Ramanujan Continued Fractions Via Orthogonal
Polynomials *

Mourad E.H. Ismail Dennis Stanton
Department of Mathematics School of Mathematics
University of Central Florida University of Minnesota

Orlando, FL 32816 Minneapolis, MN 55455

April 13, 2005

Abstract
Some Ramanujan continued fractions are evaluated using asymptotics
of polynomials orthogonal with respect to measures with absolutely con-
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1 Introduction
A sequence of orthogonal polynomials satisfies a three-term recurrence relation

(1.1) Va1 (2) = (2 = by (2) = Mt (2), n 20,

with A,41 > 0 and b, € R for n = 0,1,.... There are two special independent
solutions to (1.1), denoted p,, and p};, with the initial conditions py = 1, p_1 = 0,
pg =0, pf = 1. The finite continued fraction associated with (1.1) is
1 - (:
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The above Cy, (x) is the nth convergent of the continued fraction
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n =1,2,.... Continued fractions of the above type are called J-fractions [12]
and are associated with orthogonal polynomials.

It is clear that knowing the large n asymptotics of p,(2) and p} () enables
us to evaluate the infinite continued fraction Cy (z) via

Coo(z) = lim Cp(2).

This has been done for a generalization of the Rogers-Ramanujan continued
fraction in [1].

Andrews et al. [4] (see our Theorem 4.7) have recently evaluated another Ra-
manujan continued fraction Cyp,(1/2), whose limit depends upon the congruence
class of n modulo 3. In this paper we reprove the evaluation via asymptotics of
orthogonal polynomials, and explain that the modulo 3 behavior is typical for
continued J-fractions evaluated at @ = cos(7/3) when the corresponding orthog-
onal polynomials are orthogonal with respect to a weight function supported on
[-1,1]. As a byproduct we evaluate several new continued fractions, see The-
orems 4.1-4.6. The modulo 3 behavior can be generalized to any modulus £,
by choosing a suitable value for  which depends upon k. For the Ramanujan
continued fraction, this result is given in Theorem 4.8. Moreover the modulo &
behavior holds for a wide class of orthogonal polynomials which have the appro-
priate asymptotics. We discuss this in §5, and give two such general theorems
for modulo k& limits, Theorems 5.2 and 5.6. In §6 we demonstrate these ideas
using the Al-Salam-Chihara and g-ultraspherical polynomials. After completing
this manuscript the work of Bowman and McLaughlin [7] was brought to our
attention. In §7 we will compare their results with our own.

2 A family of ¢-Chebyshev polynomials

In this section we collect the basic facts about a system of orthogonal polyno-
mials introduced by Ismail and Mulla in [11]. We state the defining recurrence
relation, give generating functions and asymptotics. The polynomial system
considered is a ¢ extension of the Chebyshev polynomials. These polynomials
will be used to explain and extend the results by Andrews et al.

Consider the three-term recurrence relation

(2.1) Yn1(2) = (22 + ag" Jyn () — yn-1 ().

We define the polynomial system {p,(z;a,q)} to be the solution of (2.1) with
the initial conditions

po(z;a,q) =1, pi(z;a,q)=22z+a.



The polynomials of the second kind p} (z;a,q) are defined as the solutions to
(2.1) with the initial conditions

po(z;a,q) =0, pi(z;a,9) =2,
It readily follows that
pa(@;a,q) = 2pn_1(z;aq, q).
The generating function of {p,(z;a,q)} is easily found from (2.1) to be

o btk g(3)

(2.2) an (z;a,q)t Z 1 dei7;

k‘:O

, x =cosf,
)k’-}—l
see [11].

One can apply Darboux’s method to the generating function (2.2) and find
the leading term in the large n asymptotics of py(z;a, q). Let

-ng ")
(2.3) (z,a,q) Z

— qq/z,q

We parameterize z by = cos#f, so that e*"? = 2 + /22 — 1. The branch of
the square root is chosen such that /22 — 1/2z — 1 as z — co. We shall use the
notation

(2.4) pz),1/p(z) =2+t V22-1, |p(z)] > 1forz ¢ [-1,1].

Proposition 2.1. Ifa: ¢ [—1,1], then the asymptotic relation

Nt e
W e = o )

holds. On the other hand if x € [—1,1], and z = ¢'® then

F(z,a,q)(14+0o(1)), asn — oo,

kel —n

F(z,a,q)+ 1Z_

z

1— 22

(B) pa(r;a,q) =

as n — 00.

