
m

(x)

!
=

nX

k=0

L

R

(xnR
k

(x))

L

R

(R
k

(x)2)
c
k,m

L

S

(S
m

(x)2).

⇤

Remark 2.3. One may also use the idea of Proposition 2.2 to give a heuristic for representing
measures of the linear functionals. Putting m = 0, if representing measures were absolutely
continuous, say w

R

(x)dx for R
n

(x), and w
S

(x)dx for S
n

(x) then one might guess that

w
S

(x) = w
R

(x)
1X

k=0

R
k

(x)

L

R

(R
k

(x)2)
c
k,0.

For the rest of this section we will compute the mixed moments L

p

(xnp
m

(x)) for the Askey-
Wilson polynomials using Proposition 2.2 starting from the q-Hermite polynomials.

Let L

a,b,c,d

be the linear functional for p
n

(x; a, b, c, d|q) satisfying L

a,b,c,d

(1) = 1. Then L =
L0,0,0,0, La

= L

a,0,0,0, La,b

= L

a,b,0,0, and L

a,b,c

= L

a,b,c,0 are the linear functionals for these poly-
nomials: q-Hermite, H

n

(x|q) = p
n

(x; 0, 0, 0, 0|q), the big q-Hermite H
n

(x; a|q) = p
n

(x; a, 0, 0, 0|q),
the Al-Salam-Chihara Q

n

(x; a, b|q) = p
n

(x; a, b, 0, 0|q), and the dual q-Hahn p
n

(x; a, b, c|q) =
p
n

(x; a, b, c, 0|q).
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The L2-norms are given by [7, 15.2.4 p.383]

L(H
n

(x|q)H
m

(x|q)) = (q)
n

�
mn

,(2)

L

a

(H
n

(x; a|q)H
m

(x; a|q)) = (q)
n

�
mn

,(3)

L

a,b

(Q
n

(x; a, b|q)Q
m

(x; a, b|q)) = (q, ab)
n

�
mn

,(4)

L

a,b,c

(p
n

(x; a, b, c|q)p
m

(x; a, b, c|q)) = (q, ab, ac, bc)
n

�
mn

,(5)

L

a,b,c,d

(p
n

(x; a, b, c, d|q)p
m

(x; a, b, c, d|q)) =
(q, ab, ac, ad, bc, bd, cd, abcdqn�1)

n

(abcd)2n
�
mn

.(6)

To apply Proposition 2.2, we need the following connection coe�cient formula for the Askey-
Wilson polynomials given in [1, (6.4)]

(7)
p
n

(x;A, b, c, d|q)

(q, bc, bd, cd)
n

=
nX

k=0

p
k

(x; a, b, c, d|q)

(q, bc, bd, cd)
k

⇥

an�k(A/a)
n�k

(Abcdqn�1)
k

(abcdqk�1)
k

(q, abcdq2k)
n�k

.

The following four identities are special cases of (7):

H
n

(x|q) =
nX

k=0


n

k

�

q

H
k

(x; a|q)an�k,(8)

H
n

(x; a|q) =
nX

k=0


n

k

�

q

Q
k

(x; a, b|q)bn�k,(9)

Q
n

(x; a, b|q) = (ab)
n

nX

k=0


n

k

�

q

p
k

(x; a, b, c|q)

(ab)
k

cn�k,(10)

p
n

(x; b, c, d|q)

(q, bc, bd, cd)
n

=
nX

k=0

p
k

(x; a, b, c, d|q)

(q, bc, bd, cd)
k

·

an�k

(abcdqk�1)
k

(q, abcdq2k)
n�k

.(11)

For the initial mixed moment we need the following result proved independently by Josuat-
Vergès [12, Proposition 5.1] and Cigler [3, Proposition 15]

L(xnH
m

(x; q)) =
(q)

m

2n
P (n,m),

where

P (n,m) =
nX

k=m

✓✓
n

n�k

2

◆
�

✓
n

n�k

2 � 1

◆◆
(�1)(k�m)/2q(

(k�m)/2+1
2 )


k+m

2
k�m

2

�

q

.

We shall use the convention
�
n

k

�
=
⇥
n

k

⇤
q

= 0 if k < 0, k > n, or k is not an integer. Thus

P (n,m) = 0 if n 6⌘ m mod 2.

Theorem 2.4. We have

L

a

(xnH
m

(x; a|q)) =
(q)

m

2n

X

↵�0

P (n,↵+m)


↵+m

m

�

q

a↵,(12)

L

a,b

(xnQ
m

(x; a, b|q)) =
(q, ab)

m

2n

X

↵,��0

P (n,↵+ � +m)


↵+ � +m

↵,�,m

�

q

a↵b� ,(13)

L

a,b,c

(xnp
m

(x; a, b, c|q)) =
(q, ac, bc)

m

2n

X

↵,�,��0

P (n,↵+ � + � +m)


↵+ � + � +m

↵,�, �,m

�

q

(14)

⇥ a↵b�c�(ab)
�+m

,

L

a,b,c,d

(xnp
m

(x; a, b, c, d|q)) =
1

2n

X

↵,�,�,��0

a↵b�c�d�P (n,↵+ � + � + �)


↵+ � + � + �

↵,�, �, �

�

q

(15)

⇥

(bd)
↵

(cd)
↵

(bc)
↵+�

(abcd)
↵

·

(ab, ac, ad)
m

(q↵; q�1)
m

am(abcdq↵)
m

.
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Proof. By (8), Proposition 2.2 and (2),

L

a

(xnH
m

(x; a|q)) =
nX

k=0

L(xnH
k

(x|q))

L(H
k

(x)2)


k

m

�

q

ak�m

L

a

(H
m

(x; a|q)2)

=
(q)

m

2n

nX

k=0

P (n, k)


k

m

�

q

ak�m.

Equations (13), (14), and (15) can be proved similarly using the connection coe�cient formulas
(9), (10), and (11). ⇤

We note that Ismail and Rahman [8, Theorem 3.2] found a formula for

L

a,b,c,d

((vei✓, ve�i✓)
n

p
k

(x; a, b, c, d|q)).

Lettingm = 0 in (15) we obtain a formula for the nth moment of the Askey-Wilson polynomials.

Corollary 2.5. We have

(16) L

a,b,c,d

(xn) =
1

2n

X

↵,�,�,��0

a↵b�c�d�P (n,↵+ � + � + �)


↵+ � + � + �

↵,�, �, �

�

q

(bd)
↵

(cd)
↵

(bc)
↵+�

(abcd)
↵

.

