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Abstract

We establish two new q-analogues of a Taylor series expansion for
polynomials using special Askey-Wilson polynomial bases. Combining
these expansions with an earlier expansion theorem we derive inverse
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1 Introduction

The Taylor theorem for polynomials f(x) evaluates the coefficients fk in the
expansion

f(x) =
∞
∑

k=0

fk(x− c)k, fk =
f (k)(c)

k!
.(1.1)

It is possible to generalize (1.1) by considering other polynomial bases and
suitable operators. One such example, which has been previously considered
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[5], replaces (x− c)k by

φk(x; a) = (aeiθ, ae−iθ; q)k =
k−1
∏

i=0

(1− 2axqi + a2q2i).

Since

lim
q→1

φk(x; a) = (1− 2ax+ a2)k

we can consider φk(x; a) as a q-analogue of (x − c)k for c = a + 1/a. The
Taylor theorem for φk(x; a) is stated as Theorem 1.1 below. In this paper
we consider two other q-analogues of (1.1): Theorem 2.1 which has a q-
analogue of (x − 1)k and Theorem 2.2 for a q-analogue of xk. We shall
follow the notations and terminology in [1] and [4].

All three theorems use polynomial bases and the Askey-Wilson operator.
We first define the Askey-Wilson operator Dq. Given a function f we set

f̆(eiθ) := f(x), x = cos θ, that is

f̆(z) = f((z + 1/z)/2), z = eiθ.

In other words we think of f(cos θ) as a function of eiθ. In this notation the
Askey-Wilson divided difference operator Dq is defined by

(Dqf)(x) =
f̆(q1/2eiθ)− f̆(q−1/2eiθ)

(q1/2 − q−1/2) i sin θ
, x = cos θ.(1.2)

It easy to see that the action of Dq on Chebyshev polynomials is given
by

DqTn(x) =
qn/2 − q−n/2

q1/2 − q−1/2
Un−1(x),

hence Dq reduces the degree of a polynomial by one and

lim
q→1

Dq =
d

dx
.

In the calculus of the Askey-Wilson operator [3, p. 32] the basis {φn(x; a) :
n ≥ 0} plays the role played by the monomials {(1− 2ax+ a2)n : n ≥ 0} in
the differential and integral calculus. In fact

Dq(ae
iθ, ae−iθ; q)n = −2a(1− qn)

1− q
(aq1/2eiθ, aq1/2e−iθ; q)n−1.(1.3)

Ismail [5] proved the following Taylor theorem for polynomials f(x).
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Theorem 1.1. If f(x) is a polynomial in x of degree n, then

f(x) =
n
∑

k=0

fkφk(x; a),

where

fk =
(q − 1)k

(2a)k(q; q)k
q−k(k−1)/4(Dk

q f)(xk)

and xk is given by

xk :=
1

2

(

aqk/2 + q−k/2/a
)

.

In our recent work [7] it was realized that the basis {φn(x) : n ≥ 0},

φn(cos θ) = (q1/4eiθ, q1/4e−iθ; q1/2)n,(1.4)

plays an important role in the calculus of the Askey-Wilson operators and
basic hypergeometric functions. Rahman [11], [3, p. 23] had previously
used this basis for expressing continuous q-Jacobi polynomials [3] in the
basis {φn(x)}. Since

lim
q→1

φn(x) = 2n(1− x)n,

we consider φn(x) as a q-analogue of (x − 1)n. We shall also see that the
basis {ψn(x) : n ≥ 0},

ψn(cos θ) = (1 + e2iθ)(−q2−ne2iθ; q2)n−1e
−inθ,(1.5)

has a nice relationship to the Askey-Wilson operator. Since

lim
q→1

ψn(x) = 2nxn

we consider ψn(x) as a q-analogue of xn. Note that as functions of θ the
polynomials {ψn(cos θ)} are essentially partial theta functions [14] since

ψ2n(cos θ) = qn(1−n)(−e2iθ,−e−2iθ; q2)n,

ψ2n+1(cos θ) = 2q−n2

cos θ (−qe2iθ,−qe−2iθ; q2)n.

