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Abstract Two q-analogues of Euler’s theorem on integer partitions with odd or dis-
tinct parts are given. A q-lecture hall theorem is given.
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1 Introduction

Euler’s Odd = Distinct theorem is

Theorem The number of integer partitions of N into odd parts equals the number of
integer partitions of N into distinct parts.

This is an elementary theorem [1, p. 5] which may be easily proven from generating
functions. In [9, Definition 9.3] a t-analogue of the q-binomial coefficient is defined,
whose combinatorial interpretation involves partitions whose part sizes are polyno-
mials in a positive integer q . Thus it is natural to look for a q-analogue of Euler’s
Odd = Distinct theorem, where the part sizes are also polynomials in a positive inte-
ger q . In this paper we give two such theorems. The results are very simple, but the
statements are appealing and may hint at a larger theory.
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2 q-analogues

It is well-known that Euler’s theorem follows from the an = n case of the following
easy proposition, which is implicit in [1, p. 5] and [1, Theorem 8.4]. A proof of
Proposition 2 which generalizes Proposition 1 is given in Sect. 5.

Proposition 1 Let {an}n≥1 be a sequence of distinct positive integers. If a2n/an = mn

is an integer for all n, then the number of integer partitions of N into parts of size
{a2n+1}n≥0 is equal to the number of integer partitions of N into parts of size {an}n≥1,
where an has multiplicity at most mn − 1.

The first q-analogue of Euler’s Odd = Distinct theorem uses

an = [n]q = 1 − qn

1 − q
= 1 + q + · · · + qn−1,

which satisfies

a2n/an = [2n]q/[n]q = qn + 1.

If q is a positive integer, it is clear that the hypotheses in Proposition 1 are fulfilled.

Theorem 1 Let q be a positive integer. The number of integer partitions of N into
q-odd parts [2n + 1]q is equal to the number of integer partitions of N into parts
[n]q of multiplicity at most qn.

Note that Euler’s Odd = Distinct theorem is the q = 1 case of Theorem 1.
Another q-analogue of n is given by

qn − q−n

q − q−1 ,

which may be written as a quotient of sines, but is not an integer for positive inte-
gers q .

Integrability can be obtained using Chebyshev polynomials. Recall that Cheby-
shev polynomials of the first and second kinds satisfy the three-term recurrence rela-
tion

pn+1(x) = 2xpn(x) − pn−1(x), n ≥ 1. (2.1)

The polynomials of the first kind Tn(x) have the initial conditions T0(x) = 1,
T1(x) = x, while those of the second kind Un(x) have U0(x) = 1, U1(x) = 2x.

The Chebyshev polynomials have explicit trigonometric expressions

Un(x) = sin((n + 1)θ)

sin θ
, Tn(x) = cos(nθ), x = cos θ .

Note that Un(x) is a quotient of sines, and Un−1(1) = n.
If q is a positive integer, define

{n}q = Un−1((1 + q)/2),
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which is a polynomial in q . The recurrence relation (2.1) shows that {n}q is an in-
teger, as is Tn((1 + q)/2)). Since Un−1(1) = n, {n}q may be considered as another
q-analogue of n. It does not have positive coefficients as a polynomial in q , for ex-
ample,

{4}q = q3 + 3q2 + q − 1.

Next we check that {n}q are distinct, in fact this sequence is increasing. Let x =
(1 + q)/2 > 1 and note that (2.1) for Un(x) may be rewritten as

(Un(x) − Un−1(x)) − (Un−1(x) − Un−2(x)) = (2x − 2)Un−1(x).

The right side is positive, since x > 1 and Un−1(x) > 0. (All of Un−1(x)’s zeros lie in
[−1,1], Un−1(1) = n > 0.) Thus Un(x)−Un−1(x) is increasing and positive because
U1(x) − U0(x) = 2x − 1 > 1. We conclude that {n + 1}q > {n}q .

Our second q-analogue of Euler’s Odd = Distinct theorem uses Proposition 1 with
an = {n}q . In this case, with (1 + q)/2 = x = cos θ ,

{2n}q/{n}q = sin(2nθ)

sin(nθ)
= 2 cos(nθ) = 2Tn((1 + q)/2),

is an integer.

