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Abstract. Consider the collection of all integer partitions, whose part sizes lie in a

given set. Such a set is called monotone if the generating function has weakly increas-
ing coefficients. The monotone subsets are classified, assuming an open conjecture.

1. Introduction.

Suppose P is a set of positive integers. It is well known [1] that the generating
function for integer partitions, whose part sizes lie in P , is

FP (q) =
∞
∑

n=0

anq
n =

∏

p∈P

1

1− qp
.

Bateman and Erdös [2] found necessary and sufficient conditions on P so that
the kth difference of the sequence an is asymptotically positive. In this paper
we consider k = 1. We seek a stronger conclusion, that all of the coefficients in
(1 − q)FP (q) past −q are non-negative. We call such a set of positive integers
monotone.

Clearly any P containing 1 is monotone, so we can assume that if n is the smallest
element of P , then n > 1. If the coefficient of qn+1 in (1− q)FP (q) is non-negative,
then we must have n + 1 ∈ P for a monotone P . In this way it is easy to see
that {n, . . . , 2n− 1} ⊂ P . In Theorems 1 and 2 we classify all monotone P whose
minimum value n satisfies n ≥ 6, assuming Conjecture 1 below.

A set P is called asymptotically alternating, if there exists a large enough k so
that the kth differences of an alternate in sign. We classify the asymptotically
alternating sets P in Theorem 5.

We shall let NN denote non-negative terms and SP (past qa) denote strictly
positive terms past qa in a power series F (q). For example −q+ 1

1−q2 = 1−q+NN ,

q3/(1− q) = SP (past q2).

2. The conjecture.

In this section we concentrate on properties of the function

fn,m(q) =
(1− q)

∏m
i=n(1− qi)

.

We formulate a conjecture on fn,m(q) below, and use it to classify monotone sets
P in §3. We are particularly interested in the values of m for which fn,m(q) =
1− q +NN , because for any of these m, P = {n, · · · ,m} is monotone.

1This work was supported by NSF grant DMS-9001195.
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Proposition 1. We have fn,∞(q) = 1− q+NN = 1− q+NN +SP (past q3n+1).

Proof. Applying the q-binomial theorem [1], we obtain

fn,∞(q) =(1− q)
∞
∑

k=0

qnk/
k
∏

i=1

(1− qi)

=1− q + qn + q2n/(1− q2) +
∞
∑

k=3

qnk/
k
∏

i=2

(1− qi)(2.1)

=1− q +NN = 1− q +NN + SP (past q3n+1).

�

Conjecture 1. For an odd positive integer n > 1, fn,2n−1(q) = 1 − q + NN . If,
in addition, n ≥ 7, then fn,2n−1(q) = 1 − q + NN + SP (past q3n+4). If n > 1 is
even, then fn,2n+1(q) = 1− q +NN + SP (past q3n+7).

It is easy to see the even part of Conjecture 1 follows from the odd part. If
hn,m(q) = fn,m(q)− 1 + q = NN , then

(2.2) hn,2n+1(q) =
1

1− qn
(hn+1,2n+1(q) + qn − qn+1).

If n is even, hn+1,2n+1(q) contains qn+1, so hn,2n+1(q) = NN , and = NN +
SP (past q3n+7) for n ≥ 6. The cases n = 2 and n = 4 can be proven separately.

A natural way to prove Conjecture 1 for a given n, is to use the asymptotics to
verify the large coefficients, and check the small coefficients separately. For this one
needs an effective bound for the positivity of the large coefficients. In turns out that
a recurrence relation can find this effective bound empirically, using Mathematica
or a programming language.

Proposition 2. Conjecture 1 holds for n ≤ 37.

Proof. We verify the n odd case. Let ak(n, n+ i) denote the number of partitions
of k into parts of size n, · · · , 2n− 1, whose largest part is n+ i, 0 ≤ i ≤ n− 1. We
must show

δ(k) =
n−1
∑

i=0

(ak(n, n+ i)− ak−1(n, n+ i)) ≥ 0, for k ≥ 2.

By removing this largest part, we have

(2.3) ak(n, n+ i) =
i

∑

j=0

ak−n−i(n, n+ j).

Suppose that by applying (2.3) recursively to δ(k), we can obtain

δ(k) = δ(k − t) + a non-negative linear combination of aj(n, n+ i)’s.

