FAKE GAUSSIAN SEQUENCES

D. STANTON

ABSTRACT. Some positivity conjectures are made generalizing known results for
Gaussian posets.

For a sequence of non-negative integers @ = (a1, az,- - - ,a,), and a non-negative
integer m, MacMahon [1, p. 137] considered the rational function of g,

H?:l (1 —gmti)®

He was interested in the values of @ such that F(@,m,q) is a polynomial in ¢ for all
non-negative integers m. For example,

(1.1) F(@,m,q) =

F((L1,+ ,1),m,q) = ["””L,

n

or if a; is decreasing, F'(d@,m, q) is a g-multinomial coefficient.

We say @ has the polynomial property if F(@,m,q) is a polynomial in ¢ for all
non-negative integers m. It is easy to restate this polynomiality condition as a
condition on a = (a1, az,- -+ ,ay)-

Proposition 1. d@ has the polynomial property if, and only if,
S < Yo
i i

for all positive integers 1 <r < p < n.

Proof. We just check the power of the cyclotomic polynomial ¢,(g). In the denom-
inator it appears ). a;, times, in the numerator ), a4, times, where m = —r
mod p. O

Proposition 1 with p = n clearly implies that a, > a,, and since we may assume
that a,, > 0, this implies each entry of @ is strictly positive. Also Proposition 1 says
that the allowed set of @ is the set of integral points in a convex polyhedral cone

Cn [4, §4.6].
One may ask if F'(@, m,q) has non-negative coefficients if @ has the polynomial
property. If (a1, a2, - ,a,) are the level numbers of a known Gaussian poset, this

is known to be true [4, p. 270]. This we can think of any @ with the polynomial
property as a fake Gaussian sequence. In general it is not true, for example

F((153a]-a1:1517]-a1a25lalalalalalalal)alaq):1+q+"'_q7+"'7
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and it can be shown that @ = (1, 3,12%,2,125%2) also contains —¢” for any s > 3. I
do not know of any such examples with fewer than 17 parts.

Nonetheless, there are some special families of @, which are not the level numbers
of a known Gaussian poset, for which positivity does hold.

Proposition 2. Ifd has at most 6 parts and the polynomial property, then F(d,m,q)
has non-negative coefficients.

Proof. The extreme rays of the cone Cg are

{(1,0,0,0,0,0),(1,1,0,0,0,0),(1,2,1,0,0,0),(1,1,1,0,0,0),(1,1,1,1,0,0),
(1,2,2,1,0,0),(1,2,3,2,1,0),(1,3,3,2,1,0),(1,2,2,2,1,0),(1,3,2,1,1,0),
(1,1,2,1,1,0),(1,1,1,1,1,0),(1,2,1,1,1,0),(1, 2,3, 3,2,1),(1,2,2,2,2,1),
(1,1,1,1,1,1)}.

All are known to be level numbers of Gaussian posets [4, p. 270], except
{(1,3,3,2,1,0),(1,2,1,1,1,0)}.

There is simplicial triangulation of Cg using these extreme rays and
{(1,2,2,1,1,0),(2,3,3,3,2,1)}.

These facts have been verified using Porta. Thus any integer point in Cs must be
a positive integral combination of these 18 vectors. Since

- -

F(@+b,m,q) = F(d,m,q)F(b,m,q),

we must verify non-negativity at these remaining four points. A computer verifica-
tion for a stronger statement using (1.3) is indicated below. O

It is of interest to consider the symmetric case: a; = a,41; for all i, this occurs
for connected Gaussian posets. MacMahon [1, p. 141-144] listed the extreme rays
for n < 8.

Conjecture 1. If @ is symmetric and has the polynomial property, then F(ad,m,q)
has non-negative coefficients.

Proposition 3. Conjecture 1 holds for all @ with at most 10 parts.

