COMBINATORIAL ORTHOGONAL EXPANSIONS

A. De MÉdicis ${ }^{1}$ and D. Stanton ${ }^{2}$

Abstract

The linearization coefficients for a set of orthogonal polynomials are given explicitly as a weighted sum of combinatorial objects. Positivity theorems of Askey and Szwarc are corollaries of these expansions.

1. Introduction. Given a set of orthogonal polynomials $p_{n}(x)$, the linearization coefficients $a_{m n}^{k}$ are given by

$$
p_{m}(x) p_{n}(x)=\sum_{k} a_{m n}^{k} p_{k}(x)
$$

Askey [1] and Szwarc [4,5] have given sufficient conditions on the three-term recurrence relation coefficients α_{n}, β_{n}, and γ_{n} in

$$
\begin{equation*}
\alpha_{n+1} p_{n+1}(x)=\left(x-\beta_{n}\right) p_{n}(x)-\gamma_{n-1} p_{n-1}(x) \tag{1.1}
\end{equation*}
$$

so that $a_{m n}^{k}$ is non-negative. In this paper we give in Theorem 1 and Theorem 2 explicit formulas for $a_{n m}^{k}$ as a polynomial in the $\alpha_{j}^{\prime} s, \beta_{j}^{\prime} s$ and the $\gamma_{j}^{\prime} s$, which give these theorems.

The idea is to represent $a_{m n}^{k}$ as a generating function of paths, whose weights are products of differences. Monotonicity hypotheses on the coefficients force the weights to be individually positive, these are the conditions in [1] and [4]. For example, if $p_{n}(x)$ is monic; $\alpha_{n}=1, \beta_{n}=b_{n}$, and $\gamma_{n}=\lambda_{n+1}$, we have

$$
\begin{align*}
a_{33}^{3}= & \left(b_{3}-b_{0}\right)\left(b_{3}-b_{1}\right)\left(b_{3}-b_{2}\right)+\left(b_{3}-b_{0}\right) \lambda_{4}+\left(b_{3}-b_{0}\right)\left(\lambda_{3}-\lambda_{2}\right)+ \\
& \left(b_{4}-b_{1}\right) \lambda_{4}+\left(b_{3}-b_{2}\right) \lambda_{4}+\left(b_{2}-b_{1}\right) \lambda_{3}+\left(b_{3}-b_{2}\right)\left(\lambda_{3}-\lambda_{1}\right) \tag{1.2}
\end{align*}
$$

If b_{j} and $\lambda_{j}>0$ are increasing, then a_{33}^{3} is non-negative, see [1].
2. The theorems. We first recall some terminology and results in [3] and [6].

We let L denote the positive definite linear functional on the space of polynomials which corresponds to the orthogonal polynomials (1.1). So $L\left(x^{n}\right)=\mu_{n}$, the $n t h$ moment of a measure for $p_{n}(x)$. It is easy to see that

$$
a_{m n}^{k}=L\left(p_{m} p_{n} p_{k}\right) / L\left(p_{k} p_{k}\right)
$$

Since $L\left(p_{k} p_{k}\right)=\gamma_{0} \cdots \gamma_{k-1} / \alpha_{1} \cdots \alpha_{k}>0$, we find instead $L\left(p_{m} p_{n} p_{k}\right)$.

[^0]Viennot [6] gave a combinatorial interpretation for the polynomials $p_{n}(x)$ and their moments μ_{n}, in terms of pavings and Motzkin paths respectively. We review these terms below.

A Motzkin path P is a lattice path in the plane, which lies at or above the x-axis, and has steps of $(1,0)($ horizontal $=H),(1,1)(\operatorname{up}=U)$, or $(1,-1)($ down $=D)$. The weight of a path $P, w(P)$, is defined by the product of the weights of its individual edges,

$$
\begin{equation*}
w(P)=\prod_{\text {edgese }} w(e) . \tag{2.1}
\end{equation*}
$$

A paving π of the integers $\{1, \cdots, k\}$ is a collection of disjoint sets of cardinalities 1 (called monominos), and 2 (called dominos). The elements of a domino must be consecutive integers. For example, $\{\{2,3\},\{5\},\{6,7\},\{9\}\}$ is a paving of $\{1, \cdots, 9\}$. Points not in any of the sets are called isolated. The weight of a paving is defined to be the product of the individual weights of the monominos, dominos, and isolated points.