If we verify that δ(2), · · · , δ(t+ 1) ≥ 0, then Conjecture 1 holds.
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For example, if n = 3,

δ(k) = δ(k − 20) + ak−21(3, 3),

and we check that δ(2), · · · , δ(21) ≥ 0. This is feasible as long as t = t(n) does
not grow too rapidly with n. Empirically, we find t(n) = (2n − 2)(2n − 1). If
the smallest part is used to generate a recurrence analogous to (2.3), the empirical
result is t(n) = n(n+ 1) if 3 does not divide n, otherwise t(n) = 4n(n+ 1). In this
way Conjecture 1 was verified for n ≤ 37.

We shall need the lemma below in the next section.

Lemma 1. For an odd positive integer n ≥ 7, the coefficient of q6n+1 in fn,2n−1(q)
is at least 2.

Proof. The q-binomial theorem [1] implies that

(2.4) fn,2n−1(q) = 1− q +
∞
∑

k=1

[

n+ k − 1
k

]

q

(1− q)qnk.

The only terms in (2.4) which contribute to q6n+1 are k = 4 and k = 5. It is easy
to see that this coefficient is equal to the coefficient of q2n+2 in

q

(1− q2)(1− q3)(1− q4)
+

1

(1− q4)(1− q6)(1− q8)(1− q10)
−

1

(1− q2)(1− q4)(1− q6)
.

An elementary injection shows that this coefficient is at least 2, for n ≥ 7, n odd.
We do not give the details. �

3. Monotone subsets.

In this section we use Conjecture 1 to classify the monotone subsets P in The-
orems 1 and 2. For most of this section we shall assume that n is odd. Basically
we need a method to change the set P from an interval {n, · · · , 2n− 1} to a larger
class of sets. The lemma below accomplishes this.

Lemma 2. Suppose that H(q) = 1− q +NN + SP (past qa), and

H(S, q) = H(q)/
∏

s∈S

(1− qs),

where S is any set of positive integers. If min{s : s ∈ S} ≥ a, then H(S, q) =
1− q +NN .

Proof. We must show that g(S, q) = H(S, q) − 1 + q = NN . An easily verified
recurrence for b /∈ S is

(3.1) g(S ∪ {b}, q) =
1

1− qb
(g(S, q) + qb − qb+1).

if S = ∅, g(∅, q) is positive past qa, thus positive at qb+1. So (3.1) implies
g({b}, q) = NN + SP (past qb+1), and the argument follows for finite S by in-
duction on |S|. If S is infinite, to check that the coefficient of qj is non-negative,
we apply the finite part this lemma for the finite set S ∩ {x : x ≤ j}. �

We next find monotone sets P from Lemma 2 and Conjecture 1.
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Proposition 3. Assuming Conjecture 1, P = {n, · · · , 2n − 1} ∪ Q, is monotone,
where n ≥ 7 is odd, and Q is any subset of {3n+ 4, 3n+ 5, · · · , }.

Suppose that {n, ..., 2n− 1} ⊂ P ⊂ {n, ..., 3n− 2} is monotone. It is easy to see
that if an even number e ≥ 2n is in P , then e + 1 must also be in P . The next
proposition shows that this condition characterizes such monotone sets P .

Proposition 4. Assuming Conjecture 1, P = {n, · · · , 2n−1}∪E∪O is monotone,
where n ≥ 7 is odd, and E (O) is any set of even (odd) integers in {2n, · · · , 3n−2}
such that E+ = {e+ 1 : e ∈ E} ⊂ O.

Proof. Suppose n ≥ 7 is odd, and put, for any subset S ⊂ {2n, 2n+ 1, · · · },

g(n, S) = fn,2n−1(q)/
∏

s∈S

(1− qs)− 1 + q.

The coefficients of fn,2n−1(q) up to q3n+4 can be explicitly found, so that Conjecture
1 implies

(3.2) g(n,∅) = qn +

(n−3)/2
∑

i=0

q2n+2+2i + q3n+3 + SP (past q3n+4).

Suppose that E ∪ O = {a1 < · · · < ak}. To go from g(n,∅) = NN to g(n,E ∪
O) = NN we add either a single odd ai, or a consecutive pair ai (even), ai+1 = ai+1
(odd). For these two cases, we have

(3.3) g(n, S ∪ {a}) = (qa − qa+1 + g(n, S))/(1− qa), for a /∈ S,

(3.4)

g(n, S∪{a, a+1}) =
qa

1− qa
+(q2a+2−qa+2+g(n, S))/[(1−qa)(1−qa+1)], for a, a+1 /∈ S.

We see from (3.2) that g(n,∅) contains all of the even powers of q from 2n+2 to
3n− 1. If a1 is odd, then (3.3) implies that g(n, {a1}) is non-negative and contains
all of the even powers of q from a1 + 2 to 3n − 1. If a1 is even, then (3.4) implies
that g(n, {a1, a1+1}) is non-negative and contains all of the even powers of q from
a1 + 3 to 3n − 1. We continue by induction on i, noting that the single negative
term in (3.3) and (3.4) are even powers past the new term which is added, thus is
always cancelled. We obtain

(3.5) g(n,E ∪O) = NN + SP (past q3n+4), for n ≥ 7 odd.

