
A CONVOLUTION FORMULA FOR THE TUTTE POLYNOMIAL

W. Kook, V. Reiner, and D. Stanton

Let M be a finite matroid with rank function r. We will write A ⊆ M when
we mean that A is a subset of the ground set of M , and write M |A and M/A for
the matroids obtained by restricting M to A, and contracting M on A respectively.
Let M∗ denote the dual matroid to M . (See [1] for definitions). The main theorem
is

Theorem 1. The Tutte polynomial TM (x, y) satisfies

(1) TM (x, y) =
∑

A⊆M

TM |A(0, y)TM/A(x, 0).

First we define a convolution product and note a useful lemma.
Let M be the set of all isomorphism classes of finite matroids, and let K be a

commutative ring with 1. For any functions f, g : M → K, define f ◦ g : M → K by

(2) (f ◦ g)(M) =
∑

A⊆M

f(M |A)g(M/A).

The convolution ◦ is associative, with identity element δ,

δ(M) =

{

1 if M = ∅,

0 otherwise.

Following Crapo [2], let ζ(x, y)(M) = xr(M)yr(M
∗), where K = Z[x, y].

Lemma 1. ζ(x, y)−1 = ζ(−x,−y).

Proof. Note that

(ζ(x, y) ◦ ζ(−x,−y))(M) =
∑

A⊆M

xr(M |A)yr((M |A)∗)(−x)r(M/A)(−y)r((M/A)∗)

= xr(M)yr(M
∗)

∑

A⊆M

(−1)|M |−|A|

= δ(M).

Proof of Theorem 1. The Tutte polynomial may be defined by [1,2]

(3) TM (x+ 1, y + 1) = (ζ(1, y) ◦ ζ(x, 1))(M),
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so also

TM (x+ 1, 0) = (ζ(1,−1) ◦ ζ(x, 1))(M),

TM (0, y + 1) = (ζ(1, y) ◦ ζ(−1, 1))(M).

Therefore

∑

A⊆M

TM |A(0, y + 1)TM/A(x+ 1, 0) = (ζ(1, y) ◦ ζ(−1, 1)) ◦ (ζ(1,−1) ◦ ζ(x, 1))(M)

= ζ(1, y) ◦ (ζ(−1, 1) ◦ ζ(1,−1)) ◦ ζ(x, 1)(M)

= ζ(1, y) ◦ ζ(x, 1)(M)

= TM (x+ 1, y + 1),

where the third equality is by Lemma 1. �

Remark 1.

Note that Theorem 1 can be rewritten as

(4) TM (x, y) =
∑

isthmus-free flats V

TV (0, y)TM/V (x, 0).

This is because when A ⊆ M is not a flat, M/A contains a loop e and

TM/A(x, 0) =
[

y T(M/A)−e(x, y)
]

y=0
= 0.

Similarly if A contains an isthmus e, then

TM |A(0, y) =
[

xT(M |A)/e(x, y)
]

x=0
= 0.

Remark 2.

Theorem 1 can also be proven using Tutte’s original definition of the Tutte
polynomial involving basis activities [1,2]: for any ordering of the ground set of M ,

TM (x, y) :=
∑

bases B of M

x|IAM (B)|y|EAM (B)|

where here IAM (B) (resp. EAM (B)) denotes the set of internally (resp. externally)
active elements of M with respect to the base B. Theorem 1 in [3] asserts that any
base B can be uniquely decomposed B = B1 ∪B2 with B1 ∩B2 = ∅ and

IAV (B1) = EAM/V (B2) = ∅

where V is the flat B1 spanned by B1. It turns out that in this decomposition one
furthermore has

(5) IAM (B) = IAM/V (B2), EAM (B) = EAV (B1).
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We omit the details of this verification, which are straightforward. Given this, one
then has

TM (x, y) =
∑

bases B of M

x|IAM (B)|y|EAM (B)|

=
∑

flats V of M

∑

bases B1 of V

with IAV (B1)=∅

∑

bases B2 of M/V

with EAM/V (B2)=∅

x|IAM/V (B2)|y|EAV (B1)|

=
∑

flats V of M







∑

bases B1 of V

with IAV (B1)=∅

y|EAV (B1)|















∑

bases B2 of M/V

with EAM/V (B2)=∅

x|IAM/V (B2)|









=
∑

flats V of M

TV (0, y)TM/V (x, 0).

