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1 Introduction

Two important problems in complex function theory are the problems of
expanding a function in a series of polynomials and the interpolation prob-
lem of finding an entire function from its values on a given sequence {xn},
xn → ∞ as n→ ∞. The polynomial expansion problem has a long history.
J. M. Whittaker [17], [18] introduced the concept of basic sets of polyno-
mials where the polynomials are ordered but not necessarily according to
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their degrees and all degrees are present. A more recent treatment of Whit-
taker’s approach is in the interesting monograph [14] by B. H. Makar. Boas
and Buck [4] restricted the polynomials to having a generating function of a
special type which guarantees that pn(x) has precise degree n, n = 0, 1, · · · .
As a result of the specialization imposed by Boas and Buck, they have been
able to obtain more refined results than those which hold for general basic
sets of polynomials.

In this paper we solve the interpolation problem for the sequence {x2n},

xn = [aqn/2 + q−n/2/a]/2, 0 < q < 1, 0 < a < 1,(1.1)

for entire functions f satisfying

lim sup
r→+∞

lnM(r; f)

ln2 r
= c,(1.2)

for a particular c which depends upon q. Here M(r; f) is [3]

M(r; f) = sup {|f(z)| : |z| ≤ r}.(1.3)

In the process of solving this problem we also solve the expansion problem
of entire functions in two specific bases of polynomials, namely {φn(x; a)}
and {ρn(x)} defined in (1.9)–(1.10) and the coefficients in the expansion on
{φn(x; a)} involve function evaluations at {x2n}. In the case of {ρn(x)}, the
interpolation points are

un = i(qn/2 − q−n/2)/2, n = · · · ,−1, 0, 1, · · · .(1.4)

Carlson’s theorem [3] states that an entire function f of order one and
type less than π is uniquely determined by the sequence {f(n) : n =
0, 1, . . . }. Moreover if f(x) is entire of order 1 and type < ln 2 then

f(x) =

∞
∑

n=0

(

x

n

)

(∆nf)(0),(1.5)

and the series converges uniformly on compact subsets of the complex x-
plane, [3, Theorem 9.10.7]. In the above (∆f)(x) = f(x+1)−f(x). Another
representation was obtained by Ramanujan in his first notebooks, where he
wrote

∫ ∞

0
xs−1

∞
∑

k=0

f(k)(−x)kdx =
π

sinπs
f(−s).(1.6)
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Hardy [8, (11.2A), p. 186] proved (1.6) by contour integration and pointed
out that it holds under the assumptions in Carlson’s theorem. Therefore
Ramanujan’s formula (1.6) provides a constructive proof of Carlson’s theo-
rem by showing how to construct the function f from {f(n)}. Therefore, in
some sense, our formulas are closer in spirit to (1.5). An interesting question
is to find the analogue of Ramanujan’s formula (1.6).

Ramis [15] defined an entire function f to have a q-exponential growth
of order k and a finite type if there exist real numbers K,α, K > 0, such
that

|f(x)| < K|x|α exp
(

k ln2 |x|
2 ln2 q

)

.

Thus functions satisfying (1.2) are of q-exponential growth of order 2c ln2 q.
Two of our main results are Theorems 3.1 and 3.3 which are stated and

proved in §3. Before we can state our results we need to explain the notation
used, which is mainly from [1] and [7]. The q-shifted factorials are

(a; q)0 := 1, (a; q)n :=
n
∏

k=1

(1− aqk−1), n = 1, 2, . . . , or ∞,(1.7)

while the multiple q-shifted factorials are defined by

(a1, a2, . . . , ak; q)n :=

k
∏

j=1

(aj ; q)n.(1.8)

The bases of polynomials we are interested in are defined by

φn(cos θ; a) = (aeiθ, ae−iθ; q)n =
n−1
∏

k=0

[1− 2axqk + a2q2k],(1.9)

ρn(cos θ) = (1 + e2iθ)(−q2−ne2iθ; q2)n−1e
−inθ.(1.10)

The motivation for considering these special bases is our desire to establish
Taylor-like series where the Askey-Wilson operator plays the role of d

dx and
these polynomials play the role of monomials. The basis {φn(x; a)} was
introduced in the Askey-Wilson memoir [2] but the basis {ρn(x)} does not
seem to have been considered before we inroduced them in [11].

We now define the Askey-Wilson operator Dq introduced in [2]. Given a

function f we set f̆(eiθ) := f(x), x = cos θ, that is

f̆(z) = f((z + 1/z)/2), z = eiθ.(1.11)
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In other words we think of f(cos θ) as a function of eiθ. In this notation the
Askey-Wilson divided difference operator Dq is defined by

(Dqf)(x) =
f̆(q1/2eiθ)− f̆(q−1/2eiθ)

(q1/2 − q−1/2) i sin θ
, x = cos θ.(1.12)

For example with f(x) = 4x3 − 3x, f̆(z) = [z3 + z−3]/2, and

Dqf(x) =
q3/2 − q−3/2

q1/2 − q−1/2
(4x2 − 1).

It is a fact that Dq reduces the degree of a polynomial by one and

lim
q→1

Dqf(x) =
d

dx
f(x),(1.13)

at the points where f is differentiable. Furthermore in the calculus of the
Askey-Wilson operator the basis {φn(x; a) : n ≥ 0} plays the role played
by the monomials {(1− 2ax+ a2)n : n ≥ 0} in the differential and integral
calculus.

Note that although we use x = cos θ, θ is not necessarily real but e±iθ

are defined as

e±iθ = x±
√

x2 − 1,

and the branch of the square root is taken such that
√
x2 − 1 ≈ x as x→ ∞.

