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Abstract

We develop a method for deriving integral representations of cer-
tain orthogonal polynomials as moments. These moment representa-
tions are applied to find linear and multilinear generating functions for
q-orthogonal polynomials. As a byproduct we establish new transfor-
mation formulas for combinations of basic hypergeometric functions,
including a new representation of the q-exponential function Eq.
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1 Introduction

The concept of the q-integral has proved to be very useful in analyzing q-
special functions. For |q| < 1, the q-integral is, [3], [10],

∫ b

a
f(x)dqx := b(1− q)

∞
∑

n=0

qnf(bqn)− a(1− q)
∞
∑

n=0

qnf(aqn),(1.1)
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with

∫ ∞

0
f(x)dqx := (1− q)

∞
∑

n=−∞

qnf(qn).(1.2)

We will follow the notation and terminology in [3] and [10]. Some of the
technical manipulations are greatly simplified by the q-integration by parts
formula

∫ b

a
f(x)g(qx) dqx(1.3)

= q−1

∫ b

a
g(x)f(x/q) dqx+ q−1(1− q)[ag(a)f(a/q)− bg(b)f(b/q)].

In our earlier papers [12], [13], [14] we utilized integral representations
of orthogonal polynomials as moments to derive linear and multilinear gen-
erating functions. The idea is to start with a sequence of polynomials in
which we are interested, say {pn(x)}, then derive an integral representation
of the form

pn(x) =

∫ b

a
yndµ(y),(1.4)

where µ is some measure to be determined. For example we obtain an inte-
gral representation for any generating function of the orthogonal polynomials
{pn(x)}

F (x, t) =
∞
∑

n=0

λnpn(x)t
n =

∫ b

a

[

∞
∑

n=0

λn(ty)
n

]

dµ(y),(1.5)

and any bilinear generating function

∞
∑

n=0

λnpn(x)pn(z)t
n =

∫ b

a
F (z, yt)dµ(y).

Mixed bilinear generating functions of the type

∞
∑

n=0

λnpn(x)rn(z)t
n

may also be found in this manner.
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By changing the normalization of {pn(x)} to {cnpn(x)}, new moment
representations may also be found for {cnpn(x)}. A key feature of this
paper is giving such alternative moment representations for q-orthogonal
polynomials (see for example Theorem 2.1, Corollary 3.1, Theorem 4.1).

In this work we propose a more systematic method to establish repre-
sentations such as (1.4). Our representations are all q-integrals, that is, µ
is a discrete measure whose masses are located at points of the form aqn or
bqn. The derivations use the fact that every orthogonal polynomial sequence
{pn(x)} satisfies a three term recurrence relation of the form

αnpn+1(x) + [βnx+ γn]pn(x) + δnpn−1(x) = 0.(1.6)

If the coefficients in (1.6) are polynomials in qn, then we let dµ(y) = f(y)dqy.
Now q integration by parts leads to a q-difference equation for f , with the
boundary conditions f(a/q) = f(b/q) = 0. This method will be illustrated
in the subsequent sections.

The method employed here is not completely new. When the coefficients
in (1.6) are polynomials in n, integration by parts leads to a differential
equation satisfied by f(y) under the boundary conditions f(a) = f(b) = 0.
This is similar to the Laplace transform method which appears in classical
treatises on the subject, for example see Milne-Thomson [17, Chapter 15].

It is important to emphasize that the solution derived this way will be
a solution to (1.6) but may or may not be a polynomial. One then needs
an independent verification that (1.4) gives the desired polynomial solu-
tion. We show by examples that this method is effective for the Al-Salam-
Chihara polynomials (§2), the q-Pollaczek polynomials (§3), the continuous
q-Hermite polynomials (§4), the associated continuous q-ultraspherical poly-
nomials (§5), and the associated Al-Salam-Chihara polynomials (§6). On

the other hand when we try solutions of the form
∫ b
0 y

nf(y)dqy, n ≥ 0 we
only need to match the boundary condition at b, that is require f(b/q) = 0.
By varying the boundary conditions we construct two linearly independent
solutions to (1.6), which is of independent interest.

Rahman and Tariq [19] used their deep knowledge of basic hypergeomet-
ric functions and their transformation theory to derive a representation of
the associated q-ultraspherical polynomials as moments of a discrete mea-
sure and applied their moment representation to derive a bilinear generating
function for the associated q-ultraspherical polynomials introduced in [7].
In §5 we give an elementary proof of the Rahman-Tariq result and state a
companion representation of the same polynomials also as moments. Both
results are used to establish linear and bilinear generating functions for the
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associated continuous q-ultraspherical polynomials. The same program is
carried out in §6 to treat the associated Al-Salam-Chihara polynomials.

Many of the bilinear generating functions are of the form

K(x, y) =
∞
∑

n=0

anrn(x)sn(y),(1.7)

where {rn(x)} and {sn(x)} are orthonormal polynomials with respect to
positive measures ρ and σ, respectively. If {rn(x)} and {sn(x)} are complete
in L2(ρ) and L2(σ), respectively, then

∫

R

K(x, y)rn(x)dρ(x) = ansn(y),

∫

R

K(x, y)sn(y)dσ(y) = anrn(x).

The above are projection formulas involving the integral operators
∫

R

K(x, y)f(x)dρ(x),

∫

R

K(x, y)f(y)dσ(x).

In the special case ρ = σ the kernel K becomes a symmetric kernel, the
above two integral operators coincide, and have eigenvalues {an} and the
corresponding eigenfunctions are {rn(x)}, see [22]. The completeness of
{rn(x)} shows that these are all the eigenfunctions and eigenfunctions of
the corresponding integral operator. Thus many of our bilinear generating
functions construct kernels of integral operators and in certain cases are
Mercer kernels [22].

We now review the Casorati determinant for solutions of difference equa-
tions. If un and vn are solutions of

anyn = bnyn+1 + cnyn−1,(1.8)

then the Casorati determinant of {un, vn} is

∆n := un+1vn − vn+1un.(1.9)

By substituting un (respectively vn) for yn in (1.8), and multiplying by vn
(respectively un) then subtracting the results we see that bn∆n = cn∆n−1,
hence

∆n = ∆m−1

n
∏

k=m

[

ck
bk

]

.(1.10)

Formula (1.10) will be used repeatedly in this paper.
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One of the corollaries in §4 gives a new representation of the q-exponential
function

Eq(cos θ;α) :=
(α2; q2)∞
(qα2; q2)∞

∞
∑

n=0

(−iα)n
(q; q)n

qn
2/4(1.11)

×(−ieiθq(1−n)/2,−ie−iθq(1−n)/2; q)n,

introduced in [15]. The new representation is given in Corollary 4.3. The
function Eq satisfies limq→1 Eq(x; (1 − q)α/2) = exp(αx), and Eq(0;α) = 1.
Ismail and Zhang [15] established a q-plane wave expansion, a special case
of which is

(qα2; q2)∞Eq(x;α) =
∞
∑

n=0

qn
2/4αn

(q; q)n
Hn(x|q).(1.12)

2 The Al-Salam-Chihara Polynomials

The Al-Salam-Chihara polynomials were introduced in [5] and [2]. We shall
follow the notation in our work [13] for the Al-Salam-Chihara polynomials
{pn(x; t1, t2)},

pn(cos θ; t1, t2) = 3φ2

(

q−n, t1e
iθ, t1e

−iθ

t1t2, 0

∣

∣

∣

∣

q, q

)

=
(t2e

−iθ; q)nt
n
1e
inθ

(t1t2; q)n
2φ1

(

q−n, t1e
iθ

q1−neiθ/t2

∣

∣

∣

∣

q, qe−iθ/t2

)

.

