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Rim Hook Lattices

Abstract

A partial order is defined on partitions by the removal of rim hooks of a given

length. This poset is isomorphic to a product of Young lattices, guaranteeing rim

hook versions of Schensted correspondences. Analogous results are given for shifted

shapes.

1. Main Results

A shape (Young diagram) is a finite order ideal of the lattice P2 = {(k, l) : k, l ≥ 1}.

Shapes form the so-called Young lattice Y (see, e.g., [St86]). An i’th diagonal of a

shape λ is the set {(k, l) : l − k = i }. We use the so-called “English notation”

for realizing shapes in the 4th quadrant. We denote by #λ the number of boxes in

a shape λ.

A rim hook is a set of elements (“boxes”) of P2 which forms a contiguous strip and

has at most one box on each diagonal. Throughout the paper a positive integer r is

fixed; all of the rim hooks contain exactly r boxes. (Exception: Definition 3.4(3).)
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1.1 Definition. Let λ and µ ⊂ λ be shapes such that λ− µ is a rim hook. Then

we write λ ⋗ µ. We write λ � µ if there exists a sequence of shapes λ = λ0 ⋗ λ1 ⋗

· · · ⋗ λk = µ. In other words, λ � µ means that µ can be obtained by deleting

some rim hooks from λ. If λ � φ then λ is said to be r-decomposable. Let RHr

denote the poset of all r-decomposable shapes ordered by �. This poset is called

the rim hook lattice. (We shall prove that it is really a lattice.)

The following result is essentially known; however we could not find it elsewhere

stated in this explicit form.

1.2 Theorem. The rim hook lattice RHr is isomorphic to the cartesian product

of r copies of the Young lattice:

RHr
∼= Y

r .

The proof of this theorem is given in Sec.2.

Figures 1 and 2 show the lattices RH2 and RH3, respectively; on the latter the

underlying poset 3P2 is highlighted.

1.3 Definition. Let P be a graded poset, K a field of zero characteristic, and KP

a vector space with a basis P . Define the up and down operators U,D ∈ End(KP )

by

Ux =
∑

y covers x

y ,

Dy =
∑

y covers x

x .

1.4 Proposition. (see, e.g., [St88]) The up and down operators in the Young lattice

Y satisfy

DU − UD = I

where I is the identity transformation.

Thus Y is a self-dual graph[Fo1] or a differential poset [St88].

Generally, two graded graphs G1 and G2 with a common set of vertices and a

common rank function are called r-dual [Fo1,Fo3] if the up operator U1 in G1 and

the down operator D2 in G2 satisfy

D2U1 − U1D2 = rI .

It is easy to see (cf. [Fo1, Lemma 2.2.3]) that if the graphs G1 and G2 are r-dual,

and the graphs H1 and H2 are s-dual, then G1×H1 and G2×H2 are (r+ s)-dual.

1.5 Corollary (see, e.g., [SS90, Sec.9, (9)]). The up and down operators in the

rim hook lattice RHr satisfy

DU − UD = rI . �
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So RHr is an r-self-dual graph (r-differential poset). Hence one can apply to

RHr each of the enumerative results concerning such graphs (see [St88, Fo1, Ro91,

etc.]). Moreover, it allows us to construct an analogue of the Schensted algorithm

for the rim hook lattice (see [Fo2, Fo3]). This algorithm establishes a bijection

between pairs of paths in RHr (“standard rim hook tableaux”; see [SW85]) and

permutations colored in r colors. It is clear from Theorem 1.2 that this algorithm

is essentially a “direct product” of r copies of independently running standard

Schensted algorithms (see, e.g., [Sa90]). It coincides with the algorithm of [SW85]

which was originally described in terms of “insertion” procedures.

We rewrite below two enumerative formulae concerning general r-differential

posets, when applied to the rim hook lattice.