In this paper we give q-Taylor theorems for polynomials using {φn(x)}
and {ψn(x)} in Theorems 2.1 and 2.2. We then explore consequences of
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these results to connection coefficient problems. They are applied to obtain
connection coefficient results in Theorems 2.3 and 2.4. These two theorems
are then used to give a simple proof of our new [7] representation (Corollary
2.5) for Eq, the addition theorem for the q-exponential function Eq, (Corol-
lary 2.6) [6], [13], and another new representation for Eq (Corollary 2.7).
In §3 we explicitly evaluate the coefficients in the expansion of a product
φm(x; a)φn(x; b) in terms of {φk(x; c)}. In §4 all three theorems are used to
derive expansions for the continuous q-ultraspherical polynomials (Propo-
sitions 4.1, 4.2, and 4.3) which include known quadratic transformations.
Section 5 contains remarks on representations of continuous q-ultraspherical
polynomials and implications of Theorems 1.1 and 2.1.

We note that the q-Taylor expansions derived and applied here are dif-
ferent from the recent results in [10], [12].

2 More q-Taylor theorems

In this section we give the version of Theorem 1.1 for {φn(x)} and {ψn(x)},
which are Theorem 2.1 and Theorem 2.2. We apply the resulting facts to
the q-exponential function Eq, in Corollaries 2.5, 2.6 and 2.7.

It is straightforward to see that

Dqφn(x) = −2q1/4
1− qn

1− q
φn−1(x).(2.1)

Theorem 2.1. If f(x) is a polynomial in x of degree n, then

f(x) =
n
∑

k=0

fkφk(x),

where

fk =
(q − 1)k

2kqk/4(q; q)k
(Dk

q f)(ζ0)

and ζ0 = (q1/4 + q−1/4)/2.

Proof. The proof is an immediate consequence of (2.1), since φn(ζ0) = 0 for
n ≥ 1.

It is important to contrast the series expansion of Theorem 1.1 with eval-
uations at variable points xk and that of Theorem 2.1, where the coefficients
depend on evaluations at a fixed point ζ0.
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For {ψn(x)} we have the following result, which uses

Dqψn(x) = 2q(1−n)/2 1− qn

1− q
ψn−1(x).(2.2)

Theorem 2.2. If f(x) is a polynomial in x of degree n, then

f(x) =
n
∑

k=0

fkψk(x),

where

fk =
q(k

2−k)/4(1− q)k

2k(q; q)k
(Dk

q f)(0) .

Proof. The proof is an immediate consequence of (2.2), since if e2iθ = −1,
namely θ = π/2, cos θ = 0, ψn(0) = 0 for n ≥ 1.

The first application of Theorem 2.1 is to expand φn(x; a) in terms of
{φk(x) : 0 ≤ k ≤ n}.

Theorem 2.3. The following summation theorem holds

(aeiθ, ae−iθ; q)n

(aq−1/4; q1/2)2n

= 4φ3

(

q−n/2,−q−n/2, q1/4eiθ, q1/4e−iθ

−q1/2, aq−1/4, q−n+3/4/a

∣

∣

∣

∣

q1/2, q1/2
)

.

Proof. Use Theorem 2.1 and (1.3).

We now give a direct proof of Theorem 2.3.

Proof. Use the Sears transformation [4, (III.15)] with

A = −q−n/2, B = q1/4eiθ, C = q1/4e−iθ

D = aq−1/4, E = −q1/2, F = q−n+3/4/a.

Then use the quadratic transformation [4, (III.21)] with

C = q−n/2, D = −q−n/2, A2 = aq−1/2e−iθ, B2 = aq−1/2eiθ.
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The result is that the right-hand side of the equation in Theorem 2.3 is

(q(n+1)/2,−q(−n+3/2)/2/a; q1/2)n

(−q1/2, q−n+3/4/a; q1/2)n
(−1)nq−n2/2

×3φ2

(

aq−1/2eiθ, aq−1/2e−iθ, q−n

a2q−1/2, q−n+1/2

∣

∣

∣

∣

q, q

)

.