This makes |e−iθ| ≤ |eiθ|, with equality if and only if x ∈ [−1, 1].
The action of Dq on the bases in (1.9)–(1.11) is given by

Dqφn(x; a) = −2a(1− qn)

1− q
φn−1(x; aq

1/2),(1.14)

Dqρn(x) = 2q(1−n)/2 1− qn

1− q
ρn−1(x).(1.15)

As already mentioned the values of an entire function f on the nonneg-
ative integers determine f , [3], when f is of order one and type less than π.
On the other hand f(z) = sinπz is order 1 and type π and vanishes at all
the integers, so type π is a cut off point. A similar situation occurs for the
interpolation points {x2k : k = 0, 1, . . . }. The function φ∞(x; a) vanishes
at all the points x2k, so if {f(x2k) : k ≥ 0} determine an entire function f
uniquely then f is expected to grow slower that φ∞(x; a). It turned out that
when c in (1.2) is < 1/(2 ln q−1) then f can be interpolated from {f(x2k)}
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and f has a polynomial expansion in {φn(x; a)}. For f(x) = φ∞(x; a),
c = 1/(2 ln q−1), so the barrier, which corresponds to type π, is 1/(2 ln q−1).
This will be proved in §3.

One purpose of this work is to extend the following theorem from poly-
nomials to entire functions. Theorem 1.1 combines results from [10] and
[11].

Theorem 1.1. Let f(x) be a polynomial and assume that xn is defined by
(1.1). Then

f(x) =
∞
∑

k=0

fkφk(x; a),

with

fk =
(q − 1)k

(2a)k(q; q)k
q−k(k−1)/4(Dk

q f)(xk).

In addition we have

f(x) =
∞
∑

k=0

fkρk(x),

where

fk =
q(k

2−k)/4(1− q)k

2k(q; q)k
(Dk

q f)(0).

The idea in our extension of Theorem 1.1 to entire functions f is to first
expand 1/(y − x) in {φn(x; a)} and {ρn(x)} then use Cauchy’s theorem to
expand entire functions in the same bases. The expansion of the Cauchy
kernel is in Theorem 2.1. The expansion of entire functions is established in
§3.

It is interesting to note that although none of the series in Theorem
1.1 converge to f(x) when f(x) = 1/(y − x), the expansions with an addi-
tional term can be used via Cauchy’s theorem to expand slow growing entire
functions in the bases under consideration.

In Section 4 we rewrite Theorem 3.1 in the form of a Mittag-Leffler
expansion, see (4.2). This expansion turns out to be very useful in studying
summation theorems for basic hypergeometric series. Some examples are
give in Section 5. Section 6 contains concluding remarks and the evaluation
of c in (1.2) for the q-exponential function Eq(z;α). We have only included
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few examples of the implications of the material derived here and we avoided
including technical special functions results, which will appear in a more
specialized publication.

One interesting byproduct of our results is the following version of a
formula of Cooper [5]

Dn
q f(x)(1.16)

=
2nqn(1−n)/4

(q1/2 − q−1/2)n

n
∑

k=0

[

n

k

]

q

qk(n−k)z2k−nf̆(q(n−2k)/2z)

(q1+n−2kz2; q)k(q2k−n+1z−2; q)n−k
,

where z = eiθ, x = cos θ, and

[

n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k
,(1.17)

is the q-analogue of the binomial coefficient.
The key tool used to establish the expansion of the Cauchy kernel is the

theory of basic hypergeometric functions. An interesting open problem is to
find a purely complex variable proof of this expansion or of the expansions
of entire functions. For convenience we include the definition of a basic
hypergeometric series

rφs

(

a1, . . . , ar
b1, . . . , bs

∣

∣

∣

∣

q, z

)

= rφs(a1, . . . , ar; b1, . . . , bs; q, z)(1.18)

=
∞
∑

n=0

(a1, . . . , ar; q)n
(q, b1, . . . , bs; q)n

zn(−q(n−1)/2)n(s+1−r).

Finally we use the Bailey notation

W (a2; a1, · · · , ar; q, z)

:= r+3φr+2

(

a2, qa,−qa, a1, . . . , ar
a,−a, qa2/a1, . . . , qa2/ar

∣

∣

∣

∣

q, z

)

.
(1.19)

The φ function in (1.19) is called very well-poised.

2 Expansions of the Cauchy kernel

In this section we expand the Cauchy kernel 1/(x−y) in terms of {φn(x; a)}
and {ρn(x)}. This is done in Theorem 2.1. The Cauchy kernel expansion
is then used in Theorems 2.2 and 2.3 to expand entire functions in the
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same bases with coefficients represented by contour integrals. These integral
representations are analogues of the Cauchy formulas.

Let

ψn(x; a) := 1/(aeiθ, ae−iθ; q)n.(2.1)

It is easy to prove that

Dqψn(x; a) =
2a(1− qn)

1− q
ψn+1(x; aq

−1/2).(2.2)

It is clear that

1

cosφ− cos θ
= 2eiφψ1(cos θ; e

iφ).(2.3)

Theorem 2.1. The Cauchy kernel 1/(x− y) has the expansion

1

y − x
=

1

y − x

φ∞(x; a)

φ∞(y; a)
− 2a

∞
∑

n=0

φn(x; a)

φn+1(y; a)
qn,

for all y such that y 6= x, and φ∞(y; a) 6= 0. The above expansion also holds
if y = y0, φ∞(y0; a) = 0, but x 6= y0 in the sense that the left-hand side
at y = y0 equals the limit of the right-hand side as y → y0. Moreover the
expansion of the Cauchy kernel in {ρn} is

1

y − x
=

x

y2 − x2
(−qe2iθ,−qe−2iθ; q2)∞
(−qe2iφ,−qe−2iφ; q2)∞

+
y

y2 − x2
(−e2iθ,−e−2iθ; q2)∞
(−e2iφ,−e−2iφ; q2)∞

+4
∞
∑

n=0

yρn(x)

[(1− qn)2 + 4y2qn]ρn(y)
qn,

provided that y 6= x and ρn(y) 6= 0 for all n, n = 0, 1, . . . .

