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Summary. These notes for the August 12–16, 2002 Euro Summer School in OPSF
at Leuven have three sections with basic introductions to

1. Enumeration and q -series
2. Enumeration and orthogonal polynomials
3. Symmetric functions.

No prior exposure to these areas is assumed. Three excellent textbooks for these
three topics are [1], [7], and [17]. Several exercises and open problems are given
throughout these notes.
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1 Enumeration and q -series

In this section an introduction to q -series and integer partitions is given, with
an emphasis on the properties and applications of the q -binomial coefficient.

An integer partition is a decreasing sequence λ1 ≥ λ2 ≥ · · · ≥ λm of
positive integers. The sum of these integers is the number that λ partitions,
λ = 4221 is a partition of 9. Many generating functions involving integer
partitions are q -series, or basic hypergeometric series [14].

As our first example, let am be the number of ways to write a non-negative
integer m as a sum of distinct integers which are decreasing, namely the
number of partitions of m into distinct parts. If m = 6, the partitions are

6, 51, 42, 321,

so a6 = 4. We have

∞∑

m=0

amq
m = (1 + q)(1 + q2)(1 + q3) · · · =

∞∏

j=1

(1 + qj) (1.1)

since each part of size j appears exactly once or not at all. A refinement of
(1.1) can be made by considering how many parts appear, and writing xi for
a partition with i parts. In our example a6(x) = x+ 2x2 + x3 ,

∞∑

m=0

am(x)qm =

∞∏

j=1

(1 + xqj). (1.2)

If we reorganize (1.2) to a power series in x it becomes

∞∑

m=0

bm(q)xm =

∞∏

j=1

(1 + xqj), (1.3)

where bm(q) is the generating function for partitions with exactly m distinct
parts. By subtracting one from the mth part, two from the (m − 1)st part,
. . . , up to m from the first part, we obtain a partition where the parts may
be equal. In the diagram below (called the Ferrers diagram of a partition) we
start with λ = 6531, m = 4, and remove 4321.

× × × × × ×
× × × × ×
× × ×
×

−→
× ×
× ×
×

We have removed a triangular array of
(
m+1

2

)
squares; what remains is an

arbitrary partition with at most m parts. So

bm(q) = q(
m+1

2 )b̂m(q),
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where b̂m(q) is the generating function for all partitions with at most m parts.

We may explicitly find b̂m(q) by considering the conjugate of the Ferrers
diagram of a partition with at most m parts: the columns can have any
lengths from 1 to m . Letting ni be the number of times that i occurs and
using the geometric series we see that

b̂m(q) =
∑

n1,n2,··· ,nm≥0

q1n1+2n2+···+mnm =
1

(1− q)(1− q2) · · · (1− qm)
,

thus
∞∑

m=0

q(
m+1

2 )

(1− q) · · · (1− qm)
xm =

∞∏

j=1

(1 + xqj).

1.1 q -binomial coefficients

We may also ask the same question as in the introduction, putting a maximum
size N on the partition with distinct parts. The generating function now is

N∏

i=1

(1 + xqi) =

∞∑

m=0

bm(q,N)xm, (1.4)

where bm(q,N) is the generating function for partitions with exactly m dis-
tinct parts, and largest part at most N . By subtracting one from the mth
part, . . . , 1 from the largest part as before, we must consider partitions with
at most m parts, and largest part at most N −m .

Definition 1.1. The q -binomial coefficient

[
N

m

]

q

is the generating function for all partitions with at most m parts, and largest
part at most N −m .

Clearly
[
N
m

]
q

is a polynomial in q of degree m(N −m), whose constant

term is 1, corresponding to the empty partition.
We see that (1.4) can be rewritten as (the q -binomial theorem)

N∏

i=1

(1 + xqi) =

N∑

m=0

[
N

m

]

q

q(
m+1

2 )xm. (1.5)

This is a q -analogue of the binomial theorem, which is the q → 1 limit.
In fact there is an explicit “rational formula” for these coefficients.

Proposition 1.1. The q -binomial coefficient has the explicit formula



140 Dennis Stanton

[
N

m

]

q

=
N !q

m!q(N −m)!q
=

(q; q)N
(q; q)m(q; q)N−m

,

where

n!q =

n∏

i=1

(1 + q + · · ·+ qi−1), (a; q)n =

n−1∏

i=0

(1− aqi).

Exercise 1. To verify Proposition 1.1, one can just show that each side
satisfies the same recurrence and initial conditions, here the Pascal triangle
relation [

N

m

]

q

=

[
N − 1

m

]

q

+ qN−m
[
N − 1

m− 1

]

q

.

Can you find another Pascal triangle relation for the q -binomial coefficients?

Exercise 2. Prove the q -binomial theorems in the forms

1

(1− xq)(1− xq2) · · · (1− xqN )
=

∞∑

k=0

[
N + k − 1

k

]

q

xkqk, (1.6)

and
(ax; q)∞
(x; q)∞

=

∞∑

m=0

(a; q)m
(q; q)m

xm. (1.7)

Exercise 3. Show that the number of vector spaces of dimension m which
lie inside a vector space of dimension N over a finite field of order q is

[
N

m

]

q

.

Exercise 4. Show that the generating function for all partitions with exactly
m parts (λ1, λ2, · · · , λm) such that λ1 − λk+1 ≤ i (where k ≤ m) is

qm
(qi+1; q)k
(q; q)m

.

1.2 Unimodality

The q -binomial coefficient is a polynomial in q whose coefficients are sym-
metric, and form a unimodal sequence. For example,

[
7

3

]

q

= 1+q+2q2+3q3+4q4+4q5+5q6+4q7+4q8+3q9+2q10+q11+q12. (1.8)
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The symmetry is easy to see, by considering the complement of a Ferrers
diagram of a partition inside a rectangle. There is an involved analytic [26]
and combinatorial proof [19] of the unimodal property, but it may be shown
more easily algebraically. Here is one such proof, which presupposes knowledge
of the finite dimensional irreducible representations of the Lie algebra sl2 , the
three dimensional algebra of traceless 2×2 matrices, sl2 = span{e, f, h} . (See
the contribution of Joris Van der Jeugt in this volume.) We shall use the q -
binomial theorem in the proof.

Proof. For each non-negative integer m there is exactly one irreducible rep-
resentation of sl2 of dimension m+1, denoted Vm = {v−m, v−m+2, · · · , vm} .
The basis of Vm may be chosen so that h(vi) = ivi/2. The formal char-
acter of Vm , char(Vm), is the generating function of the dimensions of the
h-eigenspaces

char(Vm)(q) =
∑

µ

dim(µ eigenspace of h in Vm)qµ

= q−m/2 + q−m/2+1 + · · ·+ qm/2.

Note that char(Vm)(1) = dim(Vm) = m+ 1.
We fix m to be an even positive integer, so that char(Vm) is a Laurent

polynomial in q . We consider the k th exterior power ∧k(Vm) of the space
Vm , on which sl2 also acts. This means that ∧k(Vm) is the vector space of
dimension

(
m+1
k

)
whose basis is

vi1 ∧ vi2 ∧ · · · ∧ vik , {vi1 , vi2 , · · · , vik} ⊂ {v−m, · · · , vm}.