In [14] the authors found a slightly di↵erent formula

L

a,b,c,d

(xn) =
1

2n

X

↵,�,�,��0

a↵b�c�d�P (n,↵+ � + � + �)


↵+ � + � + �

↵,�, �, �

�

q

(ad)
�+�

(ac)
�

(bd)
�

(abcd)
�+�

,

which can be rewritten using the symmetry in a, b, c, d as

(17) L

a,b,c,d

(xn) =
1

2n

X

↵,�,�,��0

a↵b�c�d�P (n,↵+ � + � + �)


↵+ � + � + �

↵,�, �, �

�

q

(bc)
↵+�

(bd)
↵

(ac)
�

(abcd)
↵+�

.

One can obtain (17) from (16) by applying the 3�1-transformation [6, (III.8)] to the ↵-sum
after fixing �, �, and N = ↵+ �.

We next check if the heuristic in Remark 2.3 leads to correct results in these cases. The
absolutely continuous Askey-Wilson measure w(x; a, b, c, d|q) with total mass 1 for 0 < q < 1,
max(|a|, |b|, |b|, |d|) < 1 is, if x = cos ✓, ✓ 2 [0,⇡],

w(cos ✓; a, b, c, d|q) =
(q, ab, ac, ad, bc, bd, cd)1

2⇡(abcd)1
(18)

⇥

(e2i✓, e�2i✓)1
(aei✓, ae�i✓, bei✓, be�i✓, cei✓, ce�i✓, dei✓, de�i✓)1

.

Then the measures for the q-Hermite H
n

(x|q), the big q-Hermite H
n

(x; a|q), the Al-Salam-
Chihara Q

n

(x; a, b|q), and the dual q-Hahn p
n

(x; a, b, c|q) are, respectively, w(cos ✓; 0, 0, 0, 0|q),
w(cos ✓; a, 0, 0, 0|q), w(cos ✓; a, b, 0, 0|q), and w(cos ✓; a, b, c, 0|q). Notice that each successive mea-
sure comes from the previous measure by inserting infinite products.

Example 2.6. Let R
k

(x) = H
k

(x|q) and S
k

(x) = H
k

(x; a|q) so that

w
S

(cos ✓) = w
R

(cos ✓)
1

(aei✓, ae�i✓)1
.

In this case, we have L

R

(R
k

(x)2) = (q)
k

and

R
k

(x) =
kX

i=0

c
k,i

S
i

(x),

where c
k,i

=
⇥
k

i

⇤
q

ak�i. By the heuristic in Remark 2.3,

w
S

(x) = w
R

(x)
1X

k=0

R
k

(x)

(q)
k

ak = w
R

(x)
1

(aei✓, ae�i✓)1
,

where we have used the q-Hermite generating function [13, (14.26.11), p.542].
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Example 2.7. Let R
k

(x) = H
k

(x; a|q) and S
k

(x) = Q
k

(x; a, b|q) so that

w
S

(cos ✓) = w
R

(cos ✓)
(ab)1

(bei✓, be�i✓)1
.

In this case, we have L

R

(R
k

(x)2) = (q)
k

and

R
k

(x) =
kX

i=0

c
k,i

S
i

(x),

where c
k,i

=
⇥
k

i

⇤
q

bk�i. By the heuristic in Remark 2.3,

w
S

(x) = w
R

(x)
1X

k=0

R
k

(x)

(q)
k

ck = w
R

(x)
(ab)1

(bei✓, be�i✓)1
,

where we have used the big q-Hermite generating function [13, (14.18.13), p.512].

Example 2.8. Let R
k

(x) = Q
k

(x; a, b|q) and S
k

(x) = p
k

(x; a, b, c|q) so that

w
S

(cos ✓) = w
R

(cos ✓)
(ac, bc)1

(cei✓, ce�i✓)1
.

In this case, we have L

R

(R
k

(x)2) = (q, ab)
k

and

R
k

(x) =
kX

i=0

c
k,i

S
i

(x),

where c
k,i

=
⇥
k

i

⇤
q

(ab)k
(ab)i

ck�i. By the heuristic in Remark 2.3,

w
S

(x) = w
R

(x)
1X

k=0

R
k

(x)

(q, ab)
k

(ab)
k

ck = w
R

(x)
(ac, bc)1

(cei✓, ce�i✓)1
,

where we have used the Al-Salam-Chihara generating function [13, (14.8.13), p.458].

Notice that in the above example we used the known generating function for the Al-Salam-
Chihara polynomials Q

n

(x; a, b|q). If we apply the same steps to R
k

(x) = p
k

(x; a, b, c, 0|q) and
S
k

(x) = p
k

(x; a, b, c, d|q), a new generating function appears.

Theorem 2.9. We have

(abct)1

1X

k=0

p
k

(x; a, b, c, 0|q)

(q, abct)
k

tk =
(at, bt, ct)1
(tei✓, te�i✓)1

.

Proof. We must show

(19) (abct)1

1X

n=0

tn

(q, abct)
n

p
n

(x; a, b, c, 0|q) =
(bt, ct)1

(tei✓, te�i✓)1
(at)1.

Using the Al-Salam-Chihara generating function and the q-binomial theorem [6, (II.3), p. 354],
(19) is equivalent to

(20)
NX

n=0

p
n

(x; b, c, 0, 0|q)

(q)
n

(�a)N�nq(
N�n

2 )

(q)
N�n

=
NX

n=0

p
n

(x; a, b, c, 0|q)

(q)
n

(�abcqn)N�nq(
N�n

2 )

(q)
N�n

.

Now use the connection coe�cients

p
n

(x; b, c, 0, 0|q) = (bc)
n

nX

k=0


n

k

�

q

p
k

(x; a, b, c, 0|q)
an�k

(bc)
k

,

to show that (20) follows from

NX

n=k

(bc)
n

(q)
n


n

k

�

q

aN�k

(bc)
k

(�1)N�nq(
N�n

2 )

(q)
N�n

=
1

(q)
k

(�abcqk)N�k

(q)
N�k

q(
N�k

2 ).
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This summation is a special case of the q-Vandermonde theorem [6, (II.6), p. 354].
⇤

A generalization of Theorem 2.9 to Askey-Wilson polynomials is given in [11].
A natural generalization of the mixed moments in (15) is

L

a,b,c,d

(xnp
m

(x; a, b, c, d|q)p
`

(x; a, b, c, d|q)).