F(1/z,a,q)+ o(1),

Proposition 2.2. The asymptotic function F(z,a,q) has the alternative repre-
sentation

z,a,q) = (—a/z; S (aqz_S)kq3(:)
F(; aq)_( /’q)w;)(q,q/zz,—a/z;ﬁk.

Proof. Apply the 5¢1 to 5¢5 transformation

(2.5) 201 (a,beie;q,2) = %z@(a c/bie,az;q,bz),

[9, (I11.4)], with a = ¢™", b= ¢", c = qz7 %, 2 = —aq™/z, and let n — oo. O

We choose b, = —aq™, A, = 1, and replace z by 2z in C,(z). In view of
Proposition 2.1, to evaluate C (2 ), one must choose @ and z so that F(a, z, ¢q)
is evaluable. We collect these choices in the next section.



3 Evaluations of the asymptotic function

In this section we evaluate the asymptotic function F(z, a, q) for various choices
of z and a.

Proposition 3.1. Ifw = €>™/3, we have

(A) F(e™? 4,4) = (@q;0)oo (475 07 o,

(B) F(e™?,1,q) = (wq'q) [(4:¢%) oo — w(9%67)e0)

(C) F(ei™31/q,q) = (wq, g)oo [(1+q (44%)e0 + (9% 0°)oo]
(D) F(e™34% q) = (wg; @)oo [(1 4 w?)(45¢%) 0 — w? (4% ¢%) 0] -

Proof. For the first evaluation, put z = €/™/? in Proposition 2.2 and use the

¢*-binomial theorem. For (B), note that by Proposition 2.2, if w = e2mi/3
) o EE3(5) L1V (1 — waF
F((Z“r/B,l,q “;q ) Zq ( 2) ( wq )
= (49w qwiq)k
[eS) 3(*
IS STk CU(ELT])
= (4% )k

Then use the ¢3-binomial theorem twice to obtain the stated result. The proofs
of (C) and (D) are analogous to that of (B) and will be omitted. O

The evaluation in (A) was first proved by Andrews in [2].
Proposition 3.2. The following Rogers-Ramanujan identities
F(p=112, 312 p?

(3.1) ( R e

=" P PP ) (0", %P o /(p 1P)oo

7'742 n

00 pn2+2n

F(p—l/Z’pS/Q,pQ) = (1 _p) Z (

(3.2) n=0 PiP)an+1
=" %0 % ™) e (0, ™% 07 0o /(075 1) oo
hold for 0 < p < 1.

Proof. These are equations (94) and (96) on Slater’s list of Rogers-Ramanujan
type identities [16]. O

The results in Proposition 3.2 are valid for complex p with |p| < 1. The
square roots present no problem because Proposition 2.2 indicates that the left-
hand sides of (3.1) and (3.2) are analytic functions of p for |p| < 1. We shall
need the evaluations that correspond to shifting a by ¢ in Proposition 2.4.



Proposition 3.3. The following evaluations of the function F' hold

—1/2 ,.7/2 .2\ _ (1 _ n?4an
F(p='/2,p"2p*) = (1 P)Znom
(3.3) = s [~ 2 ' ) (0, 215 27

+@* ", ' %P ) e (P 2% P oo
_ o n244n
F(p=t2 p°2 pY) = (1-p) 302, ey
(3:4) = s5mr= L0708 PP ) (0%, P14 P7") o
+(p— 1) (" P%, "% ") oo (P, 2% 9™ o] -
Proof. Observe that

© k+2k k

- p
F(p 1/2,p5/2a,p Z e

k‘2 k' 2k‘+1 - 1
1— +1)

k? k

— - P oa
+p7 (1 = P
v p)kzz:o (P; P)ak41

i::kzk

Thus if @ = p, these two sums may be evaluated by Slater (99) and (94) respec-
tively. This is the first result. For a = p?, the second sum may be evaluated
using formula (96) of [16], while the first sum is

in —1+1 ip

(P, P k:o 2k+1 b0 (pip)2k

0 pkH2k k41)?