Recall that a Lie algebra acts on a tensor by summing its action on each
component. What is the formal character char(∧k(Vm))(q)? If we take all
possible k , from 0 to m + 1, then each basis vector vi may be chosen once
or not at all, just as in our original question about partitions with distinct
parts, thus

m+1∑

k=0

char(∧k(Vm))(q)tk = (1 + tq−m/2)(1 + tq−m/2+1) · · · (1 + tqm/2).

Using the q -binomial theorem we see that

char(∧k(Vm))(q) = q−km/2+(k
2)
[
m+ 1

k

]

q

=

k(m+1−k)∑

i=0

ciq
−k(m+1−k)/2+i, (1.9)

where [
m+ 1

k

]

q

=

k(m+1−k)∑

i=0

ciq
i.
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Our job is to show that ci ≤ ci+1 for 0 ≤ i+ 1 ≤ k(m + 1− k)/2. Note
that char(∧k(Vm))(q) is a Laurent polynomial in q since we have taken m to
be even.

Now decompose ∧k(Vm) into irreducibles,

∧k(Vm) =
⊕

s≥0

msVs,

where ms is the multiplicity of Vs . We have

char(∧k(Vm))(q) =
∑

s≥0

ms(q
−s/2 + q−s/2+1 + · · ·+ qs/2).

Since no half-integer weight occurs in (1.9), we have cs = 0 for s odd. Thus
for i+ 1 ≤ k(m+ 1− k)/2,

ci =
∑

s≥k(m+1−k)−2i

ms

so that
ci+1 − ci = mk(m+1−k)−2i−2 ≥ 0.

As an example of this proof, we have just shown that (1.9) corresponds to
the decomposition

∧3(V6) = V12 ⊕ V8 ⊕ V6 ⊕ V4 ⊕ V0,

q−6

[
7

3

]

q

= (q−6 + q−5 + · · ·+ q6) + (q−4 + q−3 + · · ·+ q4)

+ (q−3 + q−2 + · · ·+ q3) + (q−2 + q−1 + · · ·+ q2) + 1.

Unimodality is closely related to the following open problem, see [23]. Fix
an m× (N−m) rectangle, and consider all partitions whose Ferrers diagrams
fit inside this rectangle. Define a partial order L(m,N−m) on these partitions
by containment of the respective diagrams. Thus L(m,N −m) has a unique
minimal element, the empty partition ∅ , which is covered by the partition
1, which in turn is covered by 11 and 2, until we reach the unique maximum
element, the entire rectangle. A symmetric chain C in L(m,N − m) is a
collection of partitions

C = {λi, λi+1, · · · , λm(N−m)−i}

such that λj is a partition of j for i ≤ j ≤ m(N − m) − i and λj is
covered in L(m,N −m) by λj+1 for i ≤ j < m(N −m) − i − 1. You can
imagine C as a saturated chain on the Hasse diagram of L(m,N−m) which is
symmetrically located about the middle. A symmetric chain decomposition of
L(m,N −m) is a collection of disjoint symmetric chains {Cs} whose union is
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L(m,N−m). Because the q -binomial coefficient is unimodal it is conceivable
that L(m,N −m) has such a decomposition. It is unknown if L(m,N −m)
has a symmetric chain decomposition for m ≥ 5, although they have been
found for m ≤ 4.

Exercise 5. Show that if 1 < k < n , gcd(n, k) = 1, then

1

[n]q

[
n

k

]

q

is a polynomial in q with non-negative coefficients. (Open problem: Which
partitions does it enumerate?)

1.3 Congruences for the partition function

As another application of the q -binomial theorem we consider p(n), the total
number of partitions of n , whose generating function is

∞∑

n=0

p(n)qn =
1

(q; q)∞
.

The values of p(n) for 0 ≤ n ≤ 29 are tabulated below.

n p(n) n p(n)
0 1 15 176
1 1 16 231
2 2 17 297
3 3 18 385
4 5 19 490

5 7 20 627
6 11 21 792
7 15 22 1002
8 22 23 1255
9 30 24 1575

10 42 25 1958
11 56 26 2436
12 77 27 3010
13 101 28 3718
14 135 29 4565

Ramanujan proved that

p(5n+ 4) ≡ 0 mod 5.

We now give a proof of this congruence using the q -binomial theorem. The
idea is to find a generating function for p(5n+4) with a quadratic form whose
symmetry group contains a 5-cycle.
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Proof. We start by considering the “sieved” q -binomial theorem: fix non-
negative integers M , N , t , r , and s , where 0 ≤ r < t , and consider

(−xq; q)(M+N)t+r =

r∏

i=1

(−xqi; qt)M+N+1

t∏

i=r+1

(−xqi; qt)M+N . (1.10)

Finding the coefficient of xMt+s in (1.10) we have

[
(M +N)t+ r

Mt+ s

]

q

q(
s
2) =

∑

n, 1·n=s

qQ(n)
r−1∏

i=0

[
M +N + 1

M + ni

]

qt

t−1∏

i=r

[
M +N

M + ni

]

qt

,

(1.11)
where

n = (n0, · · · , nt−1), Q(n) = t||n||2/2 + b · n− st/2, b = (0, 1, · · · , t− 1).

The M →∞ , N →∞ limit of (1.11) is

q(
s
2)

(q; q)∞
=

1

(qt; qt)t∞

∑

n, n·1=s

qQ(n). (1.12)

Since

Q(n) = t(n2
1 + · · ·+ n2

t−1) + t
∑

1≤i<j≤t−1

ninj + t

(
s

2

)
− ts

t−1∑

i=1

ni + b · n,

the r modulo t terms in (1.12) must occur only when b · n ≡ r mod t :

∑

m,m+(s
2)≡r mod t

p(m)qm+(s
2) =

1

(qt; qt)t∞

∑

n,n·1=s,b·n≡r mod t

qQ(n).

Choose t = 5, s = 0 and r = 4,

∞∑

m=0

p(5m+ 4)q5m+4 =
1

(q5; q5)5∞

∑

n,n·1=0,b·n≡4 mod 5

qQ(n).

The five n vectors for p(4) = 5 are

v0 = (1,−1, 0, 0, 0), v1 = (0, 1,−1, 0, 0), v2 = (0, 0, 1,−1, 0),

v3 = (0, 0, 0, 1,−1), v4 = (1, 1, 0,−1,−1).

If a change of basis is made to m0v0 +m1v1 +m2v2 +m3v3 +m4v4 , the new
quadratic form is

Q̂(m) = 5||m||2 − 5(m0m1 +m1m2 +m2m3 +m3m4 +m4m0)− 1,

with m · 1 = 1. This clearly has a symmetry group including a 5-cycle, with
no fixed points.
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This argument also proves p(7n + 5) ≡ 0 mod 7 and p(11n + 6) ≡ 0
mod 11, see [13]. Dyson proposed a combinatorial proof of Ramanujan’s con-
gruence, using the rank of a partition,

rank(λ) = largest part of λ− number of parts of λ.