For general orthogonal polynomials Viennot has given a combinatorial interpretation for L(xnp
m

p
`

)
in terms of weighted Motzkin paths. An explicit formula when p

n

= p
n

(x; a, b, c, d|q) may be given
using (7) and a q-Taylor expansion [10], but we do not state the result here.

3. Generating functions

In § 2 we noted the following generating functions for our bootstrapping polynomials: continuous
q-Hermite H

n

(x|q), continuous big q-Hermite H
n

(x; a|q), and Al-Salam-Chihara Q
n

(x; a, b|q)

(21)
1X

n=0

H
n

(x|q)

(q)
n

tn =
1

(tei✓, te�i✓)1
,

(22)
1X

n=0

H
n

(x; a|q)

(q)
n

tn =
(at)1

(tei✓, te�i✓)1
,

(23)
1X

n=0

Q
n

(x; a, b|q)

(q)
n

tn =
(at, bt)1

(tei✓, te�i✓)1
.

Note that (22) is obtained from (21) by multiplying by (at)1 and (23) is obtained from (22)
by multiplying by (bt)1. However, if we multiply (23) by (ct)1, we no longer have a generating
function for orthogonal polynomials. It is the generating function for polynomials which satisfy
a recurrence relation of finite order, but longer than order three, which orthogonal polynomials
have.

The purpose of this section is to explain this phenomenon. We consider polynomials whose
generating function are obtained by multiplying the generating function of orthogonal polynomials
by (yt)1 or 1/(�yt)1.

We say that polynomials p
n

(x) satisfy a d-term recurrence relation if there exist a real number

A and sequences {b(0)
n

}

n�0, {b
(1)
n

}

n�1, . . . , {b
(d�2)
n

}

n�d�2 such that, for n � 0,

p
n+1(x) = (Ax� b(0)

n

)p
n

(x)� b(1)
n

p
n�1(x)� · · ·� b(d�2)

n

p
n�d+2(x),

where p
i

(x) = 0 for i < 0.

Theorem 3.1. Let p
n

(x) be polynomials satisfying p
n+1(x) = (Ax � b

n

)p
n

(x) � �
n

p
n�1(x) for

n � 0, where p�1(x) = 0 and p0(x) = 1. If b
k

and �k

1�q

k are polynomials in qk of degree r and s,

respectively, which are independent of y, then the polynomials P
(1)
n

(x, y) in x defined by

1X

n=0

P (1)
n

(x, y)
tn

(q)
n

= (yt)1

1X

n=0

p
n

(x)
tn

(q)
n

satisfy a d-term recurrence relation for d = max(r + 2, s+ 3).

We use two lemmas to prove Theorem 3.1. In the following lemmas we use the same notations
as in Theorem 3.1.

Lemma 3.2. We have

P (1)
n

(x, y) = P (1)
n

(x, yq)� y(1� qn)P (1)
n�1(x, yq).
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Proof. This is obtained by equating the coe�cients of tn in
1X

n=0

P (1)
n

(x, y)
tn

(q)
n

= (1� yt)
1X

n=0

P (1)
n

(x, yq)
tn

(q)
n

.

⇤
Lemma 3.3. Suppose that b

k

and �k

1�q

k are polynomials in qk of degree r and s, respectively, i.e.,

b
k

=
rX

j=0

c
j

(qk)j ,
�
k

1� qk
=

sX

j=0

d
j

(qk)j .

Then

P
(1)
n+1(x, y) = (Ax� y)P (1)

n

(x, yq)�
rX

j=0

c
j

qnjP (1)
n

(x, yq1�j)� (1� qn)
sX

j=0

d
j

qnjP
(1)
n�1(x, yq

1�j).

Proof. Expanding (yt)1 using the q-binomial theorem, we have

P (1)
n

(x, y) =
nX

k=0


n

k

�

q

(�1)kykq(
k
2)p

n�k

(x).

Using the relation
⇥
n+1
k

⇤
q

=
⇥

n

k�1

⇤
q

+ qk
⇥
n

k

⇤
q

, we have

P
(1)
n+1(x, y) =

n+1X

k=0

 
n

k � 1

�

q

+ qk

n

k

�

q

!
(�1)kykq(

k
2)p

n+1�k

(x)

= �yP (1)
n

(x, yq) +
nX

k=0


n

k

�

q

(�1)k(yq)kq(
k
2)p

n+1�k

(x).

By
⇥
n

k

⇤
q

= 1�q

n

1�q

n�k

⇥
n�1
k

⇤
q

and the 3-term recurrence

p
n+1�k

(x) = (Ax� b
n�k

)p
n�k

(x)� �
n�k

p
n�1�k

(x),

we get

(24) P
(1)
n+1(x, y) = (Ax� y)P (1)

n

(x, yq)�
nX

k=0


n

k

�

q

(�1)k(yq)kq(
k
2)p

n�k

(x)b
n�k

� (1� qn)
n�1X

k=0


n� 1

k

�

q

(�1)k(yq)kq(
k
2)p

n�1�k

(x)
�
n�k

1� qn�k

.

Since

b
n�k

=
rX

j=0

c
j

qnj(qk)�j ,
�
n�k

1� qn�k

=
sX

j=0

qnjd
j

(qk)�j ,

and

P (1)
n

(x, yq1�j) =
nX

k=0


n

k

�

q

(�1)k(yq)kq(
k
2)p

n�k

(x)(qk)�j ,

we obtain the desired recurrence relation. ⇤
Now we can prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.3, we can write

P
(1)
n+1(x, y) = (Ax� y)P (1)

n

(x, yq)�
rX

j=0

c
j

qnjP (1)
n

(x, yq1�j)� (1� qn)
sX

j=0

d
j

qnjP
(1)
n�1(x, yq

1�j).

