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Abstract. The linearization coefficients for a set of orthogonal polynomials are
given explicitly as a weighted sum of combinatorial objects. Positivity theorems of

Askey and Szwarc are corollaries of these expansions.

1. Introduction. Given a set of orthogonal polynomials pn(x), the linearization
coefficients akmn are given by

pm(x)pn(x) =
∑

k

akmnpk(x).

Askey [1] and Szwarc [4,5] have given sufficient conditions on the three-term recur-
rence relation coefficients αn, βn, and γn in

(1.1) αn+1pn+1(x) = (x− βn)pn(x)− γn−1pn−1(x)

so that akmn is non-negative. In this paper we give in Theorem 1 and Theorem 2
explicit formulas for aknm as a polynomial in the α′

js, β
′

js and the γ′

js, which give
these theorems.

The idea is to represent akmn as a generating function of paths, whose weights
are products of differences. Monotonicity hypotheses on the coefficients force the
weights to be individually positive, these are the conditions in [1] and [4]. For
example, if pn(x) is monic; αn = 1, βn = bn, and γn = λn+1, we have

a333 =(b3 − b0)(b3 − b1)(b3 − b2) + (b3 − b0)λ4 + (b3 − b0)(λ3 − λ2)+

(b4 − b1)λ4 + (b3 − b2)λ4 + (b2 − b1)λ3 + (b3 − b2)(λ3 − λ1).(1.2)

If bj and λj > 0 are increasing, then a333 is non-negative, see [1].

2. The theorems. We first recall some terminology and results in [3] and [6].
We let L denote the positive definite linear functional on the space of polynomials

which corresponds to the orthogonal polynomials (1.1). So L(xn) = µn, the nth
moment of a measure for pn(x). It is easy to see that

akmn = L(pmpnpk)/L(pkpk).

Since L(pkpk) = γ0 · · · γk−1/α1 · · ·αk > 0, we find instead L(pmpnpk).
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Viennot [6] gave a combinatorial interpretation for the polynomials pn(x) and
their moments µn, in terms of pavings and Motzkin paths respectively. We review
these terms below.

A Motzkin path P is a lattice path in the plane, which lies at or above the x-axis,
and has steps of (1, 0) (horizontal=H), (1, 1) (up=U), or (1,−1) (down=D). The
weight of a path P , w(P ), is defined by the product of the weights of its individual
edges,

(2.1) w(P ) =
∏

edges e

w(e).

A paving π of the integers {1, · · · , k} is a collection of disjoint sets of cardinalities
1 (called monominos), and 2 (called dominos). The elements of a domino must be
consecutive integers. For example, {{2, 3}, {5}, {6, 7}, {9}} is a paving of {1, · · · , 9}.
Points not in any of the sets are called isolated. The weight of a paving is defined to
be the product of the individual weights of the monominos, dominos, and isolated
points.

For Askey’s theorem we need a special weight on edges e of a Motzkin path.
Suppose the path P begins at (0,m) and ends at (k, n). We define
(2.2)

w(edge starting at (i, j)) =



















(bj − bi) if the edge is H,

(λj − λi+1) if the edge is D, and followed by U,

λj if the edge is D, and not followed by U,

1 if the edge is U.

Theorem 1. Suppose that αn = 1, βn = bn, and γn = λn+1. Then

L(pmpnpk) = λ1 · · ·λn

∑

P

w(P ),

where P is a Motzkin path from (0,m) to (k, n), and w(P ) is given by (2.1) and
(2.2).

For example, if k = m = n = 3 in Theorem 1, there are 7 Motzkin paths from
(0,3) to (3,3): HHH, HUD, HDU , UHD, UDH, DHU , DUH. The weights of
these 7 paths are the 7 terms in (1.2).

Proof of Theorem 1. One can prove that both sides in Theorem 1 have the same
recurrence relation, which is given in [1].

