
RECENT RESULTS FOR THE Q-LAGRANGE INVERSION FORMULA

Dennis Stanton†

Abstract. A survey of the q-Lagrange inversion formula is given, including recent work of
Garsia, Gessel, Hofbauer, Krattenthaler, Remmel, and Stanton. Some applications to identities
of Rogers-Ramanujan type are stated.

1. Introduction.
One of Ramanujan’s favorite topics was the expansion of a given function in a series of

other functions. For example, given a formal power series f(x) such that f(0) = 0 and
f ′(0) 6= 0, one may ask for the coefficients ak in the expansion

(1.1) x =
∞
∑

k=1

akf(x)
k.

This question is answered by the Lagrange inversion formula [24, §7.32].
Ramanujan’s notebooks [23] contain several examples of expansions which can be found

from the Lagrange inversion formula, particularly in Chapters 3 and 9. Even though Ra-
manujan was aware of the Lagrange inversion formula, he had his own form of it, which
Berndt [6] has called Ramanujan’s Master Theorem. It is clear from Cauchy’s integral the-
orem that a contour integral can be given for ak. Ramanujan gave a real integral instead.

In this paper we shall survey recent work on q-analogues of Lagrange’s Theorem. We
also show how these analogues are related to q-series and the Rogers-Ramanujan identities.

The following notation will be used for formal power series. The coefficient of xk in
g(x), f(x), F (x), etc., will be denoted gk, fk, Fk. If these coefficients are functions of q they
will be denoted fk(q). In §2 all formal power series have complex coefficients; in later
sections the coefficients are rational functions of q. Let 〈xn|F (x)〉 denote the coefficient of
xn in F (x). A formal Laurent series is a formal power series plus a finite number of negative
integral powers. Let Res

x
F (x) denote the coefficient of x−1 in a formal Laurent series F (x).

Thus for any formal power series F (x)

〈xn|F (x)〉 = Res
x

F (x)

xn+1
.

We also adopt the usual notation from q-series,

(a; q)k = (a)k =
k
∏

m=1

(1− aqm−1),

(a, b, c, · · · )k = (a)k(b)k(c)k · · · ,

k!q = (q)k/(1− q)k,

[k] = (1− qk)/(1− q)
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and the q-binomial coefficient
(

n

k

)

q

=
(q)n

(q)k(q)n−k
.

2. Lagrange’s Theorem.
Not only can the coefficients ak of the inverse function to f(x) in (1.1) be found, but

also the coefficients for any formal power series F (x) in x. This is Lagrange’s Theorem.

Theorem 1 (Lagrange inversion formula). Let f(x) be a formal power series with
f(0) = 0 and f ′(0) 6= 0. For any formal power series F (x), if

(2.1) F (x) =

∞
∑

k=0

akf(x)
k

then

ak = Res
x

F (x)f ′(x)

f(x)k+1
(2.2)

= Res
x

F ′(x)

kf(x)k
.(2.3)

Proof. Equation (2.2) follows from

Res
x

(f(x)k−jf ′(x)) = Res
x

(f(x)k−j+1)′/(k − j + 1)

=

{

0 for j 6= k + 1,

1 for j = k + 1.
(2.4)

Equation (2.2) follows from (2.3) and

Res
x

(

F (x)

f(x)k

)′

= 0. �

It is clear that if F (x) is replaced by F (x)/f ′(x), then (2.2) simplifies. This is sometimes
called the second form of the Lagrange inversion formula.

Theorem 2 (Second form of the Lagrange inversion formula). Let f(x) be a formal
power series with f(0) = 0 and f ′(0) 6= 0. Then for any formal power series F(x), if

F (x)/f ′(x) =

∞
∑

k=0

akf(x)
k

then

(2.5) ak = Res
x

F (x)

f(x)k+1
.

A classical example of these two theorems is Abel’s theorem

(2.6) eax =
∞
∑

k=0

a(a− bk)k−1

k!
xkekbx
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and

(2.7) e(a−b)x/(1 + bx) =

∞
∑

k=0

(a− b(k + 1))k

k!
xkekbx.