Using Lemma 3.2 we can express P (1)
k

(x, yq1�j) as a linear combination of

P
(1)
k

(x, yq), P (1)
k�1(x, yq), . . . , P

(1)
k�j

(x, yq).
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Replacing y by y/q, we obtain a max(r + 2, s+ 3)-term recurrence relation for P (1)
n

(x, y). ⇤

Remark 3.4. One may verify that the order of recurrence for P (1)
n

(x, y) is exactly max(2+r, 3+s)

in the following way. Lemma 3.2 is applied s times to the term P
(1)
n�1(x, yq

1�s) to obtain a linear

combination of P
(1)
n�1(x, yq), P

(1)
n�2(x, yq), · · · , P

(1)
n�s�1(x, yq). The coe�cient of P

(1)
n�s�1(x, yq) in

this expansion is (�1)s(qn�1; q�1)
s

ysq(
s
2). Similarly, considering P

(1)
n

(x, yq1�r), the coe�cient of

P
(1)
n�r

(x, yq) in the expansion is (�1)r(qn; q�1)
r

yrq(
r
2). These terms are non-zero, give a recurrence

of order max(r + 2, s + 3), and could only cancel if r = s + 1. In this case, the coe�cient of

P
(1)
n�s�1(x, yq) is

(qn; q�1)
s+1(�1)s+1ysq(

s
2)qns

�
d
s

� yc
r

qr+s

�
.

Since d
s

and c
r

are non-zero and independent of y, this is non-zero.

Remark 3.5. Theorem 3.1 can be generalized for polynomials p
n

(x) satisfying a finite term
recurrence relation of order greater than 3. For instance, if p

n+1(x) = (Ax�b
n

)p
n

(x)��
n

p
n�1(x)�

⌫
n

p
n�2(x), then using

⇥
n

k

⇤
q

= 1�q

n

1�q

n�k

⇥
n�1
k

⇤
q

twice one can see that Equation (24) has the following

extra sum in the right hand side:

�(1� qn)(1� qn�1)
n�1X

k=0


n� 1

k

�

q

(�1)k(yq)kq(
k
2)p

n�2�k

(x)
⌫
n�k

(1� qn�k)(1� qn�k�1)
.

Thus if ⌫k

(1�q

k)(1�q

k�1)
is a polynomial in qk then P

(1)
n

(x, y) satisfy a finite term recurrence relation.

Note that by using Lemmas 3.2 and 3.3, one can find a recurrence relation for P
(1)
n

(x, y) in
Theorem 3.1.

An analogous theorem holds for polynomial in q�k. We state the result without proof.

Theorem 3.6. Let p
n

(x) be polynomials satisfying p
n+1(x) = (Ax � b

n

)p
n

(x) � �
n

p
n�1(x) for

n � 0, where p�1(x) = 0 and p0(x) = 1. If b
k

and �k

1�q

k are polynomials in q�k of degree r

and s, respectively, which are independent of y, and the constant term of �k

1�q

k is zero, then the

polynomials P
(2)
n

(x, y) defined by

1X

n=0

P (2)
n

(x, y)
q(

n
2)tn

(q)
n

=
1

(�yt)1

1X

n=0

p
n

(x)
q(

n
2)tn

(q)
n

satisfy a d-term recurrence relation for d = max(r + 1, s+ 2).

We now give several applications of Theorem 3.1 and Theorem 3.6. In the following examples,
we use the notation in these theorems.

Example 3.7. Let p
n

(x) be the continuous q-Hermite polynomial H
n

(x|q). Then A = 2, b
n

= 0,

and �
n

= 1 � qn. Since r = �1 and s = 0, P (1)
n

(x, y) satisfies a 3-term recurrence relation. By
Lemma 3.3, we have

P
(1)
n+1(x, y) = (2x� y)P (1)

n

(x, yq)� (1� qn)P (1)
n�1(x, yq).

By Lemma 3.2 we have

P
(1)
n+1(x, y) = P

(1)
n+1(x, yq)� y(1� qn)P (1)

n

(x, yq).

Thus
P

(1)
n+1(x, yq) = (2x� yqn)P (1)

n

(x, yq)� (1� qn)P (1)
n�1(x, yq).

Replacing y by y/q we obtain

P
(1)
n+1(x, y) = (2x� yqn�1)P (1)

n

(x, y)� (1� qn)P (1)
n�1(x, y).

Thus P
n

(x, y) are orthogonal polynomials, which are the continuous big q-Hermite polynomials
H

n

(x; y|q).
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Example 3.8. Let p
n

(x) be the continuous big q-Hermite polynomials H
n

(x; a|q). Then A =

2, b
n

= aqn, and �
n

= 1 � qn. Since r = 1 and s = 0, P (1)
n

(x, y) satisfies a 3-term recurrence
relation. Using the same method as in the previous example, we obtain

P
(1)
n+1(x, y) = (2x� (a+ y)qn)P (1)

n

(x, y)� (1� qn)(1� ayqn�1)P (1)
n�1(x, y).

Thus P (1)
n

(x, y) are orthogonal polynomials, which are the Al-Salam-Chihara polynomialsQ
n

(x; a, y|q).

Example 3.9. Let p
n

(x) be the Al-Salam-Chihara polynomials Q
n

(x; a, b|q). Then A = 2, b
n

=
(a + b)qn, and �

n

= (1 � qn)(1 � abqn�1). Since r = 1 and s = 1, P
n

(x, y) satisfies a 4-term
recurrence relation. By Lemma 3.3, we have

P
(1)
n+1(x, y) = (2x�y)P (1)

n

(x, yq)�(a+b)qnP (1)
n

(x, y)�(1�qn)(�abqn�1P
(1)
n�1(x, y)+P

(1)
n�1(x, yq)).

Using Lemma 3.2 we get

P
(1)
n+1 = (2x�(a+b+y)qn)P (1)

n

�(1�qn)(1�(ab+ay+by)qn�1)P (1)
n�1�abyqn�2(1�qn)(1�qn�1)P (1)

n�2.

Example 3.10. Let p
n

(x) be the continuous dual q-Hahn polynomials p
n

(x; a, b, c|q). Then A = 2
and

b
n

= (a+ b+ c)qn � abcq2n � abcq2n�1,

�
n

= (1� qn)(1� abqn�1)(1� bcqn�1)(1� caqn�1).

Since r = 2 and s = 3, P
n

(x, y) satisfies a 6-term recurrence relation. It is possible to find an
explicit recurrence relation using the same idea as in the previous example.

Example 3.11. Let p
n

(x) be the discrete q-Hermite I polynomial h
n

(x; q). Then A = 1, b
n

= 0,

and �
n

= qn�1(1� qn). Since r = �1 and s = 1, P (1)
n

(x, y) satisfies a 4-term recurrence relation
which is

P
(1)
n+1(x, y) = (x� yqn)P (1)

n

(x, y)� qn�1(1� qn)P (1)
n�1(x, y) + yqn�2(1� qn)(1� qn�1)P (1)

n�2(x, y).