Mg

again evaluable from (98) and (96) of Slater [16]. This establishes the second
part and the proof is complete. O

Analogous to Proposition 3.3, we state without proof three other evaluations

which also follow from Slater, (94), (96), (98), and (99).
Proposition 3.4. We have

n2+n

F(p=®2,p' 7 p") = (1 —p)(1 —p i

(3.5) _ (-9
~ (P%P)
+ (P 0" %P e (P, P P 0]

P)angi1(l — pg?nt3)

(P, 2%, P % P ) e (P, % ) oo



n +3n

F(p=32,p" 2 p?) = (1 - Z

3.6 N
(36) zﬁ[(p P00 ) (00" 0 oo

+p =)@ P "% P e (P, P P o]

(p;P)2ng1(1 — pPnt3)

n 245n

F(p_3/2,p9/2,p2) — ( Z p

(3.7) _(1=pY)
-~ pi(p? ,p)
+(=p" +p = 1) ", "% ) (P 2% P o] -

P)ant1(1l — p?nt3)

(P> + )", ", p'% ') o (%, 2% P oo

Slater’s (94), (96), (98) and (99) give the next set of evaluations.
Proposition 3.5. We have

24
(A) F(i,iq,q") + F(—i,iq, ¢° )—2(q L (q4) 4§ )Oo’
32 80
B)  F(i,id’,¢") + F(—i,i°, ") At i (q )Oi(q )Oo’
' 797 )0
40 80
©  Fling®)~ Poiin q?) =200 ’(‘; )q"")(q e,
16 24 40 40 . 8 72 80
- . 70,0 07) (45,07 ¢ o
D)  F(i,ig® ¢%) — F(—i,i¢®, ¢* =2q3( ‘ S
(D) ( )= F( ) (" )

Propositions 3.1-3.5 give examples of evaluations of F' at special points of
F(z,a,q) and F(z,aq,q). We can also find recurrences in a, which show that if
we can evaluate F(z,a,q) and F(z,aq,q), then we can find F(z,aq", q) for any
integer n.

Proposition 3.6. Let G,, = F(z,aq",q)/z". Then G,, has the property
Gnt1 = —pn-1(2;aq,q)Go + pn(2; a, )G,
or equivalently,

F(z,aq”+1,q) = —pn—l(l‘;GQ;Q)ZnHF(Z;“;Q)

(3.8) n
+pn(x;a,q)2" F(z,aq,q).

Proof. A routine calculation shows that
(3.9) F(z,a¢",q) = (14 22 +aq" '2)F(z,aq",q) — 22 F(2,a4" ", q)
which implies that {G,} satisfies the recurrence

Ynt1 = (22 +ag" " )yn — Yn1.



Since {pn(x;a,q),pn-1(x;aq,q)} is a basis of solutions of the above recurrence,
G, must be a linear combination of p,(z; a,q) and p,_1(2; aq, q) and the propo-
sition follows. O

Note that the way {p, } appears in (3.9) is similar to the way Lommel poly-
nomials arise from Bessel functions, see [19].

4 Continued fractions

Let
pr(z;a,q)
Cn(z;a,q) =5 -———=
( T 2pa(2;a,9)
_ 1
- 1
2¢r +a — T
2z + aq — i
2z + aq? — :
2+ agn—1

In this section we apply the asymptotic evaluations of §3 to evaluate
Coo(z5a,q) = nh_}rrgo Chr(x;a;q).

When there is only one term in the asymptotic expansion of Proposition 2.1,
the n dependence is simple, and C (2;a, q) exists. If 2 is chosen so that two
terms exist in Proposition 2.1, Cs(2; @, ¢) may not exist. However, restricting
n to a congruence class, when z is suitably chosen, will yield a limit.

First we consider the single term case. As before we set x = cosf, z = ¢
and |e~%| < |e'?|, and it follows from Proposition 2.1 that

(4
)

. pilzsa,q)  Fl(z,aq,q)
4.1 : = lim = .
1) Colri ) = I S0 0) ~ 2 F(za,0)

Moreover

pa(riaq™ q) _ F(z,a9™* q)
n—oo 2pn(2;aq™,q) 2z F(z,a9™,q)

)

hence
Coo(z;09™,q) =
(42)  —pm_i(w;aq,q)2" ' F(z,a,q) + pm(2;0,¢)2™F (2, aq,q)
—pm—2(z;0,q)2™ 1 F(2,a,q) + pm-1(2;a,q)2™ F(2,aq,q)’
holds for = ¢ [—1,1].

For our first theorem we put ¢ = p?, 22 = p'/2 + p=1/2 a = p*/2, and use
Propositions 3.2 and 3.3 to evaluate F(p~'/2, p%/% p?) and F(p='/2,p7/? p?).