The 3φ2 is balanced and its sum is (aeiθ, ae−iθ; q)n/(a
2q−1/2, q1/2; q)n, see

[4, (II.12)].

Although Theorem 2.3 can be proved from the existing literature we
nevertheless believe it is interesting and is worth recording as a sum of a
special balanced 4φ3.

Since Theorem 2.2 is just an expansion of φn(x; a) in terms of {φk(x)},
it is natural to record the inverse relation expanding φn(x) in {φk(x; a)}.
The result is

(q1/4eiθ, q1/4e−iθ; q1/2)n

(q1/4a, q1/4/a; q1/2)n
(2.3)

= 3φ2

(

q−n, aeiθ, ae−iθ

aq(1−2n)/4, aq(3−2n)/4

∣

∣

∣

∣

q, q

)

.

The 3φ2 in (2.3) is balanced, hence it can be summed by [4, (II.12)], proving
the result.

We next expand φn(x; a) in terms of {ψk(x) : 0 ≤ k ≤ n}.

Theorem 2.4. The following summation theorem holds

(aeiθ, ae−iθ; q)n = =
n
∑

k=0

[

n

k

]

q

q(
k
2
)(−a)k(−a2qk; q2)n−kψk(cos θ).

Proof. Use Theorem 2.2 and (1.3).

We next give several corollaries to Theorem 2.3 and Theorem 2.4, which
concern the q-exponential functions of [9]

Eq(cos θ; t) =
(t2; q2)∞
(qt2; q2)∞

∞
∑

n=0

(−it)n
(q; q)n

qn
2/4(2.4)

×(−iq(1−n)/2eiθ,−iq(1−n)/2e−iθ; q)n,
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Eq(cos θ, cosφ; t)(2.5)

=
(t2; q2)∞
(qt2; q2)∞

∞
∑

n=0

(−ei(φ+θ)q(1−n)/2,−ei(φ−θ)q(1−n)/2; q)n

× (te−iφ)n

(q; q)n
qn

2/4.

Note that (2.4) is an expansion for Eq(x; t) in terms of {φn(x;−iq(1−n)/2)},
so it reasonable to find the expansion in the bases {φn(x)} and {ψn(x)}.
Corollary 2.5 gives the {φn(x)} expansion, and Corollary 2.7 gives the
{ψn(x)} expansion.

Corollary 2.5. The function Eq(x; t) has the representations

Eq(cos θ; t) =
(−t; q1/2)∞
(qt2; q2)∞

2φ1

(

q1/4eiθ, q1/4e−iθ

−q1/2
∣

∣

∣

∣

q1/2,−t
)

=
(t; q1/2)∞
(qt2; q2)∞

2φ1

(

−q1/4eiθ,−q1/4e−iθ

−q1/2
∣

∣

∣

∣

q1/2, t

)

.

Corollary 2.6. We have

Eq(cos θ, cosφ; t) = Eq(cos θ; t)Eq(cosφ; t).

Corollary 2.7. The function Eq(x; t) has the expansion formula

Eq(cos θ; t) =
∞
∑

k=0

(1 + e2iθ)(−e2iθq−k; q2)k
(q; q)k(1 + e2iθq−k)

qk
2/4tke−ikθ.

It must emphasized that the first equation in Corollary 2.5 says that the
q-Taylor expansion of Theorem 2.1 holds for the function f(x) = Eq(x; t),
because

DqEq(cos θ; t) =
2tq1/4

1− q
Eq(cos θ; t),

Eq(ζ0; t) =
(−t; q1/2)∞
(qt2; q2)∞

.

Similarly Theorem 2.2 holds for f(x) = Eq(x; t) because

Eq(0; t) = 1.

