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ON THE COHOMOLOGY OF FANO VARIETIES AND THE SPRINGER
CORRESPONDENCE

TSAO-HSIEN CHEN, KARI VILONEN, AND TING XUE,
WITH AN APPENDIX BY DENNIS STANTON

Abstract. In this paper we compute the cohomology of the Fano varieties of k-planes
in the smooth complete intersection of two quadrics in P2g+1, using Springer theory for
symmetric spaces.

1. Introduction

In this paper we compute the cohomology of the Fano varieties Fanok of k-planes in the
smooth complete intersection of two quadrics in P2g+1, with g ≥ 1. These Fano varieties
have a concrete interpretation as moduli spaces of vector bundles (with extra structure) on
a hyperelliptic curve C of genus g. When k = g− 1 then Fanog−1 = Jac(C), the Jacobian of
C [Re, Do] and when k = g − 2 then Fanog−2 = Bun2(C), the moduli space of stable rank
2 vector bundles on C with fixed odd determinant [DR]. For k < g − 2 a more elaborated
interpretation of the varieties Fanok as moduli spaces of bundles is given in [Ra]. The curve
C arises from the intersection of the two quadrics in the following manner. If the intersection
of the quadrics is given by the pencil µQ1 + λQ2 then C is the hyperelliptic curve over P1

ramified at the points [µ,λ] where the quadric µQ1 + λQ2 becomes singular.

The goal of this paper is to describe the cohomology of the varieties Fanok in general.
The form of our answer is in the spirit of the main theorem of [N] who, from our point of
view, treats the case Fanog−2. He makes use of the mapping class group which for us, as we
work on hyperelliptic curves, is replaced by the fundamental group of the universal family
of hyperelliptic curves.

To state our result note that dimFanog−i = (g − i+ 1)(2i− 1). We also write

H̄k(Fanog−i,C) = HdimFanog−i −k(Fanog−i,C), ∧̄k(H1(C,C)) = ∧g−k(H1(C,C)).

Theorem 1.1. For i ≥ 2, we have

H̄k(Fanog−i,C) ∼=

g
⊕

j=i−1

Ni(k, j) ∧̄
j,
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where Ni(k, j) is the coefficient of qk in

q−(j−i+1)(2i−1)(1− q4j)

∏i+j−2
l=j−i+2(1− q2l)
∏2i−2

l=1 (1− q2l)
.

In particular, the numbers Ni(k, j) are independent of the genus g.

To come up with this formula we were inspired by the case of Fanog−2 = Bun2(C) treated
by Nelson [N]. He, in turn, states that the formula in the case of Fanog−2 = Bun2(C) was
conjectured by Donaldson. We guessed the general formula above after reading [Z] aug-
mented by some experimentation. By our methods we reduced the proof of the theorem to
a combinatorial identity which expresses the Poincare polynomial of the orthogonal Grass-
mannian in terms of the Poincare polynomials of ordinary Grassmannians in a particular
manner, see formula (3.13). This combinatorial identity was proved by Stanton. His proof
is included in this paper as an appendix. We have not been able to understand this com-
binatorial identity from a geometric point of view. It would be interesting to have such a
geometric interpretation.

As a byproduct one obtains formulas for the Poincare polynomials (denoted by h(n)
j (q) in

the text) of stalks of IC-sheaves of certain nilpotent orbits in the symmetric space case. In the
classical case these stalks are given by Kostka-Foulkes polynomials. Thus, the polynomials
h(n)
j (q) can be regarded as symmetric space analogues of Kostka-Foulkes polynomials. The

appendix of Stanton gives an explicit formula for the h(n)
j (q) and also proves some interesting

recursive formulas for them.

The proof of the theorem makes use of Springer theory for symmetric spaces which was
initiated in [CVX]. In particular, it can be seen as a concrete example of a general strategy
to compute the cohomology of Hessenberg varieties using a Fourier transform. In [CVX]
we primarily worked with the symmetric pair (SL(N), SO(N)) in the case when N is odd.
As an application of our theory we computed the cohomology of Fano varieties of k-planes
in the complete intersection of two quadrics in an even dimensional projective space [CVX,
Theorem 8.1]. In the even dimensional case the answer is considerably simpler than in the
case of odd dimensional projective space we treat here. In the even dimensional case the
cohomology turns out to be Hodge-Tate.

The paper is organized as follows. In section 2 we explain how the theory developed in
[CVX] for odd N can be carried over to the case of even N . In section 3 we give the proof of
our main theorem. The appendix by Dennis Stanton contains the proof of the combinatorial
identity.

