
AN ELEMENTARY APPROACH TO
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Abstract. Elementary proofs are given for the infinite families of Macdonald iden-
tities. The reflections of the Weyl group provide sign-reversing involutions which
show that all terms not related to the constant term cancel.

1. Introduction. The purpose of this paper is to give an elementary approach
to the Macdonald identities, accessible to all combinatorialists. Sign-reversing in-
volutions have been used recently on a variety of combinatorial problems. The
Macdonald identities can be proved with such involutions, and we give the details
in this paper. The basic idea of the proof does not differ from Macdonald’s original
proof for affine root systems [7]. Since that paper can be difficult for a novice in
root systems, we offer an elementary approach for the infinite families of affine root
systems. This approach was used in [9] to find new Macdonald identities in the low
rank cases.

The Macdonald identities [7] are the analogues of the Weyl denominator formula
for affine root systems. The Weyl formula [7] expresses a finite sum as a finite
product for root systems R:

(1.1)
∑

w∈W

det(w)ew(ρ)−ρ =
∏

a>0
a∈R

(1− e−a).

For type An, (1.1) is just Vandermonde’s determinant: a determinant, which is a
sum of n! terms, can be written as a product of n(n− 1)/2 terms. Vandermonde’s
determinant can be proved by using the antisymmetry of the product to eliminate
all terms in the expansion which have equal exponents. This leaves terms with
different exponents (the n! terms of the determinant). Their coefficients can be
found by finding any one coefficient, and using the antisymmetry.

The same program works to prove the Macdonald identities. We are expanding
infinite products instead of finite ones, so first we need to reduce the problem to a
finite one. Then we use antisymmetry to show that all of the terms cancel, except
for those related to a single term. Finally, we find the coefficient of that term.
These three steps, and their relation to the Macdonald identities, are explained at
the end of §2.

For the Weyl denominator formula the sign reversing involutions can be inter-
preted as acting upon combinatorial objects related to the root system [2],[3]. Since
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the same program works for the Macdonald identities, there should be combinato-
rial models and proofs in this case too (see [12]).

A summary of the recent work in this area can be found in [6] or [11]. Two papers
related two special functions are [8] and [5]. The very recent work of Gustafson [4]
should also be consulted.

The rest of the paper is organized in the following way. The Macdonald identities
for affine root systems are stated in §2. We also explain the three main steps of the
proof there. These steps are completed for types Cn and Bn in §3 and §4. We have
included type Bn because the evaluation of the constant term is slightly different
from type Cn. Nevertheless, all of the infinite families have arguments similar to
type Bn or Cn. These identities are explicitly given in §5.

2. Notation. In this section we establish the notation for the affine root systems,
Weyl groups, and functions to be considered for the Macdonald identities.

Root systems are certain finite subsets of Euclidean n-space; thus a root is a
vector, or dually a linear functional on Euclidean n-space. An affine root can be
thought of as an affine functional, that is, a root plus a constant. An affine root
system is a set of affine roots that satisfies certain conditions [7]. These conditions
will not concern us, since we will use the explicit form of the infinite families of
affine root systems.

Macdonald [7, Appendix 1] lists the reduced irreducible affine root systems S.
Each such system S is attached to a finite root system R, thus S = S(R), and can
be explicitly given. We let {e1, . . . , en} be the standard basis for Euclidean n-space.
For example, if R = Cn(n ≥ 2), then

(2.1) S(Cn) = {k ± 2ei : k ∈ Z, 1 ≤ i ≤ n} ∪ {k ± ei ± ej : k ∈ Z, 1 ≤ i < j ≤ n},

The Macdonald identities expand the product

(2.2) F (S) =
∏

a>0
a∈S

(1− e−a)

as a sum. For (2.2) to make sense, some roots in S must be positive and others
negative. This is defined by taking a certain basis for S, B = {a0, . . . , an}, so that
any element of S has coefficients with respect to B that are all non-positive or all
non-negative. For S(Cn), a0 = 1 − 2e1, an = 2en, ai = ei − ei+1, 1 ≤ i ≤ n − 1.
We also can choose the ai’s so that

∑n
i=0 kiai = c for unique positive integers ki

with no common divisor. For Cn, c = 1. The expansion of (2.2) takes place in the
formal series ring Z[[e−a0 , e−a1 , . . . , e−an ]].