First note that ρn(x)/ρn(y) is uniformly bounded if y is not a zero of
(−e2iφ,−e−2iφ; q)∞, since we have

lim
N→∞

ρ2N (x)

ρ2N (y)
=

(−e2iθ,−e−2iθ; q2)∞
(−e2iφ,−e−2iφ; q2)∞

lim
N→∞

ρ2N+1(x)

ρ2N+1(y)
=

x(−qe2iθ,−qe−2iθ; q2)∞
y(−qe2iφ,−qe−2iφ; q2)∞

.

Hence the second series in Theorem 2.1 converges absolutely and uniformly
for x and y in compact sets. Moreover Theorem 2.1 provides a motivation to
expand the Cauchy kernel in {φn(x; a)} and {ρn(x)}. The respective expan-
sions may not converge to the Cauchy kernel, so we evaluate the difference
explicitly using the theory of basic hypergeometric functions [1], [7].
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Proof. With x = cos θ, y = cosφ we get

(q − 1)kqk(1−k)/4

(2a)k(q; q)k
Dk

q (y − x)−1

∣

∣

∣

∣

∣

x=xk

=
2(−1)kqk(1−k)/2ei(k+1)φ

ak(aeiφ, q−keiφ/a; q)k+1
=

−2aqk

φk+1(cosφ; a)
,

after a simple calculation. Thus the sum on the right-hand side of the first
formula in Theorem 2.1 is

−2a
∞
∑

k=0

(aeiθ, ae−iθ; q)k
(aeiφ, ae−iφ; q)k+1

qk(2.4)

=
−2a

1− 2ay + a2
3φ2

(

q, aeiθ, ae−iθ

qaeiφ, qae−iφ

∣

∣

∣

∣

q, q

)

.

Applying the transformation [7, (III.9)] we see that the last expression is
given by

− 2a

(1− q)(1− aeiφ)

×3φ2

(

q, qei(φ−θ), qei(φ+θ)

qaeiφ, q2

∣

∣

∣

∣

q, ae−iφ

)

=
2eiφ

(1− ei(φ−θ))(1− ei(φ+θ))

×
[

1− 2φ1

(

ei(φ−θ), ei(φ+θ)

aeiφ

∣

∣

∣

∣

q, ae−iφ

)]

.

The 2φ1 is summable by the q-analogue of Gauss’ theorem [7, (II.8)] and its
sum is (aeiθ, ae−iθ; q)∞/(ae

iφ, ae−iφ; q)∞. The result is the first expansion
in Theorem 2.1.

To prove the second expansion we evaluate the sum on the right-hand
side of the second formula in Theorem 2.1. After the application of (1.10)
the sum we are concerned with is found to be

2
∞
∑

n=0

ei(n+1)φ(1 + e2iθ)(−q2−ne2iθ; q2)n−1

einθ(iq−n/2eiφ,−iq−n/2eiφ; q)n+1
.(2.5)
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We next sum over n even and over n odd. The even sum is

2eiφ

1 + e2iφ

∞
∑

n=0

(−e2iθ,−e−2iθ; q2)nq
2n

(iqeiφ, iqe−iφ,−iqeiφ,−iqe−iφ; q)n

=
2eiφ

1 + e2iφ
3φ2

(

q2,−e2iθ,−e−2iθ

−q2e2iφ, −q2e−2iφ

∣

∣

∣

∣

q2, q2
)

=
2e3iφ(1 + e−2iφ)

(1− e2i(φ+θ))(1− e2i(φ−θ))

×
[

1− 2φ1

(

e2i(φ−θ), e2i(φ+θ)

−e2iφ
∣

∣

∣

∣

q2,−e−2iφ

)]

,

where the transformation [7, (III.9)] was applied in the last step. Again
Gauss’ theorem [7, (II.8)] sums the 2φ1 and we see that the even sum is

y

y2 − x2

[

1− (−e2iθ,−e−2iθ; q2)∞
(−e2iφ,−e−2iφ; q2)∞

]

.(2.6)

The odd sum can be similarly handled and can be simplified to

x

y2 − x2

[

1− (−qe2iθ,−qe−2iθ; q2)∞
(−qe2iφ,−qe−2iφ; q2)∞

]

.(2.7)

Equating (2.5) to the sum of (2.6) and (2.7) gives the second part of the
theorem and the proof is complete.

Theorem 2.2. Let f be analytic in a bounded domain D and let C be a
contour within D and x belong to the interior of C. If the distance between
C and the set of zeros of φ∞(x; a) is positive then

f(x) =
φ∞(x; a)

2πi

∮

C

f(y)

y − x

dy

φ∞(y; a)

− a

πi

∞
∑

n=0

qnφn(x; a)

∮

C

f(y) dy

φn+1(y; a)
.

Proof. It is clear that

φn(x; a)/φn+1(y; a) → φ∞(x; a)/φ∞(y; a)

uniformly in y on compact subsets not intersecting the set of zeros of φ∞(y; a).
Thus we can multiply the first expansion in Theorem 2.1 by f(y) and in-
tegrate with respect to y and interchange integration and summation. The
result then follows from Cauchy’s theorem.
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Theorem 2.2 gives the q-analogue of expanding f(x) around x = (a +
1/a)/2. From the theory of functions we know that if f(a) = 0 and f (j)(a) =
0 for 1 ≤ j ≤ m− 1, then the Taylor series starts with the term f (m)(a)(x−
a)m/m!. This feature continues to hold but we have define a q-analogue of
a multiple zero.