Theorem 2 Let q be a positive integer. The number of integer partitions of N into
q-odd parts {2n + 1}q is equal to the number of integer partitions of N into parts
{n}q of multiplicity at most 2Tn((1 + q)/2) − 1.

Again since Tn(1) = 1, Euler’s Odd = Distinct theorem is the q = 1 case of The-
orem 2.

3 The Glaisher bijection

An explicit bijection for Euler’s theorem was given by Glaisher [8, p. 12]. Given a
partition into distinct parts, any part of size o × 2k , where o is odd, is replaced by
2k copies of the part o. Thus an odd part o will have multiplicity given by a sum of
powers of 2. Since each non-negative integer m has a unique base 2 expansion, this
map is a bijection. In this section we give a version of this bijection for Proposition 1.
O’Hara’s Algorithm B [7] also applies to Proposition 1, and gives the bijection below.

Fix a partition λ with part sizes an of multiplicity at most mn − 1. Fix an odd
integer o. Let the part ao2k in λ have multiplicity ck , so 0 ≤ ck ≤ mo2k − 1. Replace
each part ao2k by mo2k−1mo2k−2 · · ·mo = ao2k /ao parts of size ao. Each part ao now
has a multiplicity which is given as a sum of these numbers, namely

multiplicity of ao = c0 +
∞∑

k=1

ckmo2k−1mo2k−2 · · ·mo,

where 0 ≤ ck ≤ mo2k − 1.
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We must show that each non-negative integer m may be uniquely expressed in the
above form

m = c0 +
∞∑

k=1

ckmo2k−1mo2k−2 · · ·mo, where 0 ≤ ck ≤ mo2k − 1.

This follows from

mo − 1 +
K∑

k=1

(mo2k − 1)mo2k−1mo2k−2 · · ·mo = mo2K mo2K−1 · · ·mo − 1.

For Theorem 1 the Glaisher map replaces each part [2ko]q by [2k]qo parts of
size [o]q . For Theorem 2 the Glaisher map replaces each part {2ko}q by

2kTo((1 + q)/2)T2o((1 + q)/2) · · ·T2k−1o((1 + q)/2)

parts of size {o}q .

4 Lecture Hall results

The lecture hall theorem [2, Theorem 1.1] states that the number of integer partitions
of N into odd parts 1,3, . . . ,2k − 1 is equal to the number of integer partitions λ1 ≥
λ2 ≥ · · · ≥ λk of N satisfying

λ1

k
≥ λ2

k − 1
≥ · · · ≥ λk

1
≥ 0.

A q-analogue of this theorem could possibly use q-analogues of both the odd
integers 1,3, . . . ,2k − 1, and the denominators of the inequalities 1,2, . . . , k.

In this section we give a q-analogue of the lecture hall theorem in Corollary 4,
which uses the integers {n}q . We do not have a corresponding result for Theorem 1,
but instead give another bijective result using inequalities of the parts in Theorem 5.

Bousquet-Mélou and Eriksson [3, Theorem 4.5] gave an infinite family of se-
quences {aj } for which there are lecture hall theorems for partitions satisfying

λ1

ak
≥ λ2

ak−1
≥ · · · ≥ λk

a1
≥ 0.

Their choice of ak is a polynomial is two variables, here denoted x and y (x and y
are denoted l and k in [3, Theorem 4.5]),

a2n(x, y) = (−1)n+1xUn−1(1 − xy/2),

a2n+1(x, y) = (−1)n(Un(1 − xy/2) − Un−1(1 − xy/2)).
(4.1)

The (x, y)-versions of the odd numbers 1,3, . . . ,2k − 1 are

ai(x, y) + ai−1(y, x), 1 ≤ i ≤ k, for k even,

ai−1(x, y) + ai(y, x), 1 ≤ i ≤ k, for k odd.
(4.2)
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A lecture hall version for the numbers {n}q is given by choosing x = y = 1 + q ,
in this case

an(1 + q,1 + q) = Un−1((1 + q)/2) = {n}q .

Theorem 3 Let q be a positive integer. The number of integer partitions of N into
parts {1}q , {1}q +{2}q, . . . , {k}q +{k−1}q is equal to the number of integer partitions
λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 of N satisfying

λ1

{k}q
≥ λ2

{k − 1}q
≥ · · · ≥ λk

{1}q
≥ 0.

