THE ODLYZKO CONJECTURE AND
O’HARA’S UNIMODALITY PROOF

DENNIS STANTON* AND DORON ZEILBERGER**

ABSTRACT. We observe that Andrew Odlyzko’s conjecture that the Maclaurin coef-
ficients of 1/[(1+¢q)(14+qg+¢?)---(1 +q+ --- 4+ ¢ 1)] have alternating signs is an
almost immediate consequence of an identity that is implied by Kathy O’Hara’s re-
cent magnificent combinatorial proof of the unimodality of the Gaussian coefficients.

To a true combinatorialist, a combinatorial result is not properly proved until
it receives a direct combinatorial proof. This is why Kathy O’Hara’s long-sought-
for constructive proof of the unimodality of the Gaussian polynomials ([4], [5], see
also [6]) generated so much excitement in combinatorial circles. However to non-
combinatorialists, a direct combinatorial proof is “just another proof”. O’Hara’s
proof is longer than most of the dozen previous proofs, and probably would not
add any insight to anyone who is not a genuine combinatorialist. Moreover, it does
not seem to be generalizable at first sight. Yet it turned out to imply a deep result
(KOH) to which hitherto there was no known proof of any kind.

In this note we shall prove and generalize a conjecture of Odlyzko, using O’Hara’s
result. Odlyzko’s results imply that for k sufficiently large, the first k£ coefficients
in

1 (1—q)*

l+q)(l+g+¢) - (L+g+ -+ (1-q(l—g2) - (1—q")

alternate in sign. He conjectured that in fact for every k > 0, all of the coeflicients
of the above series alternate in sign. We prove the sharper result

Theorem 1. For any integer k,

(1 — g)lk+1)/2)
(1-q)1—¢?)---(1—q*)

has coefficients which alternate in sign.

Note that the exponent of (1 — ) is best possible, since if [(k 4 1)/2] is replaced
by [(k — 1)/2] then the pole ¢ = 1 has the highest order among all the poles, all
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of which are roots of unity, so a partial fraction expansion would yield that the
coefficients are asymptotically of the same sign.

Odlyzko has informed the authors that Theorem 1 can be used to shorten the
proof in [3] by at least one third.

We will prove a more general result. Recall that the Gaussian polynomials are
defined for nonnegative integers k£ and n by

n+k] _ (1= —g"?) - (1 g™
ko1, (1-9)(1—-¢*)-(1—-q")

(GP) G(n, k) = [

If n is negative, we put G(n,k) = 0. We will prove:

Theorem 2. For nonnegative integers n and k, with nk even, G(n,k)(1 —q)™ has
coefficients which alternate in sign, where m = min{[(k +1)/2],[(n +1)/2]}.

Theorem 1 follows from Theorem 2 upon taking n even and letting n — oo.
Theorem 2 will follow from the following amazing g-binomial identity that was
derived in [7], by “algebrizing” O’Hara’s main theorem ([4], [5], [6]).

1—1
(KOH) ZqQ"WHG k—in—2i+ Y 2(i — j)di—j, dp—s),
AFE 7=0

where

n(A) =Y (i—1)\.

i

The sum in (KOH) is over all partitions A = (A1, A2, ...) of k. The integer d; is

the multiplicity of ¢ in A, thus in frequency notation A\ = 191292 ...j4 ... 1In this
notation,
k
2n(X\) =Y (D} - D;)
i=1
where

k
Dr:Zdi.

Proof of Theorem 2. By symmetry in n and k, we may assume that n is even. We
proceed by induction on n and k. Theorem 2 clearly holds for n =0 and k£ = 1.
Let
F(n, k) := (1 — ¢)l*TV/2G(n, k).

Then (KOH) can be rewritten as

k—1
(KOH) F(2n,k) =Y (1—-¢)*N¢> N T F(2(k—i)n— 2z+z P, dp—s).
Ak =0

where
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Suppose we show that a(\) > 0. If X\ # 1*, then each F on the right side of
(KOH’) has a second argument less than k. If A\ = 1*, the first argument of F is less
than 2n. Thus by induction each F is alternating. Since (1 — ¢)*™) is alternating,
and the power of ¢ is even, the left side must be alternating. So it remains to verify
that a(\) > 0.

First suppose that n > [(k + 1)/2], so m = [(k + 1)/2]. Then we will show that
for any partition A of k, we have the inequality

k
(*) 6+ 1)/2) = Sl +1)/2) > 0.
i=1
It is easy to see that (*) is
[(k+1)/2] — (number of parts of A4+number of i with d; odd)/2.

This is nonnegative, since any part ¢ > 1 of A can contribute at most one ¢ which
has d; odd.
Next suppose that n < [(k 4 1)/2], so m = n. First we show

k
(%) nt1-Y di>0
i=1
for all partitions A of & which occur in (KOH’). The key observation is that F is
zero if the first argument is negative. Thus, taking the i = k — 1 factor in (KOH),
we see that

k—2
o —2k—1)—> 2(k—1-j)de_; >0,
§j=0
which is equivalent to
k
(j_l)d] >k—1-n,
j=2
or
k
k= Zjdj >k — 1 — n + number of parts of .
j=1

The final inequality implies that A has at most n + 1 parts, which is (**). Clearly
a(A) > 0 holds unless A has n + 1 distinct parts, in which case o(\) = —1. In this
case the i = k — 1 factor in (KOH’) is alternating (G(0,1) = 1) without the factor
of (1 — g), so it enough to prove that a(A) +1>0. O

Remarks: To prove Theorem 1 we need only the the n — oo case of (KOH).
John Stembridge rediscovered an identity of Hall which implies this result

n—+k o 2n(d) n+1
(JS) [ k L_Zq di,....dy ],

d-k
Then George Andrews observed that (JS) is nothing but an iteration of ¢-Vandermonde.
Subsequently John Stembridge and Jim Joichi gave bijections that prove (JS). Their
proofs are closely related to [1].

If nk is odd, Theorem 2 cannot hold, because the leading term has the wrong
sign. The exponent in Theorem 2 is not always best possible: G(11,6)(1 — ¢)?
alternates in sign.

Ron Evans has made the following related conjecture. He has verified it for a = 1
from Theorem 2.
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Conjecture. Let n,k, and a be nonnegative integers, with k > 3 and a odd. Let
G(n,k,a) be defined by (GP), with q* replacing q in the numerator. Then the
coefficients of G(n,k,a)(1 — )IF+tV/2A qlternate in sign if nk is even, and the
coefficients of G(n, k,a)(1 — ¢)I*+1D/21 /(1 — ¢?) alternate in sign if nk is odd.

\V]

Some other remarks about (KOH) can be found in [7].
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