Acknowledgements. We thank the Max Planck Institute for Mathematics in Bonn
for support, hospitality, and a nice research environment. Furthermore KV and TX thank
the Research Institute for Mathematical Sciences in Kyoto for support, hospitality, and a
nice research environment. Special thanks are due to Dennis Stanton for proving a key
combinatorial identity and for writing an appendix containing the proof.
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2. Springer correspondence for the symmetric pair (SL(2n), SO(2n))

In this section we discuss the Springer correspondence for nilpotent orbits of order 2 for
the symmetric pair (SL(2n), SO(2n)) . We have treated the case (SL(2n+1), SO(2n+1)) in
[CVX]. Some of the arguments in this section are modifications of the arguments in [CVX].
In this section we have written n for g + 1 and n ≥ 2.

We follow the notational conventions of [CVX]. In particular, we adopt the usual conven-
tion of cohomological degrees for perverse sheaves by having them be symmetric around 0.
We also use the convention that all functors are derived, so we write, for example, π∗ instead
of Rπ∗. If X is smooth we write CX [−] for the constant sheaf placed in degree − dimX so
that CX [−] is perverse. If U ⊂ X is a smooth open dense subset of a variety X and L is a
local system on U , we write IC(X,L) for the IC-extension of L[−] to X ; in particular, it is
perverse. For F ∈ D(X) and x ∈ X , we write Hi

x(F) for the stalk of the cohomology sheaf
HiF at x. This should not be confused with local cohomology. For a number a, we denote
the integer part of a by [a].

2.1. The symmetric pair (SL(2n), SO(2n)). Let G = SL(2n,C) and θ : G → G an
involution such that K := Gθ = SO(2n,C). We also write (G,K) = (SL(V ), SO(V,Q)),
where dim V = 2n. We think of Q concretely as a non-degenerate quadratic form on V and
we write ⟨ , ⟩Q for the non-degenerate bilinear form on V associated to Q. The involution
θ induces a grading on g = Lie G, i.e. g = g0 ⊕ g1, where θ|gi = (−1)i. If we diagonalize
Q then the Cartan involution θ is given by g +→ (gt)−1 and then g1 consists of symmetric
matrices.

The pair (G,K) is a split pair. We write grs for the regular semi-simple elements in g and
we let grs1 = g1 ∩ grs. Furthermore, we write A for a θ-stable maximal split torus of G, i.e.,
θ(t) = t−1 for t ∈ A. We write πK

1 (grs1 ) for the equivariant fundamental group of grs1 and we
have

πK
1 (grs1 ) = A[2]! B2n,

where A[2] is the group of order 2 elements in A and B2n is the braid group. For a discussion
of these matters see [CVX, Subsection 2.6].

We also write N for the nilpotent cone of g and we let N1 = N∩g1 stand for the nilpotent
cone of g1. The G-orbits in N are parametrized by partitions λ of 2n and we write Õλ for
the G-orbit corresponding to the partition λ. The intersection of a G-orbit Õλ with N1 is
one K-orbit in the case when not all parts of λ are even and decomposes into two K-orbits
otherwise [S].

For i ∈ [0, n− 1], let O2i12n−2i denote the (unique) nilpotent K-orbit in g1 corresponding
to the partition λ = 2i12n−2i, where i (resp. 2n − 2i) is the multiplicity of 2 (resp. 1) in
λ. Let us denote by OGr(s, 2n) the variety of s-dimensional isotropic subspaces in C2n with
respect to a non-degenerate bilinear form. We write Vi for a vector subspace of V = C2n of
dimension i and V ⊥

i = {x ∈ V | ⟨x, Vi⟩Q = 0}.
3



2.2. Reeder’s resolutions for Ō2i12n−2i . Consider the natural projection maps

(2.1) υi : {(x, 0 ⊂ Vi ⊂ V ⊥
i ⊂ C2n) | x ∈ g1, xV ⊥

i = 0} → Ō2i12n−2i .

The υi’s are Reeder’s resolutions for Ō2i12n−2i [R].

Lemma 2.1. Let xj ∈ O2j12n−2j . We have

υ−1
i (xj) ∼= OGr(i− j, 2n− 2j).

Furthermore, the component group AK(xj) := ZK(xj)/ZK(xj)0 of the centralizer ZK(xj) acts
trivially on H∗(υ−1

i (xj),C).

Proof. The proof proceeds in the same manner as the proofs of displayed statements [CVX,
(7.1) and (7.2)] for the maps denoted there by σi.

!

Making use of Lemma 2.1, one readily checks that

2 dim υ−1
i (xj)− codimŌ

2i12n−2i
O2j12n−2j = (i− j)(2n− 2i− 1) := mij

for xj ∈ O2j12n−2j . It follows from the decomposition theorem and the lemma above that we
have the following decomposition

(2.2) υi∗C[i(2n− i)] ∼=
i
⊕

j=0

mij
⊕

k=0

IC(Ō2j12n−2j ,Csijk)[±k]

where sijk are non-negative integers and siik = δ0,k. The fact that all the local systems
appearing in this decomposition are trivial follows from the lemma.

