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Abstract. It is shown that there are
`

2n−r−1

n−r

´

noncrossing partitions of an

n-set together with a distinguished block of size r, and
`

n

k−1

´`

n−r−1

k−2

´

of these

have k blocks, generalizing a result of Bóna on partitions with one crossing.
Furthermore, specializing natural q-analogues of these formulae with q equal
to certain dth roots-of-unity gives the number of such objects having d-fold
rotational symmetry.

Given a partition π of the set [n] := {1, 2, . . . , n}, a crossing in π is a quadruple
of integers (a, b, c, d) with 1 ≤ a < b < c < d ≤ n for which a, c are together in
a block, and b, d are together in a different block. It is well-known [10, Exercise
6.19(pp)],[4] that the number of noncrossing partitions of [n] (that is, those with
no crossings) is the Catalan number Cn = 1

n+1

(

2n

n

)

, and the number of noncrossing

partitions of [n] into k blocks is the Narayana number 1
n

(

n
k−1

)(

n
k

)

.

Our starting point is the more recent observation of Bóna [2, Theorem 1] that
the number of partitions of [n] having exactly one crossing has the even simpler

formula
(

2n−5
n−4

)

. Bóna’s proof utilizes the fact that Cn is also well-known to count

triangulations of a convex (n+2)-gon; this allows him to biject 1-crossing partitions
of [n] to dissections of an n-gon that use exactly n− 4 diagonals. The proof is then

completed by plugging d = n − 4 into the formula 1
d+1

(

n+d−1
d

)(

n−3
d

)

of Kirkman

(first proven by Cayley; see [7]) for the number of dissections of an n-gon using d

diagonals.
The goal here is to generalize Bóna’s result to count 1-crossing partitions by their

number of blocks, and also to examine a natural q-analogue with regard to the cyclic
sieving phenomenon shown in [8] for certain q-Catalan and q-Narayana numbers.
The crux is the observation that 1-crossing partitions of [n] biject naturally with
noncrossing partitions of [n] having a distinguished 4-element block: replace the
crossing pair of blocks {a, c}, {b, d} with a single distinguished root block {a, b, c, d}.
An example is shown in Figure (a), where the 1-crossing partition of [18] having
blocks {1, 10}, {2, 3, 4, 5}, {6, 15}, {7, 8}, {9}, {11, 12, 13, 14}, {16, 17}, {18} is shown
in its circular representation, with the two blocks {1, 10}, {6, 15} responsible for the
unique crossing pair. Figure (a) shows the corresponding noncrossing partition of
[n] = [18] with distinguished 4-element root block {a, b, c, d} = {1, 6, 10, 15} that
replaced the crossing pair of blocks.

Thus one is motivated to count the following more general objects.

Date: August 2006.
Key words and phrases. noncrossing partition, cyclic sieving phenonomenon.
This work was the result of an REU at the University of Minnesota School of Mathematics in

Summer 2006, mentored by V. Reiner and D. Stanton, and supported by NSF grants DMS-0601010
and DMS-0503660. The authors also thank D. Armstrong for helpful conversations.

1



2M. BERGERSON, A. MILLER, A. PLIML, V. REINER, P. SHEARER, D. STANTON, AND N. SWITALA

1 2
3

4

5

6

7

8

10
911

12

13

14

15

16

17
18

root block

1 2
3

4

5

6

7

8

10
911

12

13

14

15

16

17
18

root
block

1

7

9

6

4

5

2

38

(a) (b) (c)

Figure 1. (a) A 1-crossing partition of the set [18]. (b) Its cor-
responding 4-rooted noncrossing partition of [18], which has 2-fold
rotational symmetry. (c) The corresponding 2-rooted noncrossing
partition of the set [9].

Definition 1. An r-rooted noncrossing partition of [n] is a pair (π, B) of a non-
crossing partition π together with a distinguished r-element block B of π, which
we will call the root block.

Note that the notion of a crossing in a partition is invariant under cyclic rotations
i 7→ i + 1 mod n of the set [n]. Consequently the cyclic group C = Zn acts on the
set of r-rooted noncrossing partition of [n], preserving the number of blocks. For
the sake of stating our result, define these standard q-analogues:

[n]q :=
1 − qn

1 − q

[n]!q := [n]q[n − 1]q · · · [2]q[1]q
[

n

k

]

q

:=
[n]!q

[k]!q[n − k]!q
.

Theorem 1. The number of r-rooted noncrossing partitions of [n], and the number
with exactly k blocks, are given by the formulae

(0.1) a(n, r) :=

(

2n− r − 1

n − r

)

, a(n, k, r) :=

(

n

k − 1

)(

n − r − 1

k − 2

)

.

Furthermore, for any d dividing n, the number of r-rooted noncrossing partitions
of [n] fixed under a d-fold cyclic rotation, and the number of such partitions having
exactly k blocks, are obtained by plugging in any primitive dth root-of-unity for q in
these q-analogues:
(0.2)

aq(n, r) :=

[

2n− r − 1
n − r

]

q

, aq(n, k, r) := q(k−1)(k−2)

[

n

k − 1

]

q

[

n − r − 1
k − 2

]

q

.