(2.1)

In [13] and [14] two representations for the Al-Salam-Chihara polynomials
as moments were given.

Theorem 2.1 The Al-Salam-Chihara polynomials have the q-integral rep-
resentations

pn(cos θ; t1, t2)

tn1
=

(t1e
iθ, t1e

−iθ, t2e
iθ, t2e

−iθ; q)∞
(1− q)eiθ (q, t1t2, qe2iθ, e−2iθ; q)∞

×
∫ eiθ

e−iθ

yn
(qyeiθ, qye−iθ; q)∞

(t1y, t2y; q)∞
dqy,

(A)

(t1t2; q)n
(q; q)n

pn(cos θ; t1, t2)

tn1
=

(t1e
iθ, t1e

−iθ, qeiθ/t1, qe
−iθ/t1; q)∞

2(1− q)i sin θ (q, q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

yn
(qyeiθ, qye−iθ, t2/y; q)∞
(qy/t1, t1y, q/(yt1); q)∞

dqy.

(B)
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The derivation of these results was by an ad-hoc method. In this section
we show that the representing measures can be easily found from the three-
term recurrence relation. In particular, in this section we derive the second
measure and give some generating functions as corollaries (Corollaries 2.2,
2.3, and 2.4).

We use the fact that the Al-Salam-Chihara polynomials may be renor-
malized in two ways so that the three-term recurrence relation is linear in
qn. Specifically if,

p̂n(x; t1, t2) := pn(x; t1, t2)/t
n
1

cn(x; t1, t2) :=
(t1t2; q)n
(q; q)ntn1

pn(x; t1, t2)

then [16],

2xp̂n(x; t1, t2)

= (1− t1t2q
n)p̂n+1(x; t1, t2) + (1− qn)p̂n−1(x; t1, t2)

+ (t1 + t2)q
np̂n(x; t1, t2), n > 0,

(2.2)

2xcn(x; t1, t2)

= (1− qn+1)cn+1(x; t1, t2) + (1− t1t2q
n−1)cn−1(x; t1, t2)

+ (t1 + t2)q
ncn(x; t1, t2), n > 0,

(2.3)

with the initial conditions

p̂0(x; t1, t2) = 1 = c0(x; t1, t2),

(1− t1t2)p̂1(x; t1, t2)/(1− q) = (2x− t1 − t2)/(1− q) = c1(x; t1, t2).

We now show how (2.3) leads to Theorem 2.1B. We seek an integral
representation

cn(x; t1, t2) =

∫ b

a
ynf(y)dqy,(2.4)

with f satisfying the boundary conditions

f(a/q) = f(b/q) = 0.(2.5)

Assume that a and b are finite, hence the moment problem is determinate,
that is the moments determine f in (2.4) uniquely, [20]. Substitute the
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representation (2.4) for the c’s in (2.3), then equate the coefficients of yn.
The result, after applying (1.3), is that f must satisfy the functional equation

f(y) =
q

t1t2

(1− 2xyq + q2y2)

(1− qy/t1)(1− qy/t2)
f(qy).(2.6)

Recall that

u(y) =
(λy, q/(λy); q)∞
(µy, q/(µy); q)∞

implies
u(u)

u(qy)
=
λ

µ
.(2.7)

Thus a solution to (2.6) which satisfies the boundary conditions (2.5) is
given by

f(y) =
(qyeiθ, qye−iθ, λy, q/(λy); q)∞
(qy/t1, qy/t2, yµ, q/(yµ); q)∞

, with qµ = t1t2λ(2.8)

where x = cos θ, a = e−iθ and b = eiθ. Observe that here a and b are finite,
hence if f exists it will be unique. We then choose µ = t1 and λ = q/t2 so
that

g(cos θ)cn(cos θ; t1, t2) =
1

1− q

∫ eiθ

e−iθ

yn
(qyeiθ, qye−iθ, t2/y; q)∞
(qy/t1, t1y, q/(yt1); q)∞

dqy,(2.9)

for some function g(cos θ), independent of n.
We now give a rigorous proof of (2.9) and determine g. The proof is

based on the three term transformation formula [10, (III.31)]

2φ1

(

A,B
C

∣

∣

∣

∣

q, Z

)

=
(ABZ/C, q/C; q)∞
(AZ/C, q/A; q)∞

2φ1

(

C/A,Cq/ABZ
qC/AZ

∣

∣

∣

∣

q, qB/C

)

− (B, q/C,C/A,AZ/q, q2/AZ; q)∞
(C/q, qB/C, q/A,AZ/C, qC/AZ; q)∞

× 2φ1

(

qA/C, qB/C
q2/C

∣

∣

∣

∣

q, Z

)

.

(2.10)

Proof of (2.9). By the definition of the q-integral, the right-hand side R
of (2.9) is

R = eiθ
∞
∑

m=0

(qm+1e2iθ, qm+1, q−mt2e
−iθ; q)∞

(qm+1eiθ/t1, qmt1eiθ, q1−me−iθ/t1; q)∞
einθqm(n+1)

− a similar term with θ replaced by − θ.
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The above expression simplifies to

R =
ei(n+1)θ(qe2iθ, q, e−iθt2; q)∞
(qeiθ/t1, t1eiθ, qe−iθ/t1; q)∞

2φ1

(

qeiθ/t1, qe
iθ/t2

qe2iθ

∣

∣

∣

∣

q, t1t2q
n

)

− a similar term with θ replaced by − θ,

which is

R = ei(n+1)θ (qe2iθ, q, e−iθt2; q)∞
(qeiθ/t1, t1eiθ, qe−iθ/t1; q)∞

×
[

2φ1

(

qeiθ/t1, qe
iθ/t2

qe2iθ

∣

∣

∣

∣

q, t1t2q
n

)

+ e−2inθ (t2e
iθ, e−2iθ, t1e

iθ; q)∞
(t2e−iθ, e2iθ, t1e−iθ; q)∞

× 2φ1

(

qe−iθ/t1, qe
−iθ/t2

qe−2iθ

∣

∣

∣

∣

q, t1t2q
n

)]

(2.11)

In (2.10) we make the parameter identification

A = qeiθ/t1, B = qeiθ/t2, C = qe2iθ, Z = t1t2q
n.(2.12)

The expression between square brackets in (2.11), with the parameter iden-
tification (2.12) is

2φ1

(

A,B
C

∣

∣

∣

∣

q, Z

)

+
(B, q/C,C/A,AZ/q, q2/AZ; q)∞

(C/q, qB/C, q/A,AZ/C, qC/AZ; q)∞
2φ1

(

qA/C, qB/C
q2/C

∣

∣

∣

∣

q, Z

)

.

Thus

R = ei(n+1)θ (qe2iθ, q, t2e
−iθ; q)∞

(qeiθ/t1, t1eiθ, qe−iθ/t1; q)∞

(qn+1, e−2iθ; q)∞
(qnt2e−iθ, t1e−iθ; q)∞

×2φ1

(

t1e
iθ, q−n

q1−neiθ/t2

∣

∣

∣

∣

q, qe−iθ/t2

)

,

which simplifies to

R = einθ
(e2iθ, e−2iθ, q, q; q)∞

(qeiθ/t1, qe−iθ/t1, t1eiθ, t1e−iθ; q)∞

i(t2e
−iθ; q)n

2 sin θ(q; q)n

×2φ1

(

t1e
iθ, q−n

q1−neiθ/t2

∣

∣

∣

∣

q, qe−iθ/t2

)

.
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In view of (2.1) we have

R =
i(e2iθ, e−2iθ, q, q; q)∞

2 sin θ(qeiθ/t1, qe−iθ/t1, t1eiθ, t1e−iθ; q)∞

(t1t2; q)n
tn1 (q; q)n

pn(cos θ; t1, t2),

and Theorem 2.1B follows.
We next give some generating functions which follow from Theorem 2.1B.