In what follows we write (sijk)n for the numbers sijk to indicate that the ambient symmetric
pair is (SL(2n), SO(2n)). The lemma below allows us to compute the numbers (sijk)n and
the stalks of the IC(Ō2i12n−2i ,C) simultaneously by induction.

Lemma 2.2. We have

(1) (silk)n = (si−j
l−j,k)n−j.

(2) Hk
xj
IC(Ō2i12n−2i ,C) = H

k+tj
0 IC(Ō2i−j12n−2i ,C), where xj ∈ O2j12n−2j and tj = j(2n−j).

Proof. In [CVX, Subsection 7.5] we proved this lemma in the odd case, i.e., for the symmetric
pair (SL(2n + 1), SO(2n + 1)). This argument can be readily adapted to the even case
(SL(2n), SO(2n)) we consider in this paper. !
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2.3. Fourier transforms of IC(Ō2i12n−2i ,C). Let F : DK(g1) → DK(g1) be the Fourier
transform where we have identified g1 with g∗1 via a K-invariant non-degenerate bilinear
form on g1. Then F induces an equivalence of categories PervK(g1) → PervK(g1), where
PervK(g1) is the category of K-equivariant perverse sheaves on g1. In this subsection we
study the Fourier transforms of IC(Ō2i12n−2i ,C), i ∈ [0, n− 1].

Let us choose a Cartan subspace a of g1 such that it consists of diagonal matrices. Let
ars = a ∩ grs denote the set of regular semisimple elements in a. For a ∈ a with diagonal
entries a1, . . . , a2n, we write a = (a1, . . . , a2n). Thus a = (a1, . . . , a2n) ∈ ars if and only if
ai ̸= aj for i ̸= j.

Consider the following family C → grs1 whose fiber over γ ∈ grs1 is the hyperelliptic curve
Cγ with affine equation y2 = f(t) = det(t · id−γ). The family above is constant on K-orbits
and descends to the universal family C̄ → grs1 /K = ars/S2n of hyperelliptic curves of genus
n− 1:

To each a = (a1, . . . , a2n) ∈ ars we associate the hyperelliptic

curve C̄a over P1 which ramifies at {a1, . . . , a2n} .

The family C → grs1 gives us a monodromy representation

πK
1 (grs1 ) → π1(g

rs
1 /K) = B2n → Sp(H1(Cγ,C)).

Note that, by [A] (see also [KS]) this monodromy representation has a Zariski dense image.
From this we get a monodromy representation on the cohomology of the Jacobian of Cγ

which we break into primitive parts:

πK
1 (grs1 ) → H i(Jac(Cγ),C)prim ≃ (∧iH1(Cγ,C))prim i ∈ [1, n− 1] .

Associated to this representation Wi we obtain an irreducible K-equivarant local system Wi

on grs1 . Note that the part A[2] of πK
1 (grs1 ) acts trivially on Wi. It is clear that we have

Wi " Wj for i ̸= j and

dimWi =

(

2n− 2

i

)

−

(

2n− 2

i− 2

)

.

Proposition 2.3. We have

F(IC(Ō2i12n−2i ,C)) ∼= IC(g1,Wi)

where Wi are irreducible K-equivariant local systems on grs1 defined above and W0 = C is
the trivial local system.

Proof. Consider the map υ := υn−1 defined in (2.1). Let us write

(2.3) υ : {(x, 0 ⊂ Vn−1 ⊂ V ⊥
n−1 ⊂ C2n) | x ∈ g1, xV ⊥

n−1 = 0} := E → Ō2n−112 .

It follows from (2.2) that we have

(2.4) υ∗C[n
2 − 1] ∼=

n−1
⊕

j=0

n−j−1
⊕

k=0

IC(Ō2j12n−2j ,C(sn−1
jk

)n)[±k].
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Now consider the natural projection map

(2.5) υ̌ : {(x, 0 ⊂ Vn−1 ⊂ V ⊥
n−1 ⊂ C2n) | x ∈ g1, xVn−1 ⊂ V ⊥

n−1} := E⊥ → g1.

For any γ ∈ grs1 we denote by

Fγ := υ̌−1(γ) ∼= {0 ⊂ Vn−1 ⊂ V ⊥
n−1 ⊂ C2n | γ Vn−1 ⊂ V ⊥

n−1},

the Fano variety of (n − 2)-planes in the intersection of two quadrics Q ∩ Qγ, where Qγ =
⟨γ−,−⟩Q = 0. Let Cγ be the hyperelliptic curve associated to the pencil µQ + λQγ of
quadrics. According to [Re, Do, W], Cγ is isomorphic to the hyperelliptic curve with affine
equation y2 = det(t · id−γ) and there is a canonical action of Jac(Cγ) on Fγ such that Fγ

becomes a Jac(Cγ)-torsor under this action. This action extends to families: as γ varies over
grs1 , we obtain a Jac(C)-torsor υ̌|grs1 : F → grs1 of Fano varieties of (n− 2)-planes in complete
intersections of two quadrics. By taking cohomologies of fibers, the families Jac(C) and F
give rise to local systems on grs1 . We claim that those local systems coincide, i.e., that

(2.6)
The πK

1 (grs1 , γ)-representations H i(Jac(Cγ),C) and H i(Fγ,C)

are canonically isomorphic.