Note that taking r = 4 and replacing k by k−1 in (0.1), one finds agreement with
Bóna’s count of

(

2n−5
n−4

)

, as well as the (new) formula
(

n

k−2

)(

n−5
k−3

)

for the number of
1-crossing partitions with k blocks.
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Proof. (of Theorem 1) Note that the formula for a(n, k) follows from the one for
a(n, k, r):

a(n, r) =
n

∑

k=1

a(n, r, k) =
n

∑

k=1

(

n

k − 1

)(

n − r − 1

k − 2

)

=
n

∑

k=1

(

n

k − 1

)(

n − r − 1

n − r − k + 1

)

=
n

∑

i+j=n−r

(

n

i

)(

n − r − 1

j

)

=

(

2n − r − 1

n − r

)

where the last equality is the Chu-Vandermonde summation
(

M+N

ℓ

)

=
∑

i+j=ℓ

(

M

i

)(

N

j

)

specialized to M := n, N := n − r − 1, ℓ := n − r.

To prove the formula for a(n, k, r), consider three related sets. Let A(n, k, r)
denote the set of r-rooted noncrossing partitions of [n] with k blocks, which we
wish to count. Let B(n, k, r) denote the set of triples (π, B, i) in which π is a
noncrossing partition of [n] with k blocks, i is a chosen element of [n], and B is
an r-element block of π, with i ∈ B. Let C(n, k, r) denote the set of noncrossing
partitions of [n] in which the element 1 lies in an r-element block.

Counting |B(n, k, r)| in two ways, one finds

r · |A(n, k, r)| = |B(n, k, r)| = n · |C(n, k, r)|,
and hence

(0.3) a(n, k, r) = |A(n, k, r)| =
n

r
|C(n, k, r)|.

To count |C(n, k, r)|, note that Dershowitz and Zaks [4] give a bijection between
noncrossing partitions and ordered trees, which restricts to a bijection between
C(n, k, r) and the set D(n, k, r) of all ordered trees having n edges, root degree r,
and k internal nodes. On the other hand, the set D(n, k, r) has been enumerated
multiple times in the literature via generating functions and Lagrange inversion
(e.g. in [3, 5]), and can also be done semi-bijectively (see [1]):

|D(n, k, r)| =
r

n

(

n

k − 1

)(

n − r − 1

k − 2

)

.

Thus the formula for a(n, k, r) follows from combining this with (0.3):

a(n, k, r) =
n

r
|C(n, k, r)| =

n

r
|D(n, k, r)| =

(

n

k − 1

)(

n − r − 1

k − 2

)

.

For the assertion of the theorem about q-analogues, we first deal with the case of
aq(n, k, r). Note that for any d dividing n, an r-rooted noncrossing partition of [n]
having k blocks has no chance of being d-fold symmetric unless r is divisible by d and
k is congruent to 1 mod d. Furthermore, when these congruences hold, if one defines
n′ := n

d
, r′ := r

d
, k′ := k−1

d
, then the map [n] ∼= Zn → Zn′

∼= [n′] which reduces
modulo n′ gives a natural bijection between d-fold rotationally symmetric r-rooted
noncrossing partitions of [n] with k blocks, and r′-rooted noncrossing partitions of
[n′] with k′+1 blocks. For example, in Figure (b), one has such a d-fold rotationally
symmetric r-rooted noncrossing partition with d = 2, n = 18, r = 4, k = 7, and
Figure (c) depicts the corresponding r′-rooted noncrossing partition of [n′] with
n′ = 9, r′ = 2, k′ = 3.

Hence by the first part of the theorem, there are exactly
(

n′

k′

)(

n′
−r′

−1
k′−1

)

such d-fold

rotationally symmetric r-rooted noncrossing partition of [n] having k blocks in this
case.
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On the other hand, one can easily evaluate aq(n, k, r) when q is a primitive dth

root-of-unity for d dividing n, using the q-Lucas theorem (Lemma 2 below). One
finds that it vanishes unless r is divisible by d and k is congruent to 1 mod d, in

which case it equals
(

n′

k′

)(

n′
−r′

−1
k′−1

)

, as desired.

For the assertion about aq(n, r), one can either argue in a similar fashion, or

use the identity

[

2n − r − 1
n − r

]

q

=
∑n

k=1 q(k−1)(k−2)

[

n

k − 1

]

q

[

n − r − 1
k − 2

]

q

, which

follows from setting M := n, N := n− r−1, ℓ := n− r in the q-Chu-Vandermonde
summation (see e.g. [6, (7.6)]):

[

M + N

ℓ

]

q

=
∑

i+j=ℓ

qj(M−i)

[

M

i

]

q

[

N

j

]

q

.

�

The following straightforward lemma used in the above proof has been rediscov-
ered many times; see [9, Theorem 2.2] for a proof and some history.

Lemma 2. (q-Lucas theorem) Given nonnegative integers n, k, d, with 1 ≤ d ≤ n,
uniquely write n = n′d+n′′ and k = k′d+k′′ with 0 ≤ n′′, k′′ < d. If q is a primitve
dth root-of-unity, then

[

n

k

]

q

=

(

n′

k′

) [

n′′

k′′

]

q

.

Lastly we remark that one can derive an explicit formula for the number of 2-
crossing partitions of [n], but it is much messier than a(n, r) above, and appears to
have no q-analogue with good behavior. However, Bóna [2] does show that for each
fixed k, the generating function counting k-crossing partitions of [n] is a rational
function of x and

√
1 − 4x.
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