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Abstract

Garrett, Ismail, and Stanton gave a general formula that contains the Rogers{

Ramanujan identities as special cases. The theory of associated orthogonal polynomials

is then used to explain determinants that Schur introduced in 1917 and show that the

Rogers{Ramanujan identities imply the Garrett, Ismail, and Stanton seemingly more

general formula. Using a result of Slater a continued fraction is explicitly evaluated.
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1. Introduction. In a recent paper [6] Garrett, Ismail, and Stanton prove, amongst many

other things, the following generalization of the celebrated Rogers{Ramanujan identities:
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with the Schur polynomials, de�ned by
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m�1
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m�2

; D

0

= 1; D

1

= 1 + q;(1.2)
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m

= E

m�1

+ q

m

E

m�2

; E

0

= 1; E

1

= 1:(1.3)

Another proof, based on generalized Engel expansions, can be found in [3].

Schur [8] has computed the limits
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The aim of this note is to explain the result (1.1) within the context of associated or-

thogonal polynomials and their disguised appearance in Schur's work in the form of deter-

minants. One basic ingredient is a sequence of orthogonal polynomials studied by Al-Salam

and Ismail in [1]. In x2 we show how the polynomials studied by Schur in [8] and the

Rogers{Ramanujan identities can be used to give a proof of (1.1). In x3 the more general

polynomials of [1] are used to formulate a more general identity than (1.1). An application

to some of the Slater identities [9] is included in x4.

The Al-Salam and Ismail polynomials fU

n

(x; a; b)g are de�ned by

U

0

(x; a; b) = 1; U

1

(x; a; b) = x(1 + a);(1.5)

U

n+1

(x; a; b) = x(1 + aq

n

)U

n

(x; a; b)� bq

n�1

U

n�1

(x; a; b); n � 1:(1.6)

To indicate the dependence of U

n

(x; a; b) on q, when necessary we will use the notation

U

n

(x; a; bjq). In accordance with the theory of orthogonal polynomials [4], the numerator

polynomials fU

�

n

(x; a; b)g satisfy the recursion in (1.6) and the initial conditions

U

�

0

(x; a; b) = 0; U

�

1

(x; a; b) = 1 + a:(1.7)

Therefore

U

�

n

(x; a; b) = (1 + a)U

n�1

(x; qa; qb):(1.8)

Schur [8] actually considered the polynomials U

n

(1; 0;�q) and U

�

n

(1; 0;�q). In the notation

of (1.2) and (1.3) we have

D
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n
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�
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n
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2

):(1.9)
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where we have used the standard notation for shifted factorials (a; q)

n

found in [2], [5].

Al-Salam and Ismail [1] proved that the limiting relation

lim

n!1

z

�n

U

n

(z; a; b) = (�a; q)

1

F (b=z

2

; a; q);(1.11)

holds uniformly on compact subsets of the complex z-plane which do not contain z = 0.

They also gave the explicit representation
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In x4 we recast (1.12) in the form of a generating function with generating function

variables a and b. In order to do so, we need the following form of the q-binomial theorem

[2], [5]
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2. Schur's determinants. We �rst show how Schur would have proved (1.1) in 1917.

Consider the following determinant of Schur:
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Expanding the determinant with respect to the �rst column (\top{recursion") we get

Schur(b) = Schur(bq) + bq

1+m

Schur(bq

2
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Schur(b) =
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;
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we get, upon comparing coe�cients,
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and thus the left hand side of (1.1) can be expressed by Schur(1).

On the other hand, Schur(1) is the limit of the �nite determinants
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Expanding this determinant with respect to the last row (\bottom{recursion") we get

Schur
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= Schur
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+q

n+m

Schur
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:(2.1)

We see that the sequences hD

n+m

i

n

and hE
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i

n

satisfy the recursion (2.1) , and thus

any linear combination will satisfy the same recurrence relation.
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We can determine the parameters � and � using the initial conditions Schur
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The denominators in (2.3) and (2.4) are Casorati determinants, the discrete version of

a Jacobian, and can be computed explicitly [7]. Indeed
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The proof of (2.5) is by induction on m. The beginning m = 0 is trivial; the induction

step goes like this:
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This replaces (2.3){(2.4) by the nicer forms
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Thus the above analysis has led to
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Performing the limit n!1 this turns into
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which is (1.1).