In §4 we will study P
(1)
n

(x, y) = h
n

(x, y; q), the discrete big q-Hermite I polynomials h
n

(x, y; q).
This is a proof of Theorem 4.3.

Example 3.12. Let p
n

(x) be the discrete q-Hermite II polynomial h̃
n

(x; q). Then A = 1, b
n

= 0,
and �

n

= q�2n+1(1� qn). Since b
n

and �
n

/(1� qn) are polynomials in q�n of degrees �1 and 2,

respectively, and the constant term of �
n

/(1� qn) is 0, so P
(2)
n

(x, y) satisfies a 4-term recurrence
relation. It is

P
(2)
n+1(x, y) = (x�yq�n)P (2)

n

(x, y)�q�2n+1(1�qn)P (2)
n�1(x, y)�yq3�3n(1�qn)(1�qn�1)P (2)

n�2(x, y).

P
(2)
n

(x, y) are the discrete big q-Hermite II polynomials h̃
n

(x, y; q) of § 5.

Example 3.13. The Al-Salam–Carlitz I polynomials U (a)
n

(x; q) are defined by

1X

n=0

U
(a)
n

(x; q)

(q)
n

tn =
(t)1(at)1
(xt)1

.

They have the 3-term recurrence relation

U
(a)
n+1(x; q) = (x� (1 + a)qn)U (a)

n

(x; q) + aqn�1(1� qn)U (a)
n�1(x; q).

Let p
n

(x) be the polynomials with generating function

1X

n=0

p
n

(x)

(q)
n

tn =
(t)1
(xt)1

=
1X

n=0

xn(1/x)
n

(q)
n

tn.

Then p
n

(x) = xn(1/x)
n

. Thus p
n+1(x) = (x� qn)p

n

(x), and we have A = 1, b
n

= qn, and �
n

= 0,

and U
(a)
n

(x; q) = P
(1)
n

(x, a).
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Example 3.14. The Al-Salam–Carlitz II polynomials V (a)
n

(x; q) are defined by

1X

n=0

(�1)nq(
n
2)

(q)
n

V (a)
n

(x; q)tn =
(xt)1

(t)1(at)1
.

They have the 3-term recurrence relation

(25) V
(a)
n+1(x; q) = (x� (1 + a)q�n)V (a)

n

(x; q)� aq�2n+1(1� qn)V (a)
n�1(x; q).

Let p
n

(x) be the polynomials with generating function

1X

n=0

q(
n
2)

(q)
n

p
n

(x)tn =
(xt)1
(t)1

=
1X

n=0

(x)
n

(q)
n

tn =
1X

n=0

(�1)nq(
n
2)xn(1/x)

n

(q)
n

tn.

Then p
n

(x) = (�1)nxn(1/x)
n

. Thus p
n+1(x) = (�x+q�n)p

n

(x), and we have A = �1, b
n

= �q�n,

and �
n

= 0 and we obtain V
(a)
n

(x; q) = (�1)nP (2)
n

(�x,�a) and (25).

Garrett, Ismail, and Stanton [5, Section 7] considered the polynomials Ĥ
n

(x|q) defined by the
generating function

1X

n=0

Ĥ
n

(x|q)
tn

(q)
n

=
(t2)1

(tei✓, te�i✓)1
= (t2)1

1X

n=0

H
n

(x|q)
tn

(q)
n

.

It turns out that p
n

= Ĥ
n

(x|q) satisfies the 5-term recurrence relation

p
n+1 = 2xp

n

+ (q2n + q2n�1
� qn�1

� 1)p
n�1 + qn�2(1� qn)(1� qn�1)(1� qn�2)p

n�3.

The following generalization of Theorem 3.1 explains this phenomenon for m = 2, r = 0, and
s = 0. We omit the proof, which is similar to that of Theorem 3.1.

Theorem 3.15. Let m be a positive integer. Let p
n

(x) be polynomials satisfying p
n+1(x) =

(Ax � b
n

)p
n

(x) � �
n

p
n�1(x) for n � 0, where p�1(x) = 0 and p0(x) = 1. If b

k

and �k

1�q

k are

polynomials in qk of degree r and s, respectively, which are independent of y, then the polynomials
P
n

(x, y) in x defined by
1X

n=0

P
n

(x, y)
tn

(q)
n

= (ytm)1

1X

n=0

p
n

(x)
tn

(q)
n

satisfy a d-term recurrence relation for d = max(rm2 + 2, sm2 + 3,m2 + 1).

4. Discrete big q-Hermite polynomials

In this section we study a set of polynomials which satisfy a 4-term recurrence relation, called
the discrete big q-Hermite polynomials (see Definition 4.1). These polynomials generalize the
discrete q-Hermite polynomials and appear in Example 3.11.

Recall [7] that the continuous q-Hermite polynomials H
n

(x|q) are defined by
1X

n=0

H
n

(x|q)

(q)
n

tn =
1

(tei✓, te�i✓)1
,

and the continuous big q-Hermite polynomials H
n

(x; a|q) are defined by
1X

n=0

H
n

(x; a|q)

(q)
n

tn =
(at)1

(tei✓, te�i✓)1
.

Observe that the generating function for H
n

(x; a|q) is the generating function for H
n

(x|q) multi-
plied by (at)1. In this section we introduce discrete big q-Hermite polynomials in an analogous
way.

The discrete q-Hermite I polynomials h
n

(x; q) have generating function
1X

n=0

h
n

(x; q)

(q)
n

tn =
(t2; q2)1
(xt)1

.
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Definition 4.1. The discrete big q-Hermite I polynomials h
n

(x, y; q) are given by

(26)
1X

n=0

h
n

(x, y; q)
tn

(q)
n

=
(t2; q2)1(yt)1

(xt)1
.

Expanding the right hand side of (26) using the q-binomial theorem, we find the following
expression for h

n

(x, y; q).

Proposition 4.2. For n � 0,

h
n

(x, y; q) =

bn/2cX

k=0


n

2k

�

q

(q; q2)
k

q2(
k
2)(�1)kxn�2k(y/x)

n�2k.

The polynomials h
n

(x, y; q) are orthogonal polynomials in neither x nor y. However they satisfy
the following simple 4-term recurrence relation which was established in Example 3.11.

