PROOF OF A MONOTONICITY CONJECTURE

T. Prellberg and D. Stanton

November 9, 2002

Abstract. A monotonicity conjecture of Friedman, Joichi and Stanton is established.

In [2] the following monotonicity conjecture was made.
Conjecture. If $n \geq 3$ is an odd integer, then

$$
\frac{1-q}{\prod_{i=n}^{2 n-1}\left(1-q^{i}\right)}+q
$$

has non-negative power series coefficients.
The purpose of this note is prove the Conjecture.
The conjecture has been established for prime values of n by Andrews [1], and for $n \leq 99$, using a computer proof (see [2], [4]). The proof given here relies upon an identity for the rational function of the conjecture, which is our Lemma. A similar identity was found by Andrews [1] to establish the case when n is prime.

Recall the notation

$$
(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right), \quad[n]_{q}=\left(1-q^{n}\right) /(1-q)
$$

and

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

Lemma. If n is a non-negative integer, then

$$
\begin{aligned}
\frac{1-q}{\left(q^{n} ; q\right)_{n}}+q & =\frac{1}{1-q^{4 n^{2}-6 n+2}}\left(1-q^{4 n^{2}-6 n+3}+\sum_{m=0}^{n-2} q^{(n+m)(2 m+1)} \frac{\left(q^{n-1} ; q^{-1}\right)_{m}}{\left(q^{2} ; q\right)_{2 m}}\right. \\
& \left.+\sum_{m=0}^{n-3} q^{2(n+m+1)(m+1)} \frac{\left(q^{n-1} ; q^{-1}\right)_{m+1}}{\left(q^{2} ; q\right)_{2 m+1}}\right)
\end{aligned}
$$

Proof of the Conjecture. We may assume the Lemma and take $n \geq 5$. We show that the individual terms of the Lemma inside the parentheses have non-negative coefficients, and that $q^{4 n^{2}-6 n+3}$ also occurs.

T. PRELLBERG AND D. STANTON

First we show that the m th term in each of the two sums has non-negative coefficients. If $m=0$ the term in the second sum is $q^{2(n+1)}\left(1-q^{n-1}\right) /\left(1-q^{2}\right)$, which is non-negative since n is odd, while the term in the first sum is q^{n}.

So we take $1 \leq m \leq n-3$ and first consider the second sum. If $2 m+2 \geq n-1$, then

$$
\frac{\left(q^{n-1} ; q^{-1}\right)_{m+1}}{\left(q^{2} ; q\right)_{2 m+1}}=\frac{1}{\left(q^{n} ; q\right)_{2 m+3-n}\left(q^{2} ; q\right)_{n-m-3}}
$$

which clearly has non-negative coefficients. Next suppose that $2 m+2<n-1$ and let

$$
2^{s} \leq m+1 \leq 2^{s+1}-1
$$

for some positive integer s. Note that $2^{s+1} \leq 2 m+2<n-1$. Then

$$
\frac{\left(q^{n-1} ; q^{-1}\right)_{m+1}}{\left(q^{2} ; q\right)_{2 m+1}}=\frac{1}{[n]_{q}}\left[\begin{array}{c}
n \\
2^{s+1}
\end{array}\right]_{q} \frac{1}{\left(q^{2^{s+1}+1} ; q\right)_{2 m+2-2^{s+1}}\left(q^{n-2^{s+1}+1} ; q\right)_{2^{s+1}-m-2}}
$$

We now appeal to the fact [1, Th. 2], [3, Prop. 2.5.1] that

$$
\frac{1}{[n]_{q}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}
$$

has non-negative coefficients if $1<k<n$ and $\operatorname{GCD}(n, k)=1$, to obtain nonnegativity of the m th term since n is odd.

