
A UNIMODALITY IDENTITY FOR A SCHUR FUNCTION

Frederick M. Goodman*

Kathleen M. O’Hara**

and

Dennis Stanton***

Abstract. A polynomial identity in q for the principal specialization of the Schur
function, sλ(1, q, . . . , q

n) is given. The identity immediately proves that sλ(1, q, . . . , q
n)

is a unimodal polynomial in q.

It is well known that the principal specialization of the Schur function,
sλ(1, q, . . . , q

n), is a unimodal polynomial. A brief representation theoretic proof
consists in identifying sλ(1, q, . . . , q

n) as the character of a homogeneous polyno-
mial representation of GL(2,C) evaluated at diag(1, q), see [3, p. 67]. Recently
O’Hara gave a combinatorial proof [4] of the unimodality of the Gaussian coef-

ficient s(k)(1, q, . . . , q
n) =

[

n+ k
k

]

q

, and in [6] Zeilberger derived a polynomial

identity from [4] which immediately implies the unimodality of

[

n+ k
k

]

q

. In this

paper we give an analogous polynomial identity (1.4) which implies the unimodality
of sλ(1, q, . . . , q

n).
There are two ingredients to the proof of (1.4): first we give a bijection for

column strict tableaux, and then we employ a remarkable bijection due to Kerov-
Kirillov-Reshetikhin [1,2], which establishes a formula for the q-Kostka polynomial
Kλ,1|λ|(q). In fact, [1] and [2] provide the deep facts needed for the proof of (1.4).
Finally (1.4) implies the unimodality of sλ(1, q, . . . , q

n). The proof of (1.4) together
with [4] constitutes a combinatorial proof of this fact.

We shall adopt notation for partitions etc. as found in [3]. By a descent of a
standard tableau, we mean a cell i such that the cell labeled i + 1 lies in a row
below i. We define the weight of a column strict tableau T , w(T ), as the sum of its
entries, and the weight of a standard tableau S, c(S), as the sum of its descents.
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Proposition 1. There is a bijection between column strict tableaux T of shape λ
with entries {0,1,2, . . . , n}, and ordered pairs (µ, S), where S is a standard tableaux

of shape λ and no more than n descents, and µ is a partition which lies inside a

|λ| × (n − k) rectangle, where k is the number of descents of S. Moreover, in this

bijection, w(T ) = |µ|+ |λ|k − c(S).

Proof. Let w be the lattice permutation (or Yamanouchi word) corresponding to
T , and let a be the entries of T listed in increasing order (which is the same as
the order of the entries of w). The standard tableau S which corresponds to w
has a descent at i if, and only if, w has an ascent at position i. The parts of µ (in
increasing order) are defined by µi = ai−(# of ascents to the left of position i in w).
Thus µ has at most |λ| parts, and its largest part is ≤ n− k. An ascent in position
i of w subtracts 1 from the next |λ|− i entries of ai, so w(T ) = |µ|+k|λ|−c(S). �

The generating function identity implied by Proposition 1 is

(1.2) sλ(1, q, . . . , q
n) =

∑

k

[

|λ|+ n− k
n− k

]

q

qk|λ|fλ
k (q

−1)

where
fλ
k (q) =

∑

S

qc(S)

is the generating function for standard tableaux of shape λ with k descents. Identity
(1.2) is a special case of Stanley’s theory of P-partitions [6, §8].

The polynomial fλ
k (q

−1) can be rewritten in terms of the q-Kostka polynomial
Kλ,1|λ|(q) (see [3, p.130]). If the descent set of S is D, the set of i such that i + 1
is to the right of i is D′ = {1, 2, . . . , |λ| − 1} \D. Thus the sum of the elements of

D′ is
(

|λ|
2

)

− c(S). The generating function for all standard tableaux of shape λ for
descents to the right is Kλ,1|λ|(q), so

(1.3) fλ
k (q

−1) = q−(
|λ|
2 )Kk

λ,1|λ|(q),

where the k denotes that the tableaux have k descents.
We now appeal to Kirillov-Reshetikhin [2, Th. 4.2], who have an explicit formula

for the q-Kostka polynomial,

Kλ,1|λ|(q) =
∑

(α(0),α(1),... )

qc(α)
∏

n,ℓ≥1

[

P ℓ
n(α) +mn(α

(ℓ))
mn(α

(ℓ))

]

q

,

where the summation is over certain allowable sequences of partitions (α), and
P ℓ
n(α), mn(α

(ℓ)), and c(α) are certain integers computed from (α). The exact
definition of these functions will not be needed.

However in (1.3) we have the constraint that the tableaux have k descents.
Fortunately, Kirillov-Reshetikhin prove [2, Cor. 4.7(iii)] that this constraint is that
first column of α(1) has length k. Thus, we have

sλ(1, q, . . . , q
n) =

∑

k

[

|λ|+ n− k
n− k

]

q

qk|λ|−(
|λ|
2 )

∑

(α(0),α(1),... )

α(1)′(1)=k

qc(α)
∏

n,ℓ≥1

[

P ℓ
n(α) +mn(α

(ℓ))
mn(α

(ℓ))

]

q

.(1.4)
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We claim that (1.4) implies unimodality of sλ(1, q, . . . , q
n). Since the individual

terms in the sum are symmetric and unimodal, what remains is to show that they
are all centered at n|λ|/2. Let x and y be the minimum and maximum degrees

of the polynomial term in the sum corresponding to α. Then including qk|λ|−(
|λ|
2 )

and

[

|λ|+ n− k
n− k

]

q

the term has minimum degree x+ k|λ| −
(

λ

2

)

, maximum degree

n|λ| −
(

|λ|
2

)

+ y. We must show that x+ y = 2
(

|λ|
2

)

− k|λ|. Clearly x = c(α) and

y = c(α) +
∑

n,ℓ

mn(α
(ℓ))P ℓ

n(α).

However (4.2) of [2] is

2c(α) +
∑

n,ℓ

mn(α
(ℓ))P ℓ

n(α) = 2

(

|λ|

2

)

− |λ|α(1)′(1),

which is precisely what is required, since α(1)′(1) = k.
Other applications and properties of the constructions of [2] will appear in a

forthcoming paper.
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k
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