Corollary 2.5 is Corollary 4.3 in [7], where two other proofs are given. Corol-
lary 2.6 is the addition theorem for Eq; [13], [6]; and Corollary 2.7 is new.
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Proof. We prove Corollary 2.5 and 2.6 simultaneously from Theorem 2.3.
We rewrite Theorem 2.3 as

φn(x; a) =

n
∑

k=0

akqk(k−2)/4 (q; q)n
(q; q)k(q; q)n−k

(aq(2k−1)/4; q1/2)2n−2kφk(x).

Thus
∞
∑

n=0

qn
2/4tnan

(q; q)n
φn(x; aq

(1−n)/2)

=
∞
∑

n=0

n
∑

k=0

an+ktnq(n−k)2/4

(q; q)k(q; q)n−k
(aq(k−n+1/2)/2; q1/2)2n−2k φk(x).

After replacing n by n+ k the n-sum is
∞
∑

n=0

a2ntn(−1)n

(q; q)n
(aq1/4, q1/4/a; q1/2)n.

Therefore

(t2; q2)∞
(qt2; q2)∞

∞
∑

n=0

qn
2/4tnan

(q; q)n
φn(x; aq

(1−n)/2)(2.6)

=
(t2; q2)∞
(qt2; q2)∞

[

∞
∑

n=0

(−a2t)n
(q; q)n

(aq1/4, q1/4/a; q1/2)n

]

×
[

∞
∑

k=0

a2ktk

(q; q)k
φk(x)

]

Equation (2.6) proves both Corollary 2.5 and 2.6. If a = ±i, the left side
of (2.6) is the definition (2.4) of Eq(cos θ; t), while the n-sum on the right
side is evaluable to infinite products by the q-binomial theorem. The k-sum
is the 2φ1 for both equations in Corollary 2.5. For Corollary 2.6, replace a
by −eiφ and t by −e−2iφt in (2.6) and use Corollary 2.5.

The identical steps may be performed using Theorem 2.4 to find the
{ψn} analogue of (2.6)

(t2; q2)∞
(qt2; q2)∞

∞
∑

n=0

qn
2/4tnan

(q; q)n
φn(x; aq

(1−n)/2)(2.7)

=
(t2; q2)∞
(qt2; q2)∞

[

∞
∑

k=0

(−a2t)kqk2/4
(q; q)k

ψk(x)

]

×
[

∞
∑

n=0

(−a2q1−n; q2)n
(q; q)n

antnqn
2/4

]
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This time the choice a = ±i in (2.7) allows the n-sum to be evaluated,
and the result is Corollary 2.7. As before putting a = −eiφ and t = −e−2iφt
gives Corollary 2.6 and as bonus Eq(0, cos θ; t) = Eq(cos θ; t).

Corollary 2.7 may be also proven by splitting the definition (2.4) into the
even and odd terms, applying a 2φ1 transformation to each, and recombining
the terms.

Because the polynomials {φn(x; aq(1−n)/2)} are fundamental to the study
of Eq(cos θ; t), it is worthwhile to record another connection coefficient result
which is equivalent to the addition theorem in Corollary 2.6.

Corollary 2.8. The polynomials {φ(x; aq(1−n)/2)} satisfy the connection re-

lation

φn(x; aq
(1−n)/2) =

n
∑

k=0

[

n

k

]

q

1 + a2

1 + a2q−k
(−a2q−k; q2)kq

−k(n−k)/2(ia)n−k

×φn−k(x;−iq(1−n+k)/2).

Proof. If a = eiφ, φn(x; aq
(1−n)/2)/an is a polynomial in y = cosφ of degree

n due to

φn(cos θ; e
iφq(1−n)/2)e−inφ = (−1)nφn(cosφ; e

iθq(1−n)/2)e−inθ.(2.8)

The result then follows from Theorem 2.2 applied to a function of y, y =
cosφ.