As F does not appear to have a natural section we argue as follows. According to [W] there
is a canonical involution σ on Fγ compatible with the inversion map on Jac(Cγ). Let F σ

γ

be the set of σ-fixed points on Fγ. Then F σ
γ is naturally a Jac(Cγ)[2]-torsor. Thus, the

Jac(C)-torsor F gives rise to a Jac(C)[2]-torsor F σ → grs1 consisting of σ fixed points on F .
We note that there is a canonical isomorphism

(Jac(C)×grs1
F σ)/Jac(C)[2] ∼= F

where Jac(C)[2] acts on Jac(C) ×grs1
F σ via the diagonal action. Moreover, arguing as in

[CVX, Lemma 5.5], we obtain (2.6). We then conclude that

(Riυ̌∗C|grs1 )prim
∼= Wi, i ∈ [1, n− 1].

Thus we have

(2.7)

υ̌∗C[−] =

[n−1
2

]
⊕

k=0

IC(g1,
k
⊕

j=0

W2j)[±(n− 1− 2k)]

⊕

[n−1
2

]−1
⊕

k=0

IC(g1,
k
⊕

j=0

W2j+1)[±(n− 2− 2k)]⊕ · · ·

where · · · consists of IC complexes that are supported on proper subsets of g1. Note that E⊥

(see (2.5)) is the orthogonal complement of E (see (2.3)) in the trivial bundle g1 ×X → X ,
where X = {Vn−1 | 0 ⊂ Vn−1 ⊂ V ⊥

n−1 ⊂ C2n} ∼= OGr(n− 1, 2n). Thus, by functoriality of the
Fourier transform, we obtain:

(2.8) F(υ∗C[−]) ∼= υ̌∗C[−].

Using (2.8) and comparing (2.4) with (2.7), we conclude that

F(IC(Ō2k12n−2k ,C) ∼= IC(g1,Wk).

!
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3. Cohomology of Fano varieties

In this section we compute the cohomology of the Fano varieties Fanoi−1 of (i− 1)-planes
contained in the smooth complete intersection of two quadrics in P2n−1, making use of the
results in §2.

3.1. Fano varieties. Consider the natural projection maps

υ̌i : {(x, 0 ⊂ Vi ⊂ V ⊥
i ⊂ C2n) | x ∈ g1, xVi ⊂ V ⊥

i } → g1.

For γ ∈ grs1 , the fiber υ̌−1
i (γ) can be identified with the Fano variety Fanoi−1 of (i − 1)-

planes contained in the smooth complete intersection of the two quadrics ⟨−,−⟩Q = 0 and
⟨γ−,−⟩Q = 0 in P2n−1. It is easy to see that

(3.1) dimFanoi−1 = dim υ̌−1
i (γ) = i(2n− 2i− 1) := di.

Let us consider πi = υ̌i|υ̌−1
i (grs1 ), which is a smooth family of Fano varieties and consider the

corresponding local systems Rkπi∗C. Utilizing functoriality of the Fourier transform, just as
in (2.8), we have:

F(υ̌i∗C[−]) ∼= υi∗C[−].

Together with (2.2), this implies that

F(υ̌i∗C[−]) ∼=
2di
⊕

k=0

F(IC(g1, R
kπi∗C)[−k + di])

∼=
i
⊕

j=0

(i−j)(2n−2i−1)
⊕

k=0

IC(Ō2j12n−2j ,C(sijk)n)[±k].

Hence we see that F(IC(g1, Rkπi∗C)) is supported on Ō2i12n−2i+1 , and has the from

F(IC(g1, R
kπi∗C)) =

i
⊕

j=0

(sij,|di−k|)n IC(Ō2j12n−2j+1 ,C).

It follows from the discussion above and Proposition 2.3 that the cohomology of the Fano
variety Fanoi−1 is described as follows

(3.2) Hk(Fanoi−1,C) ∼=
i
⊕

j=0

(sij,|di−k|)nWj .

It remains to determine the numbers (sijk)n.

3.2. The numbers (sijk)n and stalks for IC(O2i12n−2i ,C) at 0. In this subsection, we give
explicit formulas for the numbers (sijk)n and the dimensions of the stalks Hk

0IC(O2i12n−2i ,C)
in terms of their generating functions. Note first that Lemma 2.2 (1) implies that

(3.3) (sijk)n = (si−j
0,k )n−j for j ≥ 1.