3. Associated orthogonal polynomials.

The proof outlined in x2 can be considered in the context of orthogonal polynomials

which satisfy three term recurrences such as (1.2){(1.3). In this section we give in Lemma

3.3 a result for general orthogonal polynomials which specializes to the proof in x2. Some

applications of Lemma 3.3 to the Al-Salam-Ismail polynomials are also given.

Any sequence of orthogonal polynomials fp

n

(x)g satis�es a three term recurrence rela-

tion

p

n+1

(x) = (A

n

x+B

n

)p

n

(x) + C

n
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n�1

(x); n � 1;(3.1)

and we assume the initial conditions

p
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(x) = A

0

x+ B

0

:(3.2)

The analogue of Schur's �nite determinant is the well-known tridiagonal determinant
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, then p
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(1) = Schur

n

. To see that the polynomials

de�ned by (3.3) satisfy (3.1) expand the determinant representing p
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(x) about the last

row. We then verify that p

1

(x) and p

2

(x) of (3.3) agree with p

1

(x) from (3.2) and p
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(x)

which arises from (1.1) using the initial conditions (1.2).

Recall that the numerator polynomials fp

�

n

(x)g [4], [7] associated with fp

n

(x)g are de-
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z
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n
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n
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n
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n
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p

�

0
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�

1
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0

:(3.5)

The two sets of polynomials fp

n

(x)g and fp

�

n

(x)g form a basis for solutions of the

three-term recurrence (3.4). One could also consider fp

�

n+1

(x)g as a solution to the three-

term recurrence relation which has the indices shifted up by one. More generally, the mth

associated polynomials are de�ned to be the solution to

p

(m)
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n+m

x +B
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)p

(m)

n
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p
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n�1

(x); n � 1;(3.6)
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p
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0
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1
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m
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m

:(3.7)

Thus we see that if A

n
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n
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n

= q

n
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p

(m)
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n
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n
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n
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(1)

n

(1):(3.8)
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Theorem 3.1 The polynomials U

n

(x; a;�bjq) satisfy the polynomial identity

(�b)

m�1

q

(

m�1

2

)

U

n

(x; aq

m

;�bq

m

jq) = U

m�1

(x; a;�bjq)U

n+m�1

(x; aq;�bqjq)(3.9)

�U

m�2

(x; aq;�bqjq)U

n+m

(x; a;�bjq);

for m � 1; n � 0, with U

�1

(x; a; bjq) := 0.

The relationship (3.9) is an extension of (2.7). After applying (1.11), the n ! 1 limit

of (3.9) becomes the following corollary.

Corollary 3.2 We have the following generalization of (1.1)

(�b=x)

m�1

q

(

m�1

2

)

F (�bq

m

=x

2

; aq

m

; q)(3.10)

=

�

(�aq; q)

m�1

U

m�1

(x; a; b)F (�bq=x

2

; aq; q)

� (�a; q)

m

xU

m�2

(x; aq;�bq)F (�b=x

2

; a; q)

�

:

The proof of Theorem 3.1 depends on a Lemma well-known to those who are familiar

with the analytic theory of continued fractions and orthogonal polynomials. We include its

proof only to make this work as self-contained as possible.

Lemma 3.3 The associated polynomials fp

(m)

n

(x)g satisfy

p

(m)

n

(x) =

p

�

m�1

(x)p

n+m

(x)� p

m�1

(x)p

�

n+m

(x)

(�1)

m

C

1

C

2

: : :C

m�1

A

0

(3.11)

Proof.

Fix m � 2. As a function of n, fp

(m)

n�m

(x)g

1

n=m

also satis�es (3.4), so it is a linear

combination of fp

n

(x)g and fp

�

n

(x)g with coe�cients that are independent of n, but may

depend upon m and x. Thus we use initial conditions (3.7) to �nd coe�cients A

m

(x) and

B

m

(x) in

p

(m)

n

(x) = A

m

(x)p

n+m

(x) +B

m

(x)p

�

n+m

(x):

The result is

A

m

(x) = p

�

m�1

(x)=�

m

(x); B

m

(x) = p

m�1

(x)=�

m

(x);(3.12)

where

�

m

(x) = p

�

m�1

(x)p

m

(x)� p

m�1

(x)p

�

m

(x):(3.13)
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It is clear that �

m

(x) is a discrete Wronskian (Casorati Determinant) of p

m

(x) and

p

�

m

(x) and can be evaluated from

�

m+1

(x) = �C

m

�

m

(x);

which follows from (3.4). Thus

�

m

(x) = (�1)

m

C

1

C

2

: : :C

m�1

A

0

;

since �

0

(x) = �A

0

.