�

Proposition 5. Assuming Conjecture 1, if n ≥ 7 is odd, then P = {n, · · · , 2n −
1} ∪ E ∪ O ∪ Q is monotone, where E, O, and Q are chosen as in Propositions 3
and 4.

Proof. This follows from (3.5) and Lemma 2. �

Suppose that we generalize Proposition 5 to P = {n, · · · , 2n − 1} ∪ E ∪ O ∪ A,
and n ≥ 7 is odd, where A ⊂ {3n − 1, 3n, 3n + 1, 3n + 2, 3n + 3, 3n + 4}. From
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(3.5) we know that g(n,E ∪O) = NN + SP (past q3n+4). We will use (3.3), (3.4),
and analogous versions for three and four in a row (see (3.6) and (3.7) below), to
conclude that g(n,E ∪O∪A) = NN +SP (past q3n+4), for the appropriate sets A.

From (3.2) there is exactly one term in g(n,∅) from q3n to q3n+4, namely +q3n+3.
For g(n,E ∪O∪A), the possible new partitions in this range, whose differences we
must take, are

(1) {3n− 1},
(2) {3n}, {n, 2n},
(3) {3n+ 1}, {n, 2n+ 1}, {n+ 1, 2n}
(4) {3n+ 2}, {n, 2n+ 2}, {n+ 1, 2n+ 1}, {n+ 2, 2n}
(5) {3n+ 3}, {n, 2n+ 3}, {n+ 1, 2n+ 2}, {n+ 2, 2n+ 1}, {n+ 3, 2n}
(6) {3n+4}, {n, 2n+4}, {n+1, 2n+3}, {n+2, 2n+2}, {n+3, 2n+1}, {n+4, 2n}.

If 3n − 1 ∈ A, for non-negativity we must have either 2n ∈ E or 3n ∈ A. If
2n ∈ E we use (3.3) with a = 3n− 1 to get strict positivity past 3n+ 4. The case
3n− 1 /∈ A, 3n ∈ A is done by the same argument. If 3n− 1, 3n ∈ A we use (3.4),
and must check the coefficient of q3n+1 in g(n,E ∪ O ∪ {3n − 1, 3n}). Again we
must have either 3n + 1 ∈ A or 2n + 1 ∈ O. If 2n + 1 ∈ O, then (3.4) gives strict
positivity past 3n+ 4. Otherwise 3n− 1, 3n, 3n+ 1 ∈ A, and we use

g(n,E ∪O ∪ {a,a+ 1, a+ 2}) =
qa

(1− qa)(1− qa+2)
+

q2a+4

(1− qa+1)(1− qa+2)

+ (q3a+3 − qa+3 + g(n, , E ∪O))/[(1− qa)(1− qa+1)(1− qa+2)](3.6)

for a = 3n−1. If 2n+2 ∈ E, then the term q3n+2 appears in g(n,E∪O), and (3.6)
implies g(n,E ∪O ∪ {3n− 1, 3n, 3n+ 1}) = NN + SP (past q3n+4). If 2n+ 2 /∈ E,
then clearly we must have 3n− 1, 3n, 3n+ 1, 3n+ 2 ∈ A. This time we use
(3.7)

g(n,E ∪O ∪ {a, a+ 1, a+ 2, a+ 3}) =
qa

(1− qa)(1− qa+2)(1− qa+3)

+
q2a+4 + q3a+3

(1− qa)(1− qa+1)(1− qa+2)
+ (q2a+6 + q4a+7 − qa+4 − q2a+3 + g(n,E ∪O))

/[(1− qa)(1− qa+1)(1− qa+2)(1− qa+3)]

for a = 3n − 1. Since g(n,∅) contains q3n+3, the qa+4 term is cancelled in (3.7).
From Lemma 1, g(n,∅) contains at least +2q6n+1, so (3.7) implies that g(n,E ∪
O ∪ {3n− 1, 3n, 3n+ 1, 3n+ 2}) = NN + SP (past q3n+4).

Finally, if 3n + 3 ∈ A, we must have either 2n + 4 ∈ E or 3n + 4 ∈ A, and we
retain strict positivity past q3n+4.

Applying Lemma 2, we have proven the main theorem.