Theorem 4.1. If0 < p <1, then

p

I+p+p?—
l+p+p*—

I+p+pf—
. P

l+p+p—
_ 1 1 (r%ip)e(@® PP e

P p(P 050 (Pt P15 P00

Theorem 4.2 below follows from the parameter identifications ¢ = p?, 22 =
p'/2 4 p=112 a = p5/2 and the use of Propositions 3.2 and 3.3 to evaluate
F(p_l/Z,p5/2,p2) and F(p_1/2,p9/2,p2).

Theorem 4.2. If 0 < p <1, then

I+p+p°—

5 _
I+p+p P

T+p+p" -
: p

'_]+p+p2n+1_L

g L@ e (0 )
p (@050 %% (P70 )00

To prove Theorem 4.3 we set ¢ = p?, 22 = p*/?> + p=3/% a = p'/? and apply
Proposition 3.4 to evaluate F(p~3/2 p'/2 p®) and F(p=3/2,p°/2, p?).

Theorem 4.3. If 0 < p <1, then

1
3
1+ p3+p? — P 3
L+p3+p*— P P

1+ p*+p*— 3

. p
_ =
1-|-p3 _I_an _ £

_1 > P75 1" (P P"% P70

P (0% ') (P%, 2% P*) o + P(PP P75 P %)oo (P, 1105 p?0) o)

For Theorem 4.4 we put ¢ = p?, 22 = p¥2 + p=3/2 4 = p*/2, and use
Proposition 3.4 to evaluate F(p_?’/z,ps/z,pZ) and F(p_?’/z,pg/Z,pz).



Theorem 4.4. If 0 < p <1, then

1+ p*+p* — 3
1+ p+pf — 3
T+ p7+p% = - 3

3
]+p3+p2n+2_p_

-

(2* + )@ p% P oo (0%, "5 p*) o0 — (P =P+ D, P75 p") oo (P, "% p*")
P2, %P %) oo (P2, P15 0% 0o + (P — 1) (03, P75 91%) 0 (p*, P65 %) oo ]

Next we turn to evaluations which correspond to two terms in the asymptotic
formula of Proposition 2.1. The first example has x = 0, z = 7, so that

29 (05a,¢%) " F(i,a,q°) + i7" F(—i,a,q%).

There are two possible limits, for n even and n odd. Proposition 3.5 evaluates
the sums and differences at a = iq and a = i¢>, implying the next two theorems.

Theorem 4.5. If 0 < p <1, then

1 _ ps(p16,p64;p80)oo

Iim
n—oo 1 (p32,p48;p80)00
3 1
—p3 — : 1
P 1
_p4n+3
Theorem 4.6. If 0 < p <1, then
Iim 1 _ (p4’p36;p40)oo (p32’p48;p80)DO
oo ! . p(p'2, 28 p*0) oo (016, P54 pB0) oo
P — -
5 _
b 1
- p4n+1

The evaluation of Andrews et al [4] chooses z = ¢/™/3 22 = 2cos(7/3) = 1,
and @ = 1 and uses Proposition 3.1. In this case Proposition 2.1 contains two
terms for the asymptotics of p, (z;a, ¢), and one must restrict n to congruence
classes modulo 3 to get a limiting result. For example, if ¢ = 0,1, or —1, and
z = €"/3 then

. . . p§N+s+1(l/2; 1,9)
lim Cyyyer1(1/2;1,¢) = 1 .
M Cavtet(1/2:1,9) = Jim Wanter1(1/2;1,4)



Therefore
lim Canyes1(1/2;1,9)
N—>oo

(43) Z]+EF(ei1r/3’q’q)_Z—]—FF(e—iTr/S’q’q)

= 22+5F(€i77/3’ 1, q) _ Z—Q—EF(e—iW/3’ 1, q) .

In view of Proposition 3.1, we have evaluated the continued fraction “C(1/2; 1, ¢)”
with three different limits. This is equivalent to Theorem 2.8 in [4], which is
stated below.

Theorem 4.7. Let ¢ = 0,1 or —1.

N T =

1—
I+q- T
1+4¢%—

1
T 1 + q3N+e
2 (1% %) 0 (9975 @)oo — w1 (qw; ¢) oo
(4,83 00 (99?5 @)oo — w = H(qw; @) o

In fact it is straightforward to prove the following generalization of (4.3), or
Theorem 4.7, to the case of k different limits.