3 Linearization of Products

In this section we use Theorem 1.1 to evaluate the linearization coefficients
ck,m,n(a, b, c) in

φm(x; b)φn(x; c) =

m+n
∑

k=0

ck,m,n(a, b, c)φk(x; a),(3.1)

our main result is Theorem 3.1.
We shall use the q-Leibniz role [5]

Dn
q (fg) =

n
∑

k=0

[

n

k

]

q

qk(k−n)/2
(

ηkqDn−k
q f

)(

ηk−n
q Dk

q g
)

,(3.2)
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where

(ηaq )f(x) = f̆(qa/2eiθ), x = cos θ.(3.3)

We see that to apply Theorem 1.1 we need to evaluate ηsqD
k−s
q φm(x; b) and

ηs−k
q Ds

qφn(x; c) at x = xk. It is easy to see from (1.3) that if x = cos θ

ηsqD
k−s
q φm(x; b) =

(2b)k−s(q; q)mq
( k−s

2
)/2

(q − 1)k−s(q; q)m+s−k

×(bqk/2eiθ, bq−s+k/2e−iθ; q)m+s−k,

ηs−k
q Ds

qφn(x; c) =
(2c)s(q; q)nq

( s
2 )/2

(q − 1)s(q; q)n−s
(cqs−k/2eiθ, cqk/2e−iθ; q)n−s.

This leads to

ck,m,n(a, b, c) =
bk(q, ab; q)m(q, ac; q)n

ak(ab; q)k

k
∑

s=0

cs(abqm; q)s
bs(q, ac; q)s

(3.4)

× (c/a; q)n−s(bq
−s/a; q)s+m−k

(q; q)k−s(q; q)n−s(q; q)m+s−k
qs(s−k).

Thus we have proved the following theorem.

Theorem 3.1. We have the summation identity

(beiθ, be−iθ; q)m(ceiθ, ce−iθ; q)n
(q, ab; q)m(q, ac; q)n

=
∑

k,s≥0

bk−scs(abqm; q)s(c/a; q)n−s(bq
−s/a; q)s+m−k

ak(ab; q)k(q, ac; q)s(q; q)k−s(q; q)n−s(q; q)m+s−k

×qs(s−k)(aeiθ, ae−iθ; q)k.

The sum is so that 0 ≤ s ≤ min{n, k}, 0 ≤ k ≤ s+m.

Mizan Rahman kindly pointed out that the spcial case a = b = c of
Theorem 3.1 is (8.1.2) of [4].

We now give another proof of Theorem 3.1. First compute the k sum by
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replacing k by k + s then observe that the right-hand side becomes

∑

s≥0

cs(abqm; q)s(c/a; q)n−s

as(ab, q, ac; q)s(q; q)n−s
φs(cos θ; a)

×
∑

k≥0

bka−k(bq−s/a; q)m−k

ak(abqs; q)k(q; q)k(q; q)m−k
q−sk(aqseiθ, aqse−iθ; q)k.

=
∑

s≥0

cs(abqm, aeiθ, ae−iθ; q)s(c/a; q)n−s(bq
−s/a; q)m

as(ab, q, ac; q)s(q; q)n−s(q; q)m

×3φ2

(

q−m, aqseiθ, aqse−iθ

abqs, aqs+1−m/b,

∣

∣

∣

∣

q, q

)

.

The 3φ2 is now summable by the q-Pfaff-Saalschütz theorem [4, (II.12)] and
the result is that each side in the above expression equals

φm(x; a)

(ab; q)m

n
∑

s=0

cs(aeiθ, ae−iθ; q)s(c/a; q)n−s

as(q, ac; q)s(q; q)n−s(q; q)m
,

which is again summable by the q-Pfaff-Saalschütz theorem and Theorem
3.1 follows.

In terms of basic hypergeometric functions, Theorem 3.1 can be restated
as

ck,m,n(a, b, c) =
bk(q, ab; q)m(ac, c/a; q)n(b/a; q)m−k

ak(q, ab; q)k(q; q)m−k
(3.5)

×4φ3

(

q−n, q−k, abqm, qa/b
ac, q1−na/c, qm−k+1

∣

∣

∣

∣

q, q

)

, m ≥ k.

