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Abstract. Some integrals involving three bases are evaluated as infinite products
using complex analysis. Many special cases of these integrals may be evaluated in
another way to find infinite sum representations for these infinite products. The re-
sulting identities are identities of Rogers-Ramanujan type. Some integer partition in-
terpretations of these identities are given. Generalizations of the Rogers-Ramanujan

type identities involving polynomials are given, again as corollaries of integral eval-
uations.

1. Introduction. The purpose of this paper is to show that integral evaluations
involving infinite products with three independent bases lead to identities of Rogers-
Ramanujan type.

In [11] it was shown that the Rogers-Ramanujan identities of modulus 5 follow
from evaluating the bibasic integral

(qt2; q)∞
2π

∫ π

0

(q5, e2iθ, e−2iθ; q5)∞
(teiθ, te−iθ; q)∞

dθ.

We generalize the above integral by replacing the three bases of the infinite products
q5, q and q by independent bases s, p and q. The resulting integral can be evaluated
as an infinite product for special values of t. By specializing s, p, and q the product
sides of identities of Rogers-Ramanujan type appear. The special values of t for
which such identities exist can be found by considering the singularities of the
integrals as functions of t.

To find the sum sides of these identities of Rogers-Ramanujan type, we use
techniques from classical orthogonal polynomials. Once s has been specialized, we
realize that evaluating these integrals is equivalent to a certain connection coefficient
problem between orthogonal polynomials which are basic hypergeometric series
with arbitrary bases p and q. The weight function and generating function for the
q-Hermite polynomials motivates our choices of integrals. Judicious choices of the
base p will allow for an explicit solution of the connection coefficient problem and
thus a different evaluation of the integral as a sum.

The tribasic integrals are given in Theorems 2, 3, 4 and 5 of §2. The details
of the orthogonal polynomial method are described in §3. It is applied to the q-
Hermite polynomials in §4, and another set of polynomials is similarly considered
in §5. The four classes of integrals we evaluate are given in (4.1), (4.2), (4.3), and
(5.1). The often lengthy proofs of computational lemmas in §4 and §5 are collected
in an Appendix, §9. §6 contains a double series identity of Rogers-Ramanujan type.
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2 M. E. H. ISMAIL AND D. STANTON

It is this master identity that contains all the special cases that lead to the single
sum identities of §5. Finally the multisum identities are developed in §7.

In addition we identify polynomials that correspond to the polynomials {an(q)}
and {bn(q)} introduced by Schur [15] in his proof of the Rogers-Ramanujan identi-
ties. In particular we extend some of the results in [11] to moduli other than 5. §8
contains remarks about certain aspects of our work. Combinatorial interpretations
and positivity results are found throughout the paper.

We will use the standard notation for q-series and infinite products found in [5],
[12].

We use the Jacobi triple identity

(1.1) (x, q/x, q; q)∞ =

∞
∑

n=−∞
(−1)nq(

n
2)xn,

and the quintuple product identity,

(q, 1/x, qx, q; q)∞(qx2, q/x2; q2)∞ =
∞
∑

m=−∞
x3mq(3m

2+m)/2(1− q−m/x)

=(q3,−q2x3,−q/x3; q3)∞ − (q3,−qx3,−q2/x3; q3)∞/x.(1.2)

We will also use methods from complex analysis in §2.
2. Schwarz’s theorem and integral evaluations. In this section we give in
Theorems 2 and 3 integral evaluations each involving three independent bases p,
q, and s. These evaluations follow from Schwarz’s theorem for the Poisson kernel,
the relevant variation is stated in Theorem 1. By specializing one of the bases, the
integral of Theorem 3 may be analytic continued as a function of t, the explicit
bibasic evaluations are given in Theorems 4 and 5.

Schwarz’s theorem [1, (§6.4)] asserts that if f(θ) is piecewise continuous on [0, 2π]
then

lim
z→reiφ

∫ 2π

0

r2 − |z|2
2π|reiθ − z|2 f(θ)dθ = f(φ),

provided that f is continuous at φ. We shall use a minor modification of Schwarz’s
result.

Theorem 1. Let f(θ, z) be continuous in θ for θ ∈ [0, 2π], and for all z so that
r ≥ |z| ≥ r − ǫ for some positive ǫ. Assume further that f(θ, z) converges to
f(θ, reiφ) as z → reiφ uniformly in θ, for θ ∈ [0, 2π]. Then

lim
z→reiφ

∫ 2π

0

(r2 − |z|2) f(θ, z)dθ
2π|reiθ − z|2 = f(φ, reiφ).

Proof. Since
∫ 2π

0
[r2 − |z|2]dθ/[|reiθ − z|2] = 2π, we obtain

∣

∣

∣

∣

∫ 2π

0

r2 − |z|2
2π|reiθ − z|2 f(θ, z)dθ − f(φ, reiφ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 2π

0

r2 − |z|2
2π|reiθ − z|2

[

f(θ, z)− f(θ, reiφ) + f(θ, reiφ)− f(φ, reiφ)
]

dθ

∣

∣

∣

∣
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≤ sup
θ∈[0,2π]

∣

∣f(θ, z)− f(θ, reiφ)
∣

∣+

∣

∣

∣

∣

∫ 2π

0

r2 − |z|2
2π|reiθ − z|2 f(θ, re

iφ)dθ − f(φ, reiφ)

∣

∣

∣

∣

.

The first term tends to zero as z → reiφ by the uniform convergence hypothesis,
while the second term tends to zero from Schwarz’s theorem. �

We next apply Theorem 1 to find limiting values of the tribasic integrals

(2.1) G1(t, p, q, s) =
(−t; q)∞

2π

∫ π

0

(s, e2iθ, e−2iθ; s)∞
(te2iθ, te−2iθ; p)∞

dθ, |t| < 1.

and

Theorem 2. We have

lim
t→−1

G1(t, p, q, s) =
(q; q)∞
(p, p; p)∞

(s,−s,−s; s)∞.

Proof. Let
F (z) = (s, z2, 1/z2; s)∞.

Clearly

lim
t→−1

G1(t, p, q, s) = lim
t→−1

(−t; q)∞
4π

∫ 2π

0

F (eiθ/2) dθ

(teiθ, te−iθ; p)∞

=
(q; q)∞
8π

lim
t→−1

∫ 2π

0

(1− t2)F (eiθ/2) dθ

|eiθ − t|2(tpeiθ, tpe−iθ; p)∞

=
1

4

(q; q)∞F (eiπ/2)

(−peiπ,−pe−iπ; p)∞

=
(q; q)∞
(p, p; p)∞

(s,−s,−s; s)∞,

by applying Theorem 1 with φ = π, r = 1, and f(θ, z) = F (eiθ/2)/(zpeiθ, zpe−iθ; p)∞. �

Another tribasic integral is defined by

(2.2) G2(t, p, q, s) =
(pt2; q)∞

2π

∫ π

0

(s, e2iθ, e−2iθ; s)∞
(teiθ, te−iθ; p)∞

dθ, |t| < 1.

We next consider an analytic continuation and a limiting behavior of G2.

Theorem 3. The function G2(t, p, q, s) can be analytically continued to the disc
|t| < p−1/2. The analytic continuation to p1/2 < |t| < p−1/2 is given by

G2(t, p, q, s) =
(pt2; q)∞

4π

∫ 2π

0

(s, e2iθ/p, pe−2iθ; s)∞dθ

(tp−1/2eiθ, tp1/2e−iθ; p)∞
+
(s, 1/t2, st2; s)∞(pt2; q)∞

2(p, pt2; p)∞
.

Furthermore

lim
t→p−1/2

G2(t, p, q, s) =
(s, p, s/p; s)∞(q; q)∞

(p, p; p)∞
.
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Proof. We first analytically continue G2(t, p, q, s) to the annulus |t| ∈ (p1/2, p−1/2).
Note that for p1/2 < t < 1 we have

G2(t, p, q, s) =
(pt2; q)∞

4π

∫ π

−π

(s, e2iθ, e−2iθ; s)∞
(teiθ, te−iθ; p)∞

dθ

=
(pt2; q)∞

4π

∫

|z|=1

F (z)

(tz, t/z; p)∞

dz

iz

=
(pt2; q)∞

4π

∫

|z|=p−1/2

F (z)

(tz, t/z; p)∞

dz

iz
−R

where R is the sum of residues at the poles in the domain 1 < |z| < p−1/2. The
only pole is at z = 1/t, thus

R = − (s, 1/t2, t2; s)∞(pt2; q)∞
2(p, t2; p)∞

,

and

G2(t, p, q, s) =
(pt2; q)∞

4π

∫ 2π

0

F (p−1/2eiθ)

(tp−1/2eiθ, tp1/2e−iθ; p)∞
dθ

+
(s, 1/t2, st2; s)∞(pt2; q)∞

2(p, pt2; p)∞
,

which is Theorem 3. The right-hand side of G2(t, p, q, s) is clearly analytic in t
for p1/2 < |t| < p−1/2. The limiting case follows from Theorem 1 with φ = 0,
r = p−1/2, and

f(θ, z) = F (p−1/2eiθ)/(1− tp−1/2eiθ)(zp3/2eiθ, zp3/2e−iθ; p)∞.

�

The next result gives an analytic continuation of G2(t, p, q, s) valid for 1 < |t| <
1/p, but to do so we have to choose q = p.

Theorem 4. An analytic continuation of G2(t, p, p, s) to 1 < |t| < 1/p may be
given by

G2(t, p, p, s) =
(pt2; p)∞

4π

∫ 2π

0

F (eiθ/p)

(teiθ/p, tpe−iθ; p)∞
dθ

+
(s, 1/t2, st2; s)∞

2(p; p)∞
− p(s, p2t2, 1/p2t2; s)∞

2(1− p)(p; p)∞
.

Furthermore

lim
t→1/p

G2(t, p, p, s) =
(s, p2, s/p2; s)∞

(p; p)∞
.