Frequently Theorems 1 and 2 are stated in another way. First replace x by the functional
inverse f 〈−1〉(x), to obtain

(2.8) F (f 〈−1〉(x)) =
∞
∑

k=0

akx
k

where ak is given by (2.2). For F (x) = xn, (2.8) is

(2.9) f 〈−1〉(x)n =

∞
∑

k=0

akx
k.

Next let x/R(x) = g(x), and put g(x) = f 〈−1〉(x) so that g(x) satisfies

g(x) = xR(g(x)).

Then (2.2) becomes

(2.10) 〈xk|g(x)n〉 =
k

n
〈xn−k|R(x)k〉.

A calculation shows that (2.4) becomes, if g(x) = xR(g(x)),

(2.11) 〈xk|
g(x)n

1− xR′(g(x))
〉 = 〈xk−n|R(x)k〉.

3. q-Lagrange inversion.
There have been two different approaches, each with its own goal, to the q-Lagrange

inversion problem. The first approach is the most natural: write down a q-analogue of
(2.1) and then give some formula for the coefficients ak which is a q-analogue of (2.2) or
(2.3). Of course to be a satisfactory solution, the q-analogue to (2.1) must be reasonable,
and the resulting formula for ak must be simple enough to be useful. In particular any
such general theorem should easily reproduce the known examples of q-Lagrange inversion.
Unfortunately these two goals have not simultaneously been met, and the second approach,
in lieu of the first, is necessary. Find non-trivial and important families of q-Lagrange
inversion.

Let f(x, q) be a formal power series in x, with coefficients that are rational functions
of q. Sometimes we shall suppress q and write f(x) instead of f(x, q). As usual, we can
assume that f0(q) = 0 and f1(q) = 1. A good candidate for the q-analogue of the inverse
to f(x) is a formal power series φ(x) such that

(3.1)
∞
∑

k=1

fk(q)φ(x)φ(xq) · · ·φ(xq
k−1) = x.

Clearly (3.1) is a q-analogue of f(φ(x)) = x, and the relation φ(f(x)) = x could become

(3.2)

∞
∑

k=1

φk(q)f(x)f(xq
−1) · · · f(xq1−k) = x.

Garsia [10] has shown that these two formulations of a q-analogue of a functional inverse
are equivalent.
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Theorem 3 (Garsia). Equation (3.1) holds if, and only if, (3.2) holds.

Andrews [2], Gessel [13], and Garsia [10] have each given versions of a general form of
q-Lagrange inversion. Good expositions of these papers are given in [10], [17], or [19]. They
were motivated by an example of Carlitz [8], who gave a q-analogue of Theorem 1 for the
function f(x) = x/(1− x). He replaced (2.1) by

(3.3) F (x) =
∞
∑

k=0

ak
xk

(1− x)(1− xq) · · · (1− xqk−1)
.

It is clear that a general form of (3.3) for f(x) = x/r(x) is

(3.4) F (x) =

∞
∑

k=0

ak
xk

r(x)r(xq) · · · r(xqk−1)
.

Andrews [2] gave a general formula for the coefficients ak as a determinant in the coeffi-
cients Fk of F (x), but his result is very difficult to apply.

Garsia [10] has a very elegant form of q-analogue of Theorem 1 for the expansion of
F (f 〈−1〉(x)) in (2.7). Suppose that f(x) and φ(x) satisfy (3.1) and (3.2). Then we are
expanding

(3.5)

∞
∑

k=0

Fk(q)φ(x)φ(xq) · · ·φ(xq
k−1) =

∞
∑

k=0

akx
k.

Garsia’s analogue of (2.2) for ak involves a miraculous q-analogue of the derivative f ′(x),
which he called ◦f(x). Again let f(x) = x/r(x) and define the “roofing” and “starring”
operators by

∗r(x) =
∞
∏

m=0

r(xq−m),(3.6)

ř(x) =

∞
∑

k=0

rk(q)q
(k2)xk.(3.7)

Then ◦f(x) is defined by

(3.8) ◦f(x) = ∗r(xq−1)

(

1
∗(ř(xq))

)

.̌

It is not at all obvious that (3.8) is a q-analogue of f ′(x).

Theorem 4 (Garsia’s q-Lagrange inversion formula). Let f(x) and φ(x) satisfy (3.1),
and F (x) satisfy (3.5). Then

ak = Res
x

◦f(xq−k)F (x)

f(x) · · · f(xq−k)
,

where ◦f(x) is defined by (3.8).