The analogous corollaries for Theorem 2.1A appear in [13].

Corollary 2.2 We have the linear generating function

∞
∑

n=0

(t1t2, λ/µ; q)n
(q, q; q)n

pn(cos θ; t1, t2)µ
n

=
eiθ(t2e

−iθ, t1e
−iθ, t1λe

iθ; q)∞
2i sin θ(q, qe−2iθ, t1µeiθ; q)∞

×3φ2

(

qeiθ/t1, qe
iθ/t2, t1µe

iθ

qe2iθ, t1λe
iθ

∣

∣

∣

∣

q, t1t2

)

− a similar term with θ replaced by − θ.

Proof. Theorem 2.1B and the q-binomial theorem show that the left-hand
side of Corollary 2.2 is

(t1e
iθ, t1e

−iθ, qeiθ/t1, qe
−iθ/t1; q)∞

2(1− q)i sin θ (q, q, qe2iθ, qe−2iθ; q)∞
(2.13)

×
∫ eiθ

e−iθ

(qyeiθ, qye−iθ, t2/y, λt1y; q)∞
(qy/t1, t1y, q/(yt1), µyt1; q)∞

dqy.

It is easy to see that

∫ eiθ

e−iθ

(qyeiθ, qye−iθ, t2/y, λt1y; q)∞
(qy/t1, t1y, q/(yt1), µyt1; q)∞

dqy

1− q

=
∞
∑

m=0

(qm+1e2iθ, qm+1, q−mt2e
−iθ, t1λe

iθqm; q)∞
(qm+1eiθ/t1, qmt1eiθ, q1−me−iθ/t1, t1µeiθqm; q)∞

eiθqm

− a similar term with θ → −θ.

=
eiθ(qe2iθ, q, t2e

−iθ, t1λe
iθ; q)∞

(qeiθ/t1, t1eiθ, qe−iθ/t1, t1µeiθ; q)∞

×3φ2

(

qeiθ/t1, qe
iθ/t2, t1µe

iθ

qe2iθ, t1λe
iθ

∣

∣

∣

∣

q, t1t2

)

− a similar term with θ replaced by − θ.
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Therefore (2.13) and the above calculation indicate that the left-hand side
of Corollary 2.2 is

eiθ(t2e
−iθ, t1e

−iθ, t1λe
iθ, ; q)∞

2i sin θ(q, qe−2iθ, t1µeiθ; q)∞
3φ2

(

qeiθ/t1, qe
iθ/t2, t1µe

iθ

qe2iθ, t1λe
iθ

∣

∣

∣

∣

q, t1t2

)

− a similar term with θ replaced by − θ,

and Corollary 2.2 follows.
Recall that the Al-Salam-Chihara polynomials have the generating func-

tion [13, (3.18)]

∞
∑

n=0

(t1t2; q)nt
n

(q; q)ntn1
pn(cos θ; t1, t2) =

(tt1, tt2; q)∞
(teiθ, te−iθ; q)∞

.(2.14)

Corollary 2.3 The Al-Salam-Chihara polynomials have the following bilin-

ear generating function

∞
∑

n=0

(t1t2, s1s2; q)n
(q, q; q)n

pn(cos θ; t1, t2)pn(cosφ; s1, s2)

(

t

t1s1

)n

=
(t1e

−iθ, t2e
−iθ, ts1e

iθ, ts2e
iθ; q)∞

(q, e−2iθ, tei(θ+φ), tei(θ−φ); q)∞

×4φ3

(

tei(θ+φ), tei(θ−φ), qeiθ/t1, qe
iθ/t2

ts1e
iθ, ts2e

iθ, qe2iθ

∣

∣

∣

∣

q, t1t2

)

+ a similar term with θ replaced by − θ.

Proof. Replace pn (cos θ; t1, t2) by its integral representation in Theorem
2.1B then use (2.14) to see that the left-hand side of Corollary 2.3 is

(t1e
iθ, t1e

−iθ, qeiθ/t1, qe
−iθ/t1; q)∞

2(1− q)i sin θ (q, q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

(qyeiθ, qye−iθ, t2/y, ts1y, ts2y; q)∞
(qy/t1, t1y, q/(yt1), tyeiφ, tye−iφ; q)∞

dqy.

This expression simplifies to the right-hand side of Corollary 2.3.
An unexpected transformation formula results from the above corollary,

namely the fact that its right-hand side is invariant under the interchanges

(θ, φ, t1, t2, s1, s2) → (φ, θ, s1, s2, t1, t2).

This establishes the next corollary.
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Corollary 2.4 The combination

(t1e
−iθ, t2e

−iθ, ts1e
iθ, ts2e

iθ; q)∞

(q, e−2iθ, tei(θ+φ), tei(θ−φ); q)∞

×4φ3

(

tei(θ+φ), tei(θ−φ), qeiθ/t1, qe
iθ/t2

ts1e
iθ, ts2e

iθ, qe2iθ

∣

∣

∣

∣

q, t1t2

)

+ a similar term with θ replaced by − θ,

is invariant under the permutation (θ, φ, t1, t2, s1, s2) → (φ, θ, s1, s2, t1, t2).

It is important to emphasize that the 4φ3’s appearing in the transforma-
tion Corollary 2.4 are not balanced and most of the known transformations
of this type involve balanced series.

The moment representations not only give an integral representation for
the Al-Salam-Chihara polynomials but also they give q-integral representa-
tions for other solutions to the same three term recurrence relation. For
example the argument preceding (2.8) shows that

φ±n (x) :=
1

1− q

∫ e±iθ

0
yn

(qyeiθ, qye−iθ, λy, q/(λy); q)∞
(qy/t1, qy/t2, µy, q/(µy); q)∞

dqy, n > 1,

(2.15)

are solutions to (2.3), where qµ = t1t2λ,

e±iθ = x±
√

x2 − 1,(2.16)

and the branch of the square root is chosen in such a way that |e−iθ| ≤ |eiθ|.
Thus

ψ±
n (x) :=

(q; q)nt
n
1

(t1t2)n(1− q)
(2.17)

×
∫ e±iθ

0
yn

(qyeiθ, qye−iθ, λy, q/(λy); q)∞
(qy/t1, qy/t2, µy, q/(µy); q)∞

dqy, n > 0,

are solutions to the recurrence relation satisfied by the Al-Salam-Chihara
polynomials. Therefore

e±i(n+1)θ (q; q)nt
n
1

(t1t2; q)n
2φ1

(

qe±iθ/t1, qe
±iθ/t2

qe±2iθ

∣

∣

∣

∣

q, qnt1t2

)

,(2.18)

are linearly independent solutions of the Al-Salam-Chihara three term re-
currence relation (2.19), which are multiples of ψ±

n (x). The polynomial
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solution in (2.1) together with any one of the solutions in (2.18) form a
basis of solutions to the three term recurrence relation

2xzn(x; t1, t2) = (t−1
1 − t2q

n)zn+1(x; t1, t2) + t1(1− qn)zn−1(x; t1, t2)

+ (t1 + t2)q
nzn(x; t1, t2), n > 0.

(2.19)

We next state a bibasic version of Corollary 2.3. Let pn(x; t1, t2|q) denote
the Al-Salam-Chihara polynomials with base q. Then the bibasic version is:

∞
∑

n=0

pn(cos θ; t1, t2|q)pn(cosφ; s1, s2|p)
(t1t2; q)n(s1s2; p)n

(q; q)n(p; p)n

(

t

t1s1

)n

(2.20)

=
(t1e

−iθ, t2e
−iθ; q)∞

(q, e−2iθ; q)∞

∞
∑

k=0

(qeiθ/t1, t1e
iθ, qeiθ/t2; q)k

(q, qe2iθ, t1eiθ; q)k
(t1t2)

k

× (ts1q
keiθ, ts2q

keiθ; p)∞

(tqkei(θ+φ), tqkei(θ−φ); p)∞
+ a similar term with θ replaced by − θ.