Since (sii,k)n = δ0,k, it suffices to study the numbers (si0,k)n.
7



For 0 ≤ j ≤ n− 1, let us define

(3.4) h(n)
j (q) := (−1)jqj(2n−j)

∑

k

(−1)k (dimH
k
0 IC(Ō2j12n−2j ,C)) qk,

and

(3.5) P (n)
j (q) := (−1)jqj(2n−2j−1)

j(2n−2j−1)
∑

k=0

(−1)k(sj0k)n q
±k.

Note that h(n)
0 (q) = P (n)

0 (q) = 1 and

(3.6)
For j ≥ 1, the function h(n)

j (q) (resp. P (n)
j (q)) is a polynomial in q with

degree no greater than j(2n− j)− 1 (resp. 2j(2n− 2j − 1)).

(3.7) The coefficients of qj(2n−2j−1)+k and qj(2n−2j−1)−k in P (n)
j (q) are equal for all k ≥ 1.

The statement above for h(n)
j (q), j ≥ 1, follows from the fact that Hk

0 IC(Ō2j12n−2j ,C) is
non-zero only if − dimO2j12n−2j−1 = −j(2n− j) ≤ k ≤ −1.

For 0 < i ≤ k, let us write gi,k(q) for the Poincare polynomial of the Grassmannian variety
of i-dimensional subspaces in Ck, i.e.,

(3.8) gi,k(q) =

∏k
s=k−i+1(1− q2s)
∏i

s=1(1− q2s)
.

Let us also define

(3.9) g0,k(q) = 1 and gi,k(q) = 0 for i < 0.

Proposition 3.1. We have

(3.10) h(n)
j (q) =

[j/2]
∑

k=0

(
j−2k
∏

s=1

(1 + q2n−2s)) (gk,n−j+2k−1(q
2)− gk−1,n−j+2k−1(q

2))

(3.11) P (n)
j (q) = gj,2n−1−j(q).

Proof. Note that υ−1
i (0) ∼= OGr(i, 2n). Let us write

ogj,2n(q) =

rj
∑

k=0

(−1)k dimHk (OGr(j, 2n),C) qk,

where rj = 2dimOGr(j, 2n) = j(4n − 3j − 1). The polynomials ogj,2n(q) are well-known,
i.e.,

ogi,2n(q) =
(1− q2n)

∏n−1
k=n−i(1− q4k)

(1− q2(n−i))
∏i

k=1(1− q2k)
.

8



Taking stalks Hk
0 on both sides of the equation (2.2), we obtain that

(3.12)

(−1)i ogi,2n(q) q
−i(2n−i) =

i
∑

j=0

(
∑

k

(−1)k (dimH
k
0 IC(Ō2j12n−2j ,C)) qk)(

(i−j)(2n−2i−1)
∑

k=0

(−1)k (sijk)n q
±k).

Making use of (3.3), the equation (3.12) can be written in terms of functions defined in (3.4)
and (3.5) as

(3.13) ogi,2n(q) =
i
∑

j=0

q(i−j)(i−j+1) h(n)
j (q)P (n−j)

i−j (q).

Observe that

(3.14)
The equations (3.13) determine the polynomials h(n)

i (q) and P (n)
i (q) uniquely

given that h(n)
i (q) and P (n)

i (q) satisfy (3.6) and (3.7) .

In fact, this follows by a simple induction argument. Given that P (n)
i (q) satisfy (3.7), it

suffices to determine the coefficient of qk in P (n)
i (q) for k ≥ i(2n − 2i − 1), or equivalently,

the coefficient of qk in qi(i+1)P (n)
i (q) for k ≥ i(2n− i). By induction, we can assume that in

(3.13), h(m)
j (q) and P (m)

j (q) are known for all j < i and all m. Now the degree of h(n)
i (q) is

≤ i(2n− i)− 1. Thus (3.13) determines P (n)
i (q) and h(n)

i (q) uniquely.

In view of the observation (3.14), the proposition follows from Theorem A.1 and Corollary
A.1 in Appendix A. Note that gi,k(q) =

[

k
i

]

q2
in the notation of Definition A.1.

!

Corollary 3.2. (1) We have h(n)
i (q) ∈ Z≥0[q2].

(2) We have HkIC(Ō2i12n−2i ,C) = 0 if k ≡ i− 1 (mod 2).

Proof. For (1) it suffices to show that h(n)
i (q) ∈ Z[q2]. This follows from (3.13) and induction

on i. See also Corollary A.1 for a direct proof. To prove (2) we observe that (1) implies
Hk

0IC(Ō2i12n−2i ,C) = 0 if k ≡ i−1 (mod 2). Now the desired claim follows from Lemma 2.2.