Moreover Garsia shows that

(3.9)
∞
∑

k=0

Fk(q)φ(x)φ(xq) · · ·φ(xq
k−1) =

(F (x)∗r(x))̌

(∗r(x))̌

which corresponds to no known result for q = 1.
Gessel [13, Th. 6.9] gave a q-analogue of the alternative (2.11) to Theorem 2. He replaced

the functional equation f(x) = xR(f(x)) by

(3.11) f(x, q) = qx

∞
∑

k=0

Rk(q)f(x, q)f(xq, q) · · · f(xq
k−1, q),

and found the next theorem. We shall use the notation

(3.12) f [k](x, q) = f(x, q)f(xq, q) · · · f(xqk−1, q).
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Theorem 5 (Gessel’s q-Lagrange inversion formula). Let R(x) and f(x) satisfy (3.11).
Then

〈xk|f [k](x, q)/(1− xd(x))〉 = qn(n+1)/2〈xk−n|R[k](x, q−1)〉.

where

d(x) =
∞
∑

i,j=0

Ri+j+1(q)f
[i](x, q)f [j](x, q−1).

Note that the denominator of (2.10) has been replaced by a double sum in Theorem 3.
Garsia [10, Theorem 2.5] gave another form of the denominator using his q-analogue of the
derivative (3.9).

4. More q-Lagrange inversion.
Cigler [9], Hofbauer [16], Krattenthaler [19], and Paule [20] have another approach to

q-Lagrange inversion for special families of functions. They replaced fk(x) by a function
xk/rk(x, q) instead of xk/r(x)r(xq) · · · r(xqk−1). Naturally unless the function rk(x, q) has
some properties mimicking rk(x), there is no hope for an explicit formula for ak in the
expansion

(4.1) F (x) =

∞
∑

k=0

ak
xk

rk(xq, q)
.

We may assume that rk(0, q) = 1.
The key property is a q-analogue of (2.4), which for f(x) = x/r(x) is

Res
x

r(x)n−k

xn+1−k

(

1−
xr′(x)

r(x)

)

=

{

0 for k 6= n,

1 for k = n.

A q-analogue could be

(4.2) Res
x

rn(x, q)

rk(xq, q)xn+1−k
(1− xρ(x)) =

{

0 for k 6= n,

1 for k = n,

where ρ(x) is some q-analogue of r′(x)/r(x). In fact, (4.2) holds if rk(x) has the following
property:

(4.3) Dqrk(x) = [k]ρ(x)rk(x) for all k ≥ 0,

where Dq is the q-derivative

Dqf(x) =
f(xq)− f(x)

(q − 1)x
.

To prove (4.2), just compute

Res
x

Dq

(

rn(x)

rk(x)xn−k

)

= 0.

Theorem 6 (Hofbauer’s q-Lagrange inversion). Let F (x) satisfy (4.1), where rk(x)
satisfies (4.3). Then

ak = Res
x

F (x)rk(x)(1− xρ(x))

xk+1
.

Proof. Equation (4.2) immediately gives the theorem. �

Krattenthaler [19] generalized Theorem 6 by allowing simultaneously two different ana-
logues of the denominator rk(x). Suppose that rk(x, q) and sk(x, q) satisfy rk(0, q) = 1,
sk(0, q) = 1, and

(4.4)
Dqra(x) = [k]ρ(x)ra(x) for all real a,

Dqsb(x) = [k]σ(x)sb(x) for all real b.
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Theorem 7 (Krattenthaler’s q-Lagrange inversion). Let F (x) satisfy

F (x) =

∞
∑

k=0

ak
xks−k−b(x, q)

rk+a(xq, q)
.

where ra(x) and sb(x) satisfy (4.4). Then

ak = Res
x

F (x)
rk+a(x)

xk+1s−k−b(qx)
(1− xρ(x)− xσ(x) + x2ρ(x)σ(x)(1− qa−b)).

Proof. The proof is similar to the proof of Theorem 6, by establishing the appropriate
version of (4.2) (see [19, Lemma 1]). �

Krattenthaler also gave a nice version of (2.3) for the a = b = 0 special case of Theorem
7

(4.5) ak =
1

[k]
Res
x

Dq(F (x))rk(x)

s−k(x)xk
.