For k > m the s-sum is now over s, min{k, n} ≥ s ≥ k −m, so we replace
s by s+ k −m. The result is

ck,m,n(a, b, c)(3.6)

=
bmck−m(q, ac; q)n(c/a; q)m+n−k

ak(q, ac; q)k−m(q; q)n+m−k

×4φ3

(

q−m, qk−m−n, abqk, q1+k−ma/b
acqk−m, q1−n−m+ka/c, qk−m+1

∣

∣

∣

∣

q, q

)

, m ≤ k.

These 4φ3’s are terminating and balanced and are in general form be-
cause they depend on six parameters. This is an interesting observation
because the coefficients must possess the symmetry relation ck,m,n(a, b, c) =
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ck,n,m(a, c, b). This symmetry leads to the Sears transformation as follows.
Fix k as a positive integer and a terminating parameter, then observe that
ck,m,n(a, b, c) = ck,n,m(a, c, b) is a rational function identity valid for infinitely
many integer values of m and n. This allows us to replace qm and qn by two
general parameters M and N respectively and we see that the right-hand
side of (3.5) is

bk(q, ab, ac, q1−kM, b/a, c/a; q)∞
ak(q, ab; q)k(abM, acN, cN/a, bq−kM/a; q)∞

×4φ3

(

q−k, 1/N, abM, qa/b
ac, qa/(Nc),Mq1−k

∣

∣

∣

∣

q, q

)

,

which must be symmetric under the exchange (a,M) and (c,N), hence

bk(q1−kM ; q)k
(ab; q)k(bq−kM/a; q)k

4φ3

(

q−k, 1/N, abM, qa/b
ac, qa/(Nc),Mq1−k

∣

∣

∣

∣

q, q

)

(3.7)

=
ck(q1−kN ; q)k

(ac; q)k(cq−kN/a; q)k
4φ3

(

q−k, 1/M, acN, qa/c
ab, qa/(Mb), Nq1−k

∣

∣

∣

∣

q, q

)

.

Equation (3.7) is the version (III.16) in [4] of the Sears transformation and it-
erating it leads to the standard form of the Sears transformation [4, (III.15)].

When c = a (3.4) implies

φm(x; b)φn(x; a)(3.8)

=
(q; q)m(ab; q)m+n

(ab; q)n

m
∑

k=0

bkq−nk(bq−n/a; q)m−k

ak(q, abqn; q)k(q; q)m−k
φk+n(x; a).

This result is not new since [5, (2.2)] is

φm(x; b) = (q, ab; q)m

m
∑

k=0

bk(b/a; q)m−k

ak(q, ab; q)k(q; q)m−k
φk(x; a),(3.9)

so we can replace a by aqn, multiply by φn(x; a) and apply the identity
φn+k(x; a) = φk(x; a)φn(x; aq

k). This yields (3.8). This indicates that (3.8)
is equivalent to the connection coefficients between two φn’s with different
a’s, which was shown to be equivalent to the q-Pfaff Saalschütz theorem [5].
Having said that (3.8) is not new, nevertheless, the special case m = n and
b = −a gives the useful connection coefficient formula

(a2e2iθ, a2e−2iθ; q2)n(3.10)

= (a; q)n(−a2; q)2n
n
∑

k=0

(−1)n+kqn(k−n)(−q−n; q)k
(q; q)k(q; q)n−k(−a2; q)2n−k

×(aeiθ, ae−iθ; q)2n−k.