!

Remark 3.3. As noted in the introduction, it would be interesting to understand the formula
(3.13) in geometric terms. The formula involves doubling certain cohomological degrees and
we have been unable to come up with a geometric interpretation for this phenomenon.

Remark 3.4. As discussed in the introduction, the functions h(n)
m (q) can be viewed as a

symmetric space analogue of Kostka-Foulkes polynomials. In [CVX, Theorem 7.1, Lemma
8.3] we have shown that in the odd case, i.e., for the symmetric pair (SL(2n+1), SO(2n+1)),
the local IC on nilpotent orbits of order two are isomorphic to the local IC on nilpotent
orbits of order two in sp(2n). In turn, we deduced that the corresponding “Kostka-Foulkes”
polynomials are given by the fake degree polynomials, which have a much simpler form.
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3.3. Proof of Theorem 1.1. Recall that we write di = dimFanoi−1 = i(2n− 2i − 1) (see
(3.1)) and ∧̄j = ∧n−1−j(H1(C,C)). It follows from (3.2) and (3.3) that we have

Hdn−i−k(Fanon−i−1,C) ∼=
n−i
⊕

j=0

(sn−i
j,|k|)nWj

∼=
n−i
⊕

j=0

((sn−i
j,|k|)n − (sn−i

j+2,|k|)n) ∧
j (H1(C,C))

∼=
n−i
⊕

j=0

((sn−i−j
0,|k| )n−j − (sn−i−j−2

0,|k| )n−j−2)∧̄
n−1−j ∼=

n−1
⊕

j=i−1

((sj−i+1
0,|k| )j+1 − (sj−i−1

0,|k| )j−1)∧̄
j.

Here we have used the convention that (sa0,b)m = 0 if a < 0. Thus we have

Ni(k, j) = (sj−i+1
0,|k| )j+1 − (sj−i−1

0,|k| )j−1.

Using (3.5) and (3.11), we see that

(sj−i+1
0,|k| )j+1 is the coefficient of qk (or q−k) in (−1)j−i+1+kq−(j−i+1)(2i−1)gj−i+1,i+j(q),

(sj−i−1
0,|k| )j−1 is the coefficient of qk (or q−k) in (−1)j−i+1+kq−(j−i−1)(2i−1)gj−i−1,i+j−2(q).

Using (3.8) and (3.9), one readily checks that Ni(k, j) is the coefficient of qk (or q−k) in

(−1)j−i+1+kq−(j−i+1)(2i−1)(1− q4j)

∏i+j−2
l=j−i+2(1− q2l)
∏2i−2

l=1 (1− q2l)
.

Note that such a coefficient is nonzero only if k ≡ j − i + 1 (mod 2); in the latter case
(−1)j−i−1+k = 1. This proves the theorem as n = g + 1.

Remark 3.5. For i = 2, the formula in Theorem 1.1 coincides with the formula in [N,
Theorem 1].

Example 3.6. The cohomology of Fano1, the Fano variety of lines in the smooth complete
intersection of two quadrics in P2n−1 can be described as follows:

H8n−20−k(Fano1,C) ∼= Hk(Fano1,C)

∼=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

C[m+2
2

] if k = 2m and 0 ≤ m ≤ 2n− 6

H1(C,C) if k = 2m+ 1 and n− 3 ≤ m ≤ 2n− 6

Cn−3 ⊕ ∧2(H1(C,C)) if k = 4n− 10.

Appendix A. The functions h(n)
m (q)

by Dennis Stanton1

The main results for h(n)
m (q) are given in Theorem A.1 and Corollary A.1.

1School of Mathematics, University of Minnesota, USA. E-mail: stant001@umn.edu.
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Definition A.1. For non-negative integers n and k let

(A; q)n =
n−1
∏

k=0

(1−Aqk),

[

n

k

]

q

=
(qn; q−1)k
(q; q)k

.

Note that the q-binomial coefficient
[

n
k

]

q
is known to be a polynomial in q of degree k(n−k)

with non-negative coefficients, see [An2, Theorem 3.2, p. 35].

Definition A.2. For 0 ≤ k ≤ n− 1 let

ogk,2n(q) =
(q4(n−k); q4)k
(q2; q2)k

1− q2n

1− q2(n−k)
.

Definition A.3. For n ≥ 1 and 0 ≤ j ≤ n − 1 let h(n)
j (q) for 0 ≤ j ≤ n − 1 be defined

recursively by the n equations

ogk,2n(q) =
k
∑

j=0

q(k−j)(k−j+1)h(n)
j (q)

[

2n− 1− k − j

k − j

]

q2
, 0 ≤ k ≤ n− 1.

An explicit formula for h(n)
m (q) is the main result. The proof is given at the end of the

Appendix.

