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Abstract. We observe that Andrew Odlyzko’s conjecture that the Maclaurin coef-
ficients of 1/[(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qk−1)] have alternating signs is an

almost immediate consequence of an identity that is implied by Kathy O’Hara’s re-
cent magnificent combinatorial proof of the unimodality of the Gaussian coefficients.

To a true combinatorialist, a combinatorial result is not properly proved until
it receives a direct combinatorial proof. This is why Kathy O’Hara’s long-sought-
for constructive proof of the unimodality of the Gaussian polynomials ([4], [5], see
also [6]) generated so much excitement in combinatorial circles. However to non-
combinatorialists, a direct combinatorial proof is “just another proof”. O’Hara’s
proof is longer than most of the dozen previous proofs, and probably would not
add any insight to anyone who is not a genuine combinatorialist. Moreover, it does
not seem to be generalizable at first sight. Yet it turned out to imply a deep result
(KOH) to which hitherto there was no known proof of any kind.

In this note we shall prove and generalize a conjecture of Odlyzko, using O’Hara’s
result. Odlyzko’s results imply that for k sufficiently large, the first k coefficients
in

1

(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qk−1)
=

(1− q)k

(1− q)(1− q2) · · · (1− qk)

alternate in sign. He conjectured that in fact for every k ≥ 0, all of the coefficients
of the above series alternate in sign. We prove the sharper result

Theorem 1. For any integer k,

(1− q)[(k+1)/2]

(1− q)(1− q2) · · · (1− qk)

has coefficients which alternate in sign.

Note that the exponent of (1− q) is best possible, since if [(k+1)/2] is replaced
by [(k − 1)/2] then the pole q = 1 has the highest order among all the poles, all
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of which are roots of unity, so a partial fraction expansion would yield that the
coefficients are asymptotically of the same sign.

Odlyzko has informed the authors that Theorem 1 can be used to shorten the
proof in [3] by at least one third.

We will prove a more general result. Recall that the Gaussian polynomials are
defined for nonnegative integers k and n by

(GP) G(n, k) =

[

n+ k
k

]

q

=
(1− qn+1)(1− qn+2) · · · (1− qn+k)

(1− q)(1− q2) · · · (1− qk)
.

If n is negative, we put G(n, k) = 0. We will prove:

Theorem 2. For nonnegative integers n and k, with nk even, G(n, k)(1− q)m has
coefficients which alternate in sign, where m = min{[(k + 1)/2], [(n+ 1)/2]}.

Theorem 1 follows from Theorem 2 upon taking n even and letting n → ∞.
Theorem 2 will follow from the following amazing q-binomial identity that was

derived in [7], by “algebrizing” O’Hara’s main theorem ([4], [5], [6]).

(KOH) G(n, k) =
∑

λ⊢k

q2n(λ)
k−1
∏

i=0

G((k − i)n− 2i+
i−1
∑

j=0

2(i− j)dk−j , dk−i),

where
n(λ) =

∑

i

(i− 1)λi.

The sum in (KOH) is over all partitions λ = (λ1, λ2, . . . ) of k. The integer di is
the multiplicity of i in λ, thus in frequency notation λ = 1d12d2 · · · idi · · · . In this
notation,

2n(λ) =
k

∑

i=1

(D2
i −Di)

where

Dr =
k

∑

i=r

di.

Proof of Theorem 2. By symmetry in n and k, we may assume that n is even. We
proceed by induction on n and k. Theorem 2 clearly holds for n = 0 and k = 1.

Let
F (n, k) := (1− q)[(k+1)/2]G(n, k).

Then (KOH) can be rewritten as

(KOH’) F (2n, k) =
∑

λ⊢k

(1−q)α(λ)q2n(λ)
k−1
∏

i=0

F (2(k−i)n−2i+
i−1
∑

j=0

2(i−j)dk−j , dk−i).

where

α(λ) := m−
k

∑

i=1

[(di + 1)/2]
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Suppose we show that α(λ) ≥ 0. If λ 6= 1k, then each F on the right side of
(KOH’) has a second argument less than k. If λ = 1k, the first argument of F is less
than 2n. Thus by induction each F is alternating. Since (1− q)α(λ) is alternating,
and the power of q is even, the left side must be alternating. So it remains to verify
that α(λ) ≥ 0.

First suppose that n ≥ [(k + 1)/2], so m = [(k + 1)/2]. Then we will show that
for any partition λ of k, we have the inequality

(*) [(k + 1)/2]−
k

∑

i=1

[(di + 1)/2] ≥ 0.

It is easy to see that (*) is

[(k + 1)/2]− (number of parts of λ+number of i with di odd)/2.

This is nonnegative, since any part i > 1 of λ can contribute at most one i which
has di odd.

Next suppose that n < [(k + 1)/2], so m = n. First we show

(**) n+ 1−
k

∑

i=1

di ≥ 0

for all partitions λ of k which occur in (KOH’). The key observation is that F is
zero if the first argument is negative. Thus, taking the i = k− 1 factor in (KOH’),
we see that

2n− 2(k − 1)−
k−2
∑

j=0

2(k − 1− j)dk−j ≥ 0,

which is equivalent to
k

∑

j=2

(j − 1)dj ≥ k − 1− n,

or

k =
k

∑

j=1

jdj ≥ k − 1− n+ number of parts of λ.

The final inequality implies that λ has at most n+ 1 parts, which is (**). Clearly
α(λ) ≥ 0 holds unless λ has n+ 1 distinct parts, in which case α(λ) = −1. In this
case the i = k − 1 factor in (KOH’) is alternating (G(0, 1) = 1) without the factor
of (1− q), so it enough to prove that α(λ) + 1 ≥ 0. �

Remarks: To prove Theorem 1 we need only the the n → ∞ case of (KOH).
John Stembridge rediscovered an identity of Hall which implies this result

(JS)

[

n+ k
k

]

q

=
∑

d⊢k

q2n(d)
[

n+ 1
d1, . . . , dk

]

q

.

Then George Andrews observed that (JS) is nothing but an iteration of q-Vandermonde.
Subsequently John Stembridge and Jim Joichi gave bijections that prove (JS). Their
proofs are closely related to [1].

If nk is odd, Theorem 2 cannot hold, because the leading term has the wrong
sign. The exponent in Theorem 2 is not always best possible: G(11, 6)(1 − q)2

alternates in sign.
Ron Evans has made the following related conjecture. He has verified it for a = 1

from Theorem 2.
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Conjecture. Let n, k, and a be nonnegative integers, with k > 3 and a odd. Let
G(n, k, a) be defined by (GP), with qa replacing q in the numerator. Then the
coefficients of G(n, k, a)(1 − q)[(k+1)/2] alternate in sign if nk is even, and the
coefficients of G(n, k, a)(1− q)[(k+1)/2]/(1− q2) alternate in sign if nk is odd.

Some other remarks about (KOH) can be found in [7].
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