Proof. We consider the cone C,,, which is C,, with the additional equalities



The extreme rays of C, forn <10 are

n=1 {(O}
n=2 {1}
=3 {(1,1,1),(1,2,1)},
=4 {(1,1,1,1),(1,2,2,1),(1,1,1,1,1)}
n=>5 {(1,1,2,1,1),(1,2,2,2,1),(1,2,3,2,1)},
n=6 {(1,1,1,1,1,1),(1,2,2,2,2,1),(1,2,3,3,2,1)},
n=7 {1,1,1,1,1,1,1),(1,1,1,2,1,1,1),(1,2,2,2,2,2,1),(1,2,3,3,3,2, 1),

(1,2,3,4,3,2,1)},

n=8 {(1,1,1,1,1,1,1,1),(1,1,2,2,2,2,1,1),(1,2,2,2,2,2,2,1),
(1,2,2,3,3,2,2,1),(1,2,3,3,3,3,2,1),(1,2,3,4,4,3,2, 1),

n=9 {(1,2,3,4,5,4,3,2,1),(1,2,3,3,4,3,3,2,1),(1,1,2,2,3,2,2,1, 1),
(1,2,2,2,3,2,2,2,1),(2,2,3,4,5,4,3,2,2),(1,1,1,1,2,1,1,1,1),
(1,2,3,4,4,4,3,2,1),(1,2,3,3,3,3,3,2,1),(1,2,2,2,2,2,2,2,1),
(1,1,1,1,1,1,1,1,1)},

n=10 {(1,2,3,4,5,5,4,3,2,1),(2,3,5,5,6,6,5,5,3,2),(2,4,4,5,6,6,5,4,4,2),
(2,3,3,3,4,4,3,3,3,2),(1,2,3,4,4,4,4,3,2,1), (2,3,4,6,6,6,6,4,3,2),
(1,2,2,3,3,3,3,2,2,1),(2,2,3,4,4,4,4,3,2,2), (1,1,2,2,2,2,2,2,1,1),
(1,2,3,3,3,3,3,3,2,1),(1,2,2,2,2,2,2,2,2,1), (1,1,1,1,1,1,1,1,1,1)},

25 27 7)Y ) ) ) ) )

while the possibly non-Gaussian extreme rays in these sets are

{(1,1,2,2,2,2,1,1),(1,2,2,3,3,2,2,1),(1,2,3,3,4,3,3,2,1),(1,2,2,2,3,2,2,2,1),
(2,2,3,4,5,4,3,2,2),(2,3,5,5,6,6,5,5,3,2),(2,4,4,5,6,6,5,4, 4, 2),
(2,3,3,3,4,4,3,3,3,2),(2,3,4,6,6,6,6,4,3,2),(1,2,2,3,3,3,3,2,2,1),
(2,2,3,4,4,4,4,3,2,2)}.

For any n < 10 there is a simplicial triangulation of C,, using the appropriate
extreme rays, thus we check only the possibly non-Gaussian extreme rays, using
the technique below. [

To prove a particular special case by computer we verify a stronger positivity
result. It is clear that F'(d,m,q) is a polynomial in ¢™ of degree a; +as + - - - + an,
and thus may be expanded

m+a+a+---+ap—3S8

(12)  F@maq= Y mrmrre

a1+aa+---+an—1 [
s=0

q

for some rational function Ws(d, q) independent of m. Clearly, setting m = 0 in
(1.2) implies
WO (65 q) =1



and recursively

13 W0 = F@i0) - Y Wiao |

s=0

t+ar+ax+---+a,—s
ay+az+ - +an q‘

Clearly (1.3) implies that Ws(d, q) is a polynomial in ¢, for example
l—nI 1—(]J+1a-7_ ar+ax+---+ap+1
(1—g7) a1 t+ag+-tan |

Also it is easy to see that Ws(d,q) = 0 for s > a; + ax + - - + a, — n, by setting
m=-1,-2,---,—(n—1) in (1.2).

Conjecture 2. If @ is symmetric and has the polynomial property, then the poly-
nomials W,(a, q) have non-negative coefficients.

It is clear that Conjecture 2 implies Conjecture 1. Conjecture 2 holds in the
Gaussian poset case, when W;(d, q) is the generating function of linear extensions
having s descents according to the major index. A special case of Conjecture 2 can
be verified if m = 1.

Proposition 4. Let ¢; = a; — a;—1, where ag = 0. Ifc1 > c2 > --+ > ¢[(ny1)/2)>
then Conjecture 2 holds for m = 1.