Note that the (4.5) also gives a version of (2.3) for Theorem 6.
Paule has given a generalization of Theorem 6 [20, Theorem 4].

5. Even more q-Lagrange inversion.
Gessel and Stanton [14], [15] took the point of view that the Lagrange inversion theorem

is a matrix inversion result. Specifically, if

(5.1) fk(x) =
∞
∑

n=k

Bnkx
n

then (2.1) holds if, and only if, the matrix equation Ba = f . holds. The Lagrange inversion
theorem gives a formula for the coefficients ak, a = B−1f , thus gives the inverse matrix
B−1.

They took a special family of functions replacing fk(x), namely xk/(1 − x)a+(b+1)k, so
that

(5.2) Bnk =
n−k
∏

j=1

(a+ (b+ 1)k + j − 1)/(n− k)!.

Theorem 1 implies

(5.3) B−1
km =

k−m−1
∏

j=1

(1− a− (b+ 1)k + j)(−a− (b+ 1)m)/(k −m)!.

The q-analogue of Lagrange inversion for x/(1−x)b+1 is given by q-analogues of the matrices
in (5.2) and (5.3).

Theorem 8 (q-Lagrange inversion for x/(1− x)b+1). Let

Gk(x) =
∞
∑

n=k

Bnkx
n,

where
Bnk = q−nk(Aqkpk; p)n−k/(q)n−k.
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Then

F (x) =
∞
∑

k=0

akGk(x)

if, and only if,

ak =
k

∑

m=0

(Aqkpk−1; p−1)k−m−1(1−Apmqm)q(k
2+m2+k−m)/2Fm(q)/(q)k−m.

Garsia and Remmel [11] have yet another q-Lagrange inversion formula. They replaced
fk(x) by a q-analogue of (g(x)− 1)k,

(5.4)
k

∑

s=0

(

k

s

)

q

q(
s

2)(−1)sg(x)g(xq) · · · g(xqk−s−1).

Let Bnk be the coefficient of xn in (5.4). They give an explicit formula for the inverse
matrix B−1.

Theorem 9 (Garsia and Remmel’s q-Lagrange inversion). Let Gk(x) be defined by
(5.4), where g(0) = 1. Then

F (x) =
∞
∑

k=0

akGk(x)

if, and only if,

ak =
k

∑

m=0

AkmFm(q),

where

Akm = q−(
k

2)
k

∑

s=m

(−1)sq(
k−s

2 )θs−m

(q)s(q)k−sθs

and

θ(x) = 1/

∞
∏

n=0

g(xqn).

6. Two classical examples.
The first example of q-Lagrange inversion formula was given by Jackson [18, Eq.(5)], who

gave a q-analogue of Abel’s theorem (2.6). It is

(6.1) Eq(ax) =
∞
∑

k=0

a(a− [2]b) · · · (a− [k]b)

k!q
xkEq([k]bxq

1−k),

where Eq(x) is a q-analogue of the exponential function

(6.2) Eq(x) = (x(1− q))∞.

Carlitz’s example [8] is a q-Lagrange inversion formula for f(x) = x/(1 − x). If F (x)
satisfies (3.3), then he gave

(6.3) ak =
1

[k]
Res
x

Dq(F (x))(1− x) · · · (1− xqk−1)

xk
.
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7. Comparisons.
In this section the strengths and weaknesses of the various approaches will be given.
First we consider to which functions fk(x) the q-Lagrange inversion theorems apply. The

Garsia-Gessel Theorems and the Garsia-Remmel Theorem apply to all of the corresponding
analogues of fk(x). The Hofbauer-Krattenthaler Theorems apply to a quotient of functions
satisfying (4.4). One may ask which functions rk(x) = r(x)r(xq) · · · r(xqk−1) satisfy (4.3).
An easy calculation shows

Dqrk(x) = [k]rk(x)
Dqkr(x)

r(x)
,

so that (4.3) holds, if, and only if,

(7.1)
Dqkr(x)

r(x)
= ρ(x), for all k ≥ 0.