Remark 3.

The version (4) of Theorem 1 may also be proven by deletion-contraction, as we
now explain. Recall [1] that the Tutte polynomial is characterized by the following
three properties.

(i) TM (x, y) = x if M consists of a single isthmus, and TM (x, y) = y if M
consists of single loop.

(ii) TM1⊕M2
(x, y) = TM1

(x, y) · TM2
(x, y).

(iii) TM (x, y) = TM−e(x, y) + TM/e(x, y) if e is neither an isthmus nor a loop of
M .

Let T ′
M (x, y) be the right side of (4), and we must show that it also satisfies

(i),(ii),(iii). Properties (i),(ii) are straightforward and omitted. To show (iii), fix
an element e which is neither an isthmus nor a loop of M , and then use property
(iii) for TM (x, 0), TM (0, y) to write

T ′
M (x, y) =

∑

isthmus-free flats V

TV (0, y)TM/V (x, 0)

=
∑

i.f. flats V
e∈V

TV (0, y)TM/V (x, 0) +
∑

i.f. flats V
e 6∈V

TV (0, y)TM/V (x, 0)

=
∑

i.f. flats V
e∈V

TV−e(0, y)TM/V (x, 0) +
∑

i.f. flats V
e∈V

TV/e(0, y)TM/V (x, 0)

+
∑

i.f. flats V
e 6∈V

TV (0, y)TM/V−e(x, 0) +
∑

i.f. flats V
e 6∈V

TV (0, y)T(M/V )/e(x, 0)

=
∑

V,V −e both i.f.
e∈V

TV−e(0, y)TM/V (x, 0) +
∑

i.f. flats V
e∈V

TV/e(0, y)TM/V (x, 0)

+
∑

i.f. flats V
e 6∈V

TV (0, y)TM/V−e(x, 0) +
∑

i.f. flats V
V ∪{e} a flat

TV (0, y)T(M/V )/e(x, 0)(6)

where the last equality comes from the fact that TV−e(0, y) = 0 unless V − e is
isthmus-free, and dually T(M/V )/e(x, 0) = 0 unless V ∪ {e} is a flat of M .
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On the other hand, we wish to show that the above sum is the same as

T ′
M−e(x, y) + T ′

M/e(x, y)

=
∑

i.f. flats W
of M−e

T(M−e)|W (0, y)T(M−e)/W (x, 0) +
∑

i.f. flats W
of M/e

T(M/e)|W (0, y)T(M/e)/W (x, 0)

=
∑

i.f. flats W of M−e,
W not a flat of M

T(M−e)|W (0, y)T(M−e)/W (x, 0) +
∑

i.f. flats W of M/e,
W not a flat of M

T(M/e)|W (0, y)T(M/e)/W (x, 0)

+
∑

i.f. flats W of M−e,
W a flat of M

T(M−e)|W (0, y)T(M−e)/W (x, 0) +
∑

i.f. flats W of M/e,
W a flat of M

T(M/e)|W (0, y)T(M/e)/W (x, 0)

(7)

The terms W in the sums on the right-hand side of equation (7) biject with the
terms V in the sums on the right-hand side of equation (6) as follows: in the first
sum W = V − e, in the second sum W = V/e, in the third sum W = V and in the
fourth sum W = V . We leave it to the reader to check that this gives a bijection
of the terms which shows the equality of the right-hand sides in (6) and (7). The
only tricky point here is in the fourth sum, where one must note that not only are
W,V equal as subsets of the ground sets of M/e,M respectively, but also the flats
W,V of M/e,M are isomorphic as matroids, due to the fact that e is an isthmus
of V ∪ {e}.

Remark 4.

