A CONVOLUTION FORMULA FOR THE TUTTE POLYNOMIAL

W. Kook, V. Reiner, and D. Stanton

Let M be a finite matroid with rank function r. We will write $A \subseteq M$ when we mean that A is a subset of the ground set of M, and write $\left.M\right|_{A}$ and M / A for the matroids obtained by restricting M to A, and contracting M on A respectively. Let M^{*} denote the dual matroid to M. (See [1] for definitions). The main theorem is

Theorem 1. The Tutte polynomial $T_{M}(x, y)$ satisfies

$$
\begin{equation*}
T_{M}(x, y)=\sum_{A \subseteq M} T_{\left.M\right|_{A}}(0, y) T_{M / A}(x, 0) \tag{1}
\end{equation*}
$$

First we define a convolution product and note a useful lemma.
Let \mathbb{M} be the set of all isomorphism classes of finite matroids, and let K be a commutative ring with 1 . For any functions $f, g: \mathbb{M} \rightarrow K$, define $f \circ g: \mathbb{M} \rightarrow K$ by

$$
\begin{equation*}
(f \circ g)(M)=\sum_{A \subseteq M} f\left(\left.M\right|_{A}\right) g(M / A) \tag{2}
\end{equation*}
$$

The convolution \circ is associative, with identity element δ,

$$
\delta(M)=\left\{\begin{array}{l}
1 \text { if } M=\varnothing \\
0 \text { otherwise }
\end{array}\right.
$$

Following Crapo [2], let $\zeta(x, y)(M)=x^{r(M)} y^{r\left(M^{*}\right)}$, where $K=\mathbb{Z}[x, y]$.
Lemma 1. $\zeta(x, y)^{-1}=\zeta(-x,-y)$.
Proof. Note that

$$
\begin{aligned}
(\zeta(x, y) \circ \zeta(-x,-y))(M) & =\sum_{A \subseteq M} x^{r\left(\left.M\right|_{A}\right)} y^{r\left(\left(\left.M\right|_{A}\right)^{*}\right)}(-x)^{r(M / A)}(-y)^{r\left((M / A)^{*}\right)} \\
& =x^{r(M)} y^{r\left(M^{*}\right)} \sum_{A \subseteq M}(-1)^{|M|-|A|} \\
& =\delta(M)
\end{aligned}
$$

Proof of Theorem 1. The Tutte polynomial may be defined by $[1,2]$

$$
\begin{equation*}
T_{M}(x+1, y+1)=\underset{1}{(\zeta(1, y) \circ \zeta(x, 1))(M),} \tag{3}
\end{equation*}
$$

so also

$$
\begin{aligned}
& T_{M}(x+1,0)=(\zeta(1,-1) \circ \zeta(x, 1))(M), \\
& T_{M}(0, y+1)=(\zeta(1, y) \circ \zeta(-1,1))(M) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\sum_{A \subseteq M} T_{\left.M\right|_{A}}(0, y+1) T_{M / A}(x+1,0) & =(\zeta(1, y) \circ \zeta(-1,1)) \circ(\zeta(1,-1) \circ \zeta(x, 1))(M) \\
& =\zeta(1, y) \circ(\zeta(-1,1) \circ \zeta(1,-1)) \circ \zeta(x, 1)(M) \\
& =\zeta(1, y) \circ \zeta(x, 1)(M) \\
& =T_{M}(x+1, y+1),
\end{aligned}
$$

where the third equality is by Lemma 1.

Remark 1.

Note that Theorem 1 can be rewritten as

$$
\begin{equation*}
T_{M}(x, y)=\sum_{\text {isthmus-free flats } V} T_{V}(0, y) T_{M / V}(x, 0) . \tag{4}
\end{equation*}
$$

This is because when $A \subseteq M$ is not a flat, M / A contains a loop e and

$$
T_{M / A}(x, 0)=\left[y T_{(M / A)-e}(x, y)\right]_{y=0}=0
$$

Similarly if A contains an isthmus e, then

$$
T_{\left.M\right|_{A}}(0, y)=\left[x T_{\left(\left.M\right|_{A}\right) / e}(x, y)\right]_{x=0}=0 .
$$

Remark 2.

Theorem 1 can also be proven using Tutte's original definition of the Tutte polynomial involving basis activities [1,2]: for any ordering of the ground set of M,

$$
T_{M}(x, y):=\sum_{\text {bases } B \text { of } M} x^{\left|I A_{M}(B)\right|} y^{\left|E A_{M}(B)\right|}
$$

where here $I A_{M}(B)$ (resp. $E A_{M}(B)$) denotes the set of internally (resp. externally) active elements of M with respect to the base B. Theorem 1 in [3] asserts that any base B can be uniquely decomposed $B=B_{1} \cup B_{2}$ with $B_{1} \cap B_{2}=\varnothing$ and

$$
I A_{V}\left(B_{1}\right)=E A_{M / V}\left(B_{2}\right)=\varnothing
$$

where V is the flat $\overline{B_{1}}$ spanned by B_{1}. It turns out that in this decomposition one furthermore has

$$
\begin{equation*}
I A_{M}(B)=I A_{M / V}\left(B_{2}\right), \quad E A_{M}(B)=E A_{V}\left(B_{1}\right) \tag{5}
\end{equation*}
$$