Theorem 4.3. For n � 0,

h
n+1(x, y; q) = (x�yqn)h

n

(x, y; q)�qn�1(1�qn)h
n�1(x, y; q)+yqn�2(1�qn)(1�qn�1)h

n�2(x, y; q).

Note that when y = 0, the 4-term recurrence relation reduces to the 3-term recurrence relation
for the discrete q-Hermite I polynomials. The polynomials h

n

(x, y; q) are not symmetric in x and
y. If we consider h

n

(x, y; q) as a polynomial in y, then it does not satisfy a finite term recurrence
relation, see Proposition 4.7.

Since h
n

(x, y; q) satisfies a 4-term recurrence, it is a multiple orthogonal polynomial in x. Thus
there are two linear functionals L(0) and L

(1) such that, for i 2 {0, 1},

L

(i)(h
m

) = �
mi

, m � 0,

L

(i)(h
m

(x, y; q)h
n

(x, y; q)) = 0 if m > 2n+ i, and L

(i)(h2n+i

(x, y; q)h
n

(x, y; q)) 6= 0.

We have explicit formulas for the moments for L(0) and L

(1).

Theorem 4.4. The moments for the discrete big q-Hermite polynomials are

L

(0)(xn) =

bn/2cX

k=0


n

2k

�

q

(q; q2)
k

yn�2k,

L

(1)(xn) = (1� qn)

bn/2cX

k=0


n� 1

2k

�

q

(q; q2)
k

yn�2k�1.

Before proving Theorem 4.4 we show that in general there is a way to find the linear functionals
of d-orthogonal polynomials if we know how to expand certain orthogonal polynomials in terms
of these d-orthogonal polynomials. This is similar to Proposition 2.2.

Theorem 4.5. Let R
n

(x) be orthogonal polynomials with linear functionals L
R

such that L
R

(1) =

1. Let S
n

(x) be d-orthogonal polynomials with linear functionals {L
(i)
S

}

d�1
i=0 such that L

(i)
S

(S
n

(x)) =
�
n,i

. Suppose

(27) R
k

(x) =
kX

m=0

c
km

S
m

(x).

Then

L

(i)
S

(xn) =
nX

k=0

L

R

(xnR
k

(x))

L

R

(R
k

(x)2)
d
k,i

,

where

d
k,i

=

(
c
k,i

if k � i,

0 if k < i.
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Proof. If we apply L

(i)
S

to both sides of (27), we have

L

(i)
S

(R
k

(x)) = d
k,i

.

Then by expanding xn in terms of R
k

(x) we get

L

(i)
S

(xn) = L

(i)
S

 
nX

k=0

L

R

(xnR
k

(x))

L

R

(R
k

(x)2)
R

k

(x)

!
=

nX

k=0

L

R

(xnR
k

(x))

L

R

(R
k

(x)2)
d
k,i

.

⇤

We will apply Theorem 4.5 with R
n

(x) = h
n

(x; q) and S
n

(x) = h
n

(x, y; q) to prove Theorem 4.4.
The first ingredient is (27), which follows from the generating function (26)

h
k

(x; q) =
kX

m=0


k

m

�

q

yk�mh
m

(x, y; q).

The second ingredient is the value of L
h

(xnh
k

).

Proposition 4.6. Let L
h

be the linear functional for h
n

(x; q) with L

h

(1) = 1. Then

L

h

(xnh
m

(x; q)) =

8
<

:

0 if m > n or n 6⌘ m mod 2,

q

(m2 )(q)n
(q2;q2)n�m

2

if n � m,n ⌘ m mod 2.

Proof. Clearly we may assume that n � m and n ⌘ m mod 2. Using the explicit formula

h
m

(x; q) = xm

2�0

✓
q�m, q�m+1

�

���� q
2,

q2m�1

x2

◆
,

and the fact

L

h

(xk) =

(
0 if k is odd,

(q; q2)
k/2 if k is even,

we obtain

L

h

(xnh
m

(x; q)) = (q; q2)n+m
2

2�1

✓
q�m, q�m+1

q�n�m+1

���� q
2, qm�n

◆
,

L

h

(xnh
m

(x; q)) = (q; q2)n+m
2

which is evaluable by the q-Vandermonde theorem [6, (II.5), p, 354]. ⇤

The discrete q-Hermite polynomials have the following orthogonality:

(28) L

h

(h
m

(x; q)h
n

(x; q)) = q(
n
2)(q)

n

�
mn

.

Using Theorem 4.5, Proposition 4.6, and (28) we have proven Theorem 4.4. We do not know
representing measures for the moments in Theorem 4.4.

One may also find a recurrence relation for h
n

(x, y; q) as a polynomial in y, whose proof is
routine.

Proposition 4.7. For n � 0, we have

yqnh
n

(x, y; q) = �h
n+1(x, y; q) +

nX

k=0

(qn; q�1)
k

(�1)kh
n�k

(x, y, ; q)⇥

(
x if k is even

1 if k is odd.

We can also consider discrete q-Hermite II polynomials. The discrete q-Hermite II polynomials
h̃
n

(x, y; q) have the generating function

1X

n=0

q(
n
2)h̃

n

(x; q)

(q)
n

tn =
(�xt)1

(�t2; q2)1
.
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We define the discrete big q-Hermite II polynomials h̃
n

(x, y; q) by

1X

n=0

h̃
n

(x, y; q)
q(

n
2)tn

(q)
n

=
1

(�t2; q2)1

(�xt)1
(�yt)1

.

Then h̃
n

(x, 0|q) is the discrete q-Hermite II polynomial.
The following proposition is straightforward to check.

Proposition 4.8. For n � 0, we have

h̃
n

(x, y; q) = i�nh
n

(ix, iy; q�1).

5. Combinatorics of the discrete big q-Hermite polynomials

In this section we give some combinatorial information about the discrete big q-Hermite poly-
nomials. This includes a combinatorial interpretation of the polynomials (Theorem 5.2), and a
combinatorial proof of the 4-term recurrence relation. Viennot’s interpretation of the moments as
weighted generalized Motzkin paths is also considered.

For the purpose of studying h
n

(x, y; q) combinatorially we will consider the following rescaled
continuous big q-Hermite polynomials h⇤

n

(x, y; q):

h⇤
n

(x, y; q) = (1� q)�n/2h
n

(x
p
1� q, y

p
1� q|q).

