A UNIMODALITY IDENTITY FOR A SCHUR FUNCTION

Frederick M. Goodman*
Kathleen M. O'Hara**
AND
Dennis Stanton***

Abstract

A polynomial identity in q for the principal specialization of the Schur function, $s_{\lambda}\left(1, q, \ldots, q^{n}\right)$ is given. The identity immediately proves that $s_{\lambda}\left(1, q, \ldots, q^{n}\right)$ is a unimodal polynomial in q.

It is well known that the principal specialization of the Schur function, $s_{\lambda}\left(1, q, \ldots, q^{n}\right)$, is a unimodal polynomial. A brief representation theoretic proof consists in identifying $s_{\lambda}\left(1, q, \ldots, q^{n}\right)$ as the character of a homogeneous polynomial representation of $G L(2, \mathbb{C})$ evaluated at $\operatorname{diag}(1, q)$, see [3, p. 67]. Recently O'Hara gave a combinatorial proof [4] of the unimodality of the Gaussian coefficient $s_{(k)}\left(1, q, \ldots, q^{n}\right)=\left[\begin{array}{c}n+k \\ k\end{array}\right]_{q}$, and in [6] Zeilberger derived a polynomial identity from [4] which immediately implies the unimodality of $\left[\begin{array}{c}n+k \\ k\end{array}\right]_{q}$. In this paper we give an analogous polynomial identity (1.4) which implies the unimodality of $s_{\lambda}\left(1, q, \ldots, q^{n}\right)$.

There are two ingredients to the proof of (1.4): first we give a bijection for column strict tableaux, and then we employ a remarkable bijection due to Kerov-Kirillov-Reshetikhin $[1,2]$, which establishes a formula for the q-Kostka polynomial $K_{\lambda, 1^{|\lambda|}}(q)$. In fact, [1] and [2] provide the deep facts needed for the proof of (1.4). Finally (1.4) implies the unimodality of $s_{\lambda}\left(1, q, \ldots, q^{n}\right)$. The proof of (1.4) together with [4] constitutes a combinatorial proof of this fact.

We shall adopt notation for partitions etc. as found in [3]. By a descent of a standard tableau, we mean a cell i such that the cell labeled $i+1$ lies in a row below i. We define the weight of a column strict tableau $T, w(T)$, as the sum of its entries, and the weight of a standard tableau $S, c(S)$, as the sum of its descents.

[^0]Proposition 1. There is a bijection between column strict tableaux T of shape λ with entries $\{0,1,2, \ldots, n\}$, and ordered pairs (μ, S), where S is a standard tableaux of shape λ and no more than n descents, and μ is a partition which lies inside a $|\lambda| \times(n-k)$ rectangle, where k is the number of descents of S. Moreover, in this bijection, $w(T)=|\mu|+|\lambda| k-c(S)$.
Proof. Let w be the lattice permutation (or Yamanouchi word) corresponding to T, and let a be the entries of T listed in increasing order (which is the same as the order of the entries of w). The standard tableau S which corresponds to w has a descent at i if, and only if, w has an ascent at position i. The parts of μ (in increasing order) are defined by $\mu_{i}=a_{i}-(\#$ of ascents to the left of position i in $w)$. Thus μ has at most $|\lambda|$ parts, and its largest part is $\leq n-k$. An ascent in position i of w subtracts 1 from the next $|\lambda|-i$ entries of a_{i}, so $w(T)=|\mu|+k|\lambda|-c(S)$.

The generating function identity implied by Proposition 1 is

$$
s_{\lambda}\left(1, q, \ldots, q^{n}\right)=\sum_{k}\left[\begin{array}{c}
|\lambda|+n-k \tag{1.2}\\
n-k
\end{array}\right]_{q} q^{k|\lambda|} f_{k}^{\lambda}\left(q^{-1}\right)
$$

where

$$
f_{k}^{\lambda}(q)=\sum_{S} q^{c(S)}
$$

is the generating function for standard tableaux of shape λ with k descents. Identity (1.2) is a special case of Stanley's theory of P-partitions [6, $\S 8]$.

The polynomial $f_{k}^{\lambda}\left(q^{-1}\right)$ can be rewritten in terms of the q-Kostka polynomial $K_{\lambda, 1^{|\lambda|}}(q)$ (see [3, p.130]). If the descent set of S is D, the set of i such that $i+1$ is to the right of i is $D^{\prime}=\{1,2, \ldots,|\lambda|-1\} \backslash D$. Thus the sum of the elements of D^{\prime} is $\binom{|\lambda|}{2}-c(S)$. The generating function for all standard tableaux of shape λ for descents to the right is $K_{\lambda, 1^{|\lambda|}}(q)$, so