Definition. Let x = (a + 1/a)/2 be a zero of f(x). We say that it has
q-multiplicity m if

f(zk) = 0, 1 ≤ k ≤ m− 1, and f(zm) 6= 0, zk :=
1

2
(aqk + q−k/a).(2.8)

Similarly x pole of f has q-multiplicity m if x is a zero of 1/f with q-
multiplicity m.

It must be emphacized that the above definition is completely analogous
to the definition of a multiple zero in difference equations in Hartman [9].
With this definition one can see that if (a + 1/a)/2 is a zero of f of q-
multiplicity m then the terms corresponding to n = 0, 1, · · · ,m − 1 in the
sum in Lemma 2.2 vanish and the sum starts from n = m.

Theorem 2.3. Let f be analytic in a bounded domain D and let C be a
contour within D and x is interior to C. If the contour C is at a positive
distance from the set {±i(qn/2 − q−n/2)/2;n = 0, 1, . . . }, then

f(x) =
2x

πi

∮

C

yf(y)

y − x

(−qei(θ+φ),−qei(θ−φ),−qei(φ−θ),−qe−i(θ+φ); q)∞
(−q,−q; q)∞ (−e2iφ,−e−2iφ; q)∞

dy

+
2

πi

∞
∑

n=0

ρn(x)q
n

∮

C

y f(y) dy

[(1− qn)2 + 4y2qn]ρn(y)
,

with x = cos θ and y = cosφ.

Proof. The proof is very similar to the proof of Theorem 2.2. The only step
requiring justification is the identity

x

y2 − x2
(−qe2iθ,−qe−2iθ; q2)∞
(−qe2iφ,−qe−2iφ; q2)∞

+
y

y2 − x2
(−e2iθ,−e−2iθ; q2)∞
(−e2iφ,−e−2iφ; q2)∞

(2.9)

=
4xy

y − x

(−qei(θ+φ),−qei(θ−φ),−qei(φ−θ),−qe−i(θ+φ); q)∞
(−q,−q; q)∞ (−e2iφ,−e−2iφ; q)∞

.

The proof of (2.9) uses the relationships [16, Chapter 21]

ϑ2(z) = 2Gq1/4 cos z(−q2e2iz,−q2e−2iz; q2)∞

=
Gq1/4

2 cos z
(−e2iz,−e−2iz; q2)∞,

ϑ3(z) = G(−qe2iz,−qe−2iz; q2)∞,
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and the product formulas in Exercise 3, page 488 in Whittaker and Watson
[16]. The notations ϑj := ϑj(0), G := (q2; q2)∞ [16] were used. We omit the
details.

We record the following equivalent form of the representation of f in
Theorem 2.3

f(x) =
x

2πi

∮

C

f(y)

y2 − x2
(−qe2iθ,−qe−2iθ; q2)∞
(−qe2iφ,−qe−2iφ; q2)∞

dy(2.10)

+
1

2πi

∮

C

y f(y)

y2 − x2
(−e2iθ,−e−2iθ; q2)∞
(−e2iφ,−e−2iφ; q2)∞

dy

+
2

πi

∞
∑

n=0

ρn(x)q
n

∮

C

y f(y) dy

[(1− qn)2 + 4y2qn]ρn(y)
.

3 Expansions of entire functions

In this section we establish expansion theorems for entire functons of q-
exponential growth. The expansions are in terms of the bases {φn(x; a)}
and {ρn(x)}.

Observe that M(r;φ∞(x; a)) = φ∞(−r; a), since a > 0. Hence with

rm = [aqm+δ + a−1q−(m+δ)]/2, −1 < δ < 0, m = 0, 1, . . .(3.1)

we find

M(rn;φ∞(x; a)) = φ∞(−rn; a)
= (−q−n−δ; q)n (−q−δ,−a2qn+δ; q)∞

= q[δ
2−n−(n+δ)2]/2(−qδ+1; q)n(−q−δ,−a2qn+δ; q)∞

(3.2)

so that

lim
n→∞

lnM(rn;φ∞)

ln2 rn
=

1

2 ln q−1
.

The fact that φ∞(x; a) vanishes at x2n for all n motivates our next theorem.

Theorem 3.1. Any entire function f satisfying (1.2) with c < 1/(2 ln q−1)
has an convergent expansion

f(x) =
∞
∑

k=0

fkφk(x; a).

Moreover any such f is uniquely determined by its values on {x2n : n ≥ 0}.
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Note that (Dk
q f)(xk) is a linear combination of f(x0), · · · , f(x2k), so that

the coefficients fk in Theorem 1.1 also depend on the points {x2n : n ≥ 0}.
The proof of Theorem 3.1 relies on a lemma which we now state and

prove.

Lemma 3.2. Let f be entire and satisfy the condition in Theorem 3.1. Then

lim
n→∞

∮

|y|=rn

f(y)

y − x

dy

φ∞(y; a)
= 0.

Moreover, the same conclusion holds if

lim
n→∞

qn(n+2δ+1)/2 sup{|f(rneiθ| : 0 ≤ θ < 2π} = 0.

Proof. It is clear that inf{|φ∞(y; a)| : |y| = r} = |φ∞(r; a)|. Hence for |y| =
rn, we have

|φ∞(y; a)| ≥ |(q−n−δ; q)n|(q−δ, a2qn+δ; q)∞

= q−n(n+2δ+1)/2 (qδ+1; q)n (q−δ, a2qn+δ; q)∞

Therefore

lnM(rn; f(y)/φ∞(y; a)) ≤ 1

2
[n+ (n+ δ)2] ln q + lnM(rn; f) +O(1)

= lnM(rn; f)−
1

2

ln2 rn
ln q−1

+O (ln rn) ,

and the lemma follows.