An alternative proof is to use Viennot’s combinatorial interpretation for
L(pmpnpk)/λ1 · · ·λn, [6]. It is the generating function for ordered pairs (P, π),
where P is a Motzkin path from (0,m) to (l, n), and π is a paving of the integers
{1, · · · , k} with l isolated integers. The weight of (P, π) is the product of the weights
of P and π. In P , an up edge starting at (i, j) has weight 1, a down edge λj , and
an across edge bj . For π, a monomino at {i} has weight −bi−1, and a domino at
{i, i+ 1} has weight −λi.

Given (P, π) we create a unique path P ′ by inserting in P , as the ith step of P ′,
an H edge if π has a monomino in position i. If π has a domino starting in position
i, we insert two steps, DU , in P , for the ith and (i + 1)st steps of P ′. The result
is a single path P ′ from (0,m) to (k, n). The weight of the path is given by (2.2):
the negative terms correspond to the weight in π, the positive terms to the weight
in P . �

It is easy to see that Theorem 1 implies Askey’s theorem.
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Corollary 1. If λj and bj are increasing, with λj > 0, then akmn ≥ 0.

Proof. We can assume by symmetry that k ≤ n, Then it is clear that each vertex
(i, j) in P satisfies i ≤ j. Thus all weights are non-negative if the bj ’s and λj ’s are
increasing. �

Theorem 1 can be restated in terms of walks of length m on the non-negative
integers, starting at k, and ending at n, with steps of size +1, −1, or 0.

We let p′n(x) be another set of orthogonal polynomials satisfying

α′

n+1p
′

n+1(x) = (x− β′

n)p
′

n(x)− γ′

n−1p
′

n−1(x).

More generally, we consider

(2.3) pm(x)p′k(x) =
∑

n

bnmkpn(x).

It is clear that bnmk = L(pmp′kpn)/L(pnpn). We will give an interpretation for
L(pmp′kpn), which is non-negative when bnmk is, since L is positive definite.

We generalize Szwarc’s theorem by finding a combinatorial interpretation for
L(pmp′kpn) in (2.3). A generalized Motzkin path allows a fourth type of edge: HH
(across by two units). We define a weight v(P ) on generalized Motzkin paths from
(0,m) to (k, n) again as a product of weights of edges,
(2.4)

v(edge starting at (i, j)) =















































(βj − β′

i) if the edge is H,

(γj − α′

i) if the edge is U, and preceded by D,

γj if the edge is U, and not preceded by D,

(αj − α′

i) if the edge is D, and preceded by U,

αj if the edge is D, and not preceded by U,

(αj + γj − α′

i − γ′

i)α
′

i+1 if the edge is HH, preceded by U or D,

(αj + γj − γ′

i)α
′

i+1 if the edge is HH, not preceded by U or D.

Theorem 2. We have

L(pmpnp
′

k) =
γ0 · · · γk−1

α1 · · ·αmα′

1 · · ·α
′

k

∑

P

v(P ),

where P is a generalized Motzkin path from (0,m) to (k, n), and v(P ) is given by
(2.1) and (2.4).

Proof. Again we will use Viennot’s interpretation for L(pmpnp
′

k)α1 · · ·αm/γ0 · · · γk−1.
The weights on the edges, monominos, and dominos slightly change. Let P ′ denote
the Motzkin path and π′ the paving. In P ′, the U , D, H edges starting at (i, j) have
weights γj , αj , and βj respectively. In π′, a monomino {i} has weight −β′

i−1/α
′

i, a
domino {i, i+ 1} has weight −γ′

i−1α
′

i/(α
′

iα
′

i+1), and an isolated point i has weight
1/α′

i. Note that every paving has a factor of 1/α′

1 · · ·α
′

k. We therefore disregard
the denominators of the weights of the pavings, and put this constant factor in the
statement of Theorem 2.
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As in Theorem 1, we will merge pavings π′ with the paths P ′ to create a gener-
alized Motzkin path P whose weights are given by (2.1) and (2.5)

(2.5) u(edge starting at (i, j)) =



















(βj − β′

i) if the edge is H,

γj if the edge is U,

αj if the edge is D,

−γ′

iα
′

i+1 if the edge is HH.