Proof. Theorem 3 gives an analytic continuation of G2(t, p, p, s) to p1/2 < |t| <
p−1/2. Therefore for 1 < |t| < p−1/2, we have

G2(t, p, p, s)−
(s, 1/t2, st2; s)∞

2(p; p)∞
=

(pt2; p)∞
4π

∫

|z|=p−1/2

F (p−1/2z)

(tp−1/2z, tp1/2/z; p)∞

dz

iz
−R,
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and R is the contribution from the poles in 1 < |z| < p−1/2. Again the only pole
in this annulus is when ztp1/2 = 1. Thus

R =
p(s, p2t2, 1/p2t2; s)∞

2(1− p)(p; p)∞

and Theorem 4 follows. The limiting case follows from Theorem 1. �

We now generalize Theorem 4 by analytically continuing G2(t, p, p, s) to annuli
of the type p1−k/2 < |t| < p−k/2.

Theorem 5. For k = 1, 2, . . . , G2(t, p, p, s) can be continued to p1−k/2 < |t| <
p−k/2 through

G2(t, p, p, s) =
(pt2; p)∞

4π

∫ 2π

0

F (eiθp−k/2)

(teiθp−k/2, tpk/2e−iθ; p)∞
dθ

+
(s; s)∞

2(1− t2)(p; p)∞

k−1
∑

j=0

(t2; p)j(t
2p2j , t−2p−2j ; s)∞
(1/p; 1/p)j

.

Furthermore

lim
t→p−k/2

G2(t, p, p, s) =
1

2(1− p−k)(p; p)∞

k
∑

j=0

[

k
j

]

p

(s, p2j−k, pk−2j ; s)∞p
j(j−k).

Proof. The proof of the analytic continuation formula is by induction on k and is
very similar to the proof of Theorem 4. In going from a value of k to k + 1 we
first restrict t to p(1−k)/2 < |t| < p−k/2. We then replace the integral on |z| = 1
by an integral on |z| = p−1/2, pick up only one pole in the ring 1 < |z| < p−1/2,
namely z = p−k/2/t, compute the residue then replace z by zq−1/2 in the integral.
To establish the limiting result, let t → p−k/2 in G2(t, p, p, s) and apply Theorem
1. The result is that the limit is

k
∑

j=0

(p−k; p)j(s, p
2j−k, pk−2j ; s)∞

2(p; p)∞(1− p−k)(1/p; 1/p)j
,

and the result follows. �

3. q-Hermite polynomials. The tribasic integrals G1(t, p, q, s) and G2(t, p, q, s)
of §2 are closely related to q-Hermite polynomials via an orthogonality relation. In
this section we give the basic facts about the q-Hermite polynomials. We then show
that evaluating a wide class of integrals, including G1(t, p, q, s) and G2(t, p, q, s) is
equivalent to solving a connection coefficient problem for polynomials.

The q-Hermite polynomials Hn(x|q) may be defined [12, p. 26] by the generating
function

(3.1)
∞
∑

n=0

Hn(cos θ|q)
(q; q)n

tn =
1

(teiθ, te−iθ; q)∞
.
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The key fact we need for these polynomials is the orthogonality relation [12, p. 188]

(3.2)
(q; q)∞
2π

∫ π

0

Hm(cos θ|q)Hn(cos θ|q)(e2iθ, e−2iθ; q)∞dθ = (q; q)nδmn.

Suppose that rn(x) is another set of polynomials, deg(rn) = n, whose generating
function is

R(x, t) =
∞
∑

n=0

rn(x)t
n.

To evaluate the integral

(3.3) I =
(q; q)∞
2π

∫ π

0

R(cos θ, t)(e2iθ, e−2iθ; q)∞dθ,

it is sufficient to know the connection coefficients cnk

rn(x) =
n
∑

k=0

cn,kHk(x|q).

The orthogonality relation (3.2) implies

(3.4) I =
∞
∑

n=0

cn,0t
n.

This is our alternate evaluation of an integral, and will be the sum side of a Rogers-
Ramanujan identity. What are required are suitable choices of the generating func-
tion R(x, t) for which the constants cn,0 can be computed.

Two such examples for R(x, t) are given by q-Hermite polynomials themselves,

(3.5a)
∞
∑

n=0

H2n(x|q)
(q2; q2)n

tn =
(−t; q)∞

(te2iθ, te−2iθ; q2)∞
,

(3.5b)

∞
∑

n=0

Hn(x|q2)
(q; q)n

tn =
(qt2; q2)∞

(teiθ, te−iθ; q)∞
.

Proof of (3.5a) and (3.5b). The Askey-Wilson integral [12, p. 140]

(3.6)

(q; q)∞
2π

∫ π

0

(e2iθ, e−2iθ; q)∞
(aeiθ, ae−iθ, beiθ, be−iθ, ceiθ, ce−iθ, deiθ, de−iθ; q)∞

dθ

=
(abcd; q)∞

(ab, ac, ad, bc, bd, cd; q)∞
,

implies (3.5a) and (3.5b). To show (3.5a), expand the right-hand side in q-Hermite
polynomials as

R =
∞
∑

m=0

bm(t)Hm(x|q).
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Then multiply R by the q-Hermite generating function 1/(seiθ, se−iθ; q)∞, and
integrate against the q-Hermite weight. Then (3.2) and (3.6) with a =

√
t, b = −

√
t,

c = s, and d = 0 imply
∞
∑

m=0

bm(t)sm =
1

(ts2; q2)∞
.

The q-binomial theorem [12, p. 7] then implies that b2m(t) = tm/(q2; q2)m and
b2m+1(t) = 0, completing the proof of (3.5a). The proof of (3.5b) is nearly identi-
cal. �

Besides the orthogonality relation (3.2) we will use

(3.7)
(q; q)∞
2π

∫ π

0

e2inθ(e2iθ, e−2iθ; q)∞dθ = (−1)nq(
n
2)(1 + qn)/2, n = 0, 1, · · · .

which is well-known and follows from (1.1).

4. q-Hermite change of base. In this section we consider the integral (3.3) for
the generating functions (3.5a), and (3.5b) on base p,

(4.1) Jp,q(t) = G1(t, p
2, p, q) =

(q; q)∞(−t; p)∞
2π

∫ π

0

(e2iθ, e−2iθ; q)∞
(te2iθ, te−2iθ; p2)∞

dθ,

(4.2) Hp,q(t) = G2(t, p, p
2, q2) =

(q2; q2)∞(pt2; p2)∞
2π

∫ π

0

(e2iθ, e−2iθ; q2)∞
(teiθ, te−iθ; p)∞

dθ,

along with the p-version of (3.1)

(4.3) Ip,q(t) =
G2(t, p, q

′, q)

(pt2; q′)∞
=

(q; q)∞
2π

∫ π

0

(e2iθ, e−2iθ; q)∞
(teiθ, te−iθ; p)∞

dθ,

where q′ is arbitrary. The bulk of this section is devoted to evaluating these integrals
via the method of §3, and giving partition theory consequences of the results.

Theorems 2 and 3 give the infinite product evaluations

lim
t→−1

Jp,q(t) =
(q,−q,−q; q)∞
(p,−p,−p; p)∞

,(4.1a)

lim
t→p−1/2

Hp,q(t) =
(−p; p)∞(q2, p, q2/p; q2)∞

(p; p)∞
.(4.2a)

while Theorem 3 implies

(4.3a) lim
t→p−1/2

(1− pt2)Ip,q(t) =
(q, p, q/p; q)∞
(p, p; p)∞

.

For the sum sides, as in §3 let

Hn(x|p) =
n/2
∑

k=0

cn,n−2k(p, q)Hn−2k(x|q),
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so that

(4.1b) Jp,q(t) =
∞
∑

n=0

c2n,0(p, q)

(p2; p2)n
tn,

(4.2b) Hp,q(t) =
∞
∑

n=0

c2n,0(p
2, q)

(p; p)2n
t2n,

(4.3b) Ip,q(t) =
∞
∑

n=0

c2n,0(p, q)

(p; p)2n
t2n.

Thus all that remains is to find cn0(p, q). However cnk(p, q) is known [],[11, (7.2)]
to be given as a sum

cn,n−2k(p, q) =
k

∑

j=0

(−1)jpk−jq(
j+1

2 )
[

n− 2k + j
j

]

q

×
([

n
k − j

]

p

− pn−2k+2j+1

[

n
k − j − 1

]

p

)

so that

(4.4) c2n,0(p, q) =
n
∑

j=−n

(−1)jpn−jq(
j+1

2 )
[

2n
n− j

]

p

.

We will be concerned with the values of p such that constant term c2n,0(p, q)
explicitly factors. For example, it is well-known that

c2n,0(q
−1, q) = q−n2

(q2n; q−1)n = q−n2

(q; q)2n/(q; q)n

but other choices of p may also be made (see the Appendix):

p =q2, c2n,0(q
2, q) = (−1)nqn

2

(q; q2)n(4.5a)

p =− q, c2n,0(−q, q) = (−q)n(−1; q2)n(4.5b)

p =q1/2, c2n,0(q
1/2, q) = qn/2(q1/2; q)n(4.5c)

p =q1/3, c2n,0(q
1/3, q) = qn/3(q2n/3; q−1/3)n(4.5d)

p =q2/3, c2n,0(q
2/3, q) = q2n/3(q1/3; q2/3)n(4.5e)

Proofs of the five evaluations (4.5a)-(4.5e) of the sum (4.4) will be given in the
Appendix, §9.
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For the Jp,q(t) integral (4.1a), the evaluations (4.5) give

Jq2,q(t) =
∞
∑

n=0

(q; q2)n
(q4; q4)n

qn
2

(−t)n,(4.6a)

J−q,q(t) =
∞
∑

n=0

(−1; q2)n
(q2; q2)n

(−qt)n =
(qt; q2)∞
(−qt; q2)∞

,(4.6b)

Jq,q2(t) =
∞
∑

n=0

(q; q2)n
(q2; q2)n

(qt)n =
(q2t; q2)∞
(qt; q2)∞

,(4.6c)

Jq,q3(t) =
∞
∑

n=0

(q; q)2n
(q; q)n(q2; q2)n

(qt)n,(4.6d)

Jq2,q3(t) =
∞
∑

n=0

(q; q2)n
(q4; q4)n

(q2t)n.(4.6e)

The product evaluations for (4.5b) and (4.5c) follow from the Askey-Wilson
integral (3.6). If t = −1 then (4.5a) factors, by a limiting case of a 2φ1 summation
theorem [12, (II.8)], while (4.5d) and (4.5e) give new results for t = −1 via (4.1a).