Theorem A.1. If 0 ≤ m ≤ n− 1, then

h(n)
m (q) =

[m/2]
∑

k=0

(−q2n−2; q−2)m−2k

[

n−m+ 2k

k

]

q4

1− q4(n−m)

1− q4(n−m+2k)
q4k

=
[m/2]
∑

k=0

(−q2n−2; q−2)m−2k

(

[

n−m+ 2k − 1

k

]

q4
−

[

n−m+ 2k − 1

k − 1

]

q4

)

,

where
[

n−m− 1

−1

]

q4
= 0.

Remark A.1. Note that Theorem A.1 implies the recurrence

h(n)
m (q) =

{

(1 + q2n−2)h(n−1)
m−1 (q), if m ≥ 1 is odd,

(1 + q2n−2)h(n−1)
m−1 (q) +

[

n−1
m/2

]

q4
−
[

n−1
m/2−1

]

q4
, if m ≥ 2 is even.

The polynomiality and positivity of h(n)
m (q) follows from Theorem A.1.

Corollary A.1. If 0 ≤ m ≤ n−1, then h(n)
m (q) is a polynomial in q of degree m(2n−m−1)

with non-negative integer coefficients.

Proof. In fact we show that the kth term in the sum of Theorem A.1 is a non-negative
polynomial in q of degree m(2n−m− 1)− 2k.

11



The factor

(−q2n−2; q−2)m−2k =
m−2k−1
∏

j=0

(1 + q2n−2−2j)

is a non-negative polynomial in q of degree (2n− 2)(m− 2k)− 2
(

m−2k
2

)

.

The factor
[

n−m+ 2k − 1

k

]

q4
−

[

n−m+ 2k − 1

k − 1

]

q4

is a non-negative polynomial in q4 of degree k(n − m + k − 1). This difference is known
to be non-negative, see [An1]. It is also the fake degree polynomial fλ(q4), for a partition
λ = (n − m − 1 + k, k) with 2 rows. It may be written as the generating function for the
major index of standard Young tableaux of shape λ, see [St, Corollary 7.21.5, p. 376].

Since

(2n− 2)(m− 2k)− 2

(

m− 2k

2

)

+ 4k(n−m+ k − 1) = m(2n−m− 1)− 2k,

the kth term has degree m(2n−m− 1)− 2k and is non-negative. !

The proof of Theorem A.1 is in two steps. First, an explicit formula for h(n)
m (q) is found

by inverting the matrix in Definition A.3, see Proposition A.2. Next a basic hypergeometric
transformation, Proposition A.2, is applied to obtain Theorem A.1.

First we have a matrix inverse result which is [GS, Theorem 3.2].

Proposition A.1. Suppose that

βk =
k
∑

j=0

αj

(Q;Q)k−j(AQ;Q)k+j
, 0 ≤ k ≤ n− 1.

Then for 0 ≤ m ≤ n− 1,

αm =
m
∑

k=0

(−1)m+kβk
(AQ;Q)m+k−1

(Q;Q)m−k
(1−AQ2m)Q(m−k

2 ).

We apply Proposition A.1 to Definition A.3. Fix n ≥ 1. Rewrite Definition A.3 as

(−1)kogk,2n(q)

(q4n−2; q−2)2k
=

k
∑

j=0

(−1)jh(n)
j (q)

(q−2; q−2)k−j(q4n−2; q−2)k+j
, 0 ≤ k ≤ n− 1.

So if

Q = q−2, A = q4n, βk =
(−1)kogk,2n(q)

(q4n−2; q−2)2k
, αj = (−1)jh(n)

j (q)

we can apply Proposition A.1 to solve for h(n)
m (q).
12



Proposition A.2. If 0 ≤ m ≤ n− 1, then

h(n)
m (q) =

m
∑

k=0

ogk,2n(q)

(q4n−2; q−2)2k

(q4n−2; q−2)m+k−1

(q−2; q−2)m−k
(1− q4n−4m)q−2(m−k

2 )

=Cm

m
∑

k=0

(q2m; q−2)k
(q−2; q−2)k

(q4n−2m; q−2)k
(q4n−2; q−4)k

(1− q2n)

(1− q2(n−k))
q−k2−3k.

where

Cm =
(q4n−2; q−2)m−1

(q2; q2)m
(1− q4n−4m)q2m(−1)m.

For the final step in the proof of Theorem A.1, we will need a transformation, Corollary A.2.
The next result is used to prove Corollary A.2, and is a quadratic transformation of a basic
hypergeometric series.

Proposition A.3. As formal power series in x,
∞
∑

n=0

(D2; q)n
(q; q)n

(R/q; q2)n
(R/q; q)n

xn =
∞
∑

k=0

(D2; q)2k
(q2; q2)k(R; q2)k

(D2xq2k; q)∞
(x; q)∞

qk(2k−2)Rkx2k.