It has been proven that the rank modulo 5 splits the partitions of 5n+4 into
5 equal classes, for example

rank(4) = 3, rank(31) = 1, rank(22) = 0, rank(211) = −1, rank(1111) = −3.

It is an open problem to find an explicit bijection between these 5 equinu-
merous rank classes.

Exercise 6. Show that the generating function for all partitions whose rank
is r ≥ 0 is

∑

m≥1

q2m+r−1

[
2m+ r − 2

m− 1

]

q

=
1

(q; q)∞

∞∑

s=1

(−1)s−1qs(3s−1)/2+rs(1− qs).

1.4 The Jacobi triple product identity

One of the most useful results for partitions is the Jacobi triple product iden-
tity

(−x; q)∞(−q/x; q)∞(q; q)∞ =

∞∑

m=−∞
q(

m
2 )xm. (1.13)

We sketch three proofs for this result. The first proof again uses the q -
binomial theorem,

(−x; q)N (−q/x; q)N =

N∑

m=−N

[
2N

N +m

]

q

q(
m
2 )xm,

and then lets N →∞ using

lim
N→∞

[
2N

N +m

]

q

=
1

(q; q)∞

for any fixed m .
A simple combinatorial proof of (1.13) in the form

(−x; q)∞(−q/x; q)∞ =
1

(q; q)∞

∞∑

m=−∞
q(

m
2 )xm (1.14)

is due to Sylvester-Hathaway. The left side of (1.14) is the generating function
for pairs of partitions with distinct parts, while the right side is the generating
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function for pairs: a triangular partition, and an arbitrary partition. A bijec-
tion may be given between these two sets of pairs, by placing a triangle atop
a partition, and cutting the resulting diagram it into a pair of partitions with
distinct parts. In the example below our triangle 21 has been placed atop
7622, and then cut along the triangle’s diagonal to obtain two partitions with
distinct parts, 6521 (reading along columns), and 42 (reading along rows).

×
× ×
× × × × × × ×
× × × × × ×
× ×
× ×

−→




×
× ×
× × ×
× × × ×
× ×
× ×

,
× × × ×
× ×




Some details need to be checked, but this is the main idea of the proof.
A third proof of the Jacobi triple product identity (1.13) follows by veri-

fying the functional equation xF (qx) = F (x) for

F (x) = (−x; q)∞(−q/x; q)∞ =

∞∑

n=−∞
fnx

n.

The functional equation implies that fn = qn−1fn−1 , thus fn = q(
n
2)f0 and we

need only find the constant term f0 = 1/(q; q)∞ to finish the proof. This may
be accomplished combinatorially using the Frobenius notation for partitions,
or by using the Durfee square in Exercise 7.

Exercise 7. Show that Exercise 2 implies that

(−x; q)∞ =

∞∑

k=0

q(
k
2)

(q; q)k

and conclude that

f0 =

∞∑

k=0

qk
2

(q; q)2k
.

Finally use the Durfee square of a partition—the largest NW justified square
in the Ferrers diagram—to conclude that f0 = 1/(q; q)∞.

Exercise 8. Use the Jacobi triple product identity (1.13) to find an ex-
pansion for (q; q)∞ , and find an involution on partitions with distinct parts
which proves this identity. Hopefully you found the Euler Pentagonal Num-
ber Theorem.

The Macdonald identities [18] generalize the Jacobi triple product identity
(1.13) to root systems. The infinite product is now

∏

α∈Φ+

(eα; q)∞(qe−α; q)∞.
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In the case of the root system Φ of type A1 , there is one positive root Φ+ =
{α} , and if eα = −x , we have F (x). The statement of the theorem is an
exact sum expansion for this infinite product. For the root system An−1 , the
function to be expanded is

F (x) = F (x1, · · · , xn) =
∏

1≤i<j≤n
(xi/xj ; q)∞(qxj/xi; q)∞. (1.15)

The third proof of (1.13) also works for the Macdonald identities. First you
find a functional equation which reduces the unknown expansion constants to
a finite number, then you show that the constant term is sufficient to determine
all of these non-zero constants, and finally you evaluate the constant term. For
type An−1 the constant term is 1/(q; q)n−1

∞ . It is an open problem to find a
combinatorial argument, analogous to either the Frobenius or Durfee square
proof for (1.13), which shows that the constant term in F (x) is 1/(q; q)n−1

∞ .
Here we give the details for the Macdonald identity of type B2 , where the

positive roots are Φ+ = {e1, e2, e2 − e1, e1 + e2}, e1 = (1, 0), e2 = (0, 1). Let

F (x, y) = (x, q/x, y, q/y, y/x, qx/y, xy, q/xy; q)∞ =
∑

i,j

fi,jx
iyj .

The functional equations are

−qx3F (qx, y) = F (x, y), −y3F (x, qy) = F (x, y),

which imply
−qi−2fi−3,j = fi,j , −qj−3fi,j−3 = fi,j ,

so that a fundamental domain for the constants fi,j is 0 ≤ i, j ≤ 2.
We next use the Weyl group (see Margit Rösler’s contribution in this

volume), which is generated by reflections in the hyperplanes perpendicular
to the roots e1 and e2 − e1 . These become

−xF (1/x, y) = F (x, y), −f1−i,j = fi,j , (1.16)

−yF (y, x) = xF (x, y), −fj−1,i = fi−1,j . (1.17)

Equation (1.17) implies that f0,1 = f1,2 = f2,0 = 0, along with f0,0 = f2,1 ,
f1,0 = f2,2 , f1,1 = f0,2 , while (1.16) implies f0,0 = −f1,0 , f0,1 = −f1,1 ,
f0,2 = −f1,0. Thus, the only possible non-zero values are taken f0,0 = −f1,0 =
f2,1 = −f2,2 , and we need only evaluate the constant term f0,0 in

F (x, y)

= f0,0
∑

i,j

q3(
j
2)+3(i

2)+i(−1)i+j(x3iy3j−x3i+1y3j+x3i+2y3j+1−x3i+2y3j+2).

Exercise 9. By summing the above identity at x = 1, ω, ω2 , where ω3 = 1,
show that

f0,0 =
1

(q; q)2∞
.
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The q -Dyson conjecture is a finite form of the constant term of the Mac-
donald identity of type An−1 . Zeilberger and Bressoud [29] proved that the
constant term of ∏

1≤i<j≤n
(xi/xj ; q)ai(qxj/xi; q)aj

is the q -multinomial coefficient
[
a1 + · · ·+ an
a1, · · · , an

]

q

.

Their proof uses combinatorial methods similar to the q -series example in
Section 1.6. No other proof is known!

1.5 The Rogers-Ramanujan identities and the involution principle

The Rogers-Ramanujan identities are

∞∑

n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
, (1.18)

∞∑

n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞
. (1.19)

Macmahon found a combinatorial interpretation of these identities.