For the first sum a similar proof applies. For $1 \leq m \leq n-2$ we have

$$
\frac{\left(q^{n-1} ; q^{-1}\right)_{m}}{\left(q^{2} ; q\right)_{2 m}}=\frac{1}{\left(q^{n} ; q\right)_{2 m+2-n}\left(q^{2} ; q\right)_{n-m-2}}, \text { if } 2 m+1 \geq n-1
$$

while for $2 m+1<n-1$ we let $2^{s}<m+1 \leq 2^{s+1}$ to obtain

$$
\frac{\left(q^{n-1} ; q^{-1}\right)_{m}}{\left(q^{2} ; q\right)_{2 m}}=\frac{1}{[n]_{q}}\left[\begin{array}{c}
n \\
2^{s+1}
\end{array}\right]_{q} \frac{1}{\left(q^{2^{s+1}+1} ; q\right)_{2 m+1-2^{s+1}\left(q^{n-2^{s+1}+1} ; q\right)_{2^{s+1}-m-1}} ~}
$$

Finally we must show that the term $q^{4 n^{2}-6 n+3}$ does appear in the sum. The $m=n-2$ term of the first sum is

$$
\frac{q^{4 n^{2}-10 n+6}}{\left(q^{n} ; q\right)_{n-2}}
$$

and a $q^{4 n-3}$ does appear due to the denominator factors of $\left(1-q^{n}\right)$ and $\left(1-q^{2 n-3}\right)$.
Proof of the Lemma. The lemma is equivalent to

$$
\begin{align*}
\frac{1}{\left(q^{n} ; q\right)_{n}} & =1+\sum_{m=0}^{n-1} q^{(n+m)(2 m+1)} \frac{\left(q^{n-1} ; q^{-1}\right)_{m}}{(q ; q)_{2 m+1}} \\
& +\sum_{m=0}^{n-2} q^{2(n+m+1)(m+1)} \frac{\left(q^{n-1} ; q^{-1}\right)_{m+1}}{(q ; q)_{2 m+2}} \tag{1}
\end{align*}
$$

because the $m=n-1$ term of the first sum and the $m=n-2$ term of the second sum do sum to

$$
\frac{q^{4 n^{2}-6 n+2}}{\left(q^{n} ; q\right)_{n}}
$$

To prove (1), the q-binomial theorem implies

$$
\begin{aligned}
\frac{1}{\left(q^{n} ; q\right)_{n}} & =1+\sum_{j=1}^{\infty} \frac{\left(q^{n} ; q\right)_{j}}{(q ; q)_{j}} q^{n j}=1+\sum_{j=1}^{\infty} \frac{\left(q^{n+1} ; q\right)_{j-1}}{(q ; q)_{j}}\left(q^{n j}-q^{n(j+1)}\right) \\
& =1+\frac{q^{n}}{1-q}+\left(1-q^{n-1}\right) \sum_{j=2}^{\infty} \frac{\left(q^{n+1} ; q\right)_{j-2}}{(q ; q)_{j}} q^{(n+1) j} \\
& =1+\frac{q^{n}}{1-q}+\left(1-q^{n-1}\right) \frac{q^{2(n+1)}}{(q ; q)_{2}}+\left(1-q^{n-1}\right) \sum_{j=3}^{\infty} \frac{\left(q^{n+1} ; q\right)_{j-2}}{(q ; q)_{j}} q^{(n+1) j}
\end{aligned}
$$

Continuing we see that for $t \geq 0$,

$$
\begin{aligned}
\frac{1}{\left(q^{n} ; q\right)_{n}} & =1+\sum_{m=0}^{t} q^{(n+m)(2 m+1)} \frac{\left(q^{n-1} ; q^{-1}\right)_{m}}{(q ; q)_{2 m+1}} \\
& +\sum_{m=0}^{t} q^{2(n+m+1)(m+1)} \frac{\left(q^{n-1} ; q^{-1}\right)_{m+1}}{(q ; q)_{2 m+2}} \\
& +\left(q^{n-1} ; q^{-1}\right)_{t+1} \sum_{j=2 t+3}^{\infty} \frac{\left(q^{n+t+1} ; q\right)_{j-2 t-2}}{(q ; q)_{j}} q^{(n+t+1) j}
\end{aligned}
$$

and (1) is the $t=n-1$ case.
Remarks. One may also see that the Lemma proves that the coefficients are strictly positive past $q^{3 n+4}$ for $n \geq 7$, (see [2]). The $m=1$ term of the first sum is