Theorem 6. We have

∞
∑

n=0

(−q; q2)n
(−q;−q)n

qn =
(−q1,−q5; q6)∞
(q2, q4; q6)∞

=
1

(q1, q4, q5, q7, q8, q11; q12)∞
(A)

∞
∑

n=0

(q; q2)n
(q4; q4)n

(−q2)n =
(q2, q6, q6, q10; q12)∞
(q3, q4, q8, q9; q12)∞

(B)

Proof. Use (4.6d), (4.6e), (4.1b) and (4.1a), and replace q by −q to obtain (A). �

Using

(−q; q2)n
(−q;−q)n

qn =







(−q1+2N ;q2)N
(q2;q2)N

q2N if n = 2N,

(−q3+2N ;q2)N
(q2;q2)N

q2N+1 if n = 2N + 1,

Theorem 6 (A) has the following integer partition interpretation.

Corollary 1. Let A(n) be the number of integer partitions of n into parts congruent
to ±1, ±4, or ±5 mod 12. Let B(n) be the number of integer partitions of n

(1) whose odd parts are distinct and lie between the largest even part and twice
the largest even part, or

(2) which have a single part of size 1, and whose other odd parts are distinct,
greater than two more than the largest even part, and at most one more
than twice the largest even part.

Then A(n) = B(n).

In Corollary 1, the partitions for A(10) = 8 are

811, 7111, 55, 541, 511111, 4411, 4111111, 1111111111,
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while those for B(10) = 8 are

10, 82, 641, 622, 442, 4222, 22222, 5221.

For the Hp,q(t) integral (4.1b), the evaluations (4.5) become

Hq2,q(t) =
∞
∑

n=0

q2n
2

(−t2)n
(q4; q4)n

= (q2t2; q4)∞,(4.7a)

Hiq,q(t) =
∞
∑

n=0

(−1; q4)n
(iq; iq)2n

(−qt)2n,(4.7b)

Hq,q2(t) =
∞
∑

n=0

(q2; q4)n
(q; q)2n

(q2t2)n =
(−q3t2; q2)∞
(q2t; q2)∞

,(4.7c)

Hq,q3(t) =
∞
∑

n=0

(−q; q)2n
(q2; q2)n

(qt)2n,(4.7d)

Hq2,q3(t) =
∞
∑

n=0

(q4t2)n

(q4; q4)n
=

1

(q4t2; q4)∞
.(4.7e)

Again (3.6) establishes the product representations for (4.7a), (4.7c) and (4.7e).

Theorem 7. We have

∞
∑

n=0

(−q; q)2n
(q2; q2)n

qn =
(q6; q6)∞

(q; q)∞(q3; q6)∞
.

Proof. Use (4.2a) and (4.7d). �

Using
(−q; q)2n
(q2; q2)n

qn =
(−q1+n; q)n

(q; q)n
qn

we have the following corollary.

Corollary 2. Let A(n) be the number of integer partitions of n into parts not
congruent to 0 mod 6, whose parts which are congruent to 3 mod 6 are colored
red and blue. Let B(n) be the number of integer partitions of n whose parts are
colored red and blue, the red parts are distinct and greater than the largest blue part
and at most twice the largest blue part. Then A(n) = B(n).

In Corollary 2, the partitions for A(5) = 9 are

5, 41, 32, 32, 311, 311, 221, 2111, 11111,

where the red parts are underlined, while those for B(5) = 9 are

11111, 2111, 32, 221, 2111, 32, 311, 41, 5.

Finally we turn to Ip,q(t). The evaluations for Ip,q(t) which follow from (4.5c)
and (4.5d)

Iq,q3(t) =
1

(qt2; q)∞
, Iq,q2(t) =

1

(qt2; q)∞
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are independently established by the The Askey-Wilson integral (2.7).
The remaining three evaluations (4.5a), (4.5b) and (4.5e) become

Iq2,q(t) =
∞
∑

n=0

(q; q2)n
(q2; q2)2n

(−1)nqn
2

t2n(4.8a)

I−q,q(t) =
∞
∑

n=0

(−1; q2)n
(−q;−q)2n

(−qt2)n(4.8b)

Iq2,q3(t) =
∞
∑

n=0

(q; q2)n
(q2; q2)2n

(q2t2)n(4.8e)

whose (4.3a) evaluations are

(4.9a)
∞
∑

n=0

(q; q2)n
(q2; q2)2n

(−1)nq(n−1)2−n
(

q2n−1 + q((1− q4n)(1 + q2n−1)
)

= 0.

(4.9b)
∞
∑

n=0

(−1; q2)n−1

(−q;−q)2n
q2(n−1)

(

1− q + q2 + q2n+1
)

=
(−1; q2)∞

(−q, q2; q2)∞
.

(4.9e)

∞
∑

n=0

(q; q2)n
(q2; q2)2n

q2n−1
(

q2n+1 − 1 + q4n
)

=
(q; q2)∞
(q2; q2)∞

.

One may evaluate the integral I−q,q(t) by other elementary means for special
choices of t. Here we take t = 1 and t = q.

Theorem 8. We have

∞
∑

n=0

(−1; q2)n
(q; q)2n

qn =
(−q; q2)∞
(q; q)∞

(q6,−q2,−q4; q6)∞,(A)

∞
∑

n=0

(−q2; q2)n
(q; q)2n+1

qn =
(−q; q2)∞
(q; q)∞

(q6,−q6,−q6; q6)∞.(B)

Proof. For (A) we evaluate

I−q,q(1) =
(q; q)∞
2π

∫ π

0

(e2iθ, e−2iθ; q)∞
(eiθ, e−iθ;−q)∞

dθ =

=
(q; q)∞
4π

∫ π

−π

(e2iθ, e−2iθ, q2e2iθ, q2e−2iθ; q4)∞(qe2iθ, qe−2iθ; q2)∞
(eiθ, e−iθ,−qeiθ,−qe−iθ; q2)∞

dθ

=
(q; q)∞
4π

∫ π

−π

(−eiθ,−e−iθ, qeiθ, qe−iθ, qe2iθ, qe−2iθ; q2)∞dθ.

Using the Jacobi triple product identity (1.1) we have

I−q,q(1) =
(q; q)∞

4π(q2; q2)3∞

∞
∑

m,n,j=−∞
(−1)n+jqm

2+m+n2+j2
∫ π

−π

ei(m+n+2j)θ(1 + eiθ)dθ.
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This integral has two terms, the first forces n = −2j − m, the second forces
n = −m− 2j − 1. In the first case the power of q is

m2 +m+ (m+ 2j)2 + j2 = 2(m+ j)2 + 3j2 +m.

So we can shift m down by j and the resulting double sum factors into two Jacobi
triple products. For the second term the power of q is

m2 +m+ (m+ 2j + 1)2 + j2 = 2(m+ j)2 + 3j2 + 3m+ 4j + 1,

and again a shift of m down by j allows an evaluation, equal to the first term. The
result is, after replacing q by −q,

Iq,−q(1) =
(−q; q2)∞
(q; q)∞

(q6,−q2,−q4; q6)∞.

For (B) we can similarly show that

Iq,−q(q) =
∞
∑

n=0

(−1; q2)n
(q; q)2n

q3n

=
(−q; q2)∞
(q; q)∞

(q6,−q2,−q4; q6)∞ − q(q6,−1,−q6; q6)∞,

and subtracting this from (A) gives (B). �

For (4.8a) Iq2,q(1) and Iq2,q(q) may be evaluated in a similar manner using the
quintuple product identity (1.2). The results are equivalent to two given by Slater
[16, (117), (118)].

Proposition 1. We have

∞
∑

n=0

(−q; q2)n
(q2; q2)2n

qn
2

=
(−q1,−q5,−q7,−q9,−q13; q14)∞

(q2, q4, q10, q12; q14)∞
,(A)

∞
∑

n=0

(−q; q2)n
(q2; q2)2n

qn
2+2n =

(−q3,−q5,−q7,−q9,−q11; q14)∞
(q4, q6, q8, q10; q14)∞

.(B)

It is clear that both sides of both parts Proposition 1 have positive coefficients
as power series in q. Here we state the integer partition version of Proposition 1A.

Corollary 3. Let A(n) be the number of integer partitions of n into parts congruent
to 2,4, 10 or 12 mod 14 and distinct parts congruent to 1,5,7,9, or 13 mod 14. Let
B(n) be the number of integer partitions of n

(1) whose odd parts are consecutive (starting with 1) and have multiplicity one
or two,

(2) whose largest even part is at most two more than twice the largest odd part.

Then A(n) = B(n).

In Corollary 3, the partitions for A(12) = 12 are

12, 10 2, 921, 75, 741, 7221, 5421, 52221, 444, 4422, 42222, 222222
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while those for B(12) = 12 are

44211, 422211, 2222211, 831, 6321, 4431,

43221, 322221, 43311, 332211, 53211, 5331.

The combinatorial version of Proposition 1B changes the parts mod 14 appro-
priately for A(n) and adds an even part which is one larger than the largest odd
part for B(n).

We do not know the analogous specializations of (4.8e).

5. A second set of polynomials. In this section we carry out the program of
§3 for the polynomials sn(x|q) defined by the generating function

∞
∑

n=0

sn(x|q)
tn

(q; q)n
=

(qt2; q)∞
(teiθ, te−iθ; q)∞

, x = cos θ.

These polynomials were considered in [11], where it was shown that the choice of
p = q5 immediately leads to the Rogers-Ramanujan identities of modulus 5.

The integral we are evaluating is

(5.1) Sp,q(t) = G2(t, q, q, p) =
(qt2; q)∞(p; p)∞

2π

∫ π

0

(e2iθ, e−2iθ; p)∞
(teiθ, te−iθ; q)∞

dθ.

Note that Theorems 3 and 4 imply

lim
t→q−1

Sp,q(t) =
(p, q2, p/q2; p)∞

(q; q)∞
,(5.1a)

lim
t→q−1/2

Sp,q(t) =
(p, q, p/q; p)∞

(q; q)∞
.(5.1b)

Let

sn(x|q) =
n
∑

k=0

dnk(p, q)Hk(x|p).