For Askey's theorem we need a special weight on edges e of a Motzkin path. Suppose the path P begins at $(0, m)$ and ends at (k, n). We define

$$
w(\text { edge starting at }(i, j))=\left\{\begin{array}{l}
\left(b_{j}-b_{i}\right) \text { if the edge is } \mathrm{H}, \tag{2.2}\\
\left(\lambda_{j}-\lambda_{i+1}\right) \text { if the edge is } \mathrm{D}, \text { and followed by } \mathrm{U}, \\
\lambda_{j} \text { if the edge is } \mathrm{D}, \text { and not followed by } \mathrm{U}, \\
1 \text { if the edge is } \mathrm{U} .
\end{array}\right.
$$

Theorem 1. Suppose that $\alpha_{n}=1, \beta_{n}=b_{n}$, and $\gamma_{n}=\lambda_{n+1}$. Then

$$
L\left(p_{m} p_{n} p_{k}\right)=\lambda_{1} \cdots \lambda_{n} \sum_{P} w(P),
$$

where P is a Motzkin path from $(0, m)$ to (k, n), and $w(P)$ is given by (2.1) and (2.2).

For example, if $k=m=n=3$ in Theorem 1, there are 7 Motzkin paths from $(0,3)$ to $(3,3): H H H, H U D, H D U, U H D, U D H, D H U, D U H$. The weights of these 7 paths are the 7 terms in (1.2).
Proof of Theorem 1. One can prove that both sides in Theorem 1 have the same recurrence relation, which is given in [1].

An alternative proof is to use Viennot's combinatorial interpretation for $L\left(p_{m} p_{n} p_{k}\right) / \lambda_{1} \cdots \lambda_{n},[6]$. It is the generating function for ordered pairs (P, π), where P is a Motzkin path from $(0, m)$ to (l, n), and π is a paving of the integers $\{1, \cdots, k\}$ with l isolated integers. The weight of (P, π) is the product of the weights of P and π. In P, an up edge starting at (i, j) has weight 1 , a down edge λ_{j}, and an across edge b_{j}. For π, a monomino at $\{i\}$ has weight $-b_{i-1}$, and a domino at $\{i, i+1\}$ has weight $-\lambda_{i}$.

Given (P, π) we create a unique path P^{\prime} by inserting in P, as the $i t h$ step of P^{\prime}, an H edge if π has a monomino in position i. If π has a domino starting in position i, we insert two steps, $D U$, in P, for the $i t h$ and $(i+1) s t$ steps of P^{\prime}. The result is a single path P^{\prime} from $(0, m)$ to (k, n). The weight of the path is given by (2.2) : the negative terms correspond to the weight in π, the positive terms to the weight in P.

It is easy to see that Theorem 1 implies Askey's theorem.

Corollary 1. If λ_{j} and b_{j} are increasing, with $\lambda_{j}>0$, then $a_{m n}^{k} \geq 0$.
Proof. We can assume by symmetry that $k \leq n$, Then it is clear that each vertex (i, j) in P satisfies $i \leq j$. Thus all weights are non-negative if the b_{j} 's and λ_{j} 's are increasing.

Theorem 1 can be restated in terms of walks of length m on the non-negative integers, starting at k, and ending at n, with steps of size $+1,-1$, or 0 .

We let $p_{n}^{\prime}(x)$ be another set of orthogonal polynomials satisfying

$$
\alpha_{n+1}^{\prime} p_{n+1}^{\prime}(x)=\left(x-\beta_{n}^{\prime}\right) p_{n}^{\prime}(x)-\gamma_{n-1}^{\prime} p_{n-1}^{\prime}(x)
$$

More generally, we consider

$$
\begin{equation*}
p_{m}(x) p_{k}^{\prime}(x)=\sum_{n} b_{m k}^{n} p_{n}(x) \tag{2.3}
\end{equation*}
$$

It is clear that $b_{m k}^{n}=L\left(p_{m} p_{k}^{\prime} p_{n}\right) / L\left(p_{n} p_{n}\right)$. We will give an interpretation for $L\left(p_{m} p_{k}^{\prime} p_{n}\right)$, which is non-negative when $b_{m k}^{n}$ is, since L is positive definite.

We generalize Szwarc's theorem by finding a combinatorial interpretation for $L\left(p_{m} p_{k}^{\prime} p_{n}\right)$ in (2.3). A generalized Motzkin path allows a fourth type of edge: HH (across by two units). We define a weight $v(P)$ on generalized Motzkin paths from $(0, m)$ to (k, n) again as a product of weights of edges,
$v($ edge starting at $(i, j))=\left\{\begin{array}{l}\left(\beta_{j}-\beta_{i}^{\prime}\right) \text { if the edge is } \mathrm{H}, \\ \left(\gamma_{j}-\alpha_{i}^{\prime}\right) \text { if the edge is } \mathrm{U}, \text { and preceded by } \mathrm{D}, \\ \gamma_{j} \text { if the edge is } \mathrm{U}, \text { and not preceded by } \mathrm{D}, \\ \left(\alpha_{j}-\alpha_{i}^{\prime}\right) \text { if the edge is } \mathrm{D}, \text { and preceded by } \mathrm{U}, \\ \alpha_{j} \text { if the edge is } \mathrm{D}, \text { and not preceded by } \mathrm{U}, \\ \left(\alpha_{j}+\gamma_{j}-\alpha_{i}^{\prime}-\gamma_{i}^{\prime}\right) \alpha_{i+1}^{\prime} \text { if the edge is HH, preceded by } \mathrm{U} \text { or } \mathrm{D}, \\ \left(\alpha_{j}+\gamma_{j}-\gamma_{i}^{\prime}\right) \alpha_{i+1}^{\prime} \text { if the edge is } \mathrm{HH}, \text { not preceded by } \mathrm{U} \text { or } \mathrm{D} .\end{array}\right.$
Theorem 2. We have