It will be more natural to consider the factors in (2.2) as functions of xi = eei

and q = e−c. (Macdonald labels e−c with X.) In this paper we put

(2.3) FS(x1, . . . , xn, q) =
∏

a>0
a∈S

(1− e−a)

Let

(2.4) (x; q)∞ =
∞∏

i=0

(1− xqi).
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We frequently will write (x)∞ for (x; q)∞. Then (2.1), (2.3), and (2.4) imply
(2.5)

FCn
(x1, . . . , xn, q) =

n∏

i=1

(1/x2
i )∞(qx2

i )∞
∏

1≤i<j≤n

(1/xixj)∞(qxixj)∞(xj/xi)∞(qxi/xj)∞

Clearly (2.5) can be interpreted as an element of the formal power series ring A[[q]],
A = Z[x1, . . . , xn, x

−1
1 , . . . , x−1

n ]. This implies that, for some f(m1, . . . ,mn, q) ∈
Z[[q]]

(2.6) FCn
(x1, . . . , xn, q) =

∞∑

m1,...,mn=−∞

f(m1, . . . ,mn, q)x
m1

1 . . . xmn

n .

In fact we shall see that (2.6) converges as a complex function of (x1, . . . , xn) for
all x1, . . . , xn, xi 6= 0, if |q| < 1 is fixed. The basic reason is that f(m1, . . . ,mn, q)
converges quadratically in q.

Our proof will explicitly find f(m1, . . . ,mn, q). At first glance (2.6) appears
different from Macdonald’s [7, (0.4)] as an element of A[[q]]:

(2.7) P (q)FS(x1, . . . , xn, q) =
∑

µ∈M

χ̃(µ)q(‖µ+ρ‖2−‖ρ‖2)/2g

where P (q) ∈ Z[[q]], M is a certain lattice in R
n, g is a fixed constant, and ρ is the

half sum of positive roots of R. The function χ̃(µ) is given by

(2.8) χ̃(µ) =
∑

w∈W

det(w)ew(µ+ρ)−ρ

where W is the Weyl group of R, and det(w) is the sign of w. The x-dependence
in (2.7) is contained in χ̃(µ).

In the course of the proof we identify M , g, and χ̃(µ) for each type R. We shall
see that the proof also clearly gives (2.7).

There are three basic steps to the proof.

(I) Use the affine part of the affine root system S(R) to find functional equations
for FS(x1, . . . , xn, q) or f(m1, . . . ,mn, q). These functional equations reduce
the unknown functions f(m1, . . . ,mn, q) to a finite number, in effect, just a
fundamental domain for the lattice M . The number g is also found in this
step.

(II) Use the Weyl group W of the finite root system R, to show that only one

function, f(0, 0, . . . , 0, q), is necessary. Sign-reversing involutions are given
by W which show that all other terms are either zero, or a multiple of this
constant term. The action w ◦ µ = w(µ+ ρ)− ρ is identified here.

(III) The constant term f(0, 0, . . . , 0, q) is found by specializing the identity in
(II). We use a specialization which is simpler than Macdonald’s.

We carry out this program for types Cn and Bn §3 and §4.

3. Type Cn(n ≥ 2). Once we have fixed the affine root system, we shall drop the
type S from the function FS(x1, . . . , xn, q). We also suppress the q dependence. So
for type Cn

F (x1, . . . , xn) =
n∏

i=1

(1/x2
i )∞(qx2

i )∞
∏

1≤i<j≤n

(1/xixj)∞(qxixj)∞(xj/xi)∞(qxi/xj)∞.
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For step (I), let S(Cn)
+ be the positive affine roots of S(Cn), and Si(Cn)

+ be
the elements of S(Cn)

+ with ei replaced by ei − 1. It is easy to check from (2.1)
that, except for signs, S(Cn)

+ − Si(Cn)
+ = Si(Cn)

+ − S(Cn)
+. This shows that

F (x1, . . . , qxi, . . . , xn) is closely related to F ; in fact

(3.1) F (x1, . . . , qxi, . . . , xn)x
2n+2
i q2n−i+2 = F (x1, . . . , xn)

which implies

(3.2) f(m1, . . . ,mn, q) = f(m1, . . . ,mi − 2n− 2, . . . ,mn, q)q
mi−i.