By (26) we have

(29) h⇤
n

(x, y; q) =

bn/2cX

k=0

(�1)kq2(
k
2)[2k � 1]

q

!!


n

2k

�

q

xn�2k(y/x)
n�2k.

Because h⇤
n

(x, y; 1) = H
n

(x � y), which is a generating function for bicolored matchings of
[n] := {1, 2, . . . , n}, we need to consider q-statistics on matchings.

A matching of [n] = {1, 2, . . . , n} is a set partition of [n] in which every block is of size 1 or
2. A block of a matching is called a fixed point if its size is 1, and an edge if its size is 2. When
we write an edge {u, v} we will always assume that u < v. A fixed point bi-colored matching or
FB-matching is a matching for which every fixed point is colored with x or y. Let FBM(n) be
the set of FB-matchings of [n].

Let ⇡ 2 FBM(n). A crossing of ⇡ is a pair of two edges {a, b} and {c, d} such that a < c < b <
d. A nesting of ⇡ is a pair of two edges {a, b} and {c, d} such that a < c < d < b. An alignment
of ⇡ is a pair of two edges {a, b} and {c, d} such that a < b < c < d. The block-word bw(⇡) of ⇡
is the word w1w2 . . . wn

such that w
i

= 1 if i is a fixed point and w
i

= 0 otherwise. An inversion
of a word w1w2 . . . wn

is a pair of integers i < j such that w
i

> w
j

. The number of inversions of
w is denoted by inv(w).

Suppose that ⇡ has k edges and n� 2k fixed points. The weight wt(⇡) of ⇡ is defined by

(30) wt(⇡) = (�1)kq2(
k
2)+2 al(⇡)+cr(⇡)+inv(bw(⇡))z1z2 . . . zn�2k,

where z
i

= x if the ith fixed point is colored with x, and z
i

= �yqi�1 if the ith fixed point is
colored with y.

A complete matching is a matching without fixed points. Let CM(2n) denote the set of complete
matchings of [2n].

Proposition 5.1. We have
X

⇡2CM(2n)

q2 al(⇡)+cr(⇡) = [2n� 1]
q

!!.

Proof. It is known that
X

⇡2CM(2n)

qcr(⇡)+2 ne(⇡) =
X

⇡2CM(2n)

q2 cr(⇡)+ne(⇡) = [2n� 1]
q

!!.
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Since a pair of two edges is either an alignment, a crossing, or a nesting we have al(⇡) + ne(⇡) +
cr(⇡) =

�
n

2

�
. Thus

X

⇡2CM(2n)

q2 al(⇡)+cr(⇡) = q2(
n
2)

X

⇡2CM(2n)

q�2 ne(⇡)�cr(⇡) = q2(
n
2)[2n� 1]

q

�1 !! = [2n� 1]
q

!!.

⇤
Theorem 5.2. We have

h⇤
n

(x, y; q) =
X

⇡2FBM(n)

wt(⇡).

Proof. Let M(n) be the set of 4-tuples (k, w,�, X) such that 0  k  bn/2c, w is a word of length
n consisting of k 0’s and n � 2k 1’s, � 2 CM(2k), and Z = (z1, z2, . . . , zn�2k) is a sequence such
that z

i

is either x or �yqi�1 for each i.
For ⇡ 2 FBM(n) we define g(⇡) to be the 4-tuple (k, w,�, Z) 2 M(n), where k is the number

of edges of ⇡, w = bw(⇡), � is the induced complete matching of ⇡, and Z = (z1, z2, . . . , zn�2k) is
the sequence such that z

i

= x if the ith fixed point is colored with x, and z
i

= �yqi�1 if the ith
fixed point is colored with y. Here, the induced complete matching of ⇡ is the complete matching
of [2k] for which i and j form an edge if and only if the ith non-fixed point and the jth non-fixed
point of ⇡ form an edge.

It is easy to see that g is a bijection from FBM(n) to M(n) such that if g(⇡) = (k,w,�, Z)
with Z = (z1, z2, · · · , zn�2k) then

wt(⇡) = (�1)kq2(
k
2)q2 al(�)+cr(�)qinv(w)z1z2 · · · zn�2k.

Thus
X

⇡2FBM(n)

wt(⇡) =
X

(k,w,�,Z)2M(n)

(�1)kq(
k
2)q2 al(�)+cr(�)qinv(w)z1z2 · · · zn�2k.

Here once k is fixed � can be any complete matching of [2k], w can be any word consisting of k
0’s and n � 2k 1’s, and for Z = (z1, z2, · · · , zn�2k) each z

i

can be either x or �yqi�1. Thus the
sum of q2 al(�)+cr(�) for all such �’s gives [2k � 1]

q

!!, the sum of inv(w) for all such w gives
⇥
n

2k

⇤
q

,

the sum of z1z2 · · · zn�2k for all such Z gives (x/y)
n�2k. This finishes the proof. ⇤

Proposition 5.3. For n � 0, we have

h⇤
n+1 = (x� yqn)h⇤

n

� qn�1[n]
q

h⇤
n�1 + yqn�2[n� 1]

q

(1� qn)h⇤
n�2.

Proof of Proposition 5.3. Let W�(n) be the sum of wt(⇡) for all ⇡ 2 FBM(n) such that n is not
a fixed point. Let W

x

(n) (respectively W
y

(n)) be the sum of wt(⇡) for all ⇡ 2 FBM(n) such that
n is a fixed point colored with x (respectively y). Then

h⇤
n+1(x, y; q) =

X

⇡2FBM(n)

wt(⇡) = W�(n+ 1) +W
x

(n+ 1) +W
y

(n+ 1).

