
MORE ZEROS OF KRAWTCHOUK POLYNOMIALS

Laurent Habsieger* and Dennis Stanton**

Abstract. Three theorems are given for the integral zeros of Krawtchouk poly-
nomials. First, five new infinite families of integral zeros for the binary (q = 2)
Krawtchouk polynomials are found. Next, a lower bound is given for the next inte-
gral zero for the degree four polynomial. Finally, three new infinite families in q are
found for the degree three polynomials. The techniques used are from elementary
number theory.

1. Introduction.

The Krawtchouk polynomials are of central importance in coding theory. In
particular, the existence (or non-existence) of integral zeros of these polynomials
is crucial for the existence (or non-existence) of combinatorial structures in the
Hamming association schemes [2], [3], [5], [6], [7]. This paper studies these zeros,
and is a continuation of [4]. The simultaneous integrality of all of the zeros has
been studied by Hong [8].

This paper has three main results. The first, in §2, is a set of five new infinite
families of integral zeros for the binary Krawtchouk polynomials, kn(x, 2, N). With
these new families, the list of integral zeros for kn(x, 2, N), N ≤ 700, in [4] contains
ten zeros which do not lie in an infinite family: four each for degrees four and five,
and two for degree six. It has been conjectured [7] that these four zeros for degree
four are all such zeros. In §3 we show indeed that there are no more zeros if N
has at most one hundred million digits. Finally, in §4 we give a three new infinite
families of zeros, which depend upon the parameter q.

We now set the notation and terminology for the polynomials. The Krawtchouk
polynomials are defined for n ≤ N by

(1.1) kn(x, q,N) =
n
∑

j=0

(−1)j(q − 1)n−j

(

N − x

n− j

)(

x

j

)

,

so that these are the eigenmatrices for the Hamming scheme H(N, q) [2]. Clearly
kn(x, q,N) is a polynomial of degree n in x.

For q = 2 it is easy to see that there is a group of order eight which acts upon
the integral zeros. It is generated by two involutions: (n, x,N) ↔ (x, n,N) and
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(n, x,N) ↔ (n,N − x,N). We call two zeros equivalent if they belong to the
same orbit under this group. For a representative in an orbit, we can assume that
x ≤ n ≤ N/2. It is well-known [7] that n = N/2 and x odd is also a zero. Moreover
the integral zeros for degrees one, two, and three are known [4]. This motivates the
following definition.

Definition. A non-trivial integral zero of kn(x, 2, N) is an ordered triple of positive

integers equivalent to some (n, x,N), with 4 ≤ n ≤ x < N/2 and kn(x, 2, N) = 0.

For q > 2 the group has order four and is generated by (n, x,N) ↔ (x, n,N)
and (n, x,N) ↔ (N − n,N − x,N). The degree two case can be solved explicitly
[5, Th. 4.2]: (2, x,N) is an integral zero if, and only if, x = (y2 + y)/q − y and
N = (y2− (q−2)y)/(q−1) for some integer y. So we can assume that 3 ≤ n ≤ x ≤
min(x,N − x).

Definition. A non-trivial integral zero of kn(x, q,N), q ≥ 3, is an ordered triple

of positive integers equivalent to some (n, x,N), with 3 ≤ n ≤ x ≤ min(x,N − x)
and kn(x, q,N) = 0.

2. Five infinite families for q = 2.
In this section we give the five new infinite families of zeros for the Krawtchouk

polynomials kn(x, 2, N).
We use another explicit expression for the polynomials [4]

(2.1) kn(x, 2, N) =

x/2
∑

r=0

(

n

r

)(

N − 2n

x− 2r

)

(−1)r.

Let N = 2n+ t in (2.1), so that (2.1) has ⌊t/2⌋+ 1 terms. If (2.1) is multiplied by
x! (n− x+ ⌊t/2⌋)! , we find a polynomial expression in x/2 (resp. (x− 1)/2) for x
even (resp. odd) of degree ⌊t/2⌋ (resp. ⌊(t− 1)/2⌋). For small values of t the zeros
can be explicitly found, and they are listed below. For t > 7 and x even, or for
t > 6, t 6= 8, and x odd, the polynomials are cubic. The solutions are not given.
For x even:

(1) t = 2, x/2 = (n+ 1)/2,
(2) t = 3, x/2 = (n+ 1)/4,

(3) t = 4, x/2 = (2n+ 4±
√

2(n2 + 5n+ 6))/4,

(4) t = 5, x/2 = (3n+ 7±
√
5n2 + 30n+ 41)/8,

(5) t = 6, x/2 = (n+ 3)/2, or x = (2n+ 6±
√
3n2 + 21n+ 34)/4.