Instead of proving the expansion in Theorem 3.1 in the basis {φn(x; a)}
we shall prove the following equivalent result.

Theorem 3.3. The expansion formula

f(x) =

∞
∑

n=0

qnfnφn(x; a),

with

fn =
n
∑

k=0

(−1)kqk(k−1)/2 (1− a2q2k)

(q; q)k(q; q)n−k(a2qk; q)n+1
f(x2k),

holds for functions f satisfying the assumptions of Theorem 3.1.

12



Proof. In Theorem 2.2 we choose C to be Cm, a circle centered at y = 0 and
radius rm. Lemma 3.2 shows that the first integral in Theorem 2.2 is small
if m is large. We split the remaining sum in Theorem 2.2 into tail terms
with n > m, and initial terms with n ≤ m. We will show that the tail is
small, leaving the initial terms. Then a residue calculation establishes the
expression for fn, because the poles of f(y)/φn+1(y; a) are at y = x2k, k =
0, 1, · · · , n.

Note that if n > m then

min{|φn+1(y)| : y ∈ Cm}
= |φn+1(rm; a)| =

∣

∣

∣
(q−m−δ, a2qm+δ; q)n+1

∣

∣

∣

= (q−m−δ; q)m (−1)m (q−δ; q)n+1−m(a2qm+δ; q)n+1

= q−m(m+2δ+1)/2(qδ+1; q)m, (q
−δ; q)n+1−m(a2qm+δ; q)n+1

≥ q−m(m+2δ+1)/2A = q−((m+δ)2+1−δ2)/2A,

where A is a positive constant independent of n and m. Therefore for
sufficiently large m, and y ∈ Cm,

ln[M(rm; f/φn+1)] ≤ [c1 + 1/(2 ln q)] ln2 rm +O(m)

for some c1, c ≤ c1 < 1/(2 ln q−1).
This is a uniform bound of e−D(ln rm)2 , D > 0, for each integral for

n > m. Since φn(x; a) → φ∞(x; a), there is a uniform bound B for φn(x; a)
on compact sets. Thus the tail is bounded by

∞
∑

n=m+1

Bqne−D(ln rm)2 ≤ Bqm+1e−D(ln rm)2/(1− q),

which is small for m large.

For polynomials f we equate the coefficients fn in the expansions of f
in {φn(x; a)} in Theorems 3.3 and 1.1 and discover the identity

Dn
q f(xn)(3.3)

=
(2a)nqn(n+3)/4

(q − 1)n

n
∑

k=0

[

n

k

]

q

(−1)kqk(k−1)/2

(a2qk; q)n+1
(1− a2q2k) f(x2k).

Since (3.3) holds for arbitrary polynomials it must hold for all continuous
functions. Using the notation

η±1
q f(x) = f̆(q±1/2z),(3.4)

13



and noting that a, is a general parameter and xn = ηnx0, we can rewrite
(3.3) in the form

Dn
q f(x)(3.5)

=
(2z)nqn(3−n)/4

(q − 1)n

n
∑

k=0

[

n

k

]

q

(−1)kqk(k−1)/2 η2k−nf(x)

(z2qk−n; q)k(z2q2k+1−n; q)n−k
,

with x = (z + z−1)/2. Equation (3.5) can be shown to be equivalent to
Cooper’s (1.16).

Theorem 3.4. Let f be an entire function satisfying (1.2) and assume that
c < 1/ ln q−1. Then f has the expansion

f(x) =
∞
∑

n=0

fnρn(x),

where

fn = in
n
∑

k=0

(−1)k
(qk + qn−k)q(k

2+(n−k)2)/2

2(q2; q2)k(q2; q2)n−k
f(un−2k),

and {un} is given by (1.4).

For general entire functions not necessarily satisfying (1.2), we note that
the property uj = −u−j , allows one to conclude that for even functions f ,
f2n+1 = 0 for all n ≥ 0, while for odd functions f , f2n = 0, for all n ≥ 0,
confirming that f and its formal expansion

∑∞
n=0 fnρn(x) have the same

parity.

Proof. We basically repeat the proof of Theorem 3.3, with some changes in
the technical details. We will use

ρ2N (x)

ρ2N (y)
=

(−e2iθ,−e−2iθ; q2)N
(−e2iφ,−e−2iφ; q2)N

(3.6)

ρ2N+1(x)

ρ2N+1(y)
=

x(−qe2iθ,−qe−2iθ; q2)N
y(−qe2iφ,−qe−2iφ; q2)N

.(3.7)

Let Cm be a circle centered at y = 0 with radius rm,

rm = [q−(m+δ)/2 − q(m+δ)/2]/2, −1 < δ < 0,(3.8)

andm is even. We use the form of the Cauchy kernel in (2.10) and show that
the first integral in (2.10) with C = Cm tends to zero as m → ∞. Thus we

14



minimize the modulus of the denominators in order to give an upper bound
for the integral. The first denominator is minimized by choosing y2 = −r2m,

min{|(−qe2iφ,−qe−2iφ; q2)∞| : y ∈ Cm}
= |(q1−m−δ, qm+δ+1; q2)∞| = |(q1−m−δ; q2)m/2| (q1−δ, qm+δ+1; q)∞

≥ Aq−(m+δ)2/4

for some positive constant A independent of m.
Similarly

min{|(−e2iφ,−e−2iφ; q2)∞| : y ∈ Cm}
= |(q−m−δ, qm+δ; q2)∞| = |(q−m−δ; q2)m/2| (q−δ, qm+δ; q)∞

≥ Aq−(m+δ)2/4−m/2.