Theorem 4.8. If0<s<k—1, and w := *™/* then

lim Cngys(cos(jm/k); a, q)
N— o0

(4.4) ik szF(eijw/k’ aq,q) — F(e—ijw/k’ aq,q)
=€ n — i3 )
sz-l'sF(@”W/ka a,q) — F(E_”W/k: a,q)

holds for 1 < j < k.

5 Generalizations
Assume that {p,(2)} is generated by

po(I‘) = 1; P1 (‘E) = (‘E - bo)/a],
'rpn(x) = an+1pn+1(m) + bnpn('r) + anpn—l('r); n> Oa

(5.1)

where b, € R and a, > 0 for all n. The spectral theorem for orthogonal
polynomials asserts that there is a probability measure p such that {p,(z)} is
orthonormal with respect to p.

Theorem 5.1. ([14, Theorem 40, p. 143]) Assume that

(5.2) Z{ |bn] + |an — 1/2]| } converges.

n=1

10



Then the orthogonality measure p has the decomposition du = p'(z)dz + dv
where p' is continuous and positive on (—1,1) and its support is [—1,1]. More-
over the function v is a jump function (a step function with possibly infinitely
many jumps), which is constant on (—1,1). Furthermore

T p!(cos b

n—0oQ

(5.3)  lim {sin@pn(cos ) — 2_sinf ] sin[(n+ 1) — qﬁ(é’)]} =0,

uniformly on every compact subinterval of (0, 7). Here ¢ may depend on 0 but
not on n.

The angle ¢ = ¢(f) is called the phase shift. For more information on
asymptotics of general orthogonal polynomials the interested reader may consult
Nevai’s survey article [15]. Tt is worth mentioning that the polynomials of §2
correspond to the case a, = 1/2 and b, = aq™/2.

Assume that {p, ()} satisfies (5.1) and the condition (5.2). Let {p} ()} be

a solution to the recursion in (5.1) with the initial conditions

po(z) =0, pi(z):=1/a;.

The polynomials {p;, ,;(z) : n =0, ...} are orthogonal polynomials and p}, , ()
is of exact degree n. If the recursion coefficients in (5.1) satisfy the condition
(5.2) then {aip},;(x)} is also a system of orthonormal polynomials and (5.3)
holds for its measure of orthogonality.

Theorem 5.2. Assume that the convergence condition (5.2) holds and that p
and p* are the probability measures with respect to which {p,(x)} and {p}, ()}
are orthogonal. Let ¢ and ¢* be the phase shifts in (5.3) corresponding to
{pn(2)} and {p},,1(x)}. Denote the nth convergent of the infinite continued
fraction by

1
B )
;‘E—bo— i
I—bl— 4 5
a3
r—by— —
by Cp(x),n=1,2,.... Then for s =0,1,...,k — 1 we have

A}l_{réo Chi4s(cos(jm/k))

(5.4) 1 \/ ' (cos(jm/k))  sin(jms/k — 6* (jn/k))
a (u*) (cos(jm/k)) sin(jm(s +1)/k — ¢(jm/k))’

a1 )}

where 1 < j < k.

Proof. Apply (5.3) to p, and a1pj, ; then use Cngys(2) = phpy, (2)/PNkys(2),
with z = cos(jr/k). O

11



Theorem 3.1 of Andrews et al. [4] proved a version of Theorem 5.2 when
a, = 1,7 =1,k = 3, but their b, was allowed to be complex.

Theorem 5.3. ([14, Theorem 42, p. 145]) Assume that

(5.5) Z n{|bn|+ |an — 1/2| } converges.

n=1

With p as defined in (2.4), the following limiting relation

(5.6) Tim {pf;)(fg = \/;—_]so(l/p(x)),

holds uniformly for |p(x)| > R > 1 where ¢(1/p(x)) is a function analytic in
the domain |p(z)| > 1.

The function ¢ is defined by

(5.7) e(z) = lim @9, (2),

n—o0
and s, (2) is a polynomialin z (= €'?) of exact degree 2n and is defined through
(5.8) 2isin 0 py(cos b) = ei(”“)egozn(e_”) — e_i(”"'l)ggozn(e”),

see [18]. The existence of ¢ is guaranteed under (5.2), which is weaker than

(5.5).

Theorem 5.4. Assume that (5.5) holds and let ¢3,(z) be the polynomials in
(5.8) corresponding to a1pj,,1(cosf) and let p*(z) = limy 00 93, (2). Then

af ar ¢(1/p(x))’

a3

59) 1 _ple) ¢ (1/pl))

Z—bo—

.’I,’—bl— (12
3

$—b2—

for @ ¢ [—1,1]. Moreover the convergence is uniform for |p(x)| > R > 1.