For x odd:

(1) t = 3, (x− 1)/2 = (3n+ 3)/4,
(2) t = 4, (x− 1)/2 = (n+ 1)/2,

(3) t = 5, (x− 1)/2 = (5n+ 9±
√
5n2 + 30n+ 41)/8,

(4) t = 6, (x− 1)/2 = (2n+ 4±
√
n2 + 7n+ 10)/4,

(5) t = 8, (x− 1)/2 = (n+ 3)/2, or x = (2n+ 6±
√

2(n2 + 9n+ 16)/4.

Which of these solutions represent new families of zeros? For x even, trivial zeros
are given by t = 2 and t = 6 and x/2 = (n + 3)/2; for x odd, the trivial zeros are
t = 4 and t = 8 and (x− 1)/2 = (n+ 3)/2. The solutions for t = 3 are given in [4],
(2h, 4h− 1, 8h+ 1). It is easy to see, using the involution which maps x to N − x,
that the solutions for t = 5 are equivalent. This leaves five families of zeros, which
are our five new families.
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We must find the values of n so that in the above formulas x is an integer. This
can be done for each case by the explicit solution to Pell’s equation [9, p. 204]. We
carry out the details for t = 4 and x even.

In this case we must have

2n2 + 10n+ 12 = δ2,

where δ is an integer, so
(2n+ 5)2 − 2δ2 = 1

is our Pell’s equation. The solutions δ are given by

2n+ 5 + δ
√
5 = ±(3 + 2

√
2)m,m ∈ Z.

Since 2n+ 5 ≥ 5, we must take m ≥ 2, and find

n = ((3 + 2
√
2)m + (3− 2

√
2)m − 20)/4

x = n+ 2− δ/2 = n+ 2− ((3 + 2
√
2)m − (3− 2

√
2)m − 20)/4

√
2

N = 2n+ 4

For t = 6 and x odd there are no positive integral solutions n. We collect the
remaining cases to form the main result of this section.

Theorem 1. The Krawtchouk polynomial kn(x, 2, N) has inequivalent non-trivial

integral zeros (x, n,N), at the following values:

(1) for m ≥ 2 and ρ = 3 + 2
√
2,

n =(ρm + ρ−m − 20)/4

x =N/2− (ρm − ρ−m)/2
√
2

N =2n+ 4,

(2) for m ≥ 2 and ρ = 9 + 4
√
5,

n =((
√
5± 1)ρm + (

√
5∓ 1)ρ−m)/2

√
5− 3

x =(3n+ 7)/4∓ ((
√
5± 1)ρm − (

√
5∓ 1)ρ−m)/8

N =2n+ 5,

(3) for m ≥ 2 and ρ = 9 + 4
√
5,

n =((2
√
5± 4)ρm − (2

√
5∓ 4)ρ−m)/2

√
5− 3

x =(3n+ 7)/4∓ ((2
√
5± 4)ρm + (2

√
5∓ 4)ρ−m)/8

N =2n+ 5,

(4) for m ≥ 2 odd and ρ = 2 +
√
3,

n =((2
√
3± 1)ρm + (2

√
3∓ 1)ρ−m)/4

√
3− 7/2

x =n+ 3− (2
√
3± 1)ρm + (2

√
3∓ 1)ρ−m)/8

N =2n+ 6,

(5) for m ≥ 2 and ρ = 3 + 2
√
2,

n =((5± 2
√
2)ρm + (5∓ 2

√
2)ρ−m)/4− 9/2

x =n+ 4− ((5± 2
√
2)ρm + (5∓ 2

√
2)ρ−m)/4

√
2

N =2n+ 8.
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3. Zeros of k4(x, 2, N).
The quartic equation k4(x, 2, N) = 0 has a finite number of non-trivial solutions.