Only the even degree polynomials s2n(x|q) have a non-zero constant term. Thus

Sp,q(t) =
∞
∑

n=0

d2n,0(p, q)
t2n

(q; q)2n
.

The value of d2n,0(p, q) was found in [11, (7.4)] to be

d2n,0(p, q) =
n
∑

j=0

(q; q)2nq
(n−j)(n+j+2)p(

j+1

2 )(−1)j

(q; q)2j(q; q)n−j(q2j+2; q)n−j
.
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We have nine choices of p for which d2n,0(p, q) may be evaluated (see the Ap-
pendix for proofs)

p =q, d2n,0(q, q) = (−1)nq(
n+1

2 )(q; q)2n/(q; q)n(5.2a)

p =q2, d2n,0(q
2, q) = (−1)nqn(n+1)(q; q2)n(5.2b)

p =q3, d2n,0(q
3, q) = 0, n > 0(5.2c)

p =q4, d2n,0(q
4, q) = qn

2+2n(q; q2)n(5.2d)

p =q5, d2n,0(q
5, q) = qn

2+2n(q; q)2n/(q; q)n(5.2e)

p =q5/2, d2n,0(q
5/2, q) = (−1)nqn(3n+2)/2(q1/2; q)n(5.2f)

p =q7/2, d2n,0(q
7/2, q) = qn(n+2)(q1/2; q)n(5.2g)

p =− q3, d2n,0(−q3, q) = qn
2+2n(−1; q2)n(5.2h)

and

(5.2i) p = ωq3, d2n,0(ωq
3, q) = (1−ω)qn2+2n(q3; q3)n−1/(q; q)n−1, n > 0, ω3 = 1.

One way to motivate the choices of p given above is the value

d40(p, q) = (p− q3)(p2 + pq3 − q5 − q7)

which simplifies for those choices of p.
The first four choices of p evaluate Sp,q(t) for all t, which are again equivalent

to special cases of the Askey-Wilson integral,

Sq,q(t) =
∞
∑

n=0

q(
n
2)(−qt2)n
(q; q)n

= (qt2; q)∞,(5.3a)

Sq2,q(t) =

∞
∑

n=0

qn(n+1)(−t2)n
(q2; q2)n

= (q2t2; q2)∞,(5.3b)

Sq3,q(t) =1,(5.3c)

Sq4,q(t) =
∞
∑

n=0

qn(n+2)(t2)n

(q2; q2)n
= (−q3t2; q2)∞.(5.3d)

The S series corresponding to the last five choices do not have closed form sums
and give new integral evaluations.

Sq5,q(t) =

∞
∑

n=0

qn
2+2nt2n

(q; q)n
,(5.3e)

Sq5,q2(t) =
∞
∑

n=0

(q; q2)n
(q2; q2)2n

qn(3n+2)(−t2)n,(5.3f)

Sq7,q2(t) =
∞
∑

n=0

(q; q2)n
(q2; q2)2n

q2n(n+2)t2n,(5.3g)

S−q3,q(t) =
∞
∑

n=0

(−1; q2)n
(q; q)2n

qn(n+2)t2n.(5.3h)

Sωq3,q(t) =1 + (1− ω)
∞
∑

n=1

(q3; q3)n−1

(q; q)2n(q; q)n−1
qn(n+2)t2n.(5.3i)
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The choices of t = 1/q, 1/q2 in (5.3e), combined with (5.1a), (5.1b) give the
Rogers-Ramanujan identities of modulus 5

∞
∑

n=0

qn
2

(q; q)n
=

1

(q1, q4; q5)∞
(5.4e1)

∞
∑

n=0

qn
2+n

(q; q)n
=

1

(q2, q3; q5)∞
.(5.4e2)

If we use (5.1a) and (5.1b) in (5.3f)-(5.3h), we find six identities which appear
in Slater’s [16] list as (19), (15), (32), (33), (48), (47), respectively.

∞
∑

n=0

(−q; q2)n
(q2; q2)2n

q3n
2

=
(−q3,−q5,−q7; q10)∞

(q4, q6; q10)∞
(5.4f1)

∞
∑

n=0

(−q; q2)n
(q2; q2)2n

q3n
2−2n =

(−q1,−q5,−q9; q10)∞
(q2, q8; q10)∞

(5.4f2)

∞
∑

n=0

(−q; q2)n
(q2; q2)2n

q2n
2+2n =

(−q5,−q7,−q9; q14)∞
(q4, q6, q8, q10; q14)∞

(5.4g1)

∞
∑

n=0

(−q; q2)n
(q2; q2)2n

q2n
2

=
(−q3,−q7,−q11; q14)∞
(q2, q6, q8, q12; q14)∞

(5.4g2)

∞
∑

n=0

(−1; q2)n
(q; q)2n

qn
2+n =

(−q2,−q3,−q4; q6)∞
(q2, q3, q4; q6)∞

(5.4h1)

∞
∑

n=0

(−1; q2)n
(q; q)2n

qn
2

=
(−q1; q2)∞
(q; q2)∞

(5.4h2)

Note that (5.4f) and (5.4g) are companion results for Proposition 1. Thus combi-
natorial interpretations can be stated by changing the multiplicity of the odd parts
to change the power of q in the sum.

Proposition 2. Let A(n) be the number of integer partitions of n into parts con-
gruent to 4 or 6 mod 10 and distinct parts congruent to 3,5, or 7 mod 10. Let B(n)
be the number of integer partitions of n

(1) whose odd parts are consecutive (starting with 1) and have multiplicity three
or four,

(2) whose largest even part is at most two more than twice the largest odd part.

Then A(n) = B(n).

Proposition 3. Let A(n) be the number of integer partitions of n into parts con-
gruent to 2,6,8, or 12 mod 14 and distinct parts congruent to 3,7, or 11 mod 14.
Let B(n) be the number of integer partitions of n

(1) whose odd parts are consecutive (starting with 1) and have multiplicity two
or three,

(2) whose largest even part is at most two more than twice the largest odd part.

Then A(n) = B(n).

For (5.4i) we obtain the following results.
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Theorem 9. We have

1 + (1− ω)
∞
∑

n=1

(q3; q3)n−1

(q; q)2n(q; q)n−1
qn(n+1) =

(ωq3, ωq2, q;ωq3)∞
(q; q)∞

1 + (1− ω)

∞
∑

n=1

(q3; q3)n−1

(q; q)2n(q; q)n−1
qn

2

=
(ωq3, q2, ωq;ωq3)∞

(q; q)∞
.

Another form of the integral representation (5.3e) is provided by the Nassrallah-
Rahman integral [12, (6.4.1)], as 3φ2 on base q5). This gives a quintic transforma-
tion which immediately becomes the first Rogers-Ramanujan identity if t = 1/q.

[11, Theorem 7.1]. We have
∞
∑

n=0

qn
2+2nt2n

(q; q)n
=

(t4q9, t2q5, t4q6; q5)∞
(t2q3; q)∞

3φ2

(

t2q2, t2q3, t2q5

t4q9, t4q6

∣

∣

∣

∣

q5, t2q5
)

.

We do not know the analogous extensions of (5.3f), (5.3g) and (5.3h) which
include the variable t. These should be 10th degree, 14 th degree, and 12th degree
transformations, and may involve multiple sums.

6. m-versions. The Rogers-Ramanujan identities have the natural generalization
[10],[11],[14]

(6.1)

∞
∑

n=0

qn
2+mn

(q; q)n
=

am(q)

(q, q4; q)∞
+

bm(q)

(q2, q3; q)∞
,

where am(q) and bm(q) are Laurent polynomials in q which are explicitly known.
We refer to (6.1) as an “m-version” of the Rogers-Ramanujan identities.

In this section we find m-versions for the identities in §5 for m < 0 via Theorem
5. We shall see that Theorem 5 gives a single sum for the appropriate polynomials
that replace am(q) and bm(q). In this section we will also use generating functions
to find an alternative representation for these polynomials: in this multisum form
the polynomials clearly have a constant sign, and positivity results are immediate.
There will also be results given in this form for m > 0.

According to Theorem 5

(6.2) lim
t→q−m/2

Sp,q(t) =
1

2(1− q−m)

m
∑

j=0

[

m
j

]

q

(p, q2j−m, qm−2j ; p)∞
(q; q)∞

qj(j−m),

for m = 1, 2, . . . .
For each choice of p in (5.3) Sp,q(t) is an analytic function of t, thus we may

replace t by q−m/2. For example in (5.3e)

(6.3) Sq5,q(q
−m/2) =

∞
∑

n=0

qn
2+(2−m)n

(q; q)n
.

We next collect several of the cases in §5 into one case. Let s be an odd in-
teger which is relatively prime to a positive integer b. It is clear from (6.2) that
Sqs,qb(q

−bm/2) is a linear combination of infinite products

Fi(s, b) =
(qs, qi, qs−i; qs)∞

(qb; qb)∞
, 1 ≤ i ≤ (s− 1)/2

with rational functions of q as coefficients.
Propositions 4 and 5 give two explicit forms of these rational functions.



TRIBASIC INTEGRALS AND IDENTITIES OF ROGERS-RAMANUJAN TYPE 17

Proposition 4. Let s ≥ 3 be an odd positive integer relatively prime to b. Let β
be the inverse of b mod s, so that bβ = 1 + Ts. Then we have

Sqs,qb(q
−bm/2) =

(s−1)/2
∑

i=1

ci(m, s, b)Fi(s, b),

where

ci(m, s, b) = (−1)Ti+1
∑

t

[

m
(m+ βi)/2 + ts

]

q−b

1− qb(2ts+βi)

1− q−bm
qe,

e = −bβi− bβT i2 + s

(

Ti+ 1

2

)

− 2b2βit− bst− 2b2st2 for m+ βi even,

ci(m, s, b) = (−1)Ti+1+b
∑

t

[

m
(m+ βi− s)/2 + ts

]

q−b

1− qb((2t−1)s+βi)

1− q−bm
qe,

e = (−bβi+ bs− 2tbs)((2t− 1)b+ Ti+ 1) + s

(

(2t− 1)b+ Ti+ 1

2

)

for m+ βi odd.