This establishes the following bibasic version of Corollary 2.4.

Corollary 2.5 The right-hand side of (2.20) is symmetric under inter-

changing

(t1, t2, s1, s2, θ, φ, p, q) with (s1, s2, t1, t2, φ, θ, q, p).

3 The q-Pollaczek Polynomials

The q-Pollaczek polynomials {Fn(x;U,∆, V )}, or {Fn(x)} for short, were
introduced in [9], whose notation we shall follow. They are generated by

F0(x) = 1, F−1(x) = 0,(3.1)

and

2[(1− U∆qn)x+ V qn]Fn(x) = (1− qn+1)Fn+1(x)

+ (1−∆2qn−1)Fn−1(x), n > 0.
(3.2)

Charris and Ismail [9] gave the generating function

∞
∑

n=0

Fn(cos θ)t
n =

(t/ξ, t/η; q)∞
(teiθ, te−iθ; q)∞

,(3.3)
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where

1 + 2q(V − x∆U)∆−2y + q2∆−2y2 = (1− qξy)(1− qηy),(3.4)

and ξ and η depend on x, and satisfy

ξη = ∆−2.(3.5)

The generating function (3.3) implies the explicit representation

Fn(cos θ) = einθ
(e−iθ/ξ; q)n

(q; q)n
2φ1

(

q−n, eiθ/η
q1−neiθξ

∣

∣

∣

∣

q, qe−iθξ

)

.(3.6)

From (3.6) and (2.1) it follows that

Fn(x;U,∆, V ) =
(1/(ξη); q)n

(q; q)n
ηnpn(x; 1/η, 1/ξ),(3.7)

and we can apply the results of §2 to state similar results for the q-Pollaczek
polynomials.

Corollary 3.1 The q-Pollaczek polynomials have the q-integral representa-
tions

(q; q)n
(∆2; q)n

Fn(x;U,∆, V ) =
(eiθ/η, e−iθ/η, eiθ/ξ, e−iθ/ξ; q)∞
(1− q)eiθ (q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

yn
(qyeiθ, qye−iθ; q)∞
(y/η, y/ξ; q)∞

dqy,

(A)

Fn(x;U,∆, V ) =
(qηeiθ, qηe−iθ, eiθ/η, e−iθ/η; q)∞

2(1− q)i sin θ (q, q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

yn
(qyeiθ, qye−iθ, 1/(ξy); q)∞

(qyη, y/η, qη/y; q)∞
dqy,

(B)

It was shown in [9] that the orthogonality relation of the Fn’s is

∫ π

0

(e2iθ, e−2iθ; q)∞
(eiθ/ξ, e−iθ/ξ, eiθ/η, e−iθ/η; q)∞

×Fm(cos θ;U,∆, V )Fn(cos θ;U,∆, V )dθ

=
2π

(q,∆2; q)∞

(∆2; q)n
(1− U∆qn)(q; q)n

δm,n.

(3.8)
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We next record two reproducing kernels for the q-Pollaczek polynomials.
Corollary 3.1B shows that the q-Pollaczek polynomials have the bilinear
generating functions

∞
∑

n=0

Fn(cos θ;U1,∆1, V1)Fn(cosφ;U2,∆2, V2)t
n(3.9)

=
(qη1e

−iθ, e−iθ/η1, te
iθ/ξ2, te

iθ/η2, ; q)∞

(q, e2iθ, tei(θ+φ), tei(θ−φ); q)∞

×4φ3

(

qη1e
iθ, qξ1e

iθ, tei(θ+φ), tei(θ−φ)

qe2iθ, teiθ/ξ2, te
iθ/η2,

∣

∣

∣

∣

q,
1

ξ1η1

)

+ a similar term with θ replaced by − θ,

where

1 + 2q(V1 − cos θ∆1U1)∆
−2
1 y + q2∆−2

1 y2 = (1− qξ1y)(1− qη1y),(3.10)

1 + 2q(V2 − cosφ∆2U2)∆
−2
2 y + q2∆−2

2 y2 = (1− qξ2y)(1− qη2y).(3.11)

Another reproducing kernel follows from Corollary 3.1A and the generating
function (3.3). The result is

∞
∑

n=0

Fn(cos θ;U1,∆1, V1)Fn(cosφ;U2,∆2, V2)
(q; q)nt

n

(∆2; q)n
(3.12)

=
(e−iθ/η1, e

−iθ/ξ1, te
iθ/ξ2, te

iθ/η2, ; q)∞

(q, e2iθ, tei(θ+φ), tei(θ−φ); q)∞

×4φ3

(

eiθ/ξ1, e
iθ/η1, te

i(θ+φ), tei(θ−φ)

qe2iθ, teiθ/ξ2, te
iθ/η2,

∣

∣

∣

∣

q, q

)

+ a similar term with θ replaced by − θ.

The Poisson kernel is similar to (3.12) except that the summand on left-
hand side will have the additional factor (1− U1∆1q

n). The Poisson kernel
can be evaluated by taking appropriate combinations of the right-hand side
of (3.12). The same phenomenon occurs for continuous q-ultraspherical
polynomials which corresponds to U = 1, V = 0, and ∆ = β. Thus ξ1 =
eiθ/β, η1 = e−iθ/β, and similarly for the ξ2 and η2. For details see [10, §8.6].

It is worth noting the integral evaluation equivalent to the orthogonality
relation (3.8). Multiply (3.8) by sm(1−U∆qn)tn and sum over m,n, m,n ≥
0. The right-hand side can be summed by the q-binomial theorem to

2π(st∆2; q)∞
(q,∆2, st; q)∞

.
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Applying the generating function (3.3) the integrand on the left-hand side
involves the factor

(1− t/ξ)(1− t/η)− U∆(1− teiθ)(1− te−iθ)

which in view of (3.4) and (3.5) is 1 − U∆ + 2tV + ∆t2(∆ − U). This
establishes the following theorem.

Theorem 3.2 We have the integral evaluation

∫ π

0

(e2iθ, e−2iθ, s/ξ, s/η, qt/ξ, qt/η; q)∞
(eiθ/ξ, e−iθ/ξ, eiθ/η, e−iθ/η, seiθ, se−iθ, teiθ, te−iθ; q)∞

dθ

=
1

[1− U∆+ 2tV +∆t2(∆− U)]

2π(st∆2; q)∞
(q,∆2, st; q)∞

.

We do not know of a direct way of evaluating this integral. The evaluation
of the integral via a moment problem was given in [9]. This also occurred
in Chapters 6 and 7 of [5], where the identities obtained through solving a
moment problem do not seem to be amenable to direct proofs.

4 The Continuous q-Hermite Polynomials

The continuous q-Hermite polynomials satisfy

H−1(x|q) = 0, H0(x|q) = 1,(4.1)

2xHn(x|q) = Hn+1(x|q) + (1− qn)Hn−1(x|q), n > 0.(4.2)

We clearly have Hn(x|q) = p̂n(x; 0, 0), so that Theorem 2.1 gives integral
representations for the q-Hermite polynomials. For Theorem 2.1A this is
immediate, while it is not clear how to let t1 = t2 = 0 in Theorem 2.1B.
In this section we carry out this limit, and we also give two additional q-
integral representations. One surprising result is Corollary 4.3 which gives

2φ1 representations of the function Eq.