$$
L\left(p_{m} p_{n} p_{k}^{\prime}\right)=\frac{\gamma_{0} \cdots \gamma_{k-1}}{\alpha_{1} \cdots \alpha_{m} \alpha_{1}^{\prime} \cdots \alpha_{k}^{\prime}} \sum_{P} v(P)
$$

where P is a generalized Motzkin path from $(0, m)$ to (k, n), and $v(P)$ is given by (2.1) and (2.4).

Proof. Again we will use Viennot's interpretation for $L\left(p_{m} p_{n} p_{k}^{\prime}\right) \alpha_{1} \cdots \alpha_{m} / \gamma_{0} \cdots \gamma_{k-1}$. The weights on the edges, monominos, and dominos slightly change. Let P^{\prime} denote the Motzkin path and π^{\prime} the paving. In P^{\prime}, the U, D, H edges starting at (i, j) have weights γ_{j}, α_{j}, and β_{j} respectively. In π^{\prime}, a monomino $\{i\}$ has weight $-\beta_{i-1}^{\prime} / \alpha_{i}^{\prime}$, a domino $\{i, i+1\}$ has weight $-\gamma_{i-1}^{\prime} \alpha_{i}^{\prime} /\left(\alpha_{i}^{\prime} \alpha_{i+1}^{\prime}\right)$, and an isolated point i has weight $1 / \alpha_{i}^{\prime}$. Note that every paving has a factor of $1 / \alpha_{1}^{\prime} \cdots \alpha_{k}^{\prime}$. We therefore disregard the denominators of the weights of the pavings, and put this constant factor in the statement of Theorem 2.

As in Theorem 1, we will merge pavings π^{\prime} with the paths P^{\prime} to create a generalized Motzkin path P whose weights are given by (2.1) and (2.5)

$$
u(\text { edge starting at }(i, j))=\left\{\begin{array}{l}
\left(\beta_{j}-\beta_{i}^{\prime}\right) \text { if the edge is } \mathrm{H}, \tag{2.5}\\
\gamma_{j} \text { if the edge is } \mathrm{U} \\
\alpha_{j} \text { if the edge is } \mathrm{D}, \\
-\gamma_{i}^{\prime} \alpha_{i+1}^{\prime} \text { if the edge is } \mathrm{HH} .
\end{array}\right.
$$

The basic idea is to insert certain edges into P^{\prime} to create P, while simultaneously deleting all monominos and dominos in π^{\prime}. This is done by inserting an H edge in P^{\prime} starting at (i, j), if π^{\prime} has the monomino $\{i+1\}$. We insert an $H H$ edge in P^{\prime} starting at (i, j), if π^{\prime} has the domino $\{i+1, i+2\}$. We obtain a multiset of generalized Motzkin paths $P:(0, m) \rightarrow(k, n)$, from which the multiplicities are eliminated by using the weight (2.5).

Let S be the set of all generalized Motzkin paths from $(0, m)$ to (k, n). We just found that the linearization coefficients are, up to a constant, the generating function for S with weight (2.5). We want weight (2.4) instead of (2.5). We will do this via an involution.

The (2.4) weights of the edges of $P \in S$ are not monomials, instead they are sums of monomials. Thus we can consider the multiset M_{1} of paths $P \in S$, where the multiplicity of P in M_{1} is the product of the number of monomials in the weight of the edges $e \neq H$ of P. The weight of any element of M_{1} is the product of a choice of monomials for each edge. On M_{1} we will construct a weight-preserving sign-reversing involution, whose fixed point set consists of all paths P exactly once, with weights (2.5).