Proof. Let’s first consider m+ βi even so that b(m− 2j) = ±i mod s implies that
j = (m∓ βi)/2 + ts for some integer t. Upon extracting the coefficient of Fi(s, b),
we see that the choice of +βi gives the same value as −βi, this leaves only the
stated single sum and eliminates the denominator factor of 2. The m+βi odd case
is done similarly. �

Because of the factor 1 − q−bm in the denominator of Proposition 4, it is not
clear that ci(m, s, b) is in fact a polynomial in q−b with non-negative coefficients.
However this is the case, if we use the following elementary fact

[

m
j

]

q

1− qm−2j

1− qm
=

[

m− 2
j

]

q

− qm−2j

[

m− 2
m− j

]

q

we see that for m+ βi even

(−1)TiqbβT i2−s(Ti+1

2 )ci(m, s, b) =
∑

t

[

m− 2
(m− βi)/2− ts

]

q−b

q−2b2βit+bst−2b2st2

−
∑

t

[

m− 2
(m+ βi)/2− ts

]

q−b

q−bβi+2b2βit+bst−2b2st2 ,

which shows that ci(m, s, b) is a hook difference polynomial (see [6])

Proposition 5. The coefficient of Fi(s, b) is a polynomial in 1/q explicitly given
by the hook polynomial

ci(m, s, b) = (−1)Tiq−bβT i2+s(Ti+1

2 )DK,I(N,M ;α, β)(q−b), for m+ βi even,

K = s, N = (m− βi)/2, M = (m+ βi)/2− 2, I = βi, α = 2b− 1, β = 1.
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and for m+ βi odd,

ci(m, s, b) = (−1)Ti+bqs(
Ti+1

2 )−s(b+1

2 )+bβi(b−Ti)DK,I(N,M ;α, β)(q−b).

K = s, N = (m−βi+s)/2, M = (m+βi−s)/2−2, I = βi−s, α = 2b−1, β = 1.

We next consider the choices of b and s given in §5. In these cases we shall give
recurrences satisfied by the polynomials ci(m, s, b). Solving these recurrences gives
manifestly positive expressions for the polynomials, as well as results for positive
values of m.

The case (5.3e). In this case we have s = 5 in Propositions 4 and 5

(6.4) Sq5,q(q
−m/2) = Ẽm−2(q) :=

∞
∑

n=0

qn(n+2−m)

(q; q)n
=

c1(m, 5, 1)

(q2, q3; q5)∞
+

c2(m, 5, 1)

(q1, q4; q5)∞
.

We now give alternative forms for the polynomials c1(m, 5, 1) and c2(m, 5, 1).
The easily verified q-difference equation

(6.5) Ẽm+1(q) = Ẽm(q) + q−mẼm−1(q)

indicates that ci(m + 2, 5, q) also satisfy (6.5). (The reason is that 1/(q, q4; q5)∞
and 1/(q2, q3; q5) are linear independent over the field of Laurent polynomials, see
§8.) The initial conditions are

c1(1, 5, 1) = 1, c1(2, 5, 1) = 0, c2(1, 5, 1) = 0, c2(2, 5, 1) = 1.

(6.5) is a well-studied [3] q-version of the Fibonacci recurrence, the solutions are

c1(m, 5, 1) =

(m−3)/2
∑

j=0

q−j2−j

[

m− j − 3
j

]

q−1

,(6.6a)

c2(m, 5, 1) =

(m−2)/2
∑

j=0

q−j2
[

m− j − 2
j

]

q−1

.(6.6b)

These explicit forms may be found using generating functions, we will carry out
the details in the subsequent cases. The equality of the forms (6.6) and those given
by Proposition 4 are well-known polynomial identities which imply the Rogers-
Ramanujan identities.

The case (5.3f) We set

Sq5,q2(q
−m) =F̃m−1(q) :=

∞
∑

n=0

(q; q2)n
(q2; q2)2n

(−1)nq3n
2+2n−2mn

=c1(m, 5, 2)
(q5, q1, q4; q5)∞

(q2, q2)∞
+ c2(m, 5, 2)

(q5, q2, q3; q5)∞
(q2, q2)∞

.(6.7)

It is easy to verify that F̃ satisfies the recurrence relation

F̃m+2 + q−1F̃m+1 − F̃m − q−1F̃m−1 + q−1−2mF̃m−1 = 0,
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hence fm = ci(m+ 1, 5, 2) satisfy

(6.8) fm+2 + q−1fm+1 − fm − q−1fm−1 + q−1−2mfm−1 = 0.

The initial conditions are:

c1(1, 5, 2) = 0, c1(2, 5, 2) = 1, c1(3, 5, 2) = −q−1,

c2(1, 5, 2) = 1, c2(2, 5, 2) = 0, c2(3, 5, 2) = 1.

We next explicitly solve the recurrence relation (6.8) using generating functions.
Let fm be a solution to (6.8) and let s = q−1 and assume for the time being that
|s| < 1. If F (t) =

∑∞
n=0 fnt

n then F satisfies

F (t) =
φ(t)− s3t3F (s2t)

(1− t2)(1 + st)
,

φ(t) := f0(1 + st) + f1t.

This leads to

F (t) :=
∞
∑

n=0

fnt
n =

∞
∑

m=0

(−1)mt3ms3m
2

φ(ts2m)

(−t, t,−st; s2)m+1
.

Thus if f0 = 0, f1 = 1, φ(t) = t, we have c1(m+ 1, 5, 2) = fm,

c1(n+ 1, 5, 2) = (−1)n−1
∑

3m+2j+k+1=n

[

m+ j
j

]

q−4

[

m+ k
k

]

q−2

q−3m2−2m−k,

while f0 = 1, f1 = 0, φ(t) = 1 + st yields

c2(n+ 1, 5, 2) = (−1)n
∑

3m+2j+k=n

[

m+ j
j

]

q−4

[

m+ k − 1
k

]

q−2

q−3m2−k.

We have two forms for the polynomials ci(n, 5, 2), which is a polynomial identity.
Somewhat surprisingly, unlike case (5.3e), a new identity, not (5.3f), results from a
limit.

From Proposition 4 it is easy to see that if Q = 1/q, |Q| < 1,

lim
m→∞

ci(m, s, b) =(−1)Ti+1QbβT i2−s(Ti+1

2 )/(Qb;Qb)∞

×
(

(Q4b2s,−Q2b2(s+βi)−bs,−Q2b2(s−βi)+bs;Q4b2s)∞

−Qbβi(Q4b2s,−Q2b2(s+βi)+bs,−Q2b2(s−βi)−bs;Q4b2s)∞
)

.

Evaluating this limit using the positive forms gives

∞
∑

m=0

q3m
2+2m

(q4; q4)m(q; q2)m+1
+

∞
∑

m=0

(−1)m+1q3m
2+2m

(q4; q4)m(−q; q2)m+1

=
2q

(q2; q2)∞

(

(q80,−q54,−q26; q80)∞ − q6(q80,−q74,−q6; q80)∞
)

.
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∞
∑

m=0

q3m
2

(q4; q4)m(q; q2)m
+

∞
∑

m=0

(−1)mq3m
2

(q4; q4)m(−q; q2)m

=
2

(q2; q2)∞

(

(q80,−q38,−q42; q80)∞ − q2(q80,−q22,−q58; q80)∞
)

.

The case (5.3g). We set

Sq7,q2(q
−m) =G̃m−2(q) :=

∞
∑

n=0

(q; q2)n
(q2; q2)2n

q2n
2+4n−2mn

=c1(m, 7, 2)
(q7, q1, q6; q7)∞

(q2, q2)∞
+ c2(m, 7, 2)

(q7, q2, q5; q7)∞
(q2, q2)∞

+ c3(m, 7, 2)
(q7, q3, q4; q7)∞

(q2, q2)∞
.(6.9)

Analogous to the case (5.3f) one can verify that

G̃m+2 + q−1G̃m+1 − (1 + q−2−2m)G̃m − q−1G̃m−1 = 0.

Again the linear independence of {F1(7, 2), F2(7, 2), F3(7, 2)} over the field of Lau-
rent polynomials (see §8) implies that gm = ci(m+ 2, 7, 2) also satisfy (6.10)

(6.10) gm+2 + q−1gm+1 − (1 + q−2−2m)gm − q−1gm−1 = 0.

The initial conditions are

c1(1, 7, 2) = 0, c1(2, 7, 2) = 0, c1(3, 7, 2) = 1,

c2(1, 7, 2) = 1, c2(2, 7, 2) = 0, c2(3, 7, 2) = 1,

c3(1, 7, 2) = 0, c3(2, 7, 2) = 1, c3(3, 7, 2) = 0.

The above initial conditions show that the ci(m + 2, 7, 2), 1 ≤ i ≤ 3 is a basis of
solutions to (6.10).

We next solve the recurrence (6.10) using generating functions and find an ex-
plicit positive form for the polynomials ci(m+ 2, 7, 2).

Let gm be a solution to (6.10) and let s = q−1 and assume for the time being
that |s| < 1. If G(t) =

∑∞
n=0 gnt

n then G satisfies

G(t) =
φ(t) + s2t2G(s2t)

(1− t2)(1 + st)
,

φ(t) := g0(1 + st) + g1t++st2g1.

This leads to

G(t) :=
∞
∑

n=0

gnt
n =

∞
∑

m=0

t2ms2m
2

φ(ts2m)

(−t, t,−st; s2)m+1
.
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In the case gm = c1(m+ 2, 7, 2), φ(t) = t and we find

c1(n+ 2, 7, 2) = (−1)n−1
∑

2m+2j+k+1=n

[

m+ j
j

]

s4

[

m+ k
k

]

s2
s2m(m+1)+k.

On the other hand if gm = c2(m+ 2, 7, 2), then φ(t) = t(1 + st) and we obtain

c2(n+ 2, 7, 2) = (−1)n−1
∑

2m+2j+k+1=n

[

m+ j
j

]

s4

[

m+ k − 1
k

]

s2
s2m(m+1)+k.

Finally gm = c3(m+ 2, 7, 2) makes φ(t) = 1 + st and we get

c3(n+ 2, 7, 2) = (−1)n
∑

2m+2j+k=n

[

m+ j
j

]

s4

[

m+ k − 1
k

]

s2
s2m

2+k.

Since the expressions given for ci(n + 2, 7, 2) are polynomials in s we can remove
the restriction |s| < 1 and they must hold for all s.