Theorem 1. Assuming Conjecture 1, the monotone subsets P whose minimum
value n is odd, n ≥ 7, are P = {n, · · · , 2n− 1} ∪ E ∪O ∪A ∪Q, where

(1) E is any set of even integers from {2n, · · · , 3n− 2},
(2) O is a set of odd integers from {2n, · · · , 3n− 2} such that E+ ⊂ O,
(3) A is a subset of {3n− 1, · · · , 3n+3} such that if 3n+ i ∈ A for i 6= 2, then

either 3n+ i+ 1 ∈ P or 2n+ i+ 1 ∈ P ,
(4) Q is any subset of {3n+ 4, 3n+ 5, · · · }.
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For even values of n, the coefficient of q3n+1 easily implies 2n + 1 ∈ P . The
analog of (3.2) for n ≥ 6, which follows from Conjecture 1, is
(3.8)

fn,2n−1(q)/(1−q2n+1) = 1−q+qn+q2n+1+

n/2
∑

i=0

q2n+4+2i+2q3n+6+SP (past q3n+7).

A complicated injection proves that (3.8) also holds for n = 4. Completely analo-
gous arguments, based upon (3.8) yield the next theorem. We do not need an even
version of Lemma 1, because the largest gap in (3.8) from 3n + 2 to 3n + 6 has
width 2, not width 4, as in (3.2).

Theorem 2. Assuming Conjecture 1, the monotone subsets P whose minimum
value n is even, and n ≥ 4 are P = {n, · · · , 2n− 1, 2n+1} ∪E ∪O ∪A∪Q, where

(1) E is any set of even integers from {2n+ 2, · · · , 3n+ 1},
(2) O is a set of odd integers from {2n+ 2, · · · , 3n+ 1} such that E+ ⊂ O,
(3) A is a subset of {3n + 2, · · · , 3n + 6} such that if 3n + 2i ∈ A then either

3n+ 2i+ 1 ∈ P , or 2n+ 2i+ 1 ∈ P
(4) Q is any subset of {2n, 3n+ 7, 3n+ 8, · · · }.

Propositions 1, 3 and 4 imply that fn,m(q) = 1− q +NN if

(1) m ∈ {2n− 1, 2n+ 1, 2n+ 3, · · · , 3n− 2, 3n− 1, 3n, · · · ,∞}, for n odd
(2) m ∈ {2n+ 1, 2n+ 3, 2n+ 5, · · · , 3n+ 1, 3n+ 2, 3n+ 3, · · · ,∞}, for n even.

We cannot prove a weaker version, namely for any fixed n, there is some finite
m(n) for which fn,m(q) = 1−q+NN . Nonetheless, we do have the following result.

Proposition 6. Suppose n is odd. If fn,m(q) = 1− q +NN for some m = m0 ≥
3n− 2, then fn,m(q) = 1− q +NN for all m > m0.

Proof. Upon adding m0 + 1, from (3.1), we need only show that the coefficient of
qm0+2 in fn,m0

(q)− 1+ q is ≥ 1. But this coefficient equals the coefficient of qm0+2

in fn,∞(q). From (2.1) we have

fn,∞(q) = (1− q) + qn + q2n/(1− q2) + q3n/((1− q2)(1− q3)) +NN,

and any term past q3n+1 appears with coefficient ≥ 1 in the fourth term. Since n is
odd, q3n+1 and q3n−1 appear in the third term. Clearly q3n appears in the fourth
term. So m0 ≥ 3n − 3 is sufficient. However, we already know that m0 = 3n − 3
fails, so m0 ≥ 3n− 2. �

4. Injections.

The most natural proof of Conjecture 1 would be an injection from partitions
of k − 1 into partitions of k. We have found such injections for n ≤ 9, but not for
general n. One may also change Conjecture 1 to an equivalent injection on larger
sets by using the q-binomial theorem. For example,

(4.1) fn,m(q) = 1− q + qn +
∞
∑

k=2

qkn
∏k

i=2(1− qi)
−

∞
∑

k=1

qk(m+1)

∏k
i=2(1− qi)

∏m
j=n(1− qj)

.

An injection from the set representing the second sum to the set for the first sum
is equivalent to Conjecture 1. One may hope that large values of m would make an
injection easier to find.
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One may also begin with

fn,n+1(q) =
1

1− qn
−

q

1− qn+1
,

all of whose terms are known, and try adding n + 2, n + 3, · · · , 2n − 1, to reach
Conjecture 1. We use an injection to completely classify the negative terms for
fn,n+2(q).

Theorem 3. Suppose n = 2l+1 > 1 is odd. All of the coefficients in fn,n+2(q) are
at least −1. Moreover the coefficient of qk is −1 if, and only if, k = an+b(n+2)+1,
where 0 ≤ b = nj + r, 0 ≤ r ≤ l − 1, 0 ≤ a ≤ a+ j ≤ r.