So the sum of the first two integrals, |Im|, is bounded by

|Im| ≤ B M(rm, f) q
(m+δ)2/4,

for some B independent of m. Thus

ln |Im| ≤ lnM(rm, f) +
(ln rm)2

ln q
+O(ln rm)

which proves that |Im| → 0 as m→ ∞, m even.
Next we show that

∑∞
n=m+1 q

nIm,n tends to zero as m → ∞ and for x
in compact sets, where {Im,n} are the integrals

In,m =

∮

Cm

yρn(x) f(y) dy

ρn(y)[(1− qn)2 + 4y2qn]
.(3.9)

For y ∈ Cm, and n > m, we have

|(1− qn)2 + 4y2qn| = |(1 + qne2iφ)(1 + qne−2iφ)|
≥ |(1− qn−m−δ)(1− qn+m+δ)|

≥ (1− q1−δ)(1− q1+δ).

Moreover after applying (3.6) and (3.7), we get for y ∈ Cm and n > m,
∣

∣

∣

∣

ρ2n(x)

ρ2n(y)

∣

∣

∣

∣

≤ |(−e2iθ,−e−2iθ; q2)n|
|(q−m−δ, qm+δ; q2)n|

≤ |(−e2iθ,−e−2iθ; q2)n|
|(q−m−δ; q2)m/2|(q−δ; q2)n−m/2(qm+δ; q2)n

≤ A1q
(m+δ)2/4,
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for some constant A1, and

∣

∣

∣

∣

ρ2n+1(x)

ρ2n+1(y)

∣

∣

∣

∣

≤ |x(−qe2iθ,−qe−2iθ; q2)n|
|y(q1−m−δ, q1+m+δ; q2)n|

≤ |x(−qe2iθ,−qe−2iθ; q2)n|
|y(q1−m−δ; q2)m/2(q1−δ; q2)n−m/2(q1+m+δ; q2)n|

≤ A2q
(m+δ)2/4,

The constants A1 and A2 depend on the compact set x to which x is re-
stricted but do not depend on y, m or n.

As before this shows that

ln |In,m| ≤ lnM(f, rm) +
(ln rm)2

ln q
+O(ln rm)

≤ (c1 + 1/ ln q)(ln rm)2,

for some c1, 0 < c1 < 1/ ln q−1 which shows that
∑∞

n=m+1 q
n|In,m| tends to

zero as m→ ∞.
Next we evaluate the sum

∑m
n=0 q

nIm,n by residues then let m → ∞ .
From (1.10) it follows that

ρn+2(y) = q−n[(1− qn)2 + 4y2qn] ρn(y),

hence we need to evaluate
∮

Cm

yf(y)dy

ρn+2(y)
.

The poles {yk} of y/ρn+2(y) are

i[q−k+n/2 − qk−n/2]/2,

k = 0, 1, · · · , n. Let yk = cosφk, hence

eiφk =

{

iq−k+n/2, 0 ≤ k ≤ n/2

−iqk−n/2, n/2 < k ≤ n.

It is routine to find that the residue of y/ρn+2(y) at i[q
−k+n/2− qk−n/2]/2 is

in
(−1)k(qn−k + qk)

8(q2; q2)k(q2; q2)n−k
qk(k−n)+n2/2, k = 0, · · · , n,

and the theorem follows.
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Remark. The first part of the proof can be replaced by estimating the first
integral in Theorem 2.3 directly. Let |eiθ| ≤ A for all x in a compact set.
Hence for y ∈ Cm and fixed x, we have

ln

(∣

∣

∣

∣

∣

y(−qei(θ+φ),−qei(θ−φ),−qei(φ−θ),−qe−i(θ+φ); q)∞
(−e2iφ,−e−2iφ; q)∞

∣

∣

∣

∣

∣

)

≤ ln
(

(−Aq1−(m+δ)/2,−q1−(m+δ)/2/A; q)∞

)

− ln
(∣

∣

∣
(q−m−δ; q)∞

∣

∣

∣

)

+O(1)

≤ ln
(

(−Aq1−(m+δ)/2,−q1−(m+δ)/2/A; q)m/2

)

− ln
(
∣

∣

∣
(q−m−δ; q)m

∣

∣

∣

)

+O(m)

=
m(m+ 2δ)

4
ln q +O(m) = − ln2 rm

ln q−1
+O (ln(rm)) .

Therefore the first integral on the right-hand side of in the equation in
Theorem 2.3 tends to zero as m→ ∞.

4 A Mittag-Leffler Expansion

It is tempting to substitute for fn in the first formula in Theorem 3.3 then
rearrange the sum and find the coefficient of f(x2k). The formal interchange
of sums gives

f(x) =
∞
∑

k=0

(−1)kqk(k+1)/2(1− a2q2k)

(q; q)k(a2qk; q)k+1
(aeiθ, ae−iθ; q)k(4.1)

×2φ1

(

aqkeiθ, aqke−iθ

a2q2k+1

∣

∣

∣

∣

q, q

)

f(x2k).