Theorem 4.1 The q-Hermite polynomials have the q-integral representa-
tions

Hn(cos θ | q) =
1

(1− q)eiθ (q, qe2iθ, e−2iθ; q)∞

×
∫ eiθ

e−iθ

yn (qyeiθ, qye−iθ; q)∞dqy,

(A)
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Hn(cos θ | q)
(q; q)n

=
(λeiθ, qeiθ/λ, λe−iθ, qe−iθ/λ; q)∞
2(1− q)i sin θ(q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

yn
(qyeiθ, qye−iθ; q)∞

(λy, qy/λ, λ/y, q/(λy); q)∞
dqy,

(B)

Hn(cos θ | q2)
(q; q)n

=
(
√
qeiθ,

√
qeiθ,

√
qe−iθ,

√
qe−iθ; q)∞

2(1− q)i sin θ(q, q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

yn
(qyeiθ, qye−iθ,−√

q/y; q)∞

(
√
qy,

√
qy,

√
q/y; q)∞

dqy.

(C)

Hn(cos θ | q2)
(−q; q)n

=
(qe2iθ, qe−2iθ; q2)∞

2(1− q)i sin θ(q,−q, qe2iθ, qe−2iθ; q)∞

×
∫ eiθ

e−iθ

yn
(qyeiθ, qye−iθ; q)∞

(qy2; q2)∞
dqy.

(D)

Note that the right-hand side of Theorem 4.1B is independent of λ.
Proof of Theorem 4.1B. First we motivate the integral for Theorem 4.1B.
If Ĥn(x|q) = Hn(x|q)/(q; q)n, then (4.2) becomes

2xĤn(x|q) = (1− qn+1)Ĥn+1(x|q) + Ĥn−1(x|q).(4.3)

Here again we see that writing Ĥn(x|q) =
∫ b
a y

nf(y)dqy requires f to satisfy

f(y) = (1− qyeiθ)(1− qye−iθ)(qy2)−1f(qy).

Solving the above functional equation gives rise to the two solutions

∫ e±iθ

0
yn

(qyeiθ, qye−iθ; q)∞
(λy, λ/y, q/(λy), qy/λ; q)∞

dqy

and the integral in Theorem 4.1B is linear combination of these two solu-
tions.

We next show that Theorem 4.1A implies Theorem 4.1B. From Theorem
4.1A we have

Hn(cos θ|q) =
e−iθ(q, qe2iθ; q)∞

(q, qe2iθ, qe−2iθ; q)∞
ei(n+1)θ(4.4)

×2φ1(0, 0; qe
2iθ; q, qn+1)

+ a similar term with θ replaced by − θ.

16



However a limiting case of Heine’s transformation [10, (III.3)] implies

(q; q)∞ 2φ1(0, 0, qe
2iθ; q, qn+1) = (q; q)n 0φ1(−; qe2iθ; q, qn+2e2iθ),(4.5)

so that (4.4) becomes

Hn(cos θ|q)
(q; q)n

=
einθ

(e−2iθ; q)∞
0φ1

(

−; qe2iθ; q, qn+2e2iθ
)

(4.6)

+ a similar term with θ replaced by − θ,

which is the equivalent form of Theorem 4.1B.

Proof of Theorem 4.1C. This time if pn(x|q) = Hn(x|q2)/(q; q)n, then
(4.2) becomes

2xpn(x|q) = (1− qn+1)pn+1(x|q) + (1 + qn)pn−1(x|q).(4.7)

In the notation of (2.3) we find that pn(x|q) = cn(x;
√
q,−√

q), so that
Theorem 4.1C is a special case of Theorem 2.1B.

Proof of Theorem 4.1D. This follows from Theorem 2.1A and the proof
of Theorem 4.1C.

The limit (t1, t2) → (0, 0) in Theorem 2.1B. The limit t2 → 0 is Theorem
2.1B in straightforward. To let t1 → 0 we set t1 = λqm then let m → ∞.
Theorem 4.1B follows from letting m→ ∞ in

(q1−meiθ/λ, q1−me−iθ/λ; q)∞
(q1−my/λ, q1−m/(λy); q)∞

=
(q1−meiθ/λ, q1−me−iθ/λ; q)m(qe

iθ/λ, qe−iθ/λ; q)∞
(q1−my/λ, q1−m/(λy); q)m(qy/λ, q/(λy); q)∞

=
(λeiθ, λe−iθ; q)m(qe

iθ/λ, qe−iθ/λ; q)∞
(λy, λ/y; q)m(qy/λ, q/(λy); q)∞

.

We now give two generating functions which follow from Theorem 4.1B
and one which follows from Theorem 4.1D.

∞
∑

n=0

Hn+k(cos θ|q)
(q; q)n+k

tn =
eikθ

(1− teiθ)(e−2iθ; q)∞
1φ2

(

teiθ

qe2iθ, qteiθ

∣

∣

∣

∣

q, qk+2e2iθ
)

+ a similar term with θ replaced by − θ.

(4.8)
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In fact one can get the more general result

∞
∑

n=0

Hn+k(cos θ|q)
(q; q)n+k

(λ; q)n t
n

(q; q)n
(4.9)

=
(λteiθ; q)∞ eikθ

(teiθ, e−2iθ; q)∞
1φ2

(

teiθ

qe2iθ, λteiθ

∣

∣

∣

∣

q, qk+2e2iθ
)

+ a similar term with θ replaced by − θ.

Corollary 4.2 A generating function for the q-Hermite polynomials is

∞
∑

n=0

(λ; q)n
(q2; q2)n

Hn(x|q2)tn

=
(λteiθ; q)∞
(teiθ; q)∞

3φ2

(

λ,
√
q eiθ,−√

q eiθ

λteiθ,−q

∣

∣

∣

∣

q, te−iθ
)

.

Sketch of proof of Corollary 4.2. Multiply both sides of the equation
in Theorem 4.1D by (λ; q)nt

n/(q; q)n, sum on n and use the q-binomial
theorem. The right-hand side becomes a combination of two 3φ2’s with
argument q. This can be transformed to a multiple of a 3φ2 using [10,
(III.34)].

Observe that the 3φ2 in Corollary 4.2 is essentially bibasic on base q and
q2. If λ = 0 or λ = −q the 3φ2 may be summed to infinite products, these
are known results. Furthermore [10, (III.9)] shows that the right-hand side
of Corollary 4.2 is a function of cos θ.

Corollary 4.3 The q-exponential function Eq is essentially a 2φ1 function,

that is

Eq(cos θ; t)

=
(−t; q1/2)∞
(qt2; q2)∞

2φ1

(

q1/4 eiθ, q1/4 e−iθ

−q1/2
∣

∣

∣

∣

q1/2,−t
)

=
(t; q1/2)∞
(qt2; q2)∞

2φ1

(

−q1/4 eiθ,−q1/4 e−iθ
−q1/2

∣

∣

∣

∣

q1/2, t

)

.

Consequently if either 0 ≤ t < 1, x ≥ −(q1/4 + q−1/4)/2, or −1 < t ≤ 0,
x ≤ (q1/4 + q−1/4)/2, then Eq(x; t) > 0.
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Proof. In Corollary 4.2 replace t by −t/λ then let λ → ∞. The result is
the generating function

∞
∑

n=0

qn(n−1)/2

(q2; q2)n
Hn(cos θ|q2)tn(4.10)

= (−teiθ; q)∞2φ2

( √
q eiθ,−√

q eiθ

−q,−teiθ
∣

∣

∣

∣

q,−te−iθ
)

.