Let er(λ) denote the number of saturated chains λ = λ0 ⋗ λ1 ⋗ · · · ⋗ λn = φ

(i.e., the number of standard rim hook tableaux of shape λ). Similarly, we let

er(λ/α) denote the number of “standard skew rim hook tableaux of shape λ/α,

i.e., the number of paths λ = λ0 ⋗ λ1 ⋗ · · · ⋗ λn = α.

1.6 Corollary. For λ ∈ RHr,

(i)
∑

#λ=rn

e2r(λ) = rnn! ;

(ii)
∑

#λ=rn

er(λ) = #{r-colored involutions in the symmetric group Sn}

where “r-colored involution” means a symmetric n × n-matrix containing exactly

one nonzero entry in each row and column; this entry should be one of 1, 2, . . . , r.

Proof. See, e.g., [Fo1, (1.5.19)] and [Fo2, Corollary 3.9.4]. �

The following result is an analogue of the formulae of [SS90].

1.7 Corollary. Let α, β ∈ RHr, #α = rk, #β = r(k+ n−m) (n and m are

fixed). Then

∑

#λ=r(k+n)

er(λ/α) er(λ/β) =
∑

j

rj
(

m

j

)(

n

j

)

j!
∑

#µ=r(k−m+j)

er(α/µ) er(β/µ) .

Proof. See [Fo2, Corollary 3.8.3(iv)]. �

In Sec. 3 we give the analogues of the above results for the shifted shapes.

Acknowledgements. We are grateful to Anders Björner who asked whether

the approach of [Fo1, Fo2] can be applied to rim hook tableaux. We thank Curtis

Greene and Richard Stanley for helpful comments. Figures were produced by Curtis

Greene using the Mathematica package [GH90].
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2. Fairy Sequences

2.1 Definition. A map f : Z −→ Z is called a fairy sequence if the following

conditions hold:

(i) f(i) ≥ f(j) whenever 0 ≤ i ≤ j ;

(ii) f(j) ≤ f(i) whenever j ≤ i ≤ 0 ;

(iii) |f(i)− f(i− 1)| ≤ 1 for all i ;

(iv) f(i) = 0 if |i| is sufficiently large.

2.2 Lemma. There is a bijective correspondence between shapes (Young diagrams)

and fairy sequences. This bijection (denoted λ 7→ fλ) is given by

fλ(i) = #{ boxes on the i’th diagonal of λ} . �

2.3 Lemma. A shape λ is r-decomposable if and only if the corresponding fairy

sequence f = fλ satisfies the following condition:

(1)
∑

i≡a( mod r)

f(i) =
∑

i≡b( mod r)

f(i) for any a, b ∈ Z . �

2.4 Definition. Let f (0), . . . ,f (r−1) be fairy sequences. Then f = 〈f (0), . . . , f (r−1)〉

will denote the sequence defined by

(2) f(i) =
r−1
∑

k=0

f (k)

([

i+ k

r

])

where [. . . ] stands for the integer part.

2.5 Lemma. We have

(3) f(i)− f(i− 1) = f (k)

(

i+ k

r

)

− f (k)

(

i+ k

r
− 1

)

where k = (−i) mod r . �

2.6 Lemma. For any fairy sequences f (0), . . . ,f (r−1), the sequence f = 〈f (0), . . . , f (r−1)〉

is fairy and r-decomposable.

Proof. The first property follows from Lemma 2.5, the second one — from

∑

i≡a( mod r)

f(i) =
∑

k

∑

j

f (k)(j) . �
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2.7 Lemma. Any fairy and r-decomposable sequence f can be uniquely represented

as f = 〈f (0), . . . , f (r−1)〉 where f (0), . . . ,f (r−1) are some fairy sequences.

Proof. Given such a sequence f , one can inductively use (2) to find the values

f (k)(j), starting with f (k)(j) = 0 for j ≪ 0. The equality (3) guarantees that the

resulting sequences satisfy Definition 2.1,(i)-(iii). The condition (1) for b = a − 1

gives, together with (3), the equality

lim
j→∞

f (k)(j)− lim
j→−∞

f (k)(j) = 0 ,

and the proof follows. �

The following statement contains Theorem 1.2.