The 2φ1 can be summed by the q-analogue of Gauss’ theorem [7, (II.8)] and
its sum is (aqk+1eiθ, aqk+1e−iθ; q)∞/(a

2q2k+1, q; q)∞ and (4.1) becomes

f(x)

φ∞(x; a)
=

∞
∑

k=0

(−1)kqk(k+1)/2(1− a2q2k)

(q; q)k(q, a2qk; q)∞

f(x2k)

1− 2axqk + a2q2k
.(4.2)

Theorem 4.1. Formula (4.2) holds for entire functions f satisfying (1.2)
with c < 1/(2 ln q−1).
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Proof. Let rm be as in (3.1) and Cm be a circle centered at the origin and
have radius rm. Let x be fixed and m be large enough so that x is interior
to Cm. Consider

Im :=
1

2πi

∮

Cm

f(y)

φ∞(y; a)

dy

y − x
.(4.3)

From Lemma 3.2, Im → 0 as m→ ∞. On the other hand

Im =
f(x)

φ∞(x; a)

−
m
∑

k=0

(−1)kqk(k+1)/2(1− a2q2k)

(q; q)k(q, a2qk; q)∞

f(x2k)

1− 2axqk + a2q2k
,

and the theorem follows.

Clearly Theorem 4.1 is a Mittag-Leffler expansion.

5 Applications

Recall that the conclusion of Lemma 3.2 holds provided that

lim
n→∞

M(rn; f) q
n(n+2δ+1)/2 = 0.(5.1)

where rn is defined in (3.1). By examining the proof of Theorem 3.3 we see
that it continues to hold under the assumption (5.1). In fact we can replace
the sequence {rn} in (5.1) by any subsequence {rnk

}.
As a first application of the above observation we let

g(z) = (beiθ, be−iθ; p)∞, p ≤ q, z := cos θ.(5.2)

To verify (5.1) we employ

Mn(rn; g) ≤ (−|b/a|q−n−δ,−|ab|qn+δ; p)∞

≤ (−|b/a|q−n−δ,−|ab|qn+δ; q)∞

≤ |b/a|nq−n(n+2δ+1)/2(−|b/a|q−δ,−q1+δ|ab|; q)∞.

Thus (5.1) holds when |b/a| < 1, and (4.2) will then hold for |b| < |a| and
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we have established the series summation

(beiθ, be−iθ; p)∞
(qaeiθ, qae−iθ; q)∞

=

∞
∑

k=0

(−1)kqk(k+1)/2(a2, aq,−aq; q)k
(q, a,−a; q)k(q, a2q; q)∞

× (aeiθ, ae−iθ; q)k
(aqeiθ, aqe−iθ; q)k

(abqk, bq−k/a; p)∞,

(5.3)

valid for 0 < p < q, or p = q and |b| < |a|.
Mizan Rahman pointed out that (5.3) follows from a result of George

Gasper. Gasper’s formula is (5.13) on p. 68 in [6] and can be stated as

6+2mW5+2m

(

A;B,
A

B
, d, e1, ..., em,

Aqn1+1

e1
, ...,

Aqnm+1

em
; q,

q

d
q−

∑m
j=1

nj

)

=
(q, Aq,Aq/Bd,Bq/d; q)∞
(Bq,Aq/B,Aq/d, q/d; q)∞

m
∏

j=1

(Aq/Bej , Bq/ej ; q)nj

(Aq/ej , q/ej ; q)nj

.

We put

A = a2, B = aeiθ, d = q−m, ej = aqp1−j/b, nj = 1, 1 ≤ j ≤ m.

Write the 6+2mW5+2m as a sum over k, k ≥ 0. The terms containing
e1, · · · , em contribution to the k term is

m−1
∏

r=0

(aqp−r/b, abqpr; q)k
(abpr, ap−r/b; q)k

=

m−1
∏

r=0

(1− aqkp−r/b)(1− abprqk)

(1− ap−r/b)(1− abpr)
= qkm

(abqk, bq−k/a; p)m
(ab, b/a; q)m

.

Now (5.3) follows by letting m→ ∞.
When p = q in (5.3), a simple calculation using

(abqk, bq−k/a; q)∞ = (ab, b/a; q)∞
(bq−k/a; q)k

(ab; q)k

=
(−b/a)k(aq/b; q)k
qk(k+1)/2(ab; q)k

(ab, b/a; q)∞,
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shows that the right-hand side of (5.1) is (ab, b/a; q)∞/(q, a
2q; q)∞ times a

6φ5 function. Thus (5.3) with p = q is equivalent to

6φ5

(

a2, aq,−aq, aq/b, aeiθ, ae−iθ

a, −a, ab, aqe−iθ, aqeiθ

∣

∣

∣

∣

q,
b

a

)

=
(q, a2q, beiθ, be−iθ; q)∞

(aqeiθ, aqe−iθ, ab, b/a; q)∞
.

(5.4)

Formula (5.4) is the sum of a very well-poised 6φ5, [7, (II.20)]. The most
general 6φ5 has four free parameters, but our (5.4) has only three free pa-
rameters.

Another application of (4.2) is to choose

f(z) =
m
∏

j=1

fj(z), fj(cos θ) := (bje
iθ, bje

−iθ; pj)∞.(5.5)

Here we will only mention the case when the pj = p for all j. In this case
we choose a positive integer l such that ql+1 < p ≤ ql. It suffices to take
n = ls in (5.1) and for sufficiently large s, we get

M(rls; fj) ≤ (−|bj/a|q−ls−δ,−|abj |qls+δ; p)∞

≤ (−|bj/a|q−ls−δ; p)s (−|bj/a|q−δ,−|abj |qls+δ; p)∞

≤ |bj/a|s q−s(ls+δ)ps(s−1)/2Cj ,

(5.6)

where Cj is a constant depending only on a, b1, · · · , bm, δ but not on s. With
r defined through

p = qlr, 1 ≤ r < 1 + 1/l,(5.7)

we obtain

M(rls; f)q
ls(ls+2δ+1)/2

≤ C q−(ls+δ)sm+ls(ls+2δ+1)/2pms(s−1)/2
m
∏

j=1

|bj/a|s,
(5.8)

for some constant C. Substitute for p in (5.8) from (5.7) to see that the
coefficient of s2 in the exponent of q is nonnegative if and only if

l ≥ m(2− r).(5.9)

If l = m(2 − r) then the coefficient of s in the exponent of q is m[δ + 1 −
rδ − r(1 +m(2− r))/2]. Thus we have established the following theorem.
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Theorem 5.1. Formula (4.2) holds for the function f defined by (5.5) if
(i) or (ii) holds, where

(i) l > m(2− r)

(ii) l = m(2− r) and B q1−r(1+m(2−r))/2 < |a|,

with B = |b1 · · · bm|1/m.