12



4 q-Ultraspherical polynomials

In this section we apply Theorems 1.1, 2.1 and 2.2 to the q-ultraspherical
polynomials which have the closed form [2], [4]

Cn(cos θ;β|q) =
n
∑

k=0

(β; q)k(β; q)n−k

(q; q)k(q; q)n−k
ei(n−2k)θ(4.1)

=
(β; q)n
(q; q)n

einθ2φ1

(

q−n, β
q1−n/β

∣

∣

∣

∣

q,
qe−2iθ

β

)

,

and satisfy

DqCn(x;β|q) =
2(1− β)

1− q
q(1−n)/2Cn−1(x; qβ|q).(4.2)

Furthermore the Cn’s have the generating function [2]

∞
∑

n=0

Cn(cos θ;β)t
n =

(βteiθ, βte−iθ; q)∞
(teiθ, te−iθ; q)∞

.(4.3)

We first expand Cn(x;β|q) in terms of {φk(x)}. It is clear from (4.3)
that

Cn(ζ0;β|q) =
(β; q1/2)n

(q1/2; q1/2)n
q−n/4.(4.4)

Thus Theorem 2.1, (4.2) and (4.4) imply the following proposition, which is
(7.5.34) in [4].

Proposition 4.1. The continuous q-ultraspherical polynomials have the ba-

sic hypergeometric representation

Cn(cos θ;β|q) = q−n/4 (β; q1/2)n

(q1/2; q1/2)n

×4φ3

(

q−n/2, βqn/2, q1/4eiθ, q1/4e−iθ

−q1/2, β1/2q1/4,−β1/2q1/4
∣

∣

∣

∣

q1/2, q1/2
)

.

We next apply Theorem 2.2 using

Cn(0;β|q) =
{

0 if n is odd,
(β2;q2)n
(q2;q2)n/2

(−1)n/2 if n is even.

The result is the following proposition.

13



Proposition 4.2. We have

Cn(cos θ;β|q) =
(β; q)n
(q; q)n

(−e2iθq2−n; q)n−1(1 + e2iθ)e−inθ

×4φ3

(

q−n, q1−n,−q1−n/β,−q2−n/β
q2−2n/β2,−e2iθq2−n,−e−2iθq2−n

∣

∣

∣

∣

q2, q2
)

.

Finally we apply Theorem 1.1 to Cn(x;β|q). Let

Cn(x;β|q) =
n
∑

k=0

bn,k(a, β)φk(x; a).(4.5)

This time (4.1) and (4.2) give

bn,k(a, β) =
(β; q)k
(q; q)k

q(1−n)k/2

ak
(−1)kCn−k(xk;βq

k|q)

=
(−1)k(β; q)n a

n−2k

(q; q)k(q; q)n−k
qk(1−k)/2(4.6)

×2φ1

(

qk−n, qkβ
q1−n/β

∣

∣

∣

∣

q,
q1−2k

a2β

)

.

The 2φ1 in (4.6) may be summed by the q-Gauss theorem [4] if β = a2 to
obtain a quadratic transformation (see [2] or (7.5.33) in [4]).

Proposition 4.3. We have

Cn(x;β|q)

=
(β2; q)n

βn/2(q; q)n
4φ3

(

q−n, β2qn,
√
βeiθ,

√
βe−iθ

β
√
q, −β√q, −β

∣

∣

∣

∣

q, q

)

.

For our last expansion we invert (4.5), let

φn(x; a) =
n
∑

j=0

an,jCj(x;β|q).(4.7)

We shall find an,j using the orthogonality relation of the continuous q-
ultraspherical polynomials

∫ π

0
Cm(cos θ;β|q)Cn(cos θ;β|q)

(e2iθ, e−2iθ; q)∞
(βe2iθ, βe−2iθ; q)∞

dθ(4.8)

=
2π(β, qβ; q)∞
(q, β2; q)∞

(β2; q)n(1− β)

(q; q)n(1− βqn)
δm,n
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From (4.8) we get

2π(β, qβ; q)∞
(q, β2; q)∞

(β2; q)j(1− β)

(q; q)j(1− βqj)
an,j

=

∫ π

0
(aeiθ, ae−iθ; q)nCj(cos θ;β|q)

(e2iθ, e−2iθ; q)∞
(βe2iθ, βe−2iθ; q)∞

dθ.