This time when we find limn→∞ ci(n+ 2, 7, 2) using the two forms we find

∞
∑

m=0

q2m
2+2m

(q4; q4)m

(

1

(q; q2)m+1
− 1

(−q; q2)m+1

)

=
2q

(q2; q2)∞

(

(q112,−q74,−q38; q112)∞ − q8(q112,−q10,−q102; q112)∞
)

.

∞
∑

m=0

q2m
2+2m

(q4; q4)m

(

1

(q; q2)m+1
+

1

(−q; q2)m+1

)

=
2

(q2; q2)∞

(

(q112,−q46,−q66; q112)∞ − q6(q112,−q18,−q94; q112)∞
)

.

∞
∑

m=0

q2m
2

(q4; q4)m

(

1

(q; q2)m
+

1

(−q; q2)m

)

=
2

(q2; q2)∞

(

(q112,−q54,−q58; q112)∞ − q4(q112,−q26,−q86; q112)∞
)

.

We may also explicitly find the polynomials for ci(n, 7, 2) for n < 0 in the same
way. The results are

c1(2− n, 7, 2) = (−1)n−2
∑

2m+2j+k+2=n

[

m+ j
j

]

q4

[

m+ k
k

]

q2
qm

2+2m+1+k,

c2(2− n, 7, 2) = (−1)n−1
∑

2m+2j+k+1=n

[

m+ j
j

]

q4

[

m+ k − 1
k

]

q2
qm

2+k,
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c3(2− n, 7, 2) =(−1)n
∑

2m+2j+k=n

[

m+ j
j

]

q4

[

m+ k − 1
k

]

q2
qm

2−2m+k

+ (−1)n−1
∑

2m+2j+k+1=n

[

m+ j
j

]

q4

[

m+ k
k

]

q2
qm

2−1+k.

An unusual theta identity results from evaluating limn→∞ ci(2−n, 7, 2) and using

limn→−∞ G̃n(q) = 0.
The case (5.3h). We set

(6.11) H̃m(q) =

∞
∑

n=0

(−1; q2)n
(q; q)2n

qn(n−m),

which satisfies the three term recurrence relation

(6.12) H̃m+2(q) + [q−1 − q−1−m]H̃m−2 = [1 + q−1 + q−1−m]H̃m(q).

In this case

H̃m(q) =
m+2
∑

j=0

[

m+ 2
j

]

q

(−q3, q2j−m−2, qm+2−2j ;−q3)∞
2(1− q−m−2)(q; q)∞

q−j(m+2−j).

It is surprising that the right-hand side in the above formula changes dramatically
according to whether m is odd or even. It is easy to see that there are Laurent

polynomials h
(1)
m (q), h

(2)
m (q) and h

(3)
m (q) such that

H̃2m(q) = h(1)m (q)
(−q,−q3,−q5; q6)∞

(q, q3, q5; q6)∞
,(6.13a)

H̃2m+1(q) = h(2)m (q)
(−1,−q6, q3,−q3; q6)∞

(q, q2, q4, q5; q6)∞
(6.13b)

+ h(3)m (q)
(−q2,−q3,−q4; q6)∞

(q2, q3, q4; q6)∞
.

Therefore (6.12) shows that {h(1)m (q)} satisfies

(6.14a) h
(1)
m+1(q) + q−1[1− q−2m]h

(1)
m−1(q) = [1 + q−1 + q−1−2m]h(1)m (q),

while {h(2)m (q)} and {h(3)m (q)} satisfy

(6.14b) Xm+1(q) + q−1[1− q−2m−1]Xm−1(q) = [1 + q−1 + q−2−2m]Xm(q).

The initial conditions are

h
(1)
0 (q) = 1, h

(1)
1 (q) = 1 + 2/q,

h
(2)
−1(q) = 0, h

(2)
0 (q) = 1, h

(3)
−1(q) = 1, h

(3)
0 (q) = 1.
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We can explicitly find h
(i)
n (q) as in the previous cases, the results are

h(1)n (q) =
∑

m+j+k=n

[

2m+ 1 + j
j

]

q−1

[

m
k

]

q−2

q−k2−k−m2

,

h(2)n (q) =
∑

m+j+k=n

[

2m+ 1 + j
j

]

q−1

[

m
k

]

q−2

q−k2−k−m2−m,

h(3)n (q) =
∑

m+j+k=n

[

2m+ j
j

]

q−1

[

m
k

]

q−2

q−k2−k−m2−m

+
∑

m+j+k=n−1

[

2m+ 1 + j
j

]

q−1

[

m
k

]

q−2

q−k2−k−m2−3m−2.

One may also appeal to orthogonal polynomials to find explicit formulas for

h
(i)
n (q). The three-term recurrence (6.14a) is a special case of that for the Al-

Salam-Chihara polynomials, defined by

pn(cos θ; t1, t2|q) = 3φ2

(

q−n, t1e
iθ, t1e

−iθ

t1t2, 0

∣

∣

∣

∣

q, q

)

=
(t2e

−iθ; q)nt
n
1 e

inθ

(t1t2; q)n
2φ1

(

q−n, t1e
iθ

q1−neiθ/t2

∣

∣

∣

∣

q,
qe−iθ

t2

)

.

Thus

h(1)m (q) = (−1)mpm(−(q1/2 + q−1/2)/2; q−1/2, 0|q−2),

and (6.13a) is

∞
∑

n=0

(−1; q2)n
(q2; q2)2n

qn(n−2m)(6.15)

=
(−q,−q3,−q5; q6)∞

(q, q3, q5; q6)∞

m
∑

j=0

[

m
j

]

q2
(−1; q)2j (−1)m−jq−j2 .

The recurrence relation (6.14b) corresponds to a special case of the associated
Al-Salam-Chihara polynomials [13]. We shall follow the notation in Ismail and
Rahman [13]. The polynomials relevant to (6.14b) correspond to b = c = d = 0 in
the associated Askey-Wilson recurrence relation [13, (4.14)]

(6.16)
[

2x− arn+α
]

Yn(x; a|r) = a−1Yn+1(x; a|r) + a(1− rn+α)Yn−1(x; a|r)

Ismail and Rahman identified two polynomial solutions to the general recurrence
relation of the Askey-Wilson polynomials and in the case considered here they
satisfy the initial conditions, see (4.2), (4.14), and (5.2) in [13]

pα−1(x; a|r) = 0, pα0 (x; a|r) = 1, qα−1(x; a|r) = 1, qα0 (x; a|r) = 1.
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Now (4.15) and (8.9) of [13] give

pαn(cos θ; a|r) =
n
∑

j=0

(r−n, aeiθ, ae−iθ; r)j
(r; r)j

rj3φ2

(

rj−n, rα, rj+1

r−n, 0

∣

∣

∣

∣

r, a2
)

,

qαn(cos θ; a|r) =
n
∑

j=0

(r−n, aeiθ, ae−iθ; r)j
(r; r)j

rj3φ2

(

rj−n, rα, rj

r−n, 0

∣

∣

∣

∣

r, ra2
)

.

Thus

h(2)m (q) = (−1)mp1/2m ((q1/2 + q−1/2)/2;−q−1/2|q−2)(6.17a)

h(3)m (q) = (−1)m
[

2p1/2m ((q1/2 + q−1/2)/2;−q−1/2|q−2)(6.17b)

−q1/2m ((q1/2 + q−1/2)/2;−q−1/2|q−2)
]

.

The case (5.3i). Set

Ĩm(q) = 1 + (1− ω)
∞
∑

n=1

(q3; q3)n−1

(q; q)2n(q; q)n−1
qn(n−m).

It easily follows that Ĩm satisfies the six term recurrence relation

qĨm+2(q) + (1 + q−1)Ĩm−1(q) + Ĩm−2(q)

= Ĩm+1(q) + (1 + q + q−m)Ĩm(q) + [q−1 − q−m]Ĩm−3(q).

On can also show that Ĩm satisfies the following inhomogeneous difference equation
of order four

Ĩm+2 + q−1[1− q−m]Ĩm−2 − [1 + q−1 + q−1−m]Ĩm(6.18)

= q−1−mĨm−1 − (2 + ω)q−1−m.

By inspection we see that the right-hand side of (6.1) is spanned by {e1, e2, e3, e4},

ej =
(ωq3, qj , q3−jω;ωq3)∞

(q; q)∞
, 1 ≤ j ≤ 3, e4 =

(ωq3, q2ω2, qω2;ωq3)∞
(q; q)∞

.

By extending the proof of Proposition 8, it can shown that {e1, e2, e3, e4} is linearly
independent over the field of Laurent polynomials.

The initial conditions are:

Ĩ−1(q) = e1, Ĩ0(q) = e2, Ĩ1 = e1 + e3, Ĩ2 = (1 + q−1)e2 − ωq−1e4.

Furthermore (6.1) yields

q2Ĩ3 = (1 + q2)e1 + (1 + q + q2)e3 − ωe4.



TRIBASIC INTEGRALS AND IDENTITIES OF ROGERS-RAMANUJAN TYPE 25

Note that the initial conditions and the above value for Ĩ3 imply

(6.19) e1 + e2 + ωe4 = 2 + ω,

which can also be verified using the Jacobi triple product identity (1.1). It is easy

to see that Ĩm − (2 + ω)/3 satisfies the homogeneous recurrence relation

(6.20) Zm+2 = [1 + q−1 + q−1−m]Zm + q−1−mZm−1 − q−1[1− q−m]Zm−2.

In view of (6.19) we set

Ĩm =
1

3
[e1 + e2 + ωe4] +

4
∑

j=1

φ(j)m (q)ej ,

and find that the Laurent polynomials φ
(j)
m (q), 1 ≤ j ≤ 4 satisfy (6.20).

As in case g we set

s = 1/q, Z(t) =
∞
∑

m=0

Zmt
m,

and use (6.20) to derive the functional equation

Z(t) =
φ(t) + st2(1 + st+ s2t2)Z(st)

(1− t2)(1− st2)
,

φ(t) = Z0[1− t2(1 + 2s)] + Z1t+ Z2t
2 − s(1− s)t3Z−1.