So f is uniquely determined by f(m1, . . . ,mn, q), 0 ≤ mi ≤ 2n+1, and M = {(2n+
2)(m1, . . . ,mn) : mi ∈ Z}. Let the fundamental domain FD = {(m1, . . . ,mn) : 0 ≤
mi ≤ 2n+ 1, 1 ≤ i ≤ n}. This finishes (I).

For (II), note that the Weyl group of type Cn is the hyperoctahedral group
W = {(σ, π) : σ ∈ Sn, π ∈ Z

n
2}. The generators of W are the transpositions

σi = ((i, i+ 1), id), 1 ≤ i ≤ n− 1, and σn = (id, (1, . . . , 1,−1)), which changes the
sign of the last coordinate. So we see that

(3.3a) −xi+1F (x1, . . . , xi+1, xi, . . . , xn) = xiF (x1, . . . , xn)

and

(3.3b) −x−2
n F (x1, . . . , xn−1, 1/xn) = F (x1, . . . , xn).

Clearly (3.3a) and (3.3b) are equivalent to

(3.4a) f(m1, . . . ,mn, q) = −f(m1, . . . ,mi+1 − 1,mi + 1, . . . ,mn, q)

and

(3.4b) f(m1, . . . ,mn, q) = −f(m1, . . . ,−mn − 2, q).

Thus, for w = (σ, π) ∈ W ,

f(m1, . . . ,mn, q) = det(w)f(w(m1, . . . ,mn), q)

where the ith component of w(m1, . . . ,mn) is

(3.5) w(m1, . . . ,mn)(i) = π(i)(n+ 1− σ(i) +mσ(i))− (n+ 1− i).

Since ρ = (n, n − 1, . . . , 1), we see that w(m1, . . . ,mn) = w(µ + ρ) − ρ if µ =
(m1, . . . ,mn). This is precisely the action given by Macdonald in (2.8).

Our goal is to show that all terms f(m1, . . . ,mn, q) in FD are zero, except for
those corresponding to a W orbit of (0, . . . , 0). Thus we need to find the repre-
sentative of wµ in FD. We define m = (m1, . . . ,mn) ∼ (m′

1, . . . ,m
′
n) = m′ if

m−m′ ∈ M .
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Proposition 3.6.

(i) For µ, µ′ ∈ M , and w,w′ ∈ W , if wµ = w′µ′, then µ = µ′ and w = w′.

(ii) For µ ∈ M , and w,w′ ∈ W , if wµ ∼ w′µ then w = w′.

Proof. Both assertions are clear from (3.5).

A consequence of Proposition 3.6(ii) is that the W -orbit of (0, 0, . . . , 0) contains
n!2n inequivalent elements, which can be mapped to FD. We now show that
all other (m1, . . . ,mn) ∈ FD satisfy f(m1, . . . ,mn, q) = 0. To do this we use the
reflections of W : the transpositions ((ij), (1, 1, . . . , 1)) 1 ≤ i < j ≤ n, the inversions
ei → −ei, and θij : ei → −ej , ej → −ei. If w(m1, . . . ,mn) ∼ (m1, . . . ,mn) for any
of these elements w, which all have det(w) = −1, then f(m1, . . . ,mn, q) = 0.

Proposition 3.7. The number of (m1, . . . ,mn) ∈ FD which satisfy

(i) mi 6≡ mj + i− j mod 2n+ 2,
(ii) mi 6≡ 2i−mi mod 2n+ 2, and
(iii) mi 6≡ i+ j −mj mod 2n+ 2,

for all 1 ≤ i 6= j ≤ n is n!2n.