Proposition 1.2 (Macmahon’s Interpretation of RR). The number of
integer partitions of n into parts which differ by at least two is equal to the
number of partitions of n into parts congruent to 1 or 4 mod 5. Moreover an
analogous result holds if no 1’s are allowed for the difference partitions and
the mod 5 parts must be 2 or 3.

If n = 9, the equinumerous partitions in this statement are

9 9 9 72
81 6111
72 441 72 333
63 411111 63 3222.
531 111111111

Schur gave a combinatorial proof of the Rogers-Ramanujan identities in
the following form. He considered a generating function for pairs of partitions
(λ, µ), where λ has distinct parts and µ has parts which differ by at least
two, (λ, µ) ∈ Distinct×Diff2 ,

(q; q)∞

∞∑

n=0

qn
2

(q; q)n
= GF (Distinct ×Diff2).

The partition λ , which has distinct parts, also has a minus sign attached to
each part. Thus the set Distinct×Diff2 may be considered as a “signed” set,
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sign((λ, µ)) = (−1)# parts of λ.

For example,

(∅, 94), (43, 752) are positive, (532, 741), (8, 97531) are negative.

Schur combinatorially defined an involution on the pairs (λ, µ) which changed
the number of parts of λ by one, thereby changing its sign, but preserved the
number of cells in λ ∪ µ . His involution cancels all pairs, except for the fixed
points, which turn out to be

((2p− 1, 2p− 2, · · · , p), (2p− 1, 2p− 3, · · · , 3, 1)), p ≥ 0, (1.20)

((2p, 2p− 2, · · · , p+ 1), (2p− 1, 2p− 3, · · · , 3, 1)), p ≥ 1. (1.21)

Thus Schur proved that

(q; q)∞

∞∑

n=0

qn
2

(q; q)n
= 1 +

∞∑

p=1

(−1)p(qp(5p−1)/2 + qp(5p+1)/2)

and the Jacobi triple product identity (1.13) completes the proof of (1.18).
Schur’s clever involution on (λ, µ) was defined in two steps [20].

Step 1 Compare the largest parts λ1 and µ1 .
1. If λ1 > µ1 + 1 move λ1 to µ .
2. If µ1 > λ1 , then move µ1 to λ .

For example Step 1 matches (43, 752) ↔ (743, 52) and (832, 51) ↔
(32, 851). Step 1 is not defined if λ1 = µ1 or if λ1 = µ1 + 1, and Step
2 takes care of this possibility.
• Let lr(λ) be the length of the leading run of λ . (For example if λ =

87652, lr(λ) = 4, from the leading 8765 of λ.)
• Let sp(λ) be the smallest part of λ (sp(87652) = 2).
• Let ldr(µ) be the length of the leading double run of µ . (If µ = 9752,

then ldr(µ) = 3, from the leading double run 975 of µ.)
Step 2A (λ1 = µ1 )

1. If sp(λ) = min{sp(λ), lr(λ), ldr(µ)} , move the smallest part of λ
adjacent to the leading run of λ . (For example (87652, 8642) →
(9865, 8642).)

2. If ldr(µ) = min{sp(λ), lr(λ), ldr(µ)} < sp(λ), move the leading
double run of µ under the smallest part of λ . (For example (874, 862)
→ (8742, 752).)

3. If lr(λ) = min{sp(λ), lr(λ), ldr(µ)} < min{sp(λ), ldr(µ)} , move the
leading run of λ to parts 2, 3, · · · , lr(λ) + 1 of µ , and then move
the largest part of µ to a new largest part of λ . (For example,
(984, 9753)→ (9874, 863).)

The result of Step 2A always gives λ1 = µ1 + 1.
Step 2B (λ1 = µ1 + 1)

1. If lr(λ) = min{sp(λ), lr(λ), ldr(µ)} < sp(λ), move the leading run of
λ to a new smallest part of λ .
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2. If sp(λ) = min{sp(λ), lr(λ), ldr(µ)} , attach the smallest part of λ to
the leading double run of µ .

3. If ldr(µ) = min{sp(λ), lr(λ), ldr(µ)} < min{sp(λ), lr(λ)} , move the
leading double run of µ to parts 2, 3, · · · , ldr(µ) + 1 of λ , and then
move the largest part of λ to a new largest part of µ .

Steps 2A(i) and 2B(i) are inverses for i = 1, 2, 3. It is an exercise to see
that Step 2 is not defined only for the sets (1.20) and (1.21).

While Schur’s proof is marvelous, it does not give a direct bijection for
Macmahon’s interpretation of the Rogers-Ramanujan identities. As of today
there is no direct bijection for the Rogers-Ramanujan identities (1.18)–(1.19)!
There is an indirect one by Garsia and Milne [12], which uses the involution
principle.

Here is the general setup for the involution principle. Let A = A+ ∪ A−
be a finite set, consisting of some positive (A+ ) and negative (A− ) elements.
A sign-reversing involution ϕ is a map ϕ : A → A such that ϕ2 = ϕ and
if ϕ(x) 6= x then sign(x)sign(ϕ(x)) = −1. This just means that ϕ changes
sign on its orbits of size 2. Suppose that ϕ1 and ϕ2 are two sign-reversing
involutions on A , with fixed point sets FP (ϕ1) ⊂ A+ and FP (ϕ2) ⊂ A+

respectively. Note that |A+| − |A−| = |FP (ϕ1)| = |FP (ϕ2)| so there is a
bijection b : FP (ϕ1) → FP (ϕ2). The involution principle guarantees an
algorithm to define such a bijection b . If x ∈ FP (ϕ1)∩FP (ϕ2), then B(x) =
x , otherwise apply ϕ1 ◦ ϕ2 until you reach FP (ϕ2). This is guaranteed to
occur, since A is finite.

Garsia and Milne showed how to apply this method to Schur’s involution
[12]. Another involution is necessary to cancel the infinite product (q; q)∞
when you move it to the other side, thus two involutions are involved.

There are generalizations of the Rogers-Ramanujan identities (1.18)–(1.19)
to all moduli involving multisums (see [1]). For example for mod 7 we have

∑

n1≥n2≥0

qn
2
1+n2

2

(q; q)n1−n2(q; q)n2

=
(q3, q4, q7; q7)∞

(q; q)∞
.

1.6 q -Hermite polynomials and the Rogers-Ramanujan identities

There are many proofs of the Rogers-Ramanujan identities [3]. Rogers’ ori-
ginal proof used a set of orthogonal polynomials, the continuous q -Hermite
polynomials. In this section we give a modern version [24] of Rogers’ proof,
starting from the well-known integral

I(t) =
1√
2π

∫ ∞

−∞
e−xt+t

2/2e−x
2/2 dx = et

2

. (1.22)

Note that, although (1.22) is easy to prove by completing the square, we are
interested in another proof, whose q -analogue will be apparent. The rescaled
Hermite polynomials Ĥn(x) = Hn(x/

√
2)/2n/2 have the orthogonality rela-

tion
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1√
2π

∫ ∞

−∞
Ĥm(x)Ĥn(x)w(x) dx = n!δmn, w(x) = e−x

2/2, (1.23)

and the generating function

G(x, t) =

∞∑

n=0

Ĥn(x)
tn

n!
= ext−t

2/2, (1.24)

thus (1.22) is the integral of the inverse of the Hermite generating function
times the Hermite weight.