The details of consequences of Theorem 5.1 will be explored elsewhere.
We just mention the case pj = p = qm, so r = 1 and m = l. Thus (4.2)
holds if

m
∏

j=1

|bj/a| < qm(m−1)/2.(5.10)

Thus (4.2) gives
∏m

j=1(bje
iθ, bje

−iθ; qm)∞

(aeiθ, ae−iθ; q)∞

=
∞
∑

k=0

(−1)kqk(k+1)/2(1− a2q2k)

(q; q)k(q, a2qk; q)∞

∏m
j=1(bjq

−k/a, abjq
k; qm)∞

(1− aqkeiθ)(1− aqke−iθ)
.

(5.11)

The special case m = 2 of (5.13) follows from [7, (III.38)]. To see this we
first write upper case letters for the parameters a, b, · · · , q in [7, (III.38)].
We make the choices

Q = q2, A = B = eiθ, C = e−iθ,

D = q2/b1, E = q2/b2, F = a, G = aq.
(5.12)

The resulting 8ψ8 on the left-hand side of (III.36) in [7] reduces to 1 because
its numerator parameter AB is 1, while the corresponding denominator pa-
rameter (=AQ/B) is q2, which the base of the 8ψ8.

6 Remarks

In [11] we pointed out the importance of the polynomial basis

φn(cos θ) = (q1/4eiθ, q1/4e−iθ; q1/2)n,(6.1)

in the theory of basic hypergeometric functions (q-series). We also estab-
lished the q-Taylor series

f(x) =
n
∑

k=0

fkφk(x),(6.2)
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for polynomials f , where

fk =
(q − 1)k

2kqk/4(q; q)k
(Dk

q f)(ζ0)(6.3)

and

ζn = [q(n+1/2)/2 + q−(n+1/2)/2]/2.(6.4)

The proof of (6.2) uses

Dqφn(x) = −2q1/4
1− qn

1− q
φn−1(x).(6.5)

One can also extend (6.2) to entire functions satisfying (1.2) with c <
1/ ln q−1 using an argument similar to what we used to prove Theorem 3.1.
In fact this is essentially Theorem 3.1 because upon close examination one
sees that the interpolation points used in (6.4) amount to replacing q by
q1/2.

The q-exponential function of [13] is

Eq(cos θ; t) =
(t2; q2)∞
(qt2; q2)∞

∞
∑

n=0

(−it)n
(q; q)n

qn
2/4(6.6)

×(−iq(1−n)/2eiθ,−iq(1−n)/2e−iθ; q)n.

The function Eq(x; t) is entire in x for all t, |t| < 1. Corollary 2.5 of [11] is

Eq(cos θ; t) =
(−t; q1/2)∞
(qt2; q2)∞

2φ1

(

q1/4eiθ, q1/4e−iθ

−q1/2
∣

∣

∣

∣

q1/2,−t
)

(6.7)

We now show that (6.7) enables us to determine the exact limiting be-
havior of the maximum modulus of the Eq function. Let r = coshu, u > 0.
Thus (6.7) implies

lnM(coshu; Eq) ≤ ln
(

(−q1/4eu,−q1/4e−u; q1/2)∞

)

+O(1),

as u→ ∞. It is clear that for any sequence of u’s tending to infinity, eu can
be written in the form q−(nm+δm)/2, with −1/2 < δm < 1/2. From here it is
not difficult to see that

lim sup
r→∞

lnM(r; Eq)
ln2 r

≤ 1

ln q−1
.(6.8)
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On the other hand the sequence rm = [q−(m+1/2)/2 + q(m+1/2)/2]/2 makes

(qt2; q2)∞

(−t; q1/2)∞
Eq(rm; t) = 2φ1

(

q−m/2, qm+1)/2

−q1/2
∣

∣

∣

∣

q1/2,−t
)

.(6.9)

The right-hand side of (6.9) is a little q-Jacobi polynomial Φ
(α,β)
m (x), with

α = β = −1 and x = −t/q1/2, [12], hence the 2φ1 in (6.9) is asymptotically
equal to

tmq−m(m+1)/4(−q1/2/t; q)∞/(−q1/2; q1/2)∞,

by (1.5) in [12]. Therefore

lim sup
r→∞

lnM(r; Eq)
ln2 r

≥ lim
m→∞

lnM(rm; Eq)
ln2 rm

=
1

ln q−1
.(6.10)

Therefore (6.8) and (6.10) establish the following theorem.

Theorem 6.1. The maximum modulus of Eq has the property

lim sup
r→∞

lnM(r; Eq)
ln2 r

=
1

ln q−1
.

It is worth mentioning that Theorem 6.1 shows that (6.7) does not follow
from the general approach developed here. It is of interest to find a function
theoretic approach to development of identities like (6.7).
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[18] J. M. Whittaker, Sur les Séries de Base de Polynomes Quelconques,
Gauthier-Villars, Paris, 1949.

emails: ismail@math.usf.edu, stanton@math.umn.edu

25