$$
\begin{equation*}
f_{k}^{\lambda}\left(q^{-1}\right)=q^{-\binom{|\lambda|}{2}} K_{\lambda, 1|\lambda|}^{k}(q), \tag{1.3}
\end{equation*}
$$

where the k denotes that the tableaux have k descents.
We now appeal to Kirillov-Reshetikhin [2, Th. 4.2], who have an explicit formula for the q-Kostka polynomial,

$$
K_{\lambda, 1^{|\lambda|}(q)}=\sum_{\left(\alpha^{(0)}, \alpha^{(1)}, \ldots\right)} q^{c(\alpha)} \prod_{n, \ell \geq 1}\left[\begin{array}{c}
P_{n}^{\ell}(\alpha)+m_{n}\left(\alpha^{(\ell)}\right) \\
m_{n}\left(\alpha^{(\ell)}\right)
\end{array}\right]_{q},
$$

where the summation is over certain allowable sequences of partitions (α), and $P_{n}^{\ell}(\alpha), m_{n}\left(\alpha^{(\ell)}\right)$, and $c(\alpha)$ are certain integers computed from (α). The exact definition of these functions will not be needed.

However in (1.3) we have the constraint that the tableaux have k descents. Fortunately, Kirillov-Reshetikhin prove [2, Cor. 4.7(iii)] that this constraint is that first column of $\alpha^{(1)}$ has length k. Thus, we have
$s_{\lambda}\left(1, q, \ldots, q^{n}\right)=\sum_{k}\left[\begin{array}{c}|\lambda|+n-k \\ n-k\end{array}\right]_{q} q^{k|\lambda|-\binom{|\lambda|}{2}}$

$$
\sum_{\substack{\left(\alpha^{(0)}, \alpha^{(1)}, \ldots\right) \tag{1.4}\\
\alpha^{(1)^{\prime}}(1)=k}} q^{c(\alpha)} \prod_{n, \ell \geq 1}\left[\begin{array}{c}
P_{n}^{\ell}(\alpha)+m_{n}\left(\alpha^{(\ell)}\right) \\
m_{n}\left(\alpha^{(\ell)}\right)
\end{array}\right]_{q} .
$$

We claim that (1.4) implies unimodality of $s_{\lambda}\left(1, q, \ldots, q^{n}\right)$. Since the individual terms in the sum are symmetric and unimodal, what remains is to show that they are all centered at $n|\lambda| / 2$. Let x and y be the minimum and maximum degrees of the polynomial term in the sum corresponding to α. Then including $q^{k|\lambda|-\binom{|\lambda|}{2}}$ and $\left[\begin{array}{c}|\lambda|+n-k \\ n-k\end{array}\right]_{q}$ the term has minimum degree $x+k|\lambda|-\binom{\lambda}{2}$, maximum degree $n|\lambda|-\binom{|\lambda|}{2}+y$. We must show that $x+y=2\binom{|\lambda|}{2}-k|\lambda|$. Clearly $x=c(\alpha)$ and

$$
y=c(\alpha)+\sum_{n, \ell} m_{n}\left(\alpha^{(\ell)}\right) P_{n}^{\ell}(\alpha)
$$

However (4.2) of [2] is

$$
2 c(\alpha)+\sum_{n, \ell} m_{n}\left(\alpha^{(\ell)}\right) P_{n}^{\ell}(\alpha)=2\binom{|\lambda|}{2}-|\lambda| \alpha^{(1)^{\prime}}(1)
$$

which is precisely what is required, since $\alpha^{(1)^{\prime}}(1)=k$.
Other applications and properties of the constructions of [2] will appear in a forthcoming paper.

References

1. S. V. Kerov, A. N. Kirillov and N. Yu. Reshetikhin, Combinatorics, Bethe Anstatz, and representations of the symmetric group, J. Soviet Math. 41 (1988), 916-924.
2. A. N. Kirillov and N. Yu. Reshetikhin, The Bethe ansatz and the combinatorics of Young tableaux, J. Soviet Math. 41 (1988), 925-955.
3. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford, London, 1979.
4. Kathleen M. O'Hara, Unimodality of Gaussian coefficients: a constructive approach, JCT A 53 (1990), 29-52.
5. R. Stanley, Ordered structures and partitions, Memoirs A.M.S. 119 (1972).
6. D. Zeilberger, A one-line high school algebra proof of the unimodality of the Gaussian polynomials $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ for $k<20$, in q-Series and Partitions, D. Stanton, ed., IMA Volumes in Mathematics and Its Applications 18 (1989) 67-75..

[^0]: *Department of Mathematics, University of Iowa, Iowa City, Iowa 52422. Work partially supported by NSF grant DMS:8801329.
 **Department of Mathematics, University of Iowa, Iowa City, Iowa 52422.
 ${ }^{* * *}$ School of Mathematics, University of Minnesota, Minneapolis, MN 55455. Work partially supported by NSF grant DMS:9001195.