We will write down a natural q -analogue of this integral. Evaluating it
in two different ways gives the two sides of the Rogers-Ramanujan identit-
ies. So we need a q -analogue of the Hermite polynomials, their measure and
generating function:

Hn(x|q) =
n∑

k=0

[
n

k

]

q

ei(n−2k)θ , x = cos θ,

is a polynomial in x = cos θ , because it may be rewritten as a sum of Cheby-
shev polynomials Tn−2k(x) = cos((n − 2k)θ) due to

[
n
k

]
q

=
[
n

n−k
]
q
. These

polynomials satisfy the three-term recurrence relation

2xHn(x|q) = Hn+1(x|q) − (1− qn)Hn−1(x|q), (1.25)

with initial values H0(x|q) = 1, H1(x|q) = 2x. One can use (1.25) to show
that

lim
q→1−

Hn(x
√

1− q/2|q)
(1− q)n/2

= Ĥn(x).

The generating function for Hn(x|q) can easily be found from (1.25):

∞∑

n=0

Hn(x|q)
tn

(q; q)n
=

∞∏

k=0

(1− 2xtqk + t2q2k)−1 = (teiθ, te−iθ; q)−1
∞ .

The orthogonality relation for Hn(x|q) is known [14] to be
∫ π

0

Hm(cos θ|q)Hn(cos θ|q)wq(cos θ) dθ = (q; q)nδmn,

wq(cos θ) =
(q; q)∞

2π
(e2iθ, e−2iθ; q)∞.

So the exact analogue of (1.22) for Hn(x|q) is

Iq(t) =
(q; q)∞

2π

∫ π

0

(teiθ, te−iθ, e2iθ, e−2iθ; q)∞ dθ.

We must evaluate Iq(t) and understand why it is a q -analogue of et
2

.
Since we are integrating with respect to the q -Hermite weight, we must find
the constant term in the q -Hermite expansion of (teiθ, te−iθ; q)∞. However
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(teiθ, te−iθ; q)∞ =
∞∑

n=0

Hn(x|q−1)
q(

n
2)(−t)n
(q; q)n

,

so we just need to find the q -Hermite constant term for Hn(x|q−1). Fortu-
nately, Rogers [14] found all of the expansion coefficients

Hn(x|q−1) =

n/2∑

k=0

qk(k−n)(q; q)n
(q; q)k(q; q)n−2k

Hn−2k(x|q),

so that

Iq(t) =
∑

n≥0, even

q(
n
2)(−t)n
(q; q)n

q−n
2/4(q; q)n

(q; q)n/2

=

∞∑

m=0

qm
2−mt2m

(q; q)m
.

This is clearly a q -analogue of et
2

, and gives the sum side of (1.18) and (1.19)
if t =

√
q, q.

We need an alternative evaluation for Iq(
√
q) and Iq(q) to give the product

sides of (1.18) and (1.19). We use exponential orthogonality on [−π, π] instead
of q -Hermite orthogonality. For t =

√
q the Jacobi triple product identity

(1.13) implies

(q,
√
qeiθ,

√
qe−iθ; q)∞ =

∞∑

k=−∞
(−1)kqk

2/2e−ikθ,

(q, e2iθ, e−2iθ; q)∞ = (1− e2iθ)

∞∑

j=−∞
(−1)jq(j

2+j)/2e2ijθ ,

so that

Iq(
√
q) =

1

2(q; q)∞

∞∑

j=−∞
(q2j

2

q(j
2+j)/2 − q2(j+1)2q(j

2+j)/2)(−1)j

=
1

(q; q)∞

∞∑

j=−∞
q2j

2

q(j
2+j)/2(−1)j =

1

(q; q5)∞(q4; q5)∞
.

Note that from the point of view of this proof, the mod 5 condition appears
because the q -Hermite weight function involves e2iθ and 1 + 22 = 5.

Exercise 10. Verify the exponential details to show that Iq(q) does yield
(1.19).
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1.7 Another q -binomial theorem

We have seen several applications of the q -binomial theorem. Here we give
another q -binomial theorem, and shall see it is equivalent to the original q -
binomial theorem.

Suppose that x and y are non-commuting variables, but do satisfy yx =
qxy , where q commutes with x and y . Then any word in x and y can be
permuted to xiyj at the expense of a power of q , for example, yxxyyxx =
q8x4y3 , because we moved the first y past 4 x ’s, and the second and third
y ’s past 2 x ’s.

Theorem 1.1. If yx = qxy where q commutes with x and y , then

(x + y)N =

N∑

m=0

[
N

m

]

q

xmyN−m. (1.26)

Proof. Each word w of m x ’s and N−m y ’s corresponds to a partition which
lies inside an (N−m)×m rectangle. Moreover any such partition corresponds
to a unique word w . In our example of w = yxxyyxx the partition is 422.
If w = qexmyN−m , then e is the sum of the parts of the partition. The
generating function for all partitions which lie inside an (N−m)×m rectangle
is the definition of the q -binomial coefficient

[
N

N−m
]
q

=
[
N
m

]
q
.

If we imagine y as a letter larger than x , then (1.26) can be restated as

∑

words w with m x ’s, N −m y ’s

qinv(w) =

[
N

m

]

q

.

where
inv(w) = |{(i, j) : i < j, wi > wj}|.

Exercise 11. Let W (a1, a2, · · · , am) = W (a) be the set of all words w of
length a1 + a2 + · · ·+ am with exactly a1 1’s, a2 2’s, · · · , am m ’s. Show
that

∑

w∈W (a)

qinv(w) =

[
a1 + a2 + · · ·+ am
a1, a2, · · · , am

]

q

=
(a1 + a2 + · · ·+ am)!q
a1!q a2!q · · · am!q

.

Let’s prove the q -analogue of the Pfaff-Saalschütz sum for a 1-balanced

3ϕ2 terminating basic hypergeometric sum using Exercise 11 (this proof is
due to Zeilberger [27]):

[
a+ b

a+ k

]

q

[
a+ c

c+ k

]

q

[
b+ c

b+ k

]

q

=

min(a,b,c)∑

n=k

qn
2−k2 [a+ b+ c− n]!q

[a− n]!q [b− n]!q[c− n]!q[n+ k]!q[n− k]!q
. (1.27)
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Proof. Let S = A1 ×A2 ×A3 be the set where

1. A1 consists of all words with a+ k 1’s, and b− k 2’s,
2. A2 consists of all words with a− k 1’s, and c+ k 3’s,
3. A3 consists of all words with b+ k 2’s, and c− k 3’s.