Proof. We find the coefficient of xn on the right side, and show that it equals the coefficient
of xn on the left side. Use the q-binomial theorem [An2, Theorem 2.1, p. 17] to expand

(D2xq2k; q)∞
(x; q)∞

=
∞
∑

j=0

(D2q2k; q)j
(q; q)j

xj .

So the coefficient of xn on the right side is

[n/2]
∑

k=0

(D2; q)2k
(q2; q2)k(R; q2)k

qk(2k−2)Rk (D
2q2k; q)n−2k

(q; q)n−2k

=
(D2; q)n
(q; q)n

[n/2]
∑

k=0

(qn; q−1)2k
(q2; q2)k(R; q2)k

qk(2k−2)Rk

=
(D2; q)n
(q; q)n

[n/2]
∑

k=0

(qn; q−2)k(qn−1; q−2)k
(q−2; q−2)k(1/R; q−2)k

q−2k

=
(D2; q)n
(q; q)n

(R/q; q2)n
(R/q; q)n

,

where we have used the q-Vandermonde theorem [GR, (II.6), p. 354], to evaluate the last
sum. !

The transformation we need is a corollary of Proposition A.3, and is a q-analogue of a
result of Bailey [B, (5.41)].
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Corollary A.2. If m is a non-negative integer, then
[m/2]
∑

k=0

(D2; q)2k
(q2; q2)k(R; q2)k

qk(2k−2)Rk (D
2q2k/B; q)m−2k

(q; q)m−2k
Bm−2k

=
m
∑

s=0

(D2; q)m−s

(q; q)m−s

(R/q; q2)m−s

(R/q; q)m−s

(1/B; q)s
(q; q)s

Bs

=
(D2; q)m
(q; q)m

(R/q; q2)m
(R/q; q)m

m
∑

s=0

(q−m; q)s
(q1−m/D2; q)s

(q2−m/R; q)s
(q3−2m/R; q2)s

(1/B; q)s
(q; q)s

(

Bq2−m

D2

)s

q(
s
2)

Proof. Multiply both sides of Proposition A.3 by (x; q)∞/(Bx; q)∞ and equate coefficients of
xm, using

(x; q)∞
(Bx; q)∞

=
∞
∑

j=0

(1/B; q)j
(q; q)j

(Bx)j ,
(D2xq2k; q)∞
(Bx; q)∞

=
∞
∑

j=0

(D2q2k/B; q)j
(q; q)j

(Bx)j .

The last equality uses

(A;Q)m−s =
(A;Q)m

(Q1−m/A;Q)s (−AQm−1)sQ−(s2)
.

!

We use Corollary A.2 to give another sum for h(n)
m (q).

Theorem A.2. If 0 ≤ m ≤ n− 1,

h(n)
m (q) = (−q2n−2; q−2)m

[m/2]
∑

k=0

(q2n−2m; q2)2k
(q4n+4−4m; q4)k(q4; q4)k

q4k

Proof. In Corollary A.2 we replace q by q−2, and let

B = q−2n, R = q−4n+4m−4, D2 = q−2n+2m.

The final expression in Corollary A.2 is

(q−2n+2m; q−2)m
(q−2; q−2)m

(q−4n+4m−2; q−4)m
(q−4n+4m−2; q−2)m

h(n)
m (q)

Cm
,

where h(n)
m (q) and Cm are as in Proposition A.2. The left side of Corollary A.2 is

(−1)mqm
2−2nm+m

[m/2]
∑

k=0

(q2n−2m; q2)2k
(q4n+4−4m; q4)k(q4; q4)k

q4k.

One verifies that

(−1)mCm
qm

2−2nm+m(q−2; q−2)m
(q−2n+2m; q−2)m

(q−4n+4m−2; q−2)m
(q−4n+4m−2; q−4)m

= (−q2n−2; q−2)m.

!
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Proof of Theorem A.1. We rewrite the kth summand in Theorem A.2

(−q2n−2; q−2)m
(q2n−2m; q2)2k

(q4n+4−4m; q4)k(q4; q4)k
q4k

=(−q2n−2; q−2)m−2k
(−q2n−2m; q2)2k(q2n−2m; q2)2k

(q4n+4−4m; q4)k(q4; q4)k
q4k

=(−q2n−2; q−2)m−2k
(q4n−4m; q4)2k

(q4n+4−4m; q4)k(q4; q4)k
q4k

=(−q2n−2; q−2)m−2k

[

n−m+ 2k

k

]

q4

1− q4(n−m)

1− q4(n−m+2k)
q4k

=(−q2n−2; q−2)m−2k

(

[

n−m+ 2k − 1

k

]

q4
−

[

n−m+ 2k − 1

k − 1

]

q4

)

.

!
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