Proof of Theorem 1.2. We will prove that the bijection

(4) f ←→ (f (0), . . . , f (r−1))

induces an isomorphism between RHr and Yr. According to (2), the following are

equivalent:

(i) adding 1 to some f (k)(j) ;

(ii) adding 1 to each of f(i), f(i+ 1), . . . , f(i+ r − 1) for some i.

In view of Lemmas 2.6-2.7, the operations (i) and (ii) either both preserve the

“fairyness” or both don’t. To complete the proof, note that (i) corresponds to

adding a box to the respective shape, and (ii) to adding a rim hook. �

Theorem 1.2 can be also proved by means of the approach of [JK81].

3. Shifted shapes

In this section we define the shifted rim hooks (Definition 3.4) and find the analogous

isomorphism theorem (Theorem 3.7) for shifted shapes.

3.1 Definition. Let SemiPascal be the set

{(k, l) ∈ Z
2 : l > k ≥ 1}

ordered by inclusion. The finite order ideals in SemiPascal are called shifted shapes;

the corresponding distributive lattice is denoted SY. For any σ ∈ SY, let λ(σ)

denote the “symmetrized” shape being a union of σ and a flipped shifted shape σ′;

formally,

σ′ = {(l, k − 1) : (k, l) ∈ σ} , λ(σ) = σ ∪ σ′ .

Informally, this means that we fold the shifted shape σ about a diagonal line

just to the left of σ’s main diagonal, and add it to σ.
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For example, if σ = 41, then λ(σ) = 5311:

⊙

⊙ ⊙

⊙

⊙

.

Similarly, two fairy sequences f and g are said to be folded to each other if

f(k) = g(1 − k) for all k ∈ Z. This means that their respective shapes are related

by folding across the diagonal in the definition of λ(σ). We call f self-folded if

f(k) = f(1 − k) for all k ∈ Z. The next lemma follows immediately from the

definition of λ(σ).

3.2 Lemma. For any shifted shape σ, the fairy sequence f = fλ(σ) is self-folded;

namely,

(5) f(k) = f(1− k) for k ∈ Z .

Conversely, any fairy sequence satisfying (5) has a unique representation of the

form f = fλ(σ) for an appropriate shifted shape σ. �

It is clear that self-conjugate (left-justified) shapes have fairy sequences f which

are symmetric, f(k) = f(−k), for all k ∈ Z. We need these fairy sequences for the

next lemma, which applies (4) to self-folded shapes λ(σ).

3.3 Lemma (cf. [Ol87,MY86,GKS90]). The bijection (4), when restricted to the

shifted shape case, reduces to a bijection between

(i) r-decomposable self-folded fairy sequences and

(ii) r-tuples (f (0), . . . , f (r−1)) of fairy sequences where f (0) is self-folded, f (i)

is folded to f (r−i) for 1 ≤ i ≤ r−1
2 , and if r is even then, in addition, f (r/2) is

symmetric. �

We next define shifted rim hooks. This definition will allow us to define the

shifted rim hook lattice, SRHr, on all r-decomposable shifted shapes.

3.4 Definition. A shifted rim hook is a convex subset of SemiPascal which satisfies

one of the three following conditions:

(1) for some i ≥ r, h has exactly one box on each of the diagonals i− r + 1, . . . , i;

(2) for some i, r/2 < i < r, h has two boxes on each of the diagonals 1, . . . , r − i

and one box on the diagonals r − i+ 1, . . . , i;

(3) for i = r/2, h has one box on each of the diagonals 1, . . . , r/2.