A bijection for Theorem 3 is given in [10].
The Chebyshev polynomials satisfy the trigonometric identity

U2i (x) = Ui(2x2 − 1) + Ui−1(2x2 − 1),

which is equivalent to

{2i + 1}q = {i + 1}Q + {i}Q, Q = q2 + 2q − 2.

This gives the following appealing version of the q-lecture hall theorem.

Corollary 4 Let q be a positive integer and Q = q2 + 2q − 2. The number of integer
partitions of N into parts {1}q , {3}q, . . . , {2k − 1}q is equal to the number of integer
partitions λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 of N satisfying

λ1

{k}Q
≥ λ2

{k − 1}Q
≥ · · · ≥ λk

{1}Q
≥ 0.

One may attempt to choose x and y to find an analogue of the lecture hall theorem
using the numbers [k]q . For example, the choice of x = 1 + q , y = 1 + q2 gives the
inequalities

λ1

q[3]q
≥ λ2

[2]q
≥ λ3

[1]q
≥ 0

and the q-analogues of 1,3,5 become 1,2 + q2,1 + 2q + q2 + q3. The choice
of x = 1 + q3, y = q + q2 gives analogues of 1,3,5 of [1]q, [3]q, q[5]q , and the
three denominators are 1,1 + q3, q5 + q4 + q2 + q − 1. Neither choice of (x, y)

extends to an expression involving [k]q beyond three terms. Thus for the parti-
tions with q-odd parts [2k − 1]q , we do not have a lecture hall theorem from the
Bousquet-Mélou and Eriksson result. Nonetheless these partitions are in bijection
with a set of partitions described by other inequalities, which are given by Theorem 5.
This theorem follows routinely from [4, Theorem 1], or from the explicit definition
of [2k − 1]q .
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Theorem 5 Let q be a positive integer. The number of integer partitions of N into
parts [1]q , [3]q . . . , [2k − 1]q is equal to the number of integer partitions λ1 ≥ λ2 ≥
· · · ≥ λk ≥ 0 of N satisfying

λi ≥
k∑

j=i+1

(q + q2)(−q)j−i−1λj , 1 ≤ i ≤ k.

5 Remarks

Euler’s theorem was generalized by Franklin [5] and Wilf [11, Theorem 1]: For any
integer j , the number of integer partitions of N with exactly j different even parts is
equal to the number of integer partitions of N in which exactly j different parts are
repeated. Euler’s theorem is the j = 0 case. Such a result also applies to Proposition 1.

Proposition 2 Suppose that the sequence {an}n≥1 is given as in Proposition 1. Let
X(N) be the set of all integer partitions of N with allowed part sizes {an}n≥1. Let j

be any integer. The number of elements of X(N) with exactly j different “even” parts
ae is equal to the number of elements of X(N) such that an has multiplicity at least
mn exactly j times.

Proof This follows from [11, Theorem 2] or by comparing the coefficient of xj tN in
the generating function

∞∏

n=1

(
1 + tan + t2an + · · · + tan(mn−1) + xtanmn

1 − tan

)

=
∞∏

n=1

1 + (x − 1)ta2n

1 − tan
=

∏

n odd

1
1 − tan

∏

n even

(
1 + xtan

1 − tan

)
.

!

Euler’s theorem was also generalized by Glaisher [1, p. 6], who considered, for a
fixed integer m, those partitions whose parts are not congruent to 0 modulo m, instead
of partitions with odd parts. An analogue of Proposition 1 holds when amn/an is an
integer. Theorems 1 and 2 will have such q-Glaisher results because both quotients
are integers

[mn]q
[n]q

= 1 + qn[m − 1]qn,
{mn}q
{n}q

= Um−1(Tn((1 + q)/2)).

We do not give a formal statement of these results.
Hickerson [6] considered partitions whose parts sizes are [n]q and gave the corre-

sponding version of Theorem 5.
For the lecture hall theorem, an(x, y) in (4.1) is given as a polynomial in x and y.

Remarkably, this choice also satisfies the hypothesis of Proposition 1 for all integers
x, y ≥ 2,
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a2n(x, y)

an(x, y)
= an+1(x, y) − an−1(x, y)

=
{

2Tn(
√

xy/2), for n even,

2
√

x/yTn(
√

xy/2), for n odd.

It is not necessary to put x = y = 1 + q , and a bi-basic version of Euler’s theorem
holds.
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