The transformation [10, (III.4)] reduces the above equation to

∞
∑

n=0

qn(n−1)/2

(q2; q2)n
Hn(cos θ|q2)tn(4.11)

= (−tq−1/2; q)∞ 2φ1

( √
q eiθ,

√
q e−iθ

−q

∣

∣

∣

∣

q,−tq−1/2

)

.

Now (1.12) and (4.10) imply the first of the representation. The second
equality follows from the first and [10, (III.3)]. The statement about the
zeros follows from the second equation in Corollary 4.3.

The two equations of Corollary 4.3 are q-analogue of the identities ext =
e±te∓t(1+∓x).

At the end of this section we will come back to Corollaries 4.2 and 4.3
and give a direct proof of Corollary 4.2, which also proves Corollary 4.3. It
is worth pointing out that Corollary 4.3 is an important result and yields
some quadratic transformations, which will be the subject of a future work.
In the same work we establish a Taylor series type expansion in the basis
{(q1/4eiθ, q1/4e−iθ; q1/2)n}, n = 0, 1 . . . , and use the Taylor type expansion
to study transformation formulas, expansions and identities for q-series.

Recall the Poisson kernel [4]

∞
∑

n=0

Hn(cos θ|q)Hn(cosφ|q)
tn

(q; q)n
(4.12)

=
(t2; q)∞

(tei(θ+φ), tei(θ−φ), te−i(θ−φ), te−i(θ+φ); q)∞
.

Using Theorem 4.1A we can derive a trilinear generating function for the
continuous q-Hermite polynomials. If we replace t by ty in (4.12), then
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multiply by yk, and then use Theorem 4.1A we find

∞
∑

n=0

Hn+k(cosψ|q)Hn(cos θ|q)Hn(cosφ|q)
tn

(q; q)n

=
eikψ (t2e2iψ; q)∞

(e−2iψ, tei(ψ+θ+φ), tei(ψ+θ−φ), tei(ψ+φ−θ), tei(ψ−θ−φ); q)∞

×6φ5

(

tei(ψ+θ+φ), tei(ψ+θ−φ), tei(ψ+φ−θ), tei(ψ−θ−φ), 0, 0
qe2iψ, teiψ,−teiψ,√qteiψ,−√

qteiψ

∣

∣

∣

∣

q, qk+1eiψ
)

+ a similar term with ψ replaced by − ψ.

(4.13)

It is clear that both sides of (4.13) are symmetric in θ and φ. When
k = 0 the left-hand side is clearly symmetric in θ and ψ, but the form of
the right-hand side does not make its symmetry obvious. This leads to the
following theorem.

Theorem 4.4 The expression

(t2e2iψ; q)∞

(e−2iψ, tei(θ+φ+ψ), tei(θ−φ+ψ), te−i(φ+ψ), te−i(θ+ψ+φ); q)∞

×6φ5

(

tei(θ+φ+ψ), tei(θ+φ−ψ), tei(θ+ψ−φ), tei(θ−ψ−φ), 0, 0
qe2iψ, teiψ,−teiψ,√qteiψ,−√

qteiψ

∣

∣

∣

∣

q, qeiψ
)

+ a similar term with ψ replaced by − ψ.

is symmetric under any permutation of θ, φ, and ψ.

Similarly using Theorem 4.1B and (4.12) we establish the following the-
orem.

Theorem 4.5 We have

∞
∑

n=0

Hn+k(cosψ|q)
(q; q)n+k(q; q)n

Hn(cos θ|q)Hn(cosφ|q) tn

=
eikψ (t2e2iψ; q)∞

(e−2iψ, tei(ψ+θ+φ), tei(ψ+θ−φ), tei(ψ+φ−θ), tei(ψ−θ−φ); q)∞

×4φ5

(

tei(ψ+θ+φ), tei(ψ+θ−φ), tei(ψ+φ−θ), tei(ψ−θ−φ)

qe2iψ, teiψ,−teiψ,√qteiψ,−√
qteiψ

∣

∣

∣

∣

q, qk+2e3iψ
)

+ a similar term with ψ replaced by − ψ.

Furthermore when k = 0 the right-hand side of the above equality is sym-

metric in θ, φ, ψ.
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The trilinear generating function (4.13) contains two important product
formulas for the continuous q-Hermite polynomials which will be stated in
the next theorem.

Theorem 4.6 With K(cos θ, cosφ, cosψ) denoting the right-hand side of

(4.13), we have the product formulas

Hn(cos θ|q)Hn(cosφ|q) =
(q; q)∞(q; q)n
2πtn(q; q)n+k

∫ π

0
K(cos θ, cosφ, cosψ)

×Hn+k(cosψ|q)(e2iψ, e−2iψ; q)∞ dψ,

(4.14)

and

Hn(cos θ|q)Hn+k(cosψ|q) =
(q; q)∞
2πtn

∫ π

0
K(cos θ, cosφ, cosψ)

×Hn(cosφ|q)(e2iφ, e−2iφ; q)∞ dφ.

(4.15)

We now return to Corollary 4.2 and give a direct proof of it.
Proof of Corollary 4.2. Expand the 3φ2 on the right-hand side of Corol-
lary 4.2 as a sum over k, say, then use the q-binomial theorem to expand
(λqkteiθ; q)∞/(te

iθ; q)∞ as a power series in t. Thus the coefficient of tn on
the right-hand side of Corollary 4.2 is

(λ; q)n

n
∑

k=0

(qe2iθ; q2)k
(q2; q2)k(q; q)n−k

ei(n−2k)θ = (λ; q)nSn,

say. Now the q-binomial theorem gives

∞
∑

n=0

Snt
n =

1

(teiθ; q)∞

(qteiθ; q2)∞
(te−iθ; q2)∞

which is the generating function for Hn(cos θ|q2)/(q2; q2)n and the result
follows.

Observe that in the above proof we have established the representation

Hn(cos θ|q2)
(q2; q2)n

=
n
∑

k=0

(qe2iθ; q2)k
(q2; q2)k(q; q)n−k

ei(n−2k)θ.(4.16)

Note that (4.1), (4.2), (2.3), and the initial conditions of cn(x; t1, t2)
imply

cn(cos 2θ;−1,−q|q2) =
H2n(cos θ|q)
(q2; q2)n

,

2cosθ cn(cos 2θ;−q2,−q|q2) =
H2n+1(cos θ|q)

(q2; q2)n
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Thus Theorem 2.1 gives q-integral moment representations for the following
functions:

H2n(x|q)
(q2; q2)n

,
H2n+1(x|q)
(−q; q2)n

,
H2n+1(x|q)
(q2; q2)n

,
H2n+1(x|q)
(−q3; q2)n

.

One can also derive several generating functions involving H2n(x|q) and
H2n+1(x|q) from the corresponding results in §2.

5 The Associated Continuous q-ultraspherical Poly-

nomials

The associated continuous q-ultraspherical polynomials {C(α)
n (x;β|q)} [7]

satisfy the three term recurrence relation

2x(1− αβqn)C(α)
n (x;β|q) = (1− αqn+1)C

(α)
n+1(x;β|q)

+ (1− αβ2qn−1)C
(α)
n−1(x;β|q), n > 0,

(5.1)

and the initial conditions

C
(α)
0 (x;β|q) = 1, C

(α)
1 (x;β|q) = 2(1− αβ)

(1− αq)
x.(5.2)

In this section we give the moment representation (5.10) for the associated
continuous q-ultraspherical polynomials which leads to three new generating
functions in Theorems 5.3, 5.4 and 5.5. In §5 we shall always write x = cos θ.

Here again we set

C(α)
n (x;β|q) =

∫ b

a
ynf(y)dqy

then find out that f satisfies

f(y) =
q

αβ2
(1− qyeiθ)(1− qye−iθ)

(1− qyeiθ/β)(1− qye−iθ/β)
f(qy).