Thus for |s| < 1 we establish

Z(t) =
∞
∑

m=0

t2msm
2

(s3t3; s3)mφ(ts
m)

(t2; s)2m+2(st; s)m

from which explicit triple sums for the Laurent polynomials φ
(j)
m (q), 1 ≤ j ≤ 4, may

be given.

7. Multisum Rogers-Ramanujan identities. It is natural to ask if the k-
fold sum of the mod 2k + 3 Andrews-Gordon identities appear from the tribasic
integrals. For example in Theorems 3 and 4, if q = p, and s = p2k+3, the product
sides of these identities do appear. We do have double sums available for any base
p, see (4.1b), (4.2b), (4.3b), and (5.1c) along with

bn(p, q) =p
−n c2n,0(p, q)

(p; p)2n
=

n
∑

j=0

aj(p, q)

(p; p)n−j(p; p)n+j

a0(p, q) =1, aj(p, q) = (−1)jqj
2/2(p−jqj/2 + pjq−j/2),

βn(p, q) =q
−n2−2n d2n,0(p, q)

(q; q)2n
=

n
∑

j=0

αj(p, q)

(p; p)n−j(p; p)n+j
,

αj(p, q) =(−1)j
1− q2j+1

1− q
q−j2−2jp(

j+1

2 ).
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We see that (an(p, q), bn(p, q)) is a Bailey pair with parameters (1, p), while
(αn(p, q), βn(p, q)) is a Bailey pair with parameters (q, q).

To see how the multisums arise from the double sum we use Bailey pairs.
If we build a Bailey chain starting with (αn(p, q), βn(p, q)), then the next pair
(α′

n(p, q), β
′
n(p, q)) satisfies

α′
n(p, q) = qn

2+nαn(p, q) = αn(pq
2, q).

Thus β′
n(q

7, q) is a sum of the evaluable βn(q
5, q), and (5.1a) and (5.1b) are double

sum identities for mod 7. This also works for mod 2k + 3, and for any of the nine
evaluations in §5, not just (5.2e).

For the evaluations of §4 we can similarly generate multisum identities using

a′n(p, q) = pn
2

an(p, q) = an(p
2, p2q) = an(q, p

2q).

The change of base formulations in [9] are also available.

8. Remarks. The appropriate q → 1 limits of the integrals G1 and G2 are simple
exponential integrals. For example

(8.1) lim
q→1

G2(t, q, q, q
A) =

e−t2

√
2π

∫ ∞

−∞
e−x2/2e

√
Axt−t2/2dx = et

2(A−3)/2.

The case A = 5 is the motivating integral of the Introduction.
Using the polynomials

(8.2) Jn(x|q) =
n
∑

k=0

[

n
k

]

q

qk(n−k)ei(n−2k)θ, x = cos θ,

whose generating function is

(8.3)

∞
∑

n=0

Jn(x|q)
tn

(q; q)n
=

(t2; q)∞
(teiθ, te−iθ; q)∞

,

one can evaluate an integral to conclude the following result.

Proposition 6. We have

(A)
∞
∑

n=0

(−x2p1/2−n/2; p)n
(p; p)n

p3n
2/8x−n =

(p3/4,−p3/8/x,−p3/8x; p3/4)∞
(p; p)∞

.

In fact both the even and odd parts of this sum do sum

(B)
∞
∑

n=0

(−p1/2/x2,−p1/2x2; p)n
(p; p)2n

pn
2

=
(p3,−p3/2/x2,−p3/2x2; p3)∞

(p; p)∞

(C)
∞
∑

n=0

(−p1/2/x2; p)n(−p1/2x2; p)n+1

(p; p)2n+1
pn

2+n =
(p3,−p5/2/x2,−p1/2x2; p3)∞

(p; p)∞

Propositions 6(B) and 6(C) are in Ramanujan’s Lost Notebook, and are special
cases of Lemmas 1 and 2 in [4]. Another combination of these terms may be summed
by the quintuple product identity (1.2).
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Proposition 7. We have

∞
∑

n=0

(−1/x3,−p2x3; p2)n
(p2; p2)2n

p2n
2 − 1

x

∞
∑

n=0

(−1/x3; p2)n(−p2x3; p2)n+1

(p2; p2)2n+1
p2n

2+2n

=(1/x, p2x; p2)∞(p2x2, p2/x2; p4)∞.

We also collect here a proposition which was used in §6.

Proposition 8. Fix a positive integer s, and let Gi(q) = (qs, qi, qs−i; qs)∞ for
1 ≤ i ≤ ⌊s/2⌋. Then there is no non-trivial relation

⌊s/2⌋
∑

i=1

ci(q)Gi(q) = 0,

where ci(q) is a polynomial in q.

Proof. By the Jacobi triple product identity we have

Gi(q) = 1 +
∞
∑

j=1

(−1)j(qsj
2/2+(s/2−i)j + qsj

2/2−(s/2−i)j).

For a fixed integer N , Gi(q) has exactly two nonzero terms between qsN
2/2 and

qs(N+1)2/2, namely qsN
2/2+(s/2−i)N and qs(N+1)2/2−(s/2−i)N . For two different val-

ues of i, any pair of these terms have exponents differing by at least N . Thus if N is
greater than the degree of any ck(q), the assumed relation forces all ck(q) = 0. �

9. Appendix A. In this Appendix we evaluate the constants of §4 and §5,
c2n,0(p, q) and d2n,0(p, q), for the choices of p in (4.5) and (5.2).

Proof of (4.5): For (4.5)

(9.1a) c2n,0(p, q) =
n
∑

j=−n

(−1)jpn−jq(
j+1

2 )
[

2n
n− j

]

p

we note the alternative representation

(9.1b) c2n,0(p, q) =
2n
∑

k=0

(−1)n−kq(
n−k

2 )
[

2n
k

]

p

.

One can see that (9.1b) and (9.1a) are equivalent by computing the coefficient of

q(
j+1

2 ) in each term, j ≥ 0.
We need Jackson’s well-poised 3φ2 evaluation [12,(II.15)]

(9.2a) 3φ2

(

r−2n, b, c
r1−2n/b, r1−2n/c

∣

∣

∣

∣

r,
r2−n

bc

)

=
(b, c; r)n(r, bc; r)2n
(r, bc; r)n(b, c; r)2n

.
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and the q-Kummer sum [12,(II.9)]

(9.2b) 2φ1

(

r−2n, b
r1−2n/b,

∣

∣

∣

∣

r,−r
b

)

=
(r1−2n, r2−2n/b2; r2)n

(r1−2n/b; r)2n
.

Rewrite (9.1a) and (9.1b) as

c2n,0(p, q) =(−1)n
2n
∑

k=0

(p−2n; p)k
(p; p)k

pk+2nk−(k2)q(
n−k

2 ),(9.3a)

c2n,0(p, q) =(−1)n
2n
∑

k=0

(p−2n; p)k
(p; p)k

p2nk−(
k
2)q(

n−k+1

2 ).(9.3b)

Proof of (4.5ade): These three cases of (4.5) follow from (9.2) and (9.3).

(a) q = p1/2: use (9.3b) with r = p1/2, c = 0, b = −p−n in (9.2a),
(d) q = p3: use (9.3b) with r = p, b, c→ ∞ in (9.2a),
(e) q = p3/2: use (9.3a) with r = p1/2, c→ ∞. b = −p−n in (9.2a).

Proof of (4.5c): If q = p2 (case (4.5c)) we use the r = p, b → ∞ version of
(9.2b).

Proof of (4.5b): If q = −p (case (4.5b)) we shall use the q-binomial theorem,

(9.4) c2n,0(p,−p) = (−1)n(−p)(
n+1

2 )
2n
∑

k=0

(p−2n; p)k
(p; p)k

pk(1−n)(−1)nk+(
k
2).

First consider the case when n is even in (9.4). Then (−1)nk+(
k
2) has sign be-

havior which depends only upon k modulo 4, it is ++−−. So we can evaluate the
even terms in the sum by choosing x = i in the q-binomial theorem:

(9.5a)
2n
∑

k=0, k even

(p−2n; p)k
(p; p)k

pk(1−n)(−1)nk+(
k
2) =

1

2

(

(ip1−n; p)2n+(−ip1−n; p)2n
)

.

The odd terms similarly give

(9.5b)
2n
∑

k=1, k odd

(p−2n; p)k
(p; p)k

pk(1−n)(−1)nk+(
k
2) =

1

2i

(

(ip1−n; p)2n − (−ip1−n; p)2n
)

,

thus for n even

c2n,0(p,−p) = (−p)(
n+1

2 )
(

(1− i)

2
(ip1−n; p)2n +

(1 + i)

2
(−ip1−n; p)2n

)

.

Since

(1− i)(ip1−n; p)2n = (−i)np−(
n
2)(−1; p2)n

1− ipn

2
,

a routine computational completes the proof of (4.5b) for n even.
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For n odd the sign behavior in (9.4) is + − −+, again we do the even and odd
terms separately to find

c2n,0(p,−p) = −(−p)(
n+1

2 )
(

(1 + i)

2
(ip1−n; p)2n +

(1− i)

2
(−ip1−n; p)2n

)

.

Again it is routine to verify this case.
Proof of (5.2): For (5.2) we rewrite

d2n,0(p, q) =q
n2+2n (1− q)(q; q)2n

(q; q)n(q; q)n+1

×
n
∑

j=0

(q−n; q)j
(qn+2; q)j

1− q2j+1

1− q
q−3(j2)+j(n−3)p(

j+1

2 ).(9.6)

We use the very-well poised 6φ5 evaluation to verify five cases of (5.2),

6φ5

(

a, r
√
a, −r√a, b, c, r−n

√
a, −√

a, ar/b, ar/c, arn+1

∣

∣

∣

∣

r,
r2−n

bc

)

=

=
(ar, ar/bc; r)n

(r, bc; r)n(ar/b, ar/c; r)n
.(9.7)

Proof of (5.2abcde):

(a) p = q, use (9.7) with r = q, a = q, b = c = 0,
(b) p = q2, use (9.7) with r = q, a = q, b = −q, c = 0,
(c) p = q3, use (9.7) with r = q, a = q, b = c = −q,
(d) p = q4, use (9.7) with r = q, a = q, b = −q, c→ ∞,
(e) p = q5, use (9.7) with r = q, a = q, b→ ∞, c→ ∞.