We claim that

W
x

(n+ 1) = xh⇤
n

(x, y; q),(31)

W
y

(n+ 1) = �yqn(W
x

(n) +W
y

(n))� yW�(n),(32)

W�(n+ 1) = �qn�1[n]
q

h⇤
n�1(x, y; q).(33)

From (30) we easily get (31).
For (33), consider a matching ⇡ 2 FBM(n + 1) such that n + 1 is connected with i where

1  i  n. Suppose that ⇡ has k edges and n+1�2k fixed points. Let us compute the contribution
of an edge of a fixed point together with the edge {i, n + 1} to 2 al(⇡) + cr(⇡) + inv(bw(⇡)). An
edge with two integers less than i contributes 2 to 2 al(⇡). An edge with exactly one integer less
than i contributes 1 to cr(⇡). An edge with two integers greater than i contributes nothing. Each
fixed point of ⇡ less than i contributes 2 to inv(bw(⇡)) together with the edge {i, n + 1}. Each
fixed point of ⇡ greater than i contributes 1 to inv(bw(⇡)) together with the edge {i, n+1}. Thus
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the contribution of the edge {i, n+1} to 2 al(⇡)+cr(⇡)+inv(bw(⇡)) is equal to i�1+(n+1�2k).
Let � be the matching obtained from ⇡ by removing the edge {i, n+ 1}. Then

2 al(⇡) + cr(⇡) + inv(bw(⇡)) = 2 al(�) + cr(�) + inv(bw(�)) + i� 1 + (n+ 1� 2k).

Thus, using (30), the above identity and 2
�
k

2

�
= 2
�
k�1
2

�
+2k�2, we have wt(⇡) = �qn�1qi�1 wt(�).

Since i can be any integer from 1 to n and � 2 FBM(n� 1) we get (33).
Now we prove (32). Consider a matching ⇡ 2 FBM(n + 1) such that n + 1 is a fixed point

colored with y. Suppose that ⇡ has k edges with 2k non-fixed points b1 < b2 < · · · < b2k. For
0  i  2k+1, let a

i

= b
i

�b
i�1�1, where b0 = 0 and b2k+1 = n. Then a0+a1+· · ·+a2k+1 = n�2k.

Let � be the matching obtained from ⇡ by removing n+1. Then we have wt(⇡) = �yqn�2k wt(�).
We consider two cases.

Case 1: a0 6= 0. Let ⌧ be the matching obtained from � by changing 1 into n and decreasing
the other integers by 1. We color the ith fixed point of ⌧ with the same color of the ith fixed
point of �. Then wt(�) = q2k wt(⌧) and wt(⇡) = �yqn(⌧). Since n is a fixed point in ⌧ the sum
of wt(⇡) in this case gives �yqn(W

x

(n) +W
y

(n)).
Case 2: a0 = 0. Note that

bw(�) = 0

a1z }| {
1 · · · 1 0

a2z }| {
1 · · · 1 0 · · · 0

a2kz }| {
1 . . . 1 0

a2k+1z }| {
1 . . . 1 .

We define ⌧ to be the matching with

bw(⌧) =

a1z }| {
1 · · · 1 0

a2z }| {
1 · · · 1 0

a3z }| {
1 · · · 1 1 · · · 0

a2k+1z }| {
1 . . . 1 0

and the ith fixed point of ⌧ is colored with the same color of the ith fixed point of �. Then
wt(�) = q�n+2k wt(⌧) and wt(⇡) = �ywt(⌧). Since n is a non-fixed point in ⌧ , the sum of wt(⇡)
in this case gives �yW�(n).

It is easy to see that (31), (32), and (33) implies the 4-term recurrence relation. ⇤
Since the polynomials h

n

(x, y; q) satisfy a 4-term recurrence relation, they are 2-fold multiple
orthogonal polynomials in x. By Viennot’s theory, we can express the two moments L(0)(xn) and
L

(1)(xn) as a sum of weights of certain lattice paths.
A 2-Motzkin path is a lattice path consisting of an up step (1, 1), a horizontal step (1, 0), a down

step (1,�1), and a double down step (1,�2), which starts at the origin and never goes below the
x-axis.

For i = 0, 1 let Mot
i

(n) denote the set of 2-Motzkin paths of length n with final height i. The
weight of M 2 Mot

i

(n) is the product of weights of all steps, where the weight of each step is
defined as follows.

• An up step has weight 1.
• A horizontal step starting at level i has weight yqi.
• A down step starting at level i has weight qi�1(1� qi).
• A double down step starting at level i has weight �yqi�2(1� qi)(1� qi�1).

Then by Viennot’s theory we have

L

i

(yn) =
X

M2Moti(n)

wt(M).

Thus we obtain the following corollary from Theorem 4.4.

Corollary 5.4. For n � 0, we have

X

M2Mot0(n)

wt(M) =

bn/2cX

k=0


n

2k

�

q

(q; q2)
k

yn�2k,

X

M2Mot1(n)

wt(M) = (1� qn)

bn/2cX

k=0


n� 1

2k

�

q

(q; q2)
k

yn�2k�1.

It would be interesting to prove the above corollary combinatorially.
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6. An addition theorem

A Hermite polynomial addition theorem is

(34) H
n

(x+ y) =
nX

k=0

✓
n

k

◆
H

k

(x/a)akH
n�k

(y/b)bn�k

where a2 + b2 = 1. We give a q-analogue of this result (Proposition 6.1) using the discrete big
q-Hermite polynomials.

We will use h
n

(x, y; q) as our q-version of H
n

(x� y),

lim
q!1

h⇤
n

(x, y; q) = lim
q!1

h
n

(x
p

1� q, y
p

1� q; q)

(1� q)n/2
= H

n

(x� y).

and h
n

(x/a, 0; q), the discrete q-Hermite, as our version of H
n

(x/a)

lim
q!1

h⇤
n

(x, 0; q) = lim
q!1

h
n

(x
p

1� q, 0; q)

(1� q)n/2
= H

n

(x).

Another q-version of bn�kH
n�k

(y/b), a2 + b2 = 1 is given by p
n�k

(y, a; q), where

p
t

(y, a; q) =

[t/2]X

m=0


t

2m

�

q

(q; q2)
m

a2m(1/a2; q2)
m

yt�2mq(
t�2m

2 ).

lim
q!1

p
t

(y
p

1� q, a; q)

(1� q)t/2
= btH

n

(x/b).

The result is

Proposition 6.1. For n � 0,

h
n

(x, y; q) = (�1)n
nX

k=0


n

k

�

q

h
k

(x/a, 0|q)(�a)kp
n�k

(y, a|q).

Proof. The generating function of p
n

is

F (y, a, w) =
1X

n=0

p
n

(y, a; q)

(q)
n

wn =
(w2; q2)1(�yw)1

(a2w2; q2)1
.

If

G(x, y, t) =
(t2; q2)1(yt)1

(xt)1
is the discrete big q-Hermite generating function, then

G(x, y,�t) = G(x/a, 0,�at)F (y, a, t),

which gives Proposition 6.1. ⇤
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