Clearly a linear function is the only solution to (7.1), and we then obtain Carlitz’s example.
Next we consider for which classical functions the inversion formulas given can be explic-

itly computed. The Garsia-Gessel Theorems give only Carlitz’s example. There are appli-
cations to continued fractions, however, because the functional equations are appropriate.
Garsia has used his roofing and starring operators to give new proofs of Rogers-Ramanujan
type identities. He did not find any new such identities. His roofing and starring oper-
ators certainly deserve more attention. The Garsia-Remmel Theorem applies to ex − 1,
and (1 − x)a − 1. Hofbauer’s Theorem includes Jackson’s and Carlitz’s examples, while
Krattenthaler’s Theorem also gives the b = 1 and b = −1/2 examples of Gessel-Stanton.
The b = 1 case is particularly important. The entire theory of basic hypergeometric series
can be based upon this case. As Andrews has shown [3], the Rogers-Ramanujan identities
follow from this case, and it has led to the idea of the Bailey lattice [1]. Recent work of
Gasper [12] and Rahman [21] indicates that many applications of bibasic identities (as in
Theorem 8) to basic hypergeometric series remain.

8. Rogers-Ramanujan identities.
Consider the Rogers-Ramanujan continued fraction

(8.1) φ(x) =
x

1−
xq

1−
xq2

. . .

.

Garsia [10] has shown that the evaluation of (8.1) as a quotient of Rogers-Ramanujan series
follows from (3.9). It is easy to see that the defining relation for the continued fraction is

(8.2) φ(x)− φ(x)φ(xq) = x,

so that we may take f(x) = x − x2 in (3.1). Then (3.9), with r(x) = 1/(1 − x) and
F (x) = x easily gives the evaluation. In fact Garsia proves the key identity for the Rogers-
Ramanujan identities that Rogers and Ramanujan [22] had. Several other examples of
continued fractions are given by Gessel [13].

We now give some examples of new identities of Rogers-Ramanujan type that were found
by q-Lagrange inversion in [14, Eq.(7.13) and (7.15)]. The first two examples are closely
related,

(8.3) 1 +
∞
∑

n=1

(−q)n−1

(q)n
q(

n+1

2 ) =
1

(q; q2)∞(q4, q6, q8, q10, q22, q24, q26, q28; q32)∞
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and

(8.4)
∞
∑

n=1

(−q)n−1

(q)n
q(

n+1

2 ) =
q

(q; q2)∞(q2, q8, q12, q14, q18, q20, q24, q30; q32)∞
.

Since the left sides of (8.3) and (8.4) differ by one, Andrews [4, 5] noted that (8.3) and (8.4)
imply the next theorem.

Theorem 10. The number of partitions of n into parts which are odd or congruent to ±4,
±6, ±8, or ±10 modulo 32 is equal to the number of partitions of n − 1 into parts which
are odd or congruent to ±2, ±8, ±12, or ±14 modulo 32.

Andrews also gave a combinatorial interpretation for (8.3) and (8.4) individually as a
“colored” Rogers-Ramanujan identity. We state here only the version for (8.3). A two-color
partition is an ordered pair of partitions (λ, µ), which are called red and green respectively.
Such a two-color partition is called a partition of n if the sum of the parts of λ and µ is n.

Theorem 11. The number of two-color partitions of n such that

(1) the parts are distinct,
(2) the largest part is red, and
(3) each green part is at least two smaller than the next largest part

is equal to the number of partitions of n into parts which are odd or congruent to ±4, ±6,
±8, or ±10 modulo 32.

Finally we give Bressoud’s [7] combinatorial interpretation of [14, Eq. 7.24]

∞
∑

k=0

(−q; q2)2kq
2k2

(q2; q4)k(q8; q8)k
= (−q2,−q3,−q5; q8)∞.

Theorem 12. The number of partitions of n into distinct parts whose odd parts are con-
gruent to ±3 modulo 8 is equal to the number of partitions of n with the following properties:

(1) the parts which are congruent to 2 modulo 4 are 2, 6, . . . , 4k − 2, with multiplicity
at least one,

(2) the parts which are congruent to 0 modulo 4 are ≤ 4k and have even multiplicities,
(3) all of the odd parts are distinct and less than 4k.
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