The next two cases use the non-terminating version of Watson’s transformation
[12, (III.36)]

8φ7

(

a, r
√
a, −r√a, b, c, d, e, f√
a, −√

a, ar/b, ar/c, ar/d, ar/e, ar/f

∣

∣

∣

∣

r,
a2r2

bcdef

)

=

(ar, ar/de, ar/df, ar/ef ; r)∞
(ar/d, ar/e, ar/f, ar/def ; r)∞

4φ3

(

ar/bc, d, e, f
ar/b, ar/c, def/a

∣

∣

∣

∣

r, r

)

+

(ar, ar/bc, d, e, f, a2r2/bdef, a2r2/cdef ; r)∞
(ar/b, ar/c, ar/d, ar/e, ar/f, a2r2/bcdef, def/ar; r)∞

×

4φ3

(

ar/de, ar/df, ar/ef, a2r2/bcdef
a2r2/bdef, a2r2/cdef, ar2/def

∣

∣

∣

∣

r, r

)

.

Proof of (5.2g): We consider case (5.2g), when p = q7/2. If r = q1/2, a = r,
b = ir3/2, c = −ir3/2, d = r−n, e = −r−n, and f → ∞, then we have

c2n,0(q
7/2, q) = qn

2+2n (1− q)(q; q)2n
(q; q)n(q; q)n+1

×

lim
f→∞ 8φ7

(

a r
√
a, −r√a, b, c, d, e, f√
a, −√

a, ar/b, ar/c, ar/d, ar/e, ar/f

∣

∣

∣

∣

r,
a2r2

bcdef

)

.
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In the second term of Watson’s transformation, all terms have a f → ∞ limit except
the pair of infinite products

(f ; r)∞
(def/ar; r)∞

.

Let f = λr−m, and let m→ ∞. Then

(f ; r)∞
(def/ar; r)∞

= (−1)mr(2n+2)m (r/λ; r)∞
(−r2n+3/λ; r)∞

(λ; r)∞
(−λr−2n−2; r)∞

.

Since r(2n+2)m → 0 as m→ ∞, the second term is zero.
What remains is the first term

(r2,−r2n+2; r)∞
(rn+2,−rn+2; r)∞

3φ2

(

r−1, r−n, −r−n

ir1/2, −ir1/2
∣

∣

∣

∣

r,−r2n+2

)

.

This is a terminating sum of two terms, the result is (5.2g).

Proof of (5.2f): If p = q5/2, we need the same specializations of the above 8φ7
but with f → 0. However, it is not clear how to evaluate the f → 0 limit of the
second term. Thus we take a different choice of parameters which is more delicate.
Let

r = q1/2, a = r, e = ir3/2, d = −ǫir3/2, c = −r−n, f = r−n,

where ǫ is close to 1. We take the b → 0 limit of Watson’s transformation for this
choice. The second 4φ3 is

4φ3

(

1/rǫ, irn+1/2/ǫ, −irn+1/2 r2n+1/bǫ
rn/ǫ, −r2n+1/ǫ rn+1/bǫ

∣

∣

∣

∣

r, r

)

which has a limit as b → 0. The infinite products multiplying this 4φ3 include
(f ; r)∞ = (r−n; r)∞ = 0 with no zeros in the denominator, thus the second term is
again 0.

The first term is

(r2, 1/rǫ,−irn+1/2/ǫ, irn+1/2; r)∞
(−ir1/2/ǫ, ir1/2, rn+2, rn−1/ǫ; r)∞

×

4φ3

(

−rn+2/b, −ǫir3/2, ir3/2 r−n

r2/b −rn+2, ǫr2−n

∣

∣

∣

∣

r, r

)

,

which terminates and has limit as b→ 0. When we let ǫ→ 1, two terms of the sum
survive, and the result is (5.2f).

Proof of (5.2i): If p = ωq3, where ω = e2πi/3, then we must evaluate

(9.8) A =
n
∑

j=0

(q−n; q)j
(qn+2; q)j

1− q2j+1

1− q
qjnω(

j+1

2 ).

Since

ω(
j+1

2 ) =

{

1 if j = 0 or 2 mod 3

ω if j = 1 mod 3,
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the coefficient of ω in A can be found by restricting the j-sum in (9.8) to j = 1
mod 3. In this case we can apply (9.7) with

r = q3, a = q3, b = q1−n, c = q2−n, d = q3−n,

to evaluate the restricted sum. This gives the coefficient of ω in (5.2i).
For the coefficient of 1, which comes from the terms in (9.8) with j = 0, 2 mod

3, we note by (5.2c) that the case p = q3 sums all three terms, to give 0 . Thus the
coefficient of 1 is the negative of the coefficient of ω, this gives the factor (1 − ω)
in (5.2i).

Proof of (5.2h): If p = −q3, we proceed as in (5.2i). We must evaluate

(9.9) A =
n
∑

j=0

(q−n; q)j
(qn+2; q)j

1− q2j+1

1− q
qjn(−1)(

j+1

2 ).

This time the sign behavior is determined by (−1)(
j+1

2 ), which is + − −+ modulo
4. We shall show that the terms arising from j = 0, 3 modulo 4 sum to

(−q2; q2)n−1
(q; q)n(q; q)n+1

(q; q)2n(1− q)

as do the terms arising from j = 1, 2 modulo 4. Thus (9.6) shows that adding these
two contributions yields (5.2h).

We first do the j = 0, 3 modulo 4 sum in (9.9). It is

8φ7

(

q, q9/2, −q9/2, q, q−n, q1−n, q2−n, q3−n

q1/2, −q1/2, q4, qn+5, qn+4, qn+3, qn+2

∣

∣

∣

∣

q4, q4n
)

+

C 8φ7

(

q7, q15/2, −q15/2, q4, q3−n, q4−n, q5−n, q6−n

q7/2, −q7/2, q7, qn+8, qn+7, qn+6, qn+5

∣

∣

∣

∣

q4, q4n
)

,

(9.10)

where

C =
(q1−n; q)3
(qn+2; q)3

q3n.

The above sum of two very-well poised 8φ7’s can be transformed to an 8ψ8 using
the transformation [12, (III.37)]

(r, r/bf, r/cf, r/df, r/ef, rf/b, rf/c, rf/d, rf/e; r)∞
(af, r/af, ar/f, f/a, g/f, fg, rf2; r)∞

×

8φ7

(

f2, rf, −rf, fb, fc, fd, fe, fg
f, −f, fr/b, fr/c, fr/d, fr/e, fr/g

∣

∣

∣

∣

r,
r2

bcdefg

)

+ a similar term interchanging fand g =

(ar/b, ar/c, ar/d, ar/e, r/ab, r/ad, r/ae; r)∞
(af, ag, f/a, g/a, ra2, r/a2; r)∞

×

8ψ8

(

qa, −qa, ba, ca, da, ea, fa, ga
a, −a, ar/b, ar/c, ar/d, ar/e, ar/f, ar/g

∣

∣

∣

∣

r,
r2

bcdefg

)
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It is remarkable that the choices of r = q4, f = q1/2, b = q5/2−n, c = q−1/2−n,
d = q1/2−n, e = q3/2−n, g = q7/2, and a = q make the left-side of the above
transformation a multiple of (9.10).

Thus we must evaluate

6ψ6

(

q5, −q5, q7/2−n, q1/2−n, q3/2−n, q5/2−n

q, −q, q5/2+n, q11/2+n, q9/2+n, q7/2+n

∣

∣

∣

∣

r,
r2

bcdefg

)

.

This may be summed using the very-well poised 6ψ6 evaluation [12, (II.33)]

6ψ6

(

r
√
a, −r√a, b, c, d, e√
a, −√

a, ar/b, ar/c, ar/d, ar/e

∣

∣

∣

∣

r,
r2

bcde

)

=

(ar, ar/bc, ar/bd, ar/be, ar/cd, ar/ce, ar/de, r, r/a; r)∞
(ar/c, ar/d, ar/e, r/b, r/c, r/d, r/e, ra2/bcde; r)∞

.

(9.11)

The appropriate choices in (9.11) are

r = q4, a = q, b = q7/2−n, c = q1/2−n, d = q3/2−n, e = q5/2−n.

The details of simplifying the infinite products are onerous, but the result is that
this contributes

(9.12) qn
2+2n(−q2; q2)n−1

to (5.2h).
Miraculously, the j = 1, 2 modulo 4 terms contribute an identical amount. The

proof is the same, using the 8ψ8 transformation, this time choosing r = q4, f = q3/2,
b = q5/2−n, c = q−1/2−n, d = q1/2−n, e = q3/2−n, g = q5/2, a = q. Again a
summable very-well poised 6ψ6 results, and the infinite products again reduce to
(9.12).

10. Appendix B. In this appendix we verify the uniform convergence condition
of Theorem 1 for the infinite products in Theorems 2,3,4 and 5.

Lemma. If
∏∞

i=1 ai and
∏∞

i=1 bi converge, then

∞
∏

i=1

ai −
∞
∏

i=1

bi =

∞
∑

j=1

( j
∏

i=1

bi

)

(aj − bj)

( ∞
∏

i=j+1

ai

)

.

Proof. For any integer J a telescoping sum is

∞
∏

i=1

ai −
∞
∏

i=1

bi =
J
∑

j=1

( j
∏

i=1

bi

)

(aj − bj)

( ∞
∏

i=j+1

ai

)

+ bJ

( ∞
∏

i=J+1

ai −
∞
∏

i=J+1

bi

)

.

The last term approaches 0 as J → ∞ because the infinite products converge, so
their tails approach 1, as do the individual terms. �
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For Theorem 2 note that F (eiθ/2) is uniformly bounded for θ ∈ [0, 2π]. We
choose

ai =
1

1− 2zxpi + z2p2i
, bi =

1

1 + 2xpi + z2p2i
, x = cos θ,

so

aj − bj =
pj(1 + z)(−2x+ pj(1− z))

(1− 2zxpi + z2p2i)(1 + 2xpi + z2p2i)
≤Mpj(1 + z),

for a constant M independent of x. Thus the Lemma implies that

∞
∏

i=1

ai −
∞
∏

i=1

bi ≤M ′(1 + z).

A completely analogous proof works for Theorems 3,4, and 5.
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