We weigh each word by its inversion number, so that the LHS of (1.27) is
the generating function of S . We need a bijection from S to words of length
a+ b+ c− n with 5 types of letters, with multiplicities a− n , b− n , c− n ,
n + k and n − k for some n between k and min{a, b, c}. We shall see that
we may take words in the five symbols




1
1
−


 ,




1
3
2


 ,




2
−
2


 ,




2
1
3


 ,



−
3
3


 .

The algorithm for the bijection is following. Let s = (w1, w2, w3) ∈ S ,
and write w2 under w1 , and w3 under w2 , all left justified. Scan this “triple
word” left to right. If we see




1
1
2


 or




1
1
3




replace it by 


1
1
−


 ,

and cross off the 1’s in the first 2 rows. Similarly, replace



2
1
2


 or




2
3
2


 by




2
−
2


 ,

and replace 


1
3
3


 or




2
3
3


 by



−
3
3


 .

Keep any




1
3
2


 or




2
1
3


 .

For example if a = 3, b = 4, c = 3, k = 1 and our three words are

w1 = 1 2 1 2 2 1 1

w2 = 1 3 3 1 3 3

w3 = 3 2 2 2 3 2 2

the bijection gives the word in the 5 symbols
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1
1
−





−
3
3






2
−
2






1
3
2






2
−
2






2
1
3






1
3
2






1
3
2


 .

To find out what n is we just solve the equations

e1 + e2 = a+ k, e1 + e4 = a− k, e3 + e4 = b− k, e2 + e5 = c+ k,

e2 + e3 = b+ k, e4 + e5 = c− k,

to obtain

e1 = a− n, e2 = n+ k, e3 = b− n, e4 = n− k, e5 = c− n, for some n.

Our alphabet on the 5 symbols respects inversion, except for




2
1
3






1
3
2


 ,

which has 2 inversions instead of 1, thus we must multiply by qe2e4 = qn
2−k2

.

Exercise 12. Show that the major index, maj(w) defined by

maj(w) =
∑

wi>wi+1

i

also satisfies ∑

all w with m 1′s,N−m 0′s

qmaj(w) =

[
N

m

]

q

.

Is there a q -multinomial version?

Exercise 13. Give at least two combinatorial proofs (partitions, inv, maj,
or finite fields) that

C∑

k=0

[
A

k

]

q

[
B

C − k

]

q

qk(B−C+k) =

[
A+B

C

]

q

.

2 Orthogonal polynomials

The classical orthogonal polynomials may be interpreted combinatorially us-
ing the exponential formula [9], [10], [11]. One may also give interpretations
for general orthogonal polynomials. In this section we consider this general
case.



156 Dennis Stanton

2.1 General orthogonal polynomials and lattice paths

Monic orthogonal polynomials satisfy the three-term recurrence relation

pn+1(x) = (x − bn)pn(x)− λnpn−1(x) (2.1)

with the initial values p−1(x) = 0, p0(x) = 1. Clearly (2.1) implies that
pn(x) is a polynomial in x , with coefficients which are polynomials in the
coefficients bn and λn . We give an interpretation for these polynomials using
lattice paths in the plane.

Definition 2.1. A p-lattice path is a lattice path which starts at (0, 0) , and
has steps NN = (0, 2) , N = (0, 1) , and NE = (1, 1) .

The weight of a p-lattice path, wt(P ), is the product of the weights of the
individual edges,

wt((k, j − 1) → (k, j + 1)) = −λj ,
wt((k, j) → (k, j + 1) = −bj ,

wt((k, j) → (k + 1, j + 1) = x.

Definition 2.2. Let Pathn be the set of all p-lattice paths which end at y =
n .

Proposition 2.1. The polynomials pn(x) which satisfy (2.1) with the initial
conditions p−1(x) = 0 and p0(x) = 1 are given by

pn(x) =
∑

P∈Pathn

wt(P ).

Even though this proposition is nearly tautological, it is useful. “The”
measure dµ(x) for the polynomials pn(x) may not be uniquely defined but
the moments

µn =

∫ ∞

−∞
xn dµ(x)

are, and are also given by a polynomial in bn and λn . (We always assume
that µ0 = 1.) The first few are

µ1 = b0

µ2 = b20 + λ1

µ3 = b30 + 2b0λ1 + b1λ1

µ4 = b40 + 3b20λ1 + 2b0b1λ1 + b21λ1 + λ2
1 + λ1λ2.

Note that (somewhat unexpectedly) all of the coefficients in the moment
monomials are non-negative. We shall give a set of lattice paths which are
counted by these coefficients.
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Definition 2.3. A Motzkin path is a lattice path which starts at (0,0), lies
at or above the x-axis, ends on the x-axis, and has steps NE = (1, 1) , E =
(1, 0) , and SE = (1,−1) .

Definition 2.4. Let Motzn be the set of all Motzkin paths from (0, 0) →
(n, 0) . The weight of a path is the product of the weights of the individual
edges, where

wt((k, j) → (k + 1, j + 1)) = 1,

wt((k, j) → (k + 1, j) = bj ,

wt((k, j) → (k + 1, j − 1) = λj .

Theorem 2.1 (Viennot [25]). The nth moment µn is the generating func-
tion for Motzkin paths from (0, 0) → (n, 0) ,

µn =
∑

P∈Motzn

wt(P ).

We do not give the proof of Viennot’s theorem here. It uses a sign-reversing
involution to show that the combinatorial definition of µn given above, com-
bined with the combinatorial interpretation of the polynomials pn(x), does
have the appropriate orthogonality relation.

The above proposition and theorem imply that integrals of polynomials (or
formal power series) with respect to the the measure dµ(x) may be evaluated
using arguments on lattice paths. To convince you that non-trivial computa-
tions can be done with this technique, the Askey-Wilson integral

(q; q)∞
2π

∫ π

0

(e2iθ, e2iθ; q)∞
(aeiθ, ae−iθ, beiθ, be−iθ, ceiθ, ce−iθ, deiθ, de−iθ; q)∞

dθ

=
(abcd; q)∞

(ab, ac, ad, bc, bd, cd; q)∞

can be evaluated combinatorially [16].
Here are some examples.

Example 2.1. If bn = 0 and λn = 1, the polynomials pn(x) = Un(x/2) (the
Chebyshev polynomials of the second kind), and

µn =

{
0, if n is odd,

CN , if n = 2N is even.

where Cn = 1
n+1

(
2n
n

)
is the nth Catalan number.

Here since bn = 0, the Motzkin paths have only NE and SE edges, each with
weight one. So µn is the total number of such paths, it is well-known [22] that
this is a Catalan number.
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Example 2.2. If bn = 0 and λn = n , the polynomials pn(x) = Hn(x/
√

2)/2n/2

(the Hermite polynomials), and

µn =

{
0, if n is odd,∏N
i=1(2i− 1), if n = 2N is even.