Proof. Let m̃i = mi − i, so that (i) and (iii) becomes m̃i 6≡ ± m̃j mod 2n + 2,
i 6= j, and (ii) becomes m̃i 6≡ 0 or n+1 mod 2n+2. The remaining residue classes
mod 2n + 2 for m̃i are {(1, 2n + 1), . . . , (n, n + 2)} so there are n!2n solutions
(m̃1, . . . , m̃n). �

Clearly, Propositions 3.7 and 3.6(i), and (3.2) imply that
(3.8)

F (x1, . . . , xn) = c(q)
∑

µ∈M

χ̃(µ)x
m1(2n+2)
1 . . . xmn(2n+2)

n q
∑

n
i=1

[(mi+1

2 )(2n+2)−imi]

where µ = (2n+2)(m1, . . . ,mn). This agrees with (2.7). For (2.6), we note that the
W -orbit of µ = (0, 0, . . . , 0) is w(ρ)− ρ. The Weyl denominator formula evaluates
this sum

(3.9)
∑

w∈W

det(w)ewρ−ρ =
∏

a>0
a∈R

(1− e−a) = ∆(x1, . . . , xn).

Combining (3.9) with (3.2), we have

F (x1, . . . , xn) = c(q)
∞∑

(m1,...,mn)=−∞

x
(2n+2)m1

1 . . . x(2n+2)mn

n q
∑

n
i=1 (

mi+1

2 )(2n+2)−imi

n∏

i=1

(1−
1

x2
i q

2mi
)

∏

1≤i<j≤n

(1−
1

xixjqmi+mj
)(1−

xjq
mj−mi

xi
).(3.10)

Note that the inner product is ∆(x1q
m1 , . . . , xnq

mn). This completes step (II).
It remains to evaluate the constant term c(q). Clearly (0, . . . , 0) is the only

element of FD all of whose entries are 0 mod 2n+2. So we just (2n+2)-sect both
sides of (3.10), i.e. replace each xi by ωj , 0 ≤ j ≤ 2n + 1, ω = exp(2πi/(2n + 2))
and add.
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Under this operation the right side is evaluable by the Jacobi triple product
identity [1] to

(3.11) RS = (2n+ 2)nc(q)(q2n+2; q2n+2)n∞(−q)∞/(−qn+1; qn+1)∞.

For the left side, note that F (x1, . . . , xn) = 0 unless xi 6= xj , xi 6= x−1
j , and

x2
i 6= 1. So each xi = ωj , where j ∈ {1, 2n+1, 2, 2n, . . . , n, n+2}. As in Proposition

3.7, there are n!2n such n-tuples (x1, . . . , xn), which are precisely the orbit of W
on (ω1, ω2, . . . , ωn). Since F (x1, . . . , xn)/∆(x1, . . . , xn) is invariant under W , the
left side is

(3.12) LS = F (x1, . . . , xn)
∑

w∈W

w ·∆(x1, . . . , xn) at (ω
1, ω2, . . . , ωn)

The Weyl denominator formula (3.9) implies

(3.13)
∑

w∈W

w∆(x1, . . . , xn) = ∆(x1, . . . , xn)∆(1/x1, . . . , 1/xn)

so that the left side becomes

(3.14) LS =
n∏

i=1

(ω−2i)∞(ω2i)∞
∏

1≤i<j≤n

(ω−i−j)∞(ωi+j)∞(ωj−i)∞(ωi−j)∞.

It is easy to see that the factor (ωk)∞, 0 ≤ k ≤ 2n + 1, occurs n − 1 times if k is
odd, and n times if k is even. There is also an additional (ωn+1)∞ factor. Since∏2n+1

i=1 (1− ωi) = 2n+ 2, the left side becomes

(3.15) LS = 2(2n+ 2)n−1(n+ 1)(−q)∞(q2n+2; q2n+2)n−1
∞ (qn+1; qn+1)∞/(q)n∞.