This suggests that we consider the functions

∫ eiθ

e−iθ

yn

1− q

(qyeiθ, qye−iθ, λy, q/(λy); q)∞
(µy, q/(µy), qyeiθ/β, qye−iθ/β; q)∞

dqy,

with

qµ = λαβ2.(5.3)
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We choose λ = qeiθ/β, µ = αβeiθ and consider the functions

Φn(θ;β, α) =

∫ eiθ

e−iθ

yn

1− q

(qyeiθ, qye−iθ, βe−iθ/y; q)∞
(αβeiθy, qe−iθ/(αβy), qye−iθ/β; q)∞

dqy.(5.4)

Theorem 5.1 The functions Φn(θ, β, α) have the hypergeometric represen-

tation

Φn(θ, β, α) = ei(n+1)θ (q, αqn+1, qe2iθ, e−2iθ; q)∞
(q/β, αβqn, αβe2iθ, qe2iθ/(αβ); q)∞

×2φ1

(

q−n/α, β
q1−n/(αβ)

∣

∣

∣

∣

q,
q

β
e−2iθ

)

, n ≥ 0.

Proof. From the definition of q-integration we see that the right-hand side
of (5.4) is

ei(n+1)θ (q, qe2iθ, βe−2iθ; q)∞
(q/β, αβe2iθ, qe−2iθ/(αβ); q)∞

2φ1

(

q/β, qe2iθ/β
qe2iθ

∣

∣

∣

∣

q, αβ2qn
)

− e−i(n+1)θ(q, qe−2iθ, β; q)∞
(αβ, q/(αβ), qe−2iθ/β; q)∞

2φ1

(

q/β, qe−2iθ/β
qe−2iθ

∣

∣

∣

∣

q, αβ2qn
)

=
ei(n+1)θ(q, qe2iθ, βe−2iθ; q)∞

(q/β, αβe2iθ, qe−2iθ/(αβ); q)∞

[

2φ1

(

q/β, qe2iθ/β
qe2iθ

∣

∣

∣

∣

q, αβ2qn
)

−e−2i(n+1)θ (qe
−2iθ, β, q/β, αβe2iθ, qe−2iθ/(αβ); q)∞

(qe2iθ, βe−2iθ, αβ, q/(αβ), qe−2iθ/β; q)∞

×2φ1

(

q/β, qe−2iθ/β
qe−2iθ

∣

∣

∣

∣

q, αβ2qn
)]

.

Apply (2.10) with A = qe2iθ/β,B = q/β, C = qe2iθ, Z = αβ2qn to complete
the proof of Theorem 5.1.

Corollary 5.2 The function vn(θ;β, α) defined by

vn(θ;β, α) =
Φn(θ;β, α)

Φ0(θ;β, α)
= einθ

(αβ; q)n
(qα; q)n

2φ1

(

q−n/α, β
q1−n/(αβ)

∣

∣

∣

∣

q,
q

β
e−2iθ

)

satisfies the three term recurrence relation (5.1).

When α = 1 the extreme right-hand side of Corollary 5.2 reduces to
the q-ultraspherical polynomial Cn(cos θ;β|q). For α 6= 1 it may not be a
polynomial but nevertheless is a solution to (5.1).
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The solution of (5.1) given in Corollary 5.2 has a restricted β domain.
We give two other solutions of (5.1) which hold for a wider domain of β.
Unlike Φn constructing these two solutions will not require the application
of transformations of basic hypergeometric series. However we will need to
verify the three term recurrence relation for n = 0.

Let ynf(y, θ) be the integrand in (5.4). Observe that the analysis pre-

ceding Theorem 5.1 indicates that both
∫ e±iθ

0 ynf(y, θ)dqy, for n > 0 satisfy
the recurrence (5.1). Define v±n (θ;α, β) by

v±n (θ;α, β) := e±(n+1)iθ
2φ1

(

q/β, qe±2iθ/β
qe±2iθ

∣

∣

∣

∣

q, αβ2qn
)

.(5.5)

This comes from the integral (5.4) on [0, e±iθ]. Both v+n and v−n satisfy (5.1)
for n > 0 and we will see later that are linearly independent functions of n
for θ 6= kπ, k = 0,±1, . . . .

We now verify that v+n and v−n satisfy (5.1) if n = 0. To do so assume

−1 < αβ2/q < 1,(5.6)

so that v±−1 is well-defined. We now go back and reexamine the analysis
preceding Theorem 5.1. From (1.3) we see that when a = 0, the boundary
term in (1.3) will vanish if ug(u)f(u/q) → 0 as u→ 0 for u of the form ζqm

for fixed ζ and m→ ∞. In our case it suffices to prove that

lim
m→∞

(βe−iθq−m/ζ; q)∞/(qe
−iθq−m/(ζαβ); q)∞ = 0.

The above limit is a bounded function times

lim
m→∞

(βe−iθq−m/ζ; q)m
(qe−iθq−m/(ζαβ); q)m

= lim
m→∞

(αβ2/q)m
(qζeiθ/β; q)m
(αβζeiθ/q; q)m

= 0.

Note that (5.1), (5.2) and (5.6) imply C
(α)
−1 (x;β|q) = 0.

It is important to note that one can directly verify that v±n satisfy (5.1)
by substituting the right-hand side of (5.5) in (5.1) and equating coefficients
of various powers of α. In fact this shows that v±n satisfies (5.1) for all n
for which |αβqn−1| < 1. To go beyond this restriction we need to analyti-
cally continue the 2φ1 in (5.5) using transformations of basic hypergeometric
series, see Appendix III in [10], for example.

We now show that v+n and v−n are linearly independent functions of n by
computing the Casorati determinant

∆n = v+n+1(θ;β, α)v
−
n (θ;β, α)− v+n (θ;β, α)v

−
n+1(θ;β, α).
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Equation (1.10) implies

∆n =
(qαβ2; q)n−1

(q3α; q)n−1
∆1,

and since e∓i(n+1)θv±n → 1 as n→ ∞, then we have ∆n → 2i sin θ as n→ ∞.
Hence

∆n =
(αqn+2; q)∞
(αβ2qn; q)∞

2i sin θ.(5.7)

This confirms the linear independence of v±n when θ 6= kπ. Note also that

∆−1 =
(αq; q)∞

(αβ2/q; q)∞
2i sin θ.(5.8)

Since both v±n satisfy (5.1) then there exists A(θ) and B(θ) such that

C(α)
n (cos θ;β|q) = A(θ)v+n (θ;β, α) +B(θ)v−n (θ;β, α).(5.9)

To determine A and B use the initial conditions

C
(α)
−1 (x;β|q) = 0, C

(α)
0 (x;β|q) = 1

and (5.8). The result is

C(α)
n (cos θ;β|q) = (αβ2/q; q)∞

2i sin θ(αq; q)∞

×
[

v−−1(θ;β, α)v
+
n (θ;β, α)− v+−1(θ;β, α)v

−
n (θ;α, β)

]

.

(5.10)

Formula (5.10) is Rahman and Tariq’s result [19, (3.4)]. They used (5.10)
to derive linear and bilinear generating functions. In the reminder of this
section, we shall apply (5.10) to derive only results not in Rahman and
Tariq’s paper [19].

Our first result is the following theorem.

Theorem 5.3 We have
∞
∑

n=0

(λ; q)n
(q; q)n

C
(α)
n+k(cos θ;β|q)tn

= eikθ
(λteiθ, αβ2/q; q)∞

(1− e2iθ)(teiθ, αq; q)∞
2φ1

(

q/β, qe−2iθ/β
qe−2iθ

∣

∣

∣

∣

q,
αβ2

q

)

×3φ2

(

q/β, qe2iθ/β, teiθ

qe2iθ, λteiθ

∣

∣

∣

∣

q, αβ2qk
)

+ a similar term with θ replaced by − θ.
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The cases λ = q or k = 0 of Theorem 5.3 are in [19].