By writing (aeiθ, ae−iθ; q)n as quotients of infinite products then applying
(4.3) to expand it in powers of a, we see that the above expression is

=
∞
∑

m=0

amqmn

∫ π

0
Cm(cos θ; q−n|q)Cj(cos θ;β|q)

(e2iθ, e−2iθ; q)∞
(βe2iθ, βe−2iθ; q)∞

dθ

=

∞
∑

m=0

amqmn

[m/2]
∑

k=0

βk(q−n/β; q)k(q
−n; q)m−k

(q; q)k(qβ; q)m−k

1− βqm−2k

1− β

×
∫ π

0
Cm−2k(cos θ;β|q)Cj(cos θ;β|q)

(e2iθ, e−2iθ; q)∞
(βe2iθ, βe−2iθ; q)∞

dθ

Therefore

(1− β)

(1− βqj)
an,j = ajqnj

∞
∑

k=0

βk(q−n/β; q)k(q
−n; q)k+j

(q; q)k(qβ; q)k+j
a2kq2kn,

that is

an,j = ajqnj
(q−n; q)j
(β; q)j

2φ1

(

qj−n, q−n/β
βqj+1

∣

∣

∣

∣

q, a2βq2n
)

(4.9)

The 2φ1 can be summed if a2 = qβ in which case we get

φn(x;
√

qβ)(4.10)

=
(β2qn+1; q)n
(qβ; q)n

n
∑

j=0

(q−n, qβ; q)j
(β2qn+1, β; q)j

βj/2qj(n+1/2)Cj(x;β|q).

As another example, if a2 = β the 2φ1 is a sum of two terms and the
result becomes

φn(x;
√

β) =
(1− βqn)(β2qn; q)n
(1− β2qn)(qβ; q)n

(4.11)

×
n
∑

j=0

(1− β2q2j)(q−n; q)j
(1− β)(β2qn+1; q)j

βj/2qnjCj(x;β|q).
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5 Remarks

It is natural to ask if Theorems 1.1, 2.1, and 2.2 hold for a class of non-
polynomial functions. In [8] such theorems are given for entire functions
which satisfy growth conditions.

Theorems 1.1 and 2.1 give two alternative forms for the coefficients fk
of φk(x), what results is

(−q1/2; q1/2)kq−k(k−1)/8(Dk
q1/2

f)(ζk) = (q1/2 + 1)k(Dk
q f)(ζ0),(5.1)

where

ζk = (q(k+1)/4 + q−(k+1)/4)/2.

We do not have basic hypergeometric proofs of Theorem 2.4 and Corol-
lary 2.8. It is likely that Theorem 2.4 could be proven by splitting the sum
into even and odd terms as a sum of two balanced 4φ3’s. Applying the Sears
transformation to each sum could then lead to a recombined single sum that
is evaluable- this type of proof establishes Corollary 2.7. Nonetheless these
proposed details contrast with the ease of use of Theorems 1.1, 2.1, and 2.2.

The coefficient an,j in (4.9), the inverse to (4.6), can also be written as
a multiple of the q-ultraspherical polynomial

Cn−j(cosφ; q
−n/b|q), a = q(1−n)/2e−iφ.

Even polynomials in x may be expanded as functions of cos 2θ = 2x2−1,
for example [4, (7.5.40)] is

C2n(cos θ;β|q) = q−n/2 (β; q1/2)2n

(q1/2; q1/2)2n
(5.2)

×4φ3

(

q−n, βqn, q1/2e2iθ, q1/2e−2iθ

βq1/2,−q1/2,−q

∣

∣

∣

∣

q, q

)

.

However it can be shown that (5.2) is equivalent to the reversal of Proposi-
tion 4.2, which is

C2n(cos θ;β|q) = (−1)n
(β2; q2)n
(q2; q2)n

(5.3)

×4φ3

(

q−2n, β2q2n,−e2iθ,−e−2iθ

−β,−βq, q

∣

∣

∣

∣

q2, q2
)

.

Apply Singh’s quadratic 4φ3 transformation [4, (III.21)] followed by the 1-
balanced 4φ3 transformation [4, (III.15)] to show that (5.3) and (5.2) are
equivalent.
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