Ramanujan also considered continued fractions where

(5.10) Cn(z,c) =
xr — bo —

.’l‘—bl—

Jf—bg—

_l’—bN—1+C

12



Let {pn(x)} and {p},(x)} be the numerators and denominators of the continued
fraction (5.5) which corresponds to ¢ = 0. Ramanujan probably knew that

Py (2) + epiv_1(2)

pn(2) +epy-1(z)’

(5.11) Cn(z,c) =

a fact crucial in Marcel Riesz’s treatment of the moment problem, [17, p. x, p.
47]. The polynomials {pn(z) + cpn—1(2z)} are called quasi orthogonal polyno-
mials, , [17]. Moreover {p% () + cpi_;(z)} are their numerators. Shohat and
Tamarkin us —7 instead of ¢ ant 7 has a geometric interpretation.

The next two theorems are the versions of Theorems 5.2 and 5.4 for these
continued fractions.

Theorem 5.5. If (5.5) holds, then

: _ p(@) ¢*(1/p(x))
J\}l_l)IlOOCN($,C)— a;  (1/p(z))’

holds for z ¢ [~1,1].
Proof. Apply (5.6) to py(z) and ply(z) and use (5.11). O
Theorem 5.6. If (5.2) holds, then
Nli_I}loo CnNk+s(cos(jm/k), c)
_ 1 [_pleosin/k))
ar \| (u*)"(cos(jm/k))

y sin(jns/k — ¢*(jm/k)) + c sin(jn(s — 1)/k — ¢*(j7/k))
sin(jm(s + 1)/k — ¢(jm/k)) + c sin(jms/k — ¢(jn/k))

where 1 < j < k.

The proof follows from Theorem 5.2 and (5.11).

Remark 5.7. When {an} and {b,} are bounded sequences then the measure
of orthogonality is unique. On the other hand, for x ¢ R, Cn(z,c¢) converges
to the same value for all real ¢ if and only if the measure of orthogonality is
unique, [17].

Recall the Rogers-Ramanujan continued fraction

1 1 .4..5 o
(5.12) lim . _ wrip)
n—co | 4 . (P, % P°)o
14—

1472

. p"
+ 1

Denote the continued fraction on the left-hand side of (5.12) by RR(p).

13



Theorem 5.8. If 0 < p <1, then

. 1 P
i 1 TP PP RE(p)

1
_p4n+3 —1

Theorem 5.9. If 0 < p <1, then

lim = —RR(-p).

n—0o0 1

1
o opintl

Proof. We will only sketch the proofs of Theorems 5.8 and 5.9. As in the proofs
of Theorems 4.5 and 4.6 we need to find

N2 = 1)F(i, =4 —¢*) = PN (1 = 1/) F (=i, —¢°, —¢°)
FV (= DF (0, —¢") = 5N (1 =1/ F(=ing,~07)
{ -1 iF(i,—¢° =g R G R il W T N odd,

2 Fli,q—a?)+iF(=i,q,~4%)
—1 iF(i,—q y—q) FE ,—4q 7—q2)

R Gy if Nis even.

i,q,—

We next evaluate these numerators and denominators as infinite products. For
the denominators let

2
_i ¢ (%90
- 4. 4 - 4. .5
k=0 (q’

0k (4,04 6%)e

By formula (20) on Slater’s list, we conclude that

F(ia 9, _q2) - iF(_ia 9, _q2)
= H(q/i) —iH (qi) = (1 — i) H(q),
The last equality in (5.13) follows by checking the real and imaginary parts and
the even and odd terms of the sum. Similarly

F(Za q, _q2) + ZF(_la q, _q2)
= H(q/i) +iH(qi) = (1 + i) H(=q),

(5.13)

(5.14)

which follows from (5.13) by replacing ¢ by —i and ¢ by —q.
For the numerators apply (16) on Slater’s list to get

_ i q (4% 4%) oo

= e (07,070

k242K
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Therefore we have established

ZF(la _q3a _q2) - F(_i; _q3a _q2)

(5.15) . : o
= iHa(q/i) — Ha(qi) = (i — 1) Ha(q),
and
iF (i, —¢% —¢*) + F (=i, —¢% —¢%)
(5.16) . . N
' = ill2(q/1) + Ha(qi) = (1 + 1) H2(=q),
which complete the evaluation of the numerators and denominators. O