Note that µn is the number of complete matchings m on n objects, which is
the number of ways of matching all n points on the x-axis with bn/2c edges.
Here is how to see this. Label the points 1, 2, · · · , n. If the k th step of the
Motzkin path is NE, then draw an edge emanating from k , to be connected to
some point to the right. If the k th step of the Motzkin path is SE, then draw
an edge ending at k , to be connected to some earlier point to the left. If the
SE edge starts at y = j , the weight of the edge is λj = j . This corresponds
to the j previous unconnected points, we have j choices for earlier points.

Example 2.3. If bn = 2n+α and λn = n(n+α−1), the polynomials pn(x) =
n!(−1)nLα−1

n (x) (the Laguerre polynomials), and

µn = α(α+ 1) · · · (α+ n− 1).

If α = 1, we have µn = n! , the number of permutations of length n . This can
be seen by a combinatorial argument not unlike Example 2.2. Here, however,
we can do more, by weighing certain choices while building the permutation
by α instead of 1, what results are permutation statistics, in this case the
number of cycles of a permutation (see [21]).

Example 2.4. If bn = n + a and λn = an , the polynomials pn(x) = Can(x)
(the Charlier polynomials), and

µn =

n∑

k=1

S(n, k)ak.

This example is similar to Example 2.3. Instead of permutations being in 1-
1 correspondence with the weighted Motzkin paths, set partitions are. The
Stirling numbers of the second kind S(n, k) is the number of set partitions of
{1, 2, · · · , n} into k blocks.

Example 2.5. If bn = 0 and λn = [n]q , the polynomials
pn(x) = Hn(

1
2

√
1− qx|q)/(1−q)n/2 (the continuous q -Hermite polynomials),

and
µn =

∑

complete matchings m on {1,2,··· ,n}
qcross(m).

Here cross(m) is the crossing number of a complete matching m . For ex-
ample, if m = (13)(25)(46) and we imagine three arcs above the x-axis, these
arcs cross twice, cross(m) = 2. In Example 2.2, the j choices now have weights
1, q, · · · , qj−1 . If you connect to the rightmost available previous point, no
crossing is produced, as one moves left along the available points, the number
of crossings increases by one, thus the choices of 0, 1, · · · (j − 1) crossings.
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2.2 Hankel determinants

Monic orthogonal polynomials can be defined in terms of the moments µn ,

pn(x) =

det




µ0 µ1 · · · µn
µ1 µ1 · · · µn+1

...
...

...
...

µn−1 µn · · · µ2n−1

1 x · · · xn




det




µ0 µ1 · · · µn−1

µ1 µ1 · · · µn
...

...
...

...
µn−1 µn · · · µ2n−2




. (2.2)

The coefficient of xp in the numerator of (2.2) is a minor of the infinite
Hankel matrix. Lattice paths give a combinatorial interpretation [25] for any
minor.

Theorem 2.2. The Hankel minor consisting of rows {a1, a2, · · · , ak} and
columns {b1, b2, · · · , bk} (in increasing order) is the generating function for
k -tuples of non-lattice point intersecting Motzkin paths (P1, · · · , Pk) such that
Pi : (−ai, 0) → (bσ(i), 0) for some permutation σ . The sign of a tuple is given
by

sign((P1, · · · , Pk)) = sign(σ).

In this theorem if we take rows (0, 1, 2, · · · , n−1) and columns (0, 1, 2, · · · ,
n− 1), there is a unique set of paths, and we find the classical fact

λn−1
1 λn−2

2 · · ·λ1
n−1 = det




µ0 µ1 · · · µn−1

µ1 µ1 · · · µn
...

...
...

...
µn−1 µn · · · µ2n−2


 .

2.3 Continued fractions

The generating function for the moments

M(t) =

∞∑

n=0

µnt
n

is known to have a continued fraction representation

M(t) =
1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

1− b2t− · · ·

. (2.3)
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Although some care must be taken to consider (2.3) as a complex function of
t , as a formal power in t it converges, and we shall see why. This has a very
nice combinatorial interpretation which is due to Flajolet [8].

Consider all possible Motzkin paths. Imagine chopping the paths at the
line y = 1. What remains is a sequence of either (a) horizontal edges along
y = 0, or (b) paths starting at y = 1, ending at y = 1, along with a precursor
NE edge, and a successor SE edge. Since the weight of a horizontal edge along
the x-axis is b0 , and the NE-SE pair has weight λ1 , we have

M(t) =
∞∑

k=0

(b0t+ λ1t
2M∗(t))k , (2.4)

where M∗(t) is the generating function for all Motzkin paths whose weights
(bn and λn) have been replaced by (bn+1 and λn+1). Clearly (2.4) is

M(t) =
1

1− b0t− λ1t2M∗(t)
. (2.5)

Upon iterating (2.5) k times, and then eliminating all paths which go above
the line y = k , we have the rational function approximation to the continued
fraction,

Mk(t) =
1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

. . . − λk−1t
2

1− bk−1t− λkt2

. (2.6)

Proposition 2.2. Let µn(k) be the generating function for Motzkin paths of
length n which stay at or below y = k . Then the generating function

Mk(t) =
∞∑

n=0

µn(k)t
n

is the k th iterate of the continued fraction (2.3).

It is clear that as formal power series in t ,

lim
k→∞

Mk(t) = M(t).

Fix any n , then µn(k) = µn for k ≥ n .

3 Symmetric functions

In this section a quick introduction to symmetric functions is given. The stand-
ard reference with a wealth of information is [17].
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A polynomial in n variables x1, · · · , xn with complex coefficients which is
invariant under all n! permutations may be considered as sum of monomials
mλ , for a partition λ , for example

4(x2
1x

1
2 +x2

1x
1
3 +x2

2x
1
1 +x2

2x
1
3 +x2

3x
1
1 +x2

3x
1
2)− 7(x3

1 +x3
2 +x3

3) = 4m21− 7m3,

where

m21(x1, x2, x3) = x2
1x

1
2 + x2

1x
1
3 + x2

2x
1
1 + x2

2x
1
3 + x2

3x
1
1 + x2

3x
1
2

m3(x1, x2, x3) = x3
1 + x3

2 + x3
3.

The Schur function sλ(x1, · · · , xn) is a symmetric polynomial which may
be defined as a quotient of generalized Vandermonde determinants

sλ(x1, · · · , xn) =
det(x

λj+n−j
i )1≤i,j≤n

det(xn−ji )1≤i,j≤n
. (3.1)

Note that the denominator of (3.1) is the Vandermonde determinant

∆(x) =
∏

1≤i<j≤n
(xi − xj),

and that a quotient of skew-symmetric functions must be symmetric. The
Schur functions

{sλ : λ is a partition of m,λ has at most n parts}

form a basis for the vector space of symmetric polynomials in x1, · · · , xn of
degree m .

Special choices for λ give well-known symmetric functions,

s1k(x) = ek(x), the elementary symmetric function of degree k,

sk(x) = hk(x), the homogeneous symmetric function of degree k.

For example

e2(x1, x2, x3) = x1x2 + x1x3 + x2x3,

h2(x1, x2, x3) = x2
1 + x2

2 + x2
3 + x1x2 + +x1x3 + x2x3 = m2 +m11.