$$
q^{3(n+1)} \frac{1+q^{2}+q^{4}+\cdots+q^{n-3}}{1-q^{3}}
$$

which has the required property.
The equivalent form (1) of the Lemma is the $x=q^{n}$ special case of
(2) $\frac{1}{(x ; q)_{n}}=\sum_{m=0}^{n-1}\left[\begin{array}{c}n+m-1 \\ 2 m\end{array}\right]_{q} q^{2 m^{2}} \frac{x^{2 m}}{(x ; q)_{m}}+\sum_{m=0}^{n-1}\left[\begin{array}{c}n+m \\ 2 m+1\end{array}\right]_{q} q^{2 m^{2}+m} \frac{x^{2 m+1}}{(x ; q)_{m+1}}$.

A generalization of (2) to any positive integer $r \geq 2$ is

$$
\begin{align*}
\sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(b ; q)_{k}} x^{k} & =\sum_{t=0}^{\infty} \frac{(a ; q)_{(r-1) t}(b / a ; q)_{t}}{(b ; q)_{r t}} q^{(r t-1) t-\binom{t}{2}} \frac{(-a)^{t} x^{r t}}{(x ; q)_{t}} \\
& +\sum_{t=0}^{\infty} \frac{(a ; q)_{(r-1) t+1}(b / a ; q)_{t}}{(b ; q)_{r t+1}} q^{r t^{2}-\binom{t}{2}} \frac{(-a)^{t} x^{r t+1}}{(x ; q)_{t+1}} \\
& +\sum_{i=2}^{r-1} \sum_{t=0}^{\infty} \frac{(a ; q)_{(r-1) t+i-1}(b / a ; q)_{t+1}}{(b ; q)_{r t+i}} q^{(r t+i-1)(t+1)-\binom{t+1}{2} \frac{(-a)^{t+1} x^{r t+i}}{(x ; q)_{t+1}}} . \tag{3}
\end{align*}
$$

T. PRELLBERG AND D. STANTON

Another identity similar to the Lemma is

$$
\frac{1-q}{\left(q^{n} ; q\right)_{n}}+q=\frac{1}{1-q^{n(2 n-1)}}\left(1-q^{n(2 n-1)+1}+\sum_{m=1}^{n-1}\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q} \frac{1-q}{\left(q^{n} ; q\right)_{m}} q^{m(m+n-1)}\right)
$$

which would also prove the Conjecture if the individual terms are non-negative.
Conjecture 1. The power series coefficients of

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q} \frac{1-q}{\left(q^{n} ; q\right)_{m}}
$$

are non-negative
(1) if $n>0$ is odd and $0<m<n$, or
(2) if $n>0$ is even and $0<m<n$ with $m \neq 2, n-2$.

Recall [5] the Schur function $s_{\lambda}\left(x_{1}, \cdots, x_{n}\right)$ and the content [5, p.11, Ex. I.1.3] of a cell $x \in \lambda$. A Schur function version of Conjecture 1 is

Conjecture 2. The power series coefficients of

$$
s_{\lambda}\left(1, q, \cdots, q^{n-1}\right) \frac{1-q}{\prod_{x \in \lambda} 1-q^{n-c(x)}}
$$

are non-negative unless
(1) $\lambda=11$ and $n>0$ is even, or
(2) $\lambda=1^{k}, k \geq 3$ odd, $n=k$, or
(3) $\lambda=1^{k}, k \geq 3$ even, $n=k$ or $k+2$.

Conjecture 1 is the choice $\lambda=1^{m}$ in Conjecture 2.

References

1. G. Andrews, The Friedman-Joichi-Stanton monotonicity conjecture at primes (to appear).
2. J. Friedman, J. Joichi, and D. Stanton, More monotonicity theorems for partitions, Experimental Math. 3 (1994), 31-37.
3. M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Alg. Comb. 3 (1994), 17-76.
4. G. Han, personal communication (2002).
5. I. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, Oxford, 1995.

Institut für theoretische Physik, Technische Universität Clausthal, Arnold Sommerfeld Strasse 6, D-38678 Clausthal-Zellerfeld, Germany

E-mail address: thomas.prellberg@tu-clausthal.de

School of Mathematics, University of Minnesota, Minneapolis, MN 55455
E-mail address: stanton@math.umn.edu