6 Al-Salam-Chihara polynomials
The Al-Salam-Chihara polynomials {Q,(x; a,blq)} are [5], [13]

Qn(cosf) = Qn(cosb;a,blg)
q, (1>

- (ab,q) +b2 g ", ae'® ae?
= 2 ab, 0
q i
q, E € 0> )
They satisfy the three term recurrence relation
22Qn(r) = Qny1(2) + (@ + )" Qn()
+(1 = ¢")(1 = abg" ") Qn_1(),

and the initial conditions Qo(z) = 1, Q1(2) = 22 —a—b. On the other hand the
initial conditions for @ (z) are Qf(z) = 0, @(z) = 2. The Al-Salam-Chihara
polynomials satisfy the condition (5.2) with

an = /(1 —q7)(1 —abg"=1)/2, by = (a+b)g"/2.

In this section we shall explicitly evaluate the continued fractions of §5 for
the Al-Salam-Chihara polynomials using asymptotic results.
The polynomials {Q,(z)} and {Q}(z)} have the generating functions

(6.1)
q—n be—iG

= (aeia;’J)n2¢1 ( ql—n’e—w/a

(6.2)

Z Qn(cosf;a b|q) (at, bt; q)co

(6:3) D P ML (P N P

and

(cosf;a,b (Jfbf, n
oy Y Lalotiotla) —zZ ek

= @ (17 167 )

respectively, [5]. The polynomials {@,(z)} and {Q}(z)} have the symmetry
property

Qn(—l‘, a, b) = (_l)nQn (13, —a, _b);
Q:L(_x’ a, b) = (_1)n_]Q;kl (.fL’, —a, _b)a

15



which follow from (6.3) and (6.4). Thus we only consider the case 0 < z < 1,
or when x = cos f# we may restrict ourselves to 0 < # < 7/2. With z = ¢’ and
0 < # < 7 the asymptotic formulas

Q@ (cosb;a,blg)

(45 0)n
(6.5)
_ (a/zab/Z;Q)oo n (az,bz;q)oo n
B [ (q)Z_QQQ)oo ‘ (q,ZQ;q)OO ‘ (1+0(1))a
and
Qi (cosb;a,blg) [ e ) a0 peit
(6.6) (4 9)n ~ |ising ! qe—2f 1,9

e—znG < (16719 b@ie

)
—— 9201 20
1sin 6 qe”

g, q)] +o(1)
follow from (6.3) and (6.4), respectively.
Let G (x;a,b, q) denote the nth convergent of the continued fraction

9
(1 —q)(1 —ab)
(1—¢*)(1 —abg)

G(z;a,b) =
(6.7) 20 — (a+b) —

22— (a+b)qg —

Observe that in general, with z = ¢, 0 < 6 < 7, then

Q(cosb;a,blg) 9, [(a/z,b/z;q)ooz%+2 B (az,bz;q)oo] -1

Qn(cosB;a,blg) (7,927%9) oo (9,92%9)

[ (50 )
—aor (%257 | 0a)] 0+

Apply (IT1.31) in Gasper and Rahman [9] with their parameters a, b, ¢ chosen as
a/z,b/z,q/2% to see that

ajz,b/z _ (ab, 2% ) oo
201 ( q/zz q,Q> = 7(112,62;11)00

22,a/2,b/2;¢)oo az, bz
(z%,a/z,b/z;q) ¢1< b

(272, az,bz; ) oo qz>

%‘])
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which follows from the ¢-binomial theorem. Therefore
Gr(cosf;a,b, q)

-1
:_22 [(a/z)b/z;q)ooz2n+2_ (az)bzaQ)DO]
(29,9272 9) o (9,92% q) o

(6.8) y [2¢1 ( az, bz q,q) {1+22n (a/z,b/z,z2;q)oo}

qz2 (az,bz,27%¢) o0

2 (@b, 2% ¢) o
20 |
‘ (az,bz; q)oo +o(l),

where z = €.