This follows from a well-known theorem on hyperelliptic equations in [1 ,p. 41].
An explicit upper bound for the size of the solutions can be given from [1 , p.45].
The complete finite list of solutions is not known; however, in [7] it was conjec-
tured that only non-trivial integral zeros are (4, 7, 17), (4, 30, 66), (4, 715, 1521),
and (4, 7476, 15043). In this section we give a lower bound for the next non-trivial
zero. It is unfortunately much smaller than the theoretical upper bound.

Theorem 2. Suppose there exists N > 15043 for which k4(x, 2, N) = 0 has a

non-trivial integral zero. Then N has at least one hundred million digits.

First we rewrite the equation k4(x, 2, N) = 0 as a Pell’s equation. If y = N −2x,
it is

(3.1) (2y2 − 1)2 − 6(N − 1− y2)2 = −5.

The solutions to (3.1) are

(3.2) 2y2 − 1± (N − 1− y2)
√
6 = (±

√
6± 1)(5 + 2

√
6)m, for m ∈ N.

For an element A+B
√
6 ∈ Q[

√
6], we let Re(A+B

√
6) = A and Im(A+B

√
6) =

B. By expanding Re((±1 ±
√
6)(5 + 2

√
6)m) and using x ≤ N/2, we see that we

must use (
√
6± 1) on the right side of (3.2). Thus if we put

(3.3)
αm =

1

2
Re((

√
6 + 1)(5 + 2

√
6)m + 1)

βm =
1

2
Re((

√
6− 1)(5 + 2

√
6)m + 1),

we find a integral zero exactly when either αm or βm is a square. Note that α0 = 1,
α1 = 9, α4 = 8281, β0 = 0, β1 = 4, and β2 = 36 are squares.

It is easy to find the following recurrences, generating functions, and explicit
formulas

(3.4)
αm+1 =12αm − 5βm − 3

βm+1 =5αm − 2βm − 1

and

(3.5)

∞
∑

m=0

αmtm =
(1− 3t)(1 + t)

(1− t)(1− 10t+ t2)

∞
∑

m=0

βmtm =
4t(1− 2t)

(1− t)(1− 10t+ t2)
.

(3.6)
αm =((5 + 2

√
6)m(1 +

√
6) + (5− 2

√
6)m(1−

√
6) + 2)/4

βm =((5 + 2
√
6)m(−1 +

√
6) + (5− 2

√
6)m(−1−

√
6) + 2)/4

Theorem 2 will follow from the next proposition.
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Proposition 1. If αm and βm are not squares for 4 < m < M , then N for the

next non-trivial zero must have at least .99M digits.

Proof. From (3.6) it is clear that both αm and βm grow exponentially in m, c(5 +

2
√
6)m. An explicit computation shows that Im(

√
6 ± 1)(5 + 2

√
6)m) also grows

exponentially. From (3.2) we find that N grows exponentially in m, a lower bound

is .066(5 + 2
√
6)m). Since log(5 + 2

√
6) ≈ .995, the result follows.

Our goal is to prove that for many m, αm and βm are not squares. We do this
by eliminating m in certain residue classes. Fix a positive integer k and consider
αm mod k. This sequence is periodic, because αm mod k satisfies a three-term
recurrence relation with a finite number of possible initial conditions. Let PA(k) be
the period of this sequence. If we happen to know that αi mod k is not a square
mod k, then no αm, with m ≡ i mod PA(k) could be a square. This is our basic
technique.

For example, let k = 5 for which PA(5) = 4. Since α3 = 837 ≡ 2 mod 5 which
is not a square mod 5, αm is not a square when m ≡ 3 mod 4. In the Appendix
many choices of k are given, which eliminate all but the following classes for m.

Proposition 2. If m 6≡ 0, 1, 4, 58198140 or 89008924 mod 116396280, then αm is

not a square.

For βm, the Appendix gives a similar result.

Proposition 3. If m 6≡ 0, 1, 2, 98017921 or 116396280 mod 232792560, then βm

is not a square.

4. Infinite families in q.
The numerical evidence indicates that there are fewer non-trivial zeros for q > 2

than q = 2. In this section we give the first infinite families in q. Each zero occurs
for a cubic polynomial. It has previously been shown [5, Th. 4.14] that for fixed q,
k3(x, q,N) = 0 has a finite number of solutions.