It remains to give the involution Φ on the multiset M_{1} of paths P. Note that we want to eliminate all weights in the edges that include α^{\prime}, except for the $-\gamma_{i}^{\prime} \alpha_{i+1}^{\prime}$ term in $H H$. Scan the path P from right to left, and find the first such term in the choice of monomials for the weights. Suppose the edge containing this term is $H H$, preceded by U or D. From (2.5), the weight we need to eliminate is one term from $\left(\alpha_{j}+\gamma_{j}-\alpha_{i}^{\prime}\right) \alpha_{i+1}^{\prime}$. If the preceding edge is D, replacing the $H H$ edge by a pair $U D$ will cancel the $\left(\gamma_{j}-\alpha_{i}^{\prime}\right) \alpha_{i+1}^{\prime}$ terms, while replacing the $H H$ edge by $D U$ will cancel the $\alpha_{j} \alpha_{i+1}^{\prime}$ term. Similarly, if the preceding edge to $H H$ is U, replacing $H H$ by $U D$ and $D U$ will cancel the $\gamma_{j} \alpha_{i+1}^{\prime}$ and $\left(\alpha_{j}-\alpha_{i}^{\prime}\right) \alpha_{i+1}^{\prime}$ terms, respectively. If the first edge containing α^{\prime} is $H H$, not preceded by U or D, we must eliminate $\left(\alpha_{j}+\gamma_{j}\right) \alpha_{i+1}^{\prime}$. This time replacing $H H$ by $D U$ and $U D$ eliminates a single term each.

This defines $\Phi(P)=Q$, when the first appropriate α^{\prime} edge of P is $H H$. If the first appropriate α^{\prime} edge of P is not $H H$, then α^{\prime} must be a choice of weight from a $D U$ or $U D$. Then we invert the previous case. It is easy to check that the involution Φ is well defined on M_{1}, with the stated fixed points.

Corollary 2 generalizes [4, Theorem 2].
Corollary 2. If $\alpha_{i}, \alpha_{i}^{\prime}, \gamma_{i}, \gamma_{i}^{\prime}>0, \beta_{j} \geq \beta_{i}^{\prime}, \alpha_{j} \geq \alpha_{i}^{\prime}, \alpha_{j}+\gamma_{j} \geq \alpha_{i}^{\prime}+\gamma_{i}^{\prime}, \gamma_{j} \geq \alpha_{i}^{\prime}$, for $j \geq i$, and $k \leq \max \{m, n\}$, then $b_{m k}^{n} \geq 0$.

Proof. Assume $k \leq n$. The inequalities insure that the individual weights in Theorem 2 are positive, since the indices of the primed variables cannot be greater than the indices of the unprimed variables. By symmetry we obtain the $k \leq \max \{m, n\}$ case.

The connection coefficient problem is the $m=0$ special case of Theorem 2. Nonzero coefficients occur only for $k \geq n$. In this case, along our path P, vertices (i, j) satisfy $i \geq j$, so we assume the inequalities of Corollary 2 hold in this range. This implies Askey's theorem in [2].

The theorems in [5] can also be generalized, for example:
Corollary 3. If $\beta_{j}=\beta_{i}^{\prime}=0, \alpha_{i}, \alpha_{i}^{\prime}, \gamma_{i}, \gamma_{i}^{\prime}>0, \alpha_{2 j} \geq \alpha_{2 i}^{\prime}, \alpha_{2 j+1} \geq \alpha_{2 i+1}^{\prime}, \alpha_{2 j}+$ $\gamma_{2 j} \geq \alpha_{2 i}^{\prime}+\gamma_{2 i}^{\prime}, \alpha_{2 j+1}+\gamma_{2 j+1} \geq \alpha_{2 i+1}^{\prime}+\gamma_{2 i+1}^{\prime}, \gamma_{2 j} \geq \alpha_{2 i}^{\prime}, \gamma_{2 j+1} \geq \alpha_{2 i+1}^{\prime}$, for $j \geq i$, m is even, and $k \leq n$, then $b_{m k}^{n} \geq 0$.

Proof. Under the assumption that m is even, and all $\beta^{\prime} s=0$, all vertices (i, j) on the path P of Theorem 2 have the property that i and j have the same parity.

References

1. R. Askey, Linearization of the product of orthogonal polynomials, Problems in Analysis, ed. by R. Gunning, Princeton University Press, Princeton, NJ, 1970, pp. 223-228.
2. \qquad _ Orthogonal expansions with positive coefficients. II, SIAM J. Math. Anal. 2 (1971), 340-346.
3. T. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, Science Publishers, New York, 1978.
4. R. Szwarc, Orthogonal polynomials and a discrete boundary value problem I, SIAM J. Math. Anal. 23 (1992), 959-964.
5. Orthogonal expansions and a discrete boundary value problem II, SIAM J. Math. Anal. 23 (1992), 965-969.
6. G. Viennot, Une théorie combinatoire des polynômes orthogonaux généraux, Lecture Notes, UQAM, 1983.

School of Mathematics, University of Minnesota, Minneapolis, MN 55455.

School of Mathematics, University of Minnesota, Minneapolis, MN 55455.

[^0]: ${ }^{1}$ This work was supported by NSERC funds.
 ${ }^{2}$ This work was supported by NSF grant DMS-9001195.