Combining (3.15) and (3.11), we have

(3.16) c(q) = q/(q)n∞.

This completes step (III).

4. Type Bn(n ≥ 3). For type Bn we proceed in the same way. However the lattice
M must be slightly modified if the analogues of Propositions 3.6 and 3.7 are to be
true.

In this case

F (x1, . . . , xn) =

∞∏

i=1

(1/xi)∞(qxi)∞
∏

1≤i<j≤n

(1/xixj)∞(qxixj)∞(xj/xi)∞(qxi/xj)∞

Instead of (3.1)-(3.4) we have

(4.1) −F (x1, . . . , qxi, . . . , xn)x
2n−1
i q2n−i = F (x1, . . . , xn),

(4.2) f(m1, . . . ,mn, q) = −f(m1, . . . ,mi − 2n+ 1, . . . ,mn, q)q
mi−i+1,
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(4.3a) −xi+1F (x1, . . . , xi+1, xi, . . . , xn) = xiF (x1, . . . , xn),

(4.3b) −x−1
n F (x1, . . . , xn−1, 1/xn) = F (x1, . . . , xn),

(4.4a) f(m1, . . . ,mn, q) = −f(m1, . . . ,mi+1 − 1,mi + 1, . . . ,mn, q), and

(4.4b) f(m1, . . . ,mn, q) = −f(m1, . . . ,mn−1,−mn − 1, q).

The lattice M is replaced by M̃ = {(2n − 1)(m1, . . . ,mn) : mi ∈ Z}. The Weyl
group action is

(4.5) w(m1, . . . ,mn)(i) = π(i)(n+ 1/2− σ(i) +mσ(i))− (n+ 1/2− i)

where w = (σ, π) as in type Cn. Again this is the action w(µ + ρ) − ρ. This
completes step (I).

Proposition 3.6(ii) is not true for M̃ : there are non-zero elements of W which

map M̃ to itself, e.g. w = (id, (−1, 1, . . . , 1). However, if we restrict M̃ to

M = {(2n− 1)(m1, . . . ,mn) : mi ∈ Z,m1 + · · ·+mn ≡ 0 mod 2}

then Propositions 3.6(i) and (ii) are true. As a fundamental domain take

FD = {(m1, . . . ,mn) : 1− 2n ≤ m1 ≤ 2n− 2, 0 ≤ mi ≤ 2n− 2, 2 ≤ i ≤ n}.

Again we show that there are n!2n elements of the orbit (0, 0, . . . , 0) of D not
fixed by a reflection. The conditions that replace those in Proposition 3.7 are
mi− i 6= mj − j (mod 2n− 1),mi 6= −2n− 1+2i−mi (mod 4n− 2), and mi− i 6=
j−mj−2n−1 (mod 2n−1). If we put m̃i = mi−i+1 these are m̃i 6= ± m̃j , i 6= j.
So for 0 ≤ m̃i ≤ 2n − 2, the classes {(0), (1, 2n − 2), . . . , (n − 1, n)} give n!2n−1

solutions. Allowing 1 − 2n ≤ m1 ≤ −1 gives n!2n−1 + n!2n−1 = n!2n solutions
(m1, . . . ,mn). This establishes (2.7), and (2.6) becomes

F (x1, . . . , xn) = c(q)
∑

µ∈M

x
(2n−1)m1

1 . . . x(2n−1)mn

n q
∑

n
i=1 (

mi+1

2 )(2n−1)−(i−1)mi

n∏

i=1

(1−
q−mi

xi
)

∏

1≤i<j≤n

(1−
q−mi−mj

xixj
)(1−

xjq
mj−mi

xi
).(4.6)

This completes step (II).
For step (III), if we were to (2n− 1)-sect the right side of (4.6), the product

∆(x1q
m1 , . . . , xnq

mn)

would contain two terms: 1−(x1q
m1)1−2n. If we put each xi = −ωj , 0 ≤ j ≤ 2n−2,

ω = exp(2πi/(2n− 1)), and sum, we obtain

(4.7) RS = c(q)(2n− 1)n
∑

µ∈M̃

q
∑

n
i=1 (

mi+1

2 )(2n−1)−(i−1)mi ,
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which is evaluable by the Jacobi triple product formula to

(4.8) RS = (2n− 1)nc(q)(q2n−1; q2n−1)n∞(−1; q2n−1)∞(−q)∞.