Theorem 3. The following values of x and N give non-trivial integral zeros for

k3(x, q,N):
(1)

x =(q − 1)2(2q + 3)(2q2 − 5q + 3)/27

N =(2q + 3)(2q4 − 7q3 + 8q2 − 12q + 18)/27, if q ≡ 3, 4, 6 or 7 mod 9

(2)
x =2(2q + 1)(q2 − q − 3)(4q2 − 10q + 3)/27

N =2q(2q + 1)(4q3 − 10q2 − 9q + 27)/27, if q ≡ 3, 4, 6 or 7 mod 9

(3)

x =(q − 3)(q + 2)(2q − 5)(2q2 + q + 3)/108

N =(2q2 + q + 3)(2q3 − 5q2 − 12q + 36)/108,

if q ≡ 3, 4, 6 or 7 mod 9 and q ≡ 2 or 3 mod 4.

Proof. A calculation shows that the results are correct, but we show in fact how
to derive these formulas. Again we change variables, putting t = qx and y =
N(q − 1)− qx. The equation k3(x, q,N) = 0 becomes

(4.1) y(y − (q − 1))(y − 2(q − 1)) = (3y − 2(q − 2))t.
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If we put 3y − 2(q − 2) = i, then (4.1) is equivalent to

27t = (i+ 2q − 4)(i− q − 1)(i− 4q + 2)/i.

Because t is an integer, we must have

(4.2) 3y − 2(q − 2)|4(q + 1)(q − 2)(2q − 1).

Thus the divisibility condition (4.2) is our key necessary condition for integral
solutions to (4.1). This also shows the number of solutions for a fixed q is finite.

It remains to put 3y − 2(q − 2) = d, for a divisor d of the right side of (4.2).
The possible choices for d are multiples ±1,±2,±4, of 1, (q + 1), (q − 2), (2q −
1), (q + 1)(q − 2), (q − 2)(2q − 1), and (q + 1)(q − 2)(2q − 1). We may also
use the fact that (q − 2)(q + 1) is even to choose d to be ±(q − 2)(q + 1)/2 or
±(q − 2)(q + 1)(2q − 1)/2. This gives 52 cases to check the necessary congruences
t ≡ 0 mod q and y + t ≡ 0 mod q − 1.

We find 52 more cases in the following way. If q ≡ 2 mod 3, q = 3θ + 2, then
3y− 2(q− 2) = 3(y− 2θ) contains the factor 3. We find 52 cases as in the previous
paragraph for y − 2θ|4θ(θ + 1)(2θ + 1).

We will explicitly do two of these 104 cases, and then list the results.
First take 3y − 2(q − 2) = 1, so that q ≡ 0 mod 3 and (4.1) becomes

27t = q(2q − 3)(4q − 3),

which implies

(4.3) 27(y+ t) = (2q− 3)(4q2 − 3q+9) = (2(q− 1)− 1)(4(q− 1)2 +5(q− 1)+ 10).

Since y+ t ≡ 0 mod q− 1, (4.3) implies that 10 ≡ 0 mod q− 1. The solutions are
q = 3, y = 1, t = 3, x = 1, N = 2, and q = 6, y = 3, t = 42, x = 7, N = 9, which
are both trivial.

Secondly, take 3y−2(q−2) = −(q−2)(q+1)(2q−1), or 3y = −(q−1)(q−2)(2q+3).
We find that

27t = q(q − 1)2(2q + 3)(2q2 − 5q + 3)

and

27(y + t) = (q − 1)(2q + 3)(2q4 − 7q3 + 8q2 − 12q + 18).

Clearly the modular conditions for t and y + t hold, so the solutions x = t/q and
N = (y + t)/(q − 1) give the first infinite family of Theorem 3.

The other two infinite families correspond to the choices 3y − 2(q − 2) = −(q −
2)(q+1)/2 and 3y− 2(q− 2) = 2(q− 2)(q+1)(2q− 1). There are also five sporadic
non-trivial zeros which occur. They are (3, 3212, 3432) for q = 14, (3, 1326, 1379)
and (3, 5526, 5833) for q = 21, (3,86736,89377) for q = 35, and (3, 46102, 46992) for
q = 56. �

Note that for a given value of q, there are very likely many more than the 104
cases in the proof of Theorem 3. We checked by computer all values of q ≤ 100.
Only one more non-trivial zero was found: (3, 162, 170) for q = 13.
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5. Remarks.