The basic idea is to insert certain edges into P ′ to create P , while simultaneously
deleting all monominos and dominos in π′. This is done by inserting an H edge
in P ′ starting at (i, j), if π′ has the monomino {i + 1}. We insert an HH edge in
P ′ starting at (i, j), if π′ has the domino {i + 1, i + 2}. We obtain a multiset of
generalized Motzkin paths P : (0,m) → (k, n), from which the multiplicities are
eliminated by using the weight (2.5).

Let S be the set of all generalized Motzkin paths from (0,m) to (k, n). We
just found that the linearization coefficients are, up to a constant, the generating
function for S with weight (2.5). We want weight (2.4) instead of (2.5). We will do
this via an involution.

The (2.4) weights of the edges of P ∈ S are not monomials, instead they are
sums of monomials. Thus we can consider the multiset M1 of paths P ∈ S, where
the multiplicity of P in M1 is the product of the number of monomials in the weight
of the edges e 6= H of P . The weight of any element of M1 is the product of a
choice of monomials for each edge. On M1 we will construct a weight-preserving
sign-reversing involution, whose fixed point set consists of all paths P exactly once,
with weights (2.5).

It remains to give the involution Φ on the multiset M1 of paths P . Note that we
want to eliminate all weights in the edges that include α′, except for the −γ′

iα
′

i+1

term in HH. Scan the path P from right to left, and find the first such term in
the choice of monomials for the weights. Suppose the edge containing this term is
HH, preceded by U or D. From (2.5), the weight we need to eliminate is one term
from (αj + γj − α′

i)α
′

i+1. If the preceding edge is D, replacing the HH edge by a
pair UD will cancel the (γj − α′

i)α
′

i+1 terms, while replacing the HH edge by DU
will cancel the αjα

′

i+1 term. Similarly, if the preceding edge to HH is U , replacing
HH by UD and DU will cancel the γjα

′

i+1 and (αj − α′

i)α
′

i+1 terms, respectively.
If the first edge containing α′ is HH, not preceded by U or D, we must eliminate
(αj + γj)α

′

i+1. This time replacing HH by DU and UD eliminates a single term
each.

This defines Φ(P ) = Q, when the first appropriate α′ edge of P is HH. If the
first appropriate α′ edge of P is not HH, then α′ must be a choice of weight from a
DU or UD. Then we invert the previous case. It is easy to check that the involution
Φ is well defined on M1, with the stated fixed points. �

Corollary 2 generalizes [4, Theorem 2].

Corollary 2. If αi, α
′

i, γi, γ
′

i > 0, βj ≥ β′

i, αj ≥ α′

i, αj + γj ≥ α′

i + γ′

i, γj ≥ α′

i,
for j ≥ i, and k ≤ max{m,n}, then bnmk ≥ 0.

Proof. Assume k ≤ n. The inequalities insure that the individual weights in Theo-
rem 2 are positive, since the indices of the primed variables cannot be greater than
the indices of the unprimed variables. By symmetry we obtain the k ≤ max{m,n}
case. �
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The connection coefficient problem is the m = 0 special case of Theorem 2. Non-
zero coefficients occur only for k ≥ n. In this case, along our path P , vertices (i, j)
satisfy i ≥ j, so we assume the inequalities of Corollary 2 hold in this range. This
implies Askey’s theorem in [2].

The theorems in [5] can also be generalized, for example:

Corollary 3. If βj = β′

i = 0, αi, α
′

i, γi, γ
′

i > 0, α2j ≥ α′

2i, α2j+1 ≥ α′

2i+1, α2j +
γ2j ≥ α′

2i+γ′

2i, α2j+1+γ2j+1 ≥ α′

2i+1+γ′

2i+1, γ2j ≥ α′

2i, γ2j+1 ≥ α′

2i+1, for j ≥ i,
m is even, and k ≤ n, then bnmk ≥ 0.

Proof. Under the assumption that m is even, and all β′s = 0, all vertices (i, j) on
the path P of Theorem 2 have the property that i and j have the same parity. �
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