Theorem 5.4 We have the bilinear generating function

∞
∑

n=0

Cn(cosφ;β1|q)C(α)
n (cos θ;β|q)tn

=
(αβ2/q, β1te

i(θ+φ), β1te
i(θ−φ); q)∞

(1− e−2iθ)(αq, tei(θ+φ), tei(θ−φ); q)∞

×2φ1

(

q/β, qe−2iθ/β
qe−2iθ

∣

∣

∣

∣

q,
αβ2

q

)

×4φ3

(

q/β, qe2iθ/β, tei(θ+φ), tei(θ−φ)

qe2iθ, β1te
i(θ+φ), β1te

i(θ−φ)

∣

∣

∣

∣

q, αβ2
)

+ a similar term with θ replaced by − θ.

Proof. Multiply (5.10) by Cn(cosφ;β1|q)tn and add then use the generating
function (4.16).

The associated continuous q-ultraspherical polynomials have the gener-
ating function [7]

∞
∑

n=0

C(α)
n (cos θ;β|q)tn =

1− α

(1− teiθ)(1− te−iθ)
3φ2

(

βteiθ, βte−iθ, q
qteiθ, qte−iθ

∣

∣

∣

∣

q, α

)

.

(5.11)

We now give a Poisson-type kernel for the polynomials under consideration.

Theorem 5.5 A bilinear generating function for the associated continuous

q-ultraspherical polynomials is given by

∞
∑

n=0

C(α1)
n (cosφ;β1|q)C(α)

n (cos θ;β|q)tn

=
(1− α1)(αβ

2/q; q)∞
(1− e−2iθ)(αq; q)∞

2φ1

(

q/β, qe−2iθ/β
qe−2iθ

∣

∣

∣

∣

q,
αβ2

q

)

×
∞
∑

k=0

(q/β, qe2iθ/β; q)kα
kβ2k

[1− 2 cosφ teiθqk + t2q2ke2iθ] (q, qe2iθ; q)k

×3φ2

(

q, β1tq
kei(θ+φ), β1tq

kei(θ−φ)

qk+1tei(θ+φ), qk+1tei(θ−φ)

∣

∣

∣

∣

q, α1

)

+ a similar term with θ replaced by − θ.
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The case α = α1 of (5.16) is in [19].
Theorem 2.1 gave two moment representations for the Al-Salam-Chihara

polynomials. We can also do the same for the associated continuous q-
ultraspherical polynomials. Namely if

p̂n(x) =
(αq; q)n
(αβ2; q)n

C(α)
n (x;β|q)

then p̂n(x) also satisfies a three term recurrence relation whose coefficients
are also polynomials in qn. Thus the technique of this paper applies. How-
ever we have

C(αβ2/q)
n (x; q/β|q) = (αq; q)n

(αβ2; q)n
C(α)
n (x;β|q).(5.12)

So the renormalized moment representations amount to changing the α and
β in the associated continuous q-ultraspherical polynomials.

6 The Associated Al-Salam-Chihara Polynomials

These polynomials were first considered in [5] where their generating func-
tions, asymptotics, and their weight function were found. In this section we
carry out our program on these polynomials.

The associated Al-Salam-Chihara polynomials p
(α)
n (x; t1, t2) are gener-

ated by

p
(α)
0 (x; t1, t2) = 1, p

(α)
1 (x; t1, t2) =

t1[2x− (t1 + t2)α]

1− αt1t2
,(6.1)

and

t1[2x− (t1 + t2)αq
n]p(α)n (x; t1, t2) = [1− t1t2αq

n]p
(α)
n+1(x; t1, t2)

+ t21(1− αqn)p
(α)
n−1(x; t1, t2), n > 0,

(6.2)

as can be seen from (2.2) and (2.3). Now assume
∫ b
0 y

nf(y)dqy is a solution
to (6.2). Then (1.3) yields

f(y) =
t21 − 2qxt1y + q2y2

α[t21 − t1(t1 + t2)y + t1t2y2]
f(qy),

which gives

f(y) =
(qyeiθ/t1, qye

−iθ/t1, λy, q/(λy); q)∞
(y, yt2/t1, αλy, q/(αλy); q)∞

.
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This leads us to take b = t1e
±iθ and to introduce the functions

A±
n (θ, t1, t2) = tn+1

1 e±i(n+1)θ
2φ1

(

t1e
±iθ, t2e

±iθ

qe±2iθ

∣

∣

∣

∣

q, αqn+1

)

, n ≥ −1,

(6.3)

for |α| < 1. We need the assumption |α| < 1 in order for A±
−1 to be defined

by (6.3). We are also assuming α 6= 0. We proceed as before, first verify
that A±

n satisfies (6.2) for all n ≥ 0 then compute the Casorati determinant.
The only difference here is that t−2n−2

1 ∆n → 2t1i sin θ as n→ ∞. We find

∆n = 2it2n+3
1 sin θ

(αt1t2q
n+1; q)∞

(αqn+1; q)∞
.(6.4)

The condition |α| < 1, enables us to conclude that p
(α)
−1 = 0 if (6.2) is

extended to hold for n = 0. Thus p
(α)
n = [A−

−1A
+
n −A+

−1A
−
n ]/∆−1, that is

p(α)n (cos θ; t1, t2) =
(α; q)∞ tn1 e

inθ

(1− e−2iθ)(αt1t2; q)∞
2φ1

(

t1e
−iθ, t2e

−iθ

qe−2iθ

∣

∣

∣

∣

q, α

)

× 2φ1

(

t1e
iθ, t2e

iθ

qe2iθ

∣

∣

∣

∣

q, αqn+1

)

+ a similar term with θ replaced by − θ.

An immediate consequence of (6.5) is

∞
∑

n=0

(λ; q)n
(q; q)n

p(α)n (cos θ; t1, t2)t
n(6.5)

=
(α, λt1te

iθ; q)∞
(1− e−2iθ)(αt1t2, t1teiθ; q)∞

2φ1

(

t1e
−iθ, t2e

−iθ

qe−2iθ

∣

∣

∣

∣

q, α

)

×3φ2

(

t1e
iθ, t2e

iθ, t1te
iθ

qe2iθ, λt1te
iθ

∣

∣

∣

∣

q, αq

)

+ a similar term with θ replaced by − θ.
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Another application of (6.5) is to combine it with (2.17) and find

(6.6)
∞
∑

n=0

(t3t4; q)nt
n

tn1 t
n
3 (q; q)n

p(α)n (cos θ; t1, t2) pn(cosφ; t3, t4)

=
(α, t3te

iθ, t4te
iθ; q)∞

(1− e−2iθ)(αt1t2, tei(θ+φ), tei(θ−φ); q)∞
2φ1

(

t1e
−iθ, t2e

−iθ

qe−2iθ

∣

∣

∣

∣

q, α

)

× 4φ3

(

t1e
iθ, t2e

iθ, tei(θ+φ), tei(θ−φ)

qe2iθ, t3te
iθ, t4te

iθ

∣

∣

∣

∣

q, αq

)

+ a similar term with θ replaced by − θ.

The limiting case α→ 1− of (6.7) is the result stated as Theorem 4.1 in our
paper [13].

A companion representation for the associated Al-Salam-Chihara poly-
nomials may also be found. Similar to §5 it follows from

p(αt1t2/q)n (x; q/t1, q/t2) =

(

q

t21

)n (αt1t2; q)n
(αq; q)n

p(α)n (x; t1, t2).(6.7)
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