On the left side, again xi 6= xj or x−1
j , so the residue classes are {(0), (1, 2n −

2), . . . , (n−1, n)}. Thus, n!2n−1 values are allowed for (x1, . . . , xn). Since ω
0 = ω−0,

we again can average over all of W if we divide by 2. Equation (3.13) implies
(4.9)

LS =
1

2

n∏

i=1

(−ωi−1)∞(−ω1−i)∞
∏

1≤i<j≤n

(ω2−i−j)∞(ωi+j−2)∞(ωj−i)∞(ωi−j)∞.

In (4.9), (ωk)∞, 1 ≤ k ≤ 2n− 2, occurs n times, so
∏2n−2

i=1 (1 + ωi) = 1 implies

(4.10) LS =
1

2
(2n− 1)n(q2n−1; q2n−1)n∞4(−q)∞(−q2n−1; q2n−1)∞/(q)n∞

Clearly (4.8) and (4.10) imply

(4.11) c(q) = 1/(q)n∞.

5. The other infinite families. We give the Macdonald identities for types
An−1, Dn, B

∨
n , C

∨
n , and BCn in the form of (2.6).

Type An−1 (n ≥ 2)

(5.1) F (x1, . . . , xn) =
∏

1≤i<j≤n

(xj/xi)∞(qxi/xj)∞.

F (x1, . . . , xn) = c(q)
∑

µ∈M

xnm1

1 . . . xnmn

n q
1
2

∑
n
i=1

nm2
i+mi(n+1−2i)

∏

1≤i<j≤n

(1− xjq
mj−mi/xi)(5.2)

where

(5.3) M = {n(m1, . . . ,mn) : mi ∈ Z,

n∑

i=1

mi = 0}, and

c(q) = 1/(q)n−1
∞ .

Type Dn (n ≥ 4)

(5.4) F (x1, . . . , xn) =
∏

1≤i<j≤n

(xj/xi)∞(qxi/xj)∞(1/xixj)∞(qxixj)∞

F (x1, . . . , xn) = c(q)
∑

µ∈M

x
(2n−2)m1

1 . . . x(2n−2)mn

n q
∑

n
i=1 (

mi+1

2 )(2n−2)−(i−1)mi

∏

1≤i<j≤n

(1−
xjq

mj−mi

xi
)(1−

q−mi−mj

xixj
)(5.5)
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where

(5.6) M = {(2n− 2)(m1, . . . ,mn) : mi ∈ Z,
n∑

i=1

mi ≡ 0 (mod 2)}

and

(5.7) c(q) = 1/(q)n∞.

Type B∨
n (n ≥ 3).

(5.8)

F (x1, . . . , xn) =
n∏

i=1

(1/x2
i ; q

2)∞(q2x2
i ; q

2)∞
∏

1≤i<j≤n

(1/xixj)∞(qxixj)∞(xj/xi)∞(qxi/xj).

F (x1, . . . , xn) = c(q)
∑

µ∈M

x2nm1

1 . . . x2nmn

n q
∑

n
i=1 (

mi+1

2 )2n−(i−1)mi

n∏

i=1

(1−
1

x2
i q

2mi
)

∏

1≤i<j≤n

(1−
xjq

mj−mi

xi
)(1−

q−mi−mj

xixj
)(5.9)

where

(5.10) M = {2n(m1, . . . ,mn) : mi ∈ Z,
n∑

i=1

mi ≡ 0 mod 2}

and

(5.11) c(q) = 1/(q)n−1
∞ (q2; q2)∞

Type C∨
n (n ≥ 2)

F (x1, . . . , xn) =
n∏

i=1

(1/xi; q
1/2)∞(q1/2xi; q

1/2)∞

∏

1≤i<j≤n

(1/xixj)∞(qxixj)∞(xj/xi)∞(qxi/xj)∞(5.12)