If we expand the Schur functions in terms of the monomial symmetric
functions,

sλ(x) =
∑

µ

Kλµmµ(x), (3.2)

the coefficients Kλµ are called Kostka coefficients. These have the algebraic
interpretation as the dimension of the weight space µ in an irreducible repres-
entation of GLn that corresponds to λ . Thus they are non-negative integers.
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There is also a combinatorial interpretation of Kλµ . It is the number of
column strict tableaux of shape λ and content µ . Take a Ferrers diagram of
shape λ , and fill the cells with µ1 1’s, µ2 2’s,..., so that the entries in each row
weakly increase and those in each column strictly increase. Here is a column
strict tableau of shape λ = 421 and content µ = 2221.

1 1 2 4
2 3
3

Equation (3.1) is a special case of the Weyl denominator formula for the
characters of the general linear group, thus there are analogues of Schur func-
tions and Kostka coefficients for other classical groups.

The characters of the symmetric group Sn may also be found using Schur
functions. It is not surprising that such a formula should exist, since the
complex irreducible representations of Sn are in 1-1 correspondence with the
conjugacy classes of Sn , which are the cycle types, thus partitions of n .

This time we expand the Schur functions in terms of the power sum sym-
metric functions,

pλ = pλ1pλ2 · · · pλm ,

where
pk = xk1 + xk2 + · · ·+ xkn.

For example p21(x1, x2, x3) = (x2
1 + x2

2 + x2
3)(x1 + x2 + x3). We have

sλ(x) =
1

n!

∑

µ

cµχ
λ(µ)pµ(x), (3.3)

where cµ is the the size of the conjugacy class of permutations with cycle type
µ ,

cµ =
n!∏

k k
mkmk!

, µ = 1m12m2 · · · ,

and χλ(µ) is the irreducible character χλ evaluated at the conjugacy class
µ .

One example of (3.3) is

s21 = m21 + 2m111 =
1

6
(−2p3 + 2p111),

which gives the χ21 row of the character table for S3 . Recall that as functions
on the symmetric group the characters form an orthonormal basis for the
functions constant on conjugacy classes.

3.1 Combinatorial applications

Here I will give two applications of Schur functions to plane partitions (see
[17]).
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The hook-content formula evaluates the principle specialization of a Schur
function

sλ(1, q, · · · , qn−1) = qn(λ)
∏

cells x∈λ

1− qn+c(x)

1− qh(x)
.

The hook numbers h(x) can be defined by h(x) = λi − i + λ′j − j + 1 if
x = (i, j). Pictorially h(x) is the number of cells in the same row or column
as x , to the right or below, including x. Here are the hook numbers of each
cell for λ = 421.

6 4 2 1
3 1
1

The content numbers c(x) are defined by c(x) = j− i if x = (i, j). Here they
are for λ = 421.

0 1 2 3
−1 0
−2

The constant n(λ) =
∑

i(i− 1)λi. The hook-content formula implies

hk(1, q, · · · , qn−1) =

[
n+ k − 1

k

]

q

, ek(1, q, · · · , qn−1) =

[
n

k

]

q

q(
k
2),

thus the principally specialized Schur function may be considered as a gen-
eralization of the q -binomial coefficient. In fact sλ(1, q, · · · , qn−1) is also a
symmetric unimodal [17] polynomial in q .

One may also use the hook-content formula to derive the generating func-
tion for all plane partitions

∞∑

n=0

pp(n)qn =

∞∏

k=1

(1− qk)−k,

and the Macmahon Box Theorem which gives the generating function for all
plane partitions which lie inside an m× n× p box

∑

P inside m×n×p box

qsize(P ) =
∏

1≤i≤m

∏

1≤j≤n

∏

1≤k≤p

1− qi+j+k−1

1− qi+j+k−2
.

An example of a plane partition which lies inside a 5× 3× 4 box is

P =

4 4 3
4 2
3 2
1
1

.

Here the entries of P lie inside a 5× 3 rectangle, and the largest entry is at
most 4.
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3.2 The Jacobi-Trudi identity

A very useful result, which also has a representation interpretation, is the
Jacobi-Trudi identity which gives a Schur function as a single determinant

sλ(x) = det(hλi−i+j(x))1≤i,j≤m,

for example

s421 =

∣∣∣∣∣∣

h4 h5 h6

h1 h2 h3

0 h0 h1

∣∣∣∣∣∣
.

This may also be proven using a “tail-swapping” argument [15] to get nonin-
tersecting lattice paths which correspond to column strict tableaux. This argu-
ment is very similar to the involution proofs necessary in Section 2. Moreover
realizing plane partitions and column strict tableaux as non-intersecting lat-
tice paths has been a fruitful idea for the study of symmetry classes of plane
partitions [6].

3.3 Alternating sign matrices

An n× n alternating sign matrix is a 0, 1,−1 matrix whose row and column
sums are 1, and whose non-zero entries alternate in sign in every row and
column. One example is 



0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0


 .

Permutation matrices are examples of alternating sign matrices. Thus altern-
ating sign matrices (ASM) may be considered as generalizations of permuta-
tions. A theorem of Zeilberger (see [6] for the whole story) gives the number
of n× n alternating sign matrices as

ASM(n) =

n−1∏

i=0

(3i+ 1)!

(n+ i)!
. (3.4)

As of today there is no elementary proof of this result! Perhaps even more
surprising is that (3.4) also counts the number of totally symmetric self-
complementary plane partitions (TSSCPP) which lie inside a 2n×2n×2n box.
It is an open problem to find a bijection between ASM and TSSCPP, which
would allow one to carry over many of the properties of ASM to TSSCPP.

It is remarkable that a generalized determinant, called the λ-determinant
[6] may be defined as a sum over alternating sign matrices instead of a sum
over permutations. The individual terms are Laurent monomials in the entries
of the matrix,
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detλ(M) =
∑

A∈ASM(n)

λinv(A)(1 + λ−1)#−1′s in (A)
∏

i,j

M
Aij

ij .

Clearly det−1(M) = det(M).

3.4 The Borwein conjecture

A final elementary open problem is the Borwein conjecture [2, 5]. Let

n∏

i=1

(1− q3i−2)(1− q3i−1) = An(q
3)− qBn(q

3)− q2Cn(q3).

It is conjectured that the coefficients of the polynomials An , Bn , and Cn
are non-negative. (For n = ∞ it is easy to prove from the Jacobi triple
product identity (1.13).) This problem is closely related to hook differences of
partitions and statistical physics. Explicit forms for the polynomials may be
found (again from the q -binomial theorem), for example

An(q) =

n/3∑

k=−n/3
(−1)kqk(9k+1)/2

[
2n

n+ 3k

]

q

,

and An(1) = 2× 3n−1. Many possible sets of objects can be given which are
counted by An(1), what is needed is an appropriate statistic. If the quadratic
power of q were to change from k(9k + 1)/2, such a program does work [4].
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