With the infinite families given in Theorem 1, there remain exactly six non-
trivial zeros for N ≤ 700 which do not lie in infinite families: two for degree four:
(4, 715, 1521) and (4, 7476, 15043), three for degree five: (5, 22, 67), (5, 28, 67), and
(5, 133, 289), and one for degree six: (6, 155, 345).

It can be shown that k4(x, q,N) = 0 has finitely many solutions for a fixed q ≥ 3.
We conjecture that the same statement holds for any degree n > 4.

Appendix.

In this Appendix we list the residue classes eliminated in §3 for choices of the
modulus k. Given a period P , integers k such that P (k) = P can be found in the
following way. If α has period P mod k, then k|(αP − α0) and k|(αP+1 − α1).
Thus k divides the greatest common divisor of αP − α0 and αP+1 − α1, and any
factor of the greatest common divisor will have a period dividing P . For example,
if P = 7, we find that

gcd(α7 − α0, α8 − α1) = 4316 = 22 × 13× 83

gives the values of k = 13 and k = 83 for P = 7 below. (In fact it appears that the
greatest common divisors are the same for α and β.)

The computations were completed using MAPLE.

Residue classes for αm

k P(k) Residue classes mod P(k) eliminated
5 4 3
7 8 5
9 6 5
8 4 2,3
11 3 2
97 24 8,9,20,21
9601 24 16

Note that the residue classes mod 24 which remain thus far are 0,1,4, and 12.

k P(k) Residue classes mod P(k) eliminated
17 18 5,6,12,14,15,17
19 18 5,6,15,16
73 36 3,5,6,7,10,11,15,20,21,22,23,27,28,29,30,31,33
81 18 3,5,11,15,17
971 9 2,3,5,7
91009 72 49

The residue classes mod 72 which remain thus far are 0,1,4, and 36.
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k P(k) Residue classes mod P(k) eliminated
109 5 2
89 10 8,9
59 30 3,5,6,9,10,11,17,19,20,21,23,24,25,26,28,29
179 30 5,9,11,19,23,24,25,27,29
8641 15 2,3,5,8,13
1901 60 16
The residue classes mod 360 which remain are 0,1,4, and 360.

k P(k) Residue classes mod P(k) eliminated
13 7 2,3
29 28 2,5,6,8,9,15,16,18,19,22,25,27
83 7 2,6
881 14 2,11,12,13
32117 28 21 (and more)
41 42 2,3,6,7,8,9,18,27,28,29,30,33,34,37,38,40,41
251 63 22,43
71 35 11
The residue classes mod 2520 which remain are 0,1,4, and 1260.

By continuing in this way, k may be chosen so that the period P (k) is divisible by
11, 13, 17, and 19. These four more cases, and the above result give Proposition 2
because 2520×11×13×17×19 = 116396280. The values 58198160 and 89008924 are
eliminated by k = 11593, P (k) = 46, residue class 44, and k = 7006537, P (k) = 46,
residue class 28.
Residue classes for βm

k P(k) Residue classes mod P(k) eliminated
5 4 3
49 8 6,7
8 16 4,5,6,7,9,10,12,13,14,15
The residue classes mod 16 which remain are 0,1,2, and 8.

k P(k) Residue classes mod P(k) eliminated
27 6 4
97 12 9,10
9601 24 4,6,7,9,15,17,18,19,20
17 18 3,4,10,12,13,15
19 18 3,4,11,12
81 18 4,6,10,12,16
73 36 3,7,8,11,12,13,15,21,23,24,25,26,27,31,32,33,34
12889 36 5,16
91009 72 14,50,56
9727489 72 37,53
The residue classes mod 144 which remain are 0,1,2, and 72.

k P(k) Residue classes mod P(k) eliminated
109 5 4
89 10 6,7
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25 20 3,4,7,8,11,12,15,16,19
1901 20 13,18
79 80 10,21,22,24,30,60,61
884376377281 45 20
92188801 40 25
The residue classes mod 720 which remain are 0,1,2, and 360.

Again by continuing to insert the primes 7, 11, 13, 17, and 19, we find Proposition
3. The values 98017922 and 116396280 are eliminated by k = 11593, P (k) = 46,
residue class 17, and k = 47, P (k) = 23, and residue class 18.
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