Lemma 1 can be used to prove other convolution identities. For example, if we
define

ρ(x, y, z, w)(M) := (ζ(z, y) ◦ ζ(x,w))(M)

then equation (3) implies

TM (x, y) = ρ(x− 1, y − 1, 1, 1)(M)

TM (0, y) = ρ(−1, y − 1, 1, 1)(M)

TM (x, 0) = ρ(x− 1,−1, 1, 1)(M)

and Theorem 1 is the specialization z = w = 1 of the more general identity

ρ(x− 1, y − 1, z, w) = ζ(z, y − 1) ◦ ζ(x− 1, w)

= ζ(z, y − 1) ◦ ζ(−1, 1) ◦ ζ(1,−1) ◦ ζ(x− 1, w)

= ρ(−1, y − 1, z, 1) ◦ ρ(x− 1,−1, 1, w)

As another example, of the use of Lemma 1, one can start with equation (2) and
multiply both sides by ζ(−1,−y). Using the notation T (x, y)(M) := TM (x, y), we
obtain

ζ(−1,−y) ◦ T (x+ 1, y + 1) = ζ(x, 1)

which gives an apparently new recursion for the Tutte polynomial

TM (x, y) = (x− 1)r(M) −
∑

∅ 6=A⊆M

(−1)r(M |A)(1− y)r(M |∗A)TM/A(x, y).
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Remark 5.

The convolution product defined by equation (2) suggests a certain coalgebra
(actually a Hopf algebra) naturally associated with matroids. Let A be a free K-
module with basis M equal to the isomorphism classes of finite matroids [M ]. The
coproduct ∆ : A → A⊗A is defined K-linearly by

∆([M ]) =
∑

A⊆M

[M |A]⊗ [M/A],

and the product µ : A⊗A → A is defined K-linearly by

µ([M ]⊗ [M ′]) = [M ⊕M ′].

Define a bigrading on A by setting the bidegree of [M ] to be (r(M), r(M∗)). One can
check that this makes A a co-associative, commutative, bigraded, connected, Hopf
algebra overK, whose unit η : K → A is η(1) = [∅], and whose co-unit ǫ : A → K is
ǫ([M ]) = δM,∅. If φ : A → A is the involution φ([M ]) = [M∗] extended K-linearly
to all of A, then one can check that the identity M∗|M−A

∼= (M/A)∗ leads to the
equation

∆ ◦ φ = (φ⊗ φ) ◦∆op.

Therefore φ∗ : A∗ → A∗ is an algebra anti-automorphism. Note that φ also ex-
changes the bigrading in the sense that if a has bidegree (s, t) then φ(a) has bidegree
(t, s).

Motivated by this, let A be any co-associative, bigraded, connected coalgebra
over K with coproduct ∆ and co-unit η, having a distinguished K-basis of biho-
mogeneous elements M. Let ◦ denote the product dual to ∆ in the dual algebra
A∗, and φ : A → A be any involution which exchanges the bigrading and such that
φ∗ : A∗ → A∗ is an anti-automorphism. Define ζ ∈ A∗ by ζ(x, y)(M) = xsyt for all
M ∈ M having bidegree (s, t). We can then define a Tutte functional T (x, y) ∈ A∗

by T (x, y) = ζ(1, y − 1) ◦ ζ(x − 1, 1). One can then check that the familiar Tutte
polynomial identity [1]

TM∗(x, y) = TM (y, x)

has the counterpart
φ∗(T (x, y)) = T (y, x)

which follows formally from the assumed properties of φ.
Furthermore, the proof of Lemma 1 actually shows the following in this context:

If ζ(1, 1)−1 = ζ(−1,−1) then ζ(x, y)−1 = ζ(−x,−y)−1.

Consequently, if we impose the extra condition on A that ζ(1, 1)−1 = ζ(−1,−1),
then the counterpart to Theorem 1

T (x, y) = T (0, y) ◦ T (x, 0)

ensues as a formal consequence.
Acknowledgments. The authors thank Richard Stanley for suggesting the search
for a Tutte polynomial analogue to equation (2.1) of [3].
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