Theorem 6.1. Let k be an odd positive integer and wy = e2™/%_ With r =
0,1,...,k—1, then

: . _ (k=1)/2
J\}I—I}’éo Gk‘N+T(COS(7T/k)) a, b; (J) - 2wk

\ \ —1
X l(—a%(f_””, —bu % g)es W (—awg ™+, —b“’(vww;q)m]
k

(4,997 9) oo (4, qw; 9)oo

(k+1)/2 (k+1)/2
X [2¢1< %k qc’%—bwk q,q>

, k—1)/2 k-1)/2
X {1 + Wi (_awl(i‘ " ’_bwl(c M awk,‘I)OO}

(_awl(ck+1)/2’ _bwl(ck+1)/2’ w}l:—l; Q)oo
T (ab,wk; ¢)oo
k (—aw,(fﬂ)/z,—bw;ikﬂ)/z;q)oo

The proof follows from (6.8). A similar result can be proved for z =
cos(jm/k), j =1,2,...,k — 1. The special case k = 3 is worth noting.

Theorem 6.2. With w = €27/3 we have
Nh—Iggo G3N+E—1(1/2; a, ba Q)
20(¢%; %) oo
(—aw, —bw, qw; @) cow® — (—aw?, —bw?, qw?; q) oo

o [{1 n W (—aw, —bw, w; q) o } v1 < —aw?, —bw?

(—aw?, —bw?,w?; q) o quw

-1 (@b wig)e
(—aw?, —bw?; q)oo |

‘1;‘1)

For the g-ultraspherical polynomials {@,(cos@; Be?, Be="%)} Theorem 6.2
gives

17



Theorem 6.3.
lim Ganye—1(1/2; ﬂe”/?’J [36—1'77/3J 7)
N—>oo

_ 2w(7% 4% o0 /(85 4) oo
(Bw?, qw; q)eow® — (Bw, qw?; @)oo

we—l (.02,(.0; o w,
* [{” wi,ﬂwz;q)oqo) } 2‘“( ) ‘ “)

_ws—l ([)aﬂw; q)OO:|
(8, w;q)eo |

Finally we consider the continued fraction when « ¢ [—1, 1].

Theorem 6.4. (Askey and Ismail [5]) For z = (z+1/2)/2 with |z| > 1 we have

lim G, (z;a,b,q) = G(z;a,b)

n— 00

(6.9) B 2(9,927%9) o0 4 afz,b/z
N z(a/z,b/2;q) o 271 qz=? he)-
In particular with z = ¢/a
9 9 2a

for ¢ > |a|, follows from (6.9) and the g-binomial theorem. Similarly

2b

G +4°)/(2bg);a,b) = =

holds when for ¢ > |[b].

Theorem 6.5. Let N be the largest integer such that ¢! > |a|. Then

2(1(_(12)m(qm+2/a2; q)m

G(;L’m;a,b) = 1
(6.11) (qm+" = ab)g*("7)
’ —m’ab —m—1 m
X209 < a];}q—m a2qq—2m—1 ’1;02’1 )
where B )
" 4a .
mm:W, m=1,2,...,N.

Proof. Choose z = ¢™*" /a then apply the 2¢1 to 269 transformation (I11.4) in
[9] to the 2¢1 in (6.9). The result is (6.11). O

A similar theorem can be proved with a and b interchanged.
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7 Remarks

In this section we briefly describe the difference between our work and [7]. One
main difference is that we introduce a continuous variable z into the continued
fraction and formulate the convergence of the continued fraction in terms of the
asymptotics of orthogonal polynomials. This forces the coefficients b, and A, in
(1.1) to satisfy b, € R,n> 0 and A, > 0,n > 0. The results in [7] allow b, and
An to be complex in a way that relates A, to . Our results evaluate the mod &
convergence of the continued fractions in terms of the measures of orthogonality
of the numerator and denominator polynomials, a topic not considered in [7].

To further illustrate our approach we consider the associated continuous
g-ultraspherical polynomials where

(1—ag®)(1—apq"!)
4(1 = afqr)(1 — afqn—1)

Bustoz and Ismail [8] proved that the large degree asymptotics of the monic
polynomials { P, (cos 0; 3, )} is given by

( ) 219
P, (cos8; 3, — € %9,
I Ll 40|

L Sinl(n +1)6 + 6(6)]

sin 6

(7.1) b =0, Ap=

[T+ o(1)],
where ¢(f) is the argument of 561 (3, Be~2%; ge=2%; ¢, a). Moreover

(7:3) Po(z;8,0) = Paoa(z; 8,0+ 1).

If { P, (cos 6; 3, @)} are orthogonal with respect to a probability measure p(z; 3, @)
then p/(z; B, @) is supported on [—1, 1] and
)

— o 2. 6220
(T4) eentsg.e) = 2 L ‘¢ (%0

2

)

so that ((pu*)'(cos; B, ) = p'(cos8; 5, + 1).
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