Let

A

n

= 1 + aq

n

; B

n

= 0; C

n

= bq

n�1

;(3.14)

so that the p

n

(x) = U

n

(x; a;�b), see (1.5) and (1.6). Thus the mth associated polynomials

are

p

(m)

n

(x) = U

n

(x; aq

m

;�bq

m

); for m;n � 0:(3.15)

In view of (1.9) and (3.8), it follows that (3.9) and (3.10) generalize (2.7) and (2.8), respec-

tively. In other words Schur's proof is the case a = 0, b = q.

Remark: The analogue of (1.1) for Rogers{Ramanujan identities of any moduli have

been found by Garrett. She also combinatorially proved (1.1) by an involution, and gener-

alized (1.1) to partitions whose parts di�er by at least d.

4. Further results. The relationship (1.1) is the case a = 0, x = 1 and b = q of (3.10),

if we assume the Rogers{Ramanujan identities, that is assume (1.4). Another interesting

result is found by choosing a = �q

1=2

, x = 1, b = q, and then replacing q by q

2

.

In our notation (38) and (39) in [9] are

F (�q

2

;�q; q

2

) =

1

X

n=0

q

2n

2

(q; q)

2n

=

1

Y

n=0

(1 + q

3+8n

)(1 + q

5+8n

)(1� q

8n+8

)

(1� q

2n+2

)

;(4.1)

F (�q

4

; q

3

; q

2

)

(1� q)

=

1

X

n=0

q

2n

2

+2n

(q; q)

2n+1

=

1

Y

n=0

(1 + q

1+8n

)(1 + q

7+8n

)(1� q

8n+8

)

(1� q

2n+2

)

:(4.2)

These are Rogers{Ramanujan identities of order 8 as indicated in [9]. It is interesting

to note that with the choices a = �q

1=2

, x = 1, b = q, formula (3.10) is
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1

X

n=0

q

2mn+n

2

(q; q)

n

(q

2n+1

; q)

m

(4.3)

= (�1)

m

q

(

m

2

)

�

U

m�2

(1;�q

3

;�q

4

jq

2

)F (�q

2

;�q; q

2

)

� U

m�1

(1;�q;�q

2

jq

2

)F (�q

4

;�q

3

; q

2

)=(1� q)

�

:

Al-Salam and Ismail [1] established the continued fraction representation

F (�qbz

�2

; qa; q)

zF (�bz

�2

; a; q)

=

1 + a

(1 + aq)z+

b

(1 + aq

2

)z+

bq

(1 + aq

3

)z+

� � �(4.4)

The special case z = 1; b = q; a = �

p

q gives, via (4.1){(4.2),

1

(1� q

3

)+

q

2

(1� q

5

)+

q

4

(1� q

7

)+

� � �=

1

Y

n=0

(1 + q

1+16n

)(1 + q

14+16n

)

(1 + q

6+16n

)(1 + q

10+16n

)

:(4.5)

Recall that a Gaussian (or q-)binomial and trinomial coe�cients are

�

n

k

�

q

=

(q; q)

n

(q; q)

k

(q; q)

n�k

;

�

n

j; k

�

q

=

(q; q)

n

(q; q)

j

(q; q)

k

(q; q)

n�j�k

:(4.6)

The polynomials fU

n

(x; a; bjq)g contain a redundant parameter. In fact it is clear from

(1.12) that x

�n

U

n

(x; a; bx

2

jq) is independent of x. As orthogonal polynomials the x variable

is important and we can scale away the b parameter. Set

V

n

(a; bjq) = x

�n

U

n

(x; a;�bx

2

jq) =

bn=2c

X

k=0

�

n� k

k

�

q

(�a; q)

n�k

(�a; q)

k

b

k

q

k(k�1)

:(4.7)

Since (�a; q)

n�k

=(�a; q)

k

= (�aq

k

; q)

n�2k

we can expand the quotient using the q-

binomial theorem (1.13) and obtain

V

n

(a; bjq) =

bn=2c

X

k=0

n�2k

X

j=0

�

n � k

j; k

�

q

a

j

b

k

q

k(k+j�1)+j(j�1)=2

:(4.8)

For example the coe�cient of a

j

b

k

q

m

in V

n

(a; bjq) has a combinatorial interpretation in

terms of counting pairs of partitions. This combinatorial study is still in progress.
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