Proof. For example, if n = 5, then r = 0 gives k = 1, and r = 1 gives k = 8, 13, 43
as the four negative terms of f5,7(q).

We construct an injection from partitions of k − 1 whose parts are from {n, n+
1, n+ 2}, to partitions of k whose parts are from {n, n+ 1, n+ 2}.

First if n+1 is a part, add 1 to it to create a part of size n+2. So we assume n+1
is not part, and the partition is na(n+2)b. We need a partition of an+ b(n+2)+1
into parts of size n and n+ 1.

Let b = nj + r, where 0 ≤ r ≤ n− 1. Define the injection by

an+ b(n+ 2) + 1 →

{

na+j+n−r(n+ 1)nj+2(r−l), if r ≥ l

na+j−r−1(n+ 1)nj+2r+1, if 0 ≤ r ≤ l − 1.

It is routine to check the map is an injection where it is well defined. It is not well
defined if, and only if, the multiplicity of n in the second case is negative. These
are the coefficients stated in Theorem 1, because they yield distinct integers for
an+ b(n+ 2) + 1. �

5. Related questions.

It is natural to ask when fn,n+m(q)/(1− q) is strictly positive.

Theorem 4. There is an integer partition of k into parts of size {n, n+1, · · · , n+
m} for all k ≥ n[n+m−2

m ]. Moreover, this bound is best possible.

Proof. The q-binomial theorem implies, in terms of q-binomial coefficients [1],

fn,n+m(q)/(1− q) =
∞
∑

i=0

[

m+ i
i

]

q

qin.

If i ≥ [n+m−2
m ], then the degree of the q-binomial coefficient is at least n− 1, so all

terms between qin and q(i+1)n−1 appear. �

Friedman and Zeilberger [3] proved that f2n,2n+2j(q)(1 − q)j alternates in sign,
thus P = {2n, · · · , 2n+ 2j} is asymptotically alternating. The next theorem clas-
sifies the asymptotically alternating sets P .

Theorem 5. P = {a1, · · · , an} is asymptotically alternating, if, and only if, α2 ≥
αj for all j, where αj = |{i : j divides ai}|.

Proof. We shall use the following fact from [4]. If p(q) is a real polynomial such
that p(0) = 1, and p(q) > 0 for q < 0, then there exists an integer a such that
(1− q)ap(q) alternates in sign.
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First assume that α2 ≥ αj for all j. Let

p(q) =
(1− q)n−α2(1− qa1a2···an)α2

∏n
i=1(1− qai)

.

It is easy to check using cyclotomic polynomials that p(q) is a polynomial in q
with p(0) = 1, and that p(q) has no negative real roots. Thus, there exists an
integer a > 0 such that (1 − q)ap(q) is alternating, or equivalently (1 + q)ap(−q)
has non-negative coefficients. Since a1a2 · · · an is even, we see that

(1 + q)n−α2+a

∏n
i=1(1− (−q)ai)

has non-negative coefficients. Replacing q by −q gives the first part of the theorem.
Next, suppose that α2 < αj for some j. We can assume that αj is maximized,

so that j must be odd. We show that the coefficients cannot be alternating, by
showing that the leading terms in the asymptotic expansion for the coefficients are
not alternating for a large.

The leading term in the partial fractions decomposition for the rational function
is

A/(1− ωq)αj ,

where ω is primitive jth root of 1, and

A =
(1− ω−1)a

∏

j divides ai
ai

∏

j does not divide ai
(1− ω−ai)

.

The absolute value of the coefficient of qk is a polynomial in k, whose leading term
is

(5.1) |
Aωkkαj−1

(αj − 1)!
|.

We first determine which primitive jth roots ω maximize (5.1). Putting ω =
exp(2πim/j), we find

(5.2) |A| = c(2sin(πm/j))a,

where c is a constant independent of a. If a is large enough, the largest value of
|A| occurs if m = (j ± 1)/2, which is primitive. If there are many values of j which
maximize αj , the largest such j with m = (j ± 1)/2 gives the largest value of |A|.
Let J denote the largest of these values of j.

Adding these two terms, we see that the sign of the coefficient of qk, for large k,
is the same as

cos(
πk(J − 1)

J
+ φ),

where φ is an angle independent of k. This implies that the sign behavior of the
large coefficients is determined modulo J , not modulo 2. �

There is also a version of Theorem 5 which allows numerator factors. Odlyzko
[5] proved that the kth difference for P = {1, 2 · · · } is initially alternating, and then
immediately non-negative, for all large values of k.
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