(In the cases (1)-(2) a shifted rim hook contains r boxes, in the case (3) r is even

and the shifted rim hook has r/2 boxes.)
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The following picture describes some shifted rim hooks which one can add to the

shifted shape 41:

⊙

E D C B A
⊙ ⊙

J G F
⊙

M L K H
⊙

I

For r = 4: BCDE, EFGJ , JK; for r = 5: ABCDE, DEFGJ , EFGJK, GHIJK.

Shifted rim hooks define the covering relation in SRHr. The posets (lattices) SY

and SRH2 are given in Figures 3 and 4 respectively; the join-irreducible elements are

highlighted. The rank function rankr on SRHr is standard for r odd: rankr(σ) =

#σ/r, but this does not hold for r even. For example, for r = 2, rank2(σ) is the

number of boxes of σ lying on odd diagonals; rank2(542) = 6.

3.5 Lemma. The bijection σ ↔ fλ(σ) is a poset isomorphism between SY and the

coordinate-wise partial order on self-folded fairy sequences. �

3.6 Lemma. The coordinate-wise partial order on the set of symmetric fairy se-

quences is isomorphic to SY. �

Thus we obtain the following result.

3.7 Theorem. If r is odd then

SRHr
∼= SY× Y

r−1

2 ;

if r is even then

SRHr
∼= SY× SY× Y

r−2

2 . �

3.8 Lemma [Fo2]. Let SY∗ be the graph obtained from SY by doubling the edges

which correspond to adding boxes lying outside the first diagonal. Then SY and SY∗

are dual.

We now define the graphs SRH∗

r . To get SRH∗

r , take the shifted rim hook lattice

SRHr and double its edges which correspond to adding rim hooks of type (1) (see

Definition 3.4) with i = rj, j ≥ 2, and, in case r is even, with i = r(j + 1
2 )), j ≥ 1

as well.

3.9 Corollary. The graphs SRHr and SRH∗

r are
[

r+2
2

]

-dual. In addition,

if r is odd then SRH∗

r
∼= SY∗ × Y

r−1

2 ,

if r is even then SRH∗

r
∼= SY∗ × SY∗ × Y

r−2

2 . �

Once a dual graph is constructed, the corresponding Schensted algorithm arises

(see [Fo2, Fo3]). In this case it falls into
[

r−1
2

]

independently running ordinary

Schensteds and 1 or 2 (for r odd and even, respectively) independently running

“shifted Schensteds” (see [Wo84,Sa87,Ha89,Fo2]).



8

Now we can apply to the shifted rim hook lattices all of the results concerning

arbitrary dual graphs (see [St88, St90, Fo1, Fo2]). For example, we get the following

analogue of the Young-Frobenius identity. To state it, define the numbers dr(σ)

as follows. Take any decomposition of a shifted shape σ into shifted rim hooks.

Let dr(σ) be the number of shifted rim hooks whose value of i in Definition 3.4 is

r(j + 1) or r(j + 1
2 ) for j ≥ 1.

3.10 Corollary. Let er(σ) denote the number of shifted rim hook tableaux of shape

σ. Then
∑

σ∈SRHr

rank(σ)=n

e2r(σ) 2
dr(σ) =

[

r + 2

2

]n

n! . �

As an example of Corollary 3.10 we take r = 2 and n = 3. Note that for r = 2,

d2(σ) is the number of shifted rim hooks whose value of i is not 1 or 2. The elements

of rank 3 in SRH2 are 6, 42, 41, 32, 31, and 5, which respectively have 1,1,3,3,1,

and 1 shifted rim hook tableaux for r = 2. For example, for 41, the shifted rim

hook tableaux are

1 1 2 2

3
,

1 1 3 3

2
,

1 2 3 3

2
.

The shapes 6, 42, 41, 32, 31, and 5 have respective weights 2dr(σ) of 4, 2, 2, 2, 2,

and 4. We see that Corollary 3.10 becomes 4 + 2 + 18 + 18 + 2 + 4 = 48 = 23 3!.
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