F (x1, . . . , xn) = c(q)
∑

µ∈M

x2nm1

1 . . . x2nmn

n q
∑

n
i=1 (

mi+1

2 )2n−(i−1/2)mi

n∏

i=1

(1−
1

xiqmi
)

∏

1≤i<j≤n

(1−
q−mi−mj

xixj
)(1−

xjq
mj−mi

xi
)(5.13)

where

(5.14) M = {2n(m1, . . . ,mn) : mi ∈ Z}
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and

(5.15) c(q) = 1/(q)n−1
∞ (q1/2; q1/2)∞.

Type BCn (n ≥ 1)

F (x1, . . . , xn) =
n∏

i=1

(1/xi)∞(qxi)∞(qx2
i ; q

2)∞(q/x2
i ; q

2)∞

∏

1≤i<j≤n

(1/xixj)∞(qxixj)∞(xj/xi)∞(qxi/xj)∞.(5.16)

F (x1, . . . , xn) = c(q)
∑

µ∈M

x
(2n+1)m1

1 . . . x(2n+1)mn

n q
∑

n
i=1 (

mi+1

2 )(2n+1)−imi

·
n∏

i=1

(1−
1

xiqmi
)

∏

1≤i<j≤n

(1−
q−mi−mj

xixj
)(1−

xj

xi
qmj−mi)(5.17)

where

(5.18) M = {(2n+ 1)(m1, . . . ,mn) : mi ∈ Z}

and

(5.19) c(q) = 1/(q)n∞.

A few remarks are in order. For each type, the sum over µ ∈ M refers to the
allowed (m1, . . . ,mn) in M . For type Dn, the constant term is evaluated as in type

Bn. The non-trivial element of W which maps M̃ to M̃ is (id, (−1, 1, . . . , 1,−1). A
(2n− 2)-section inserts 1 + q2m1(n−1) for the inner product on the sum side. This

changes the sum to one over M̃ which is evaluable by the Jacobi triple product
identity.

In type B∨
n a 2n-section fails to evaluate c(q). For F (x1, . . . , xn) 6= 0 we need

x2
1 6= 1, xi 6= xj or x

−1
j , and if xi = ωj , ω = exp(2πi/2n), this is impossible. Instead,

we 2n-sect over x2, . . . , xn and fix x1. The product is replaced by 1 − (x1q
m1)2n,

which changes the sum to M̃ and inserts a factor of (−1)m1+···+mn . So, here we
have
(5.20)

RS = c(q)(2n)n−1(q2n; q2n)n−1
∞ (q)∞(−qn; qn)∞(1/x2n

1 ; q2n)∞(q2nx2n
1 ; q2n)∞.

The left side has (n−1)!2n−1 terms, which is the Weyl group action on (x2, . . . , xn)
evaluated at (ω1, ω2, . . . , ωn−1). For any such choice of (x2, . . . , xn) it is clear that

(5.21) (1−
1

x2
1

)

n∏

j=2

(1−
xj

x1
)(1−

1

x1xj
) = 1−

1

x2n
1

.

So we can apply (3.16) for type Cn−1 to conclude that

LS = (1−
1

x2n
1

)(q2/x2
1; q

2)∞(q2x2
1; q

2)∞

n∏

j=2

(ω−2(j−1); q2)∞(ω2(j−1); q2)∞

· (qx1ω
1−j)∞(qx1ω

j−1)∞
∏

2≤i<j≤n

(qω2−i−j)∞(qωi+j−2)∞(qωj−i)∞(qωi−j)∞.

(5.22)
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It is not hard to see that (5.22) is
(5.23)
LS = (1/x2n

1 ; q2n)∞(q2nx2n
1 ; q2n)∞(q2n; q2n)n∞(2n)n−1(−q)∞/(q)n−3

∞ (qn; qn)∞(q2; q2)2∞.

Finally, (5.20) and (5.23) give (5.11).
Macdonald’s form (2.7) also follows in these cases.
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