Proof. Put p= [(n +1)/2|. We have

p —3 cp P—1 Cp—i—Cp—i
l_qn+21 ] n+1 P n+1 p—i~Cp—itl
F@@,1,q) = [[(———)" = 11 : :

o 1 Pl o Pt
If ¢; is decreasing, then each term is a g-binomial coefficient raised to a non-negative
power. [

Proposition 5. Conjecture 2 holds if @ has at most 10 parts.
Proof. The proof of [3, Prop. 12.6(ii)] implies

W.(G+5.q) ZWaq 0 )[a1+a2+---fan+]—z

S—1
q

[b1+b2+"'+bt+i—j] (5—i)(s—7)
: q )
s—3j .

so that the positivity of the coefficients of W(@d) is preserved under sum. Again we

check W (@) for the vectors @ given in Proposition 3. This was done explicitly on
a computer using (1.3). O

Proposition 2 was also verified, by checking the non-negativity of W (&) for the
vectors @ listed there.
It is not hard to verify that

Wy (@, 1/q)g*(@rat+an) = W (&, q).
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If the coefficients of W,(d) are “centered’ and unimodal, then (1.2) implies that the
coeflicients of F(@, m,q) are also unimodal. However the coefficients of Wy (a@) and
F(d,m,q) are not always unimodal, e.g. @ = (1,2,2,3,3,3,3,2,2,1), m = 1, and
s=1.

If @ does arise from a Gaussian poset, then the coefficient of ¢ in F(&,m,q) is
an increasing function of m > 0. This property appears also to hold for @ with the
polynomial property.

Conjecture 3. If @ has the polynomial property, then the coefficient of ¢7 in
F(a@, m,q) is an increasing function of m > 0.

If W,(a@) has non-negative coefficients, then (1.2) verifies Conjecture 3. So the
validity Conjecture 2 implies the validity Conjecture 3.
The m — oo limit of (1.2) can be rewritten

Ha1+az+~~~+an(1 _ qi) a1taz+:+an—n

(1.5) 9(@,q) = ":ﬁn T - > W@ 9.

i=1 s=0

Conjecture 4. If a; > 0 for all i and g(d, q) is a polynomial, then the coefficients
of g(@,q) are non-negative.

If F(@,m,q) is a polynomial for all non-negative m, then g(d, q) is also a poly-
nomial. So Conjecture 2 implies Conjecture 4 in these cases. However, @ may not
have the polynomial property, yet g(d, q) is a polynomial (e.g. @ = (1, 3,2)).

If @ is decreasing, then g¢(d,q) is a g-multinomial coefficient. Conjecture 4 asks
for an interpretation of ¢(@,q) as the generating function for a statistic on some
set, of multiset permutations. Similarly, Conjecture 2 asks for an interpretation of
W, (d@) as the generating function of some set of permutations with s descents.
Remarks

(1) It is easy to see that if F'(@,m,q) is polynomial for all non-negative m, then
it is also a Laurent polynomial for all non-positive m.

(2) W4(a@) can have negative coefficients even though F(&,m,q) does not: @ =
(1,3,1,1,1,1,2,1,1,1,1,1,1), m = 1, and s = 1.

(3) The number of new extreme rays for C,, reported by Porta is given below.

7T 8 9 10
19 18 40 99

n

1 2 3 4 5 6
# of new extreme raysforn 1 1 2 2 7 3
(4) The number of extreme rays for n in the symmetric version of Conjecture

1 is given below.

n

123456 7 8 9 10

# of extreme symmetric raysforn 1 1 2 2 4 3 5 6 10 12

(5) For the 93 extreme rays @ in Cy, W, (@) has non-negative coeflicients.
(6) There is no connected Gaussian poset with level numbers (1,1,2,2,2,2,1,1)
or (1,2,2,3,3,2,2,1), these are the first candidates for a new Gaussian

poset.



w

(7) An explicit version of (1.2) is

F((1;1;2;2)2527151)7q’m): |:m]-i-212:| "
q
11
(@ +4¢'+¢°+2¢° + 4" +¢* +¢°) [ma ] "
q

(q8+q9+2q10+2q11+3q12+2q13+2q14+q15+q16)[

m + 10
12 L+

(@ +¢' + ¢\ + 24" + ¢ + ¢ + ¢®) [ml-gg] + [m1-|2—8]
q q

Is this the character of a natural sls representation, as occurs for the known
Gaussian posets [2]?
(8) Conjecture 1 has been verified for @ = (Reverse()),\), of length n < 20,
and partitions A, |A| < 20.
(9) Conjecture 2 has been verified for a1 +as + -+ + a, <15
(10) Conjecture 4 has been verified for a; + as + -+ - + a, < 18.
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