We omit the details of this verification, which are straightforward. Given this, one then has

$$
\begin{aligned}
T_{M}(x, y) & =\sum_{\text {bases } B \text { of } M} x^{\left|I A_{M}(B)\right|} y^{\left|E A_{M}(B)\right|} \\
& =\sum_{\text {flats } V \text { of } M} \sum_{\substack{\text { bases } B_{1} \text { of } V \\
\text { with } I A_{V}\left(B_{1}\right)=\varnothing}} \sum_{\substack{\text { bases } B_{2} \text { of } M / V \\
\text { with } E A_{M / V}\left(B_{2}\right)=\varnothing}} x^{\left|I A_{M / V}\left(B_{2}\right)\right|} y^{\left|E A_{V}\left(B_{1}\right)\right|} \\
& =\sum_{\text {flats } V \text { of } M}\left(\sum_{\substack{\text { bases } B_{1} \text { of } V \\
\text { with } I A_{V}\left(B_{1}\right)=\varnothing}} y^{\left|E A_{V}\left(B_{1}\right)\right|}\right)\left(\sum_{\substack{\text { bases } B_{2} \text { of } M / V \\
\text { with } E A_{M / V}\left(B_{2}\right)=\varnothing}} x^{\left|I A_{M / V}\left(B_{2}\right)\right|}\right) \\
& =\sum_{\text {flats } V \text { of } M} T_{V}(0, y) T_{M / V}(x, 0) .
\end{aligned}
$$

Remark 3.

The version (4) of Theorem 1 may also be proven by deletion-contraction, as we now explain. Recall [1] that the Tutte polynomial is characterized by the following three properties.
(i) $T_{M}(x, y)=x$ if M consists of a single isthmus, and $T_{M}(x, y)=y$ if M consists of single loop.
(ii) $T_{M_{1} \oplus M_{2}}(x, y)=T_{M_{1}}(x, y) \cdot T_{M_{2}}(x, y)$.
(iii) $T_{M}(x, y)=T_{M-e}(x, y)+T_{M / e}(x, y)$ if e is neither an isthmus nor a loop of M.

Let $T_{M}^{\prime}(x, y)$ be the right side of (4), and we must show that it also satisfies (i),(ii),(iii). Properties (i),(ii) are straightforward and omitted. To show (iii), fix an element e which is neither an isthmus nor a loop of M, and then use property (iii) for $T_{M}(x, 0), T_{M}(0, y)$ to write

$$
\begin{aligned}
T_{M}^{\prime}(x, y) & =\sum_{\text {isthmus-free flats } V} T_{V}(0, y) T_{M / V}(x, 0) \\
& =\sum_{\substack{\text { i.f. flats } V \\
e \in V}} T_{V}(0, y) T_{M / V}(x, 0)+\sum_{\substack{\text { i.f. flats } V \\
e \notin V}} T_{V}(0, y) T_{M / V}(x, 0) \\
& =\sum_{\substack{\text { i.f. flats } V \\
e \in V}} T_{V-e}(0, y) T_{M / V}(x, 0)+\sum_{\substack{\text { i.f. flats } V \\
e \in V}}^{\substack{\text { i. }}} T_{V / e}(0, y) T_{M / V}(x, 0) \\
& +\sum_{\substack{\text { i.f. flats } \\
e \notin V}} T_{V}(0, y) T_{M / V-e}(x, 0)+\sum_{\substack{\text { i.f. flats } \\
e \notin V}}^{\substack{\text { eøV }}} T_{V}(0, y) T_{(M / V) / e}(x, 0) \\
& =\sum_{\substack{V, V-e \text { both i.f. } \\
e \in V}} T_{V-e}(0, y) T_{M / V}(x, 0)+\sum_{\substack{\text { i.f. flats } \\
e \in V}} T_{V / e}(0, y) T_{M / V}(x, 0) \\
& +\sum_{\substack{\text { i.f. flats } V \\
e \notin V}} T_{V}(0, y) T_{M / V-e}(x, 0)+\sum_{\substack{\text { if.f flats } V \\
V \cup\{e\}}} T_{V}(0, y) T_{(M / V) / e}(x, 0)
\end{aligned}
$$

where the last equality comes from the fact that $T_{V-e}(0, y)=0$ unless $V-e$ is isthmus-free, and dually $T_{(M / V) / e}(x, 0)=0$ unless $V \cup\{e\}$ is a flat of M.

On the other hand, we wish to show that the above sum is the same as

$$
\begin{align*}
& T_{M-e}^{\prime}(x, y)+T_{M / e}^{\prime}(x, y) \\
& =\sum_{\substack{\text { i.f. flats } W \\
\text { of } M-e}} T_{(M-e) \mid W}(0, y) T_{(M-e) / W}(x, 0)+\sum_{\substack{\text { i.f. flats } W \\
\text { of } M / e}} T_{(M / e) \mid W}(0, y) T_{(M / e) / W}(x, 0) \\
& =\sum_{\substack{\text { i.f. flats } W \text { of } M-e, W \text { not a flat of } M}} T_{(M-e) \mid W}(0, y) T_{(M-e) / W}(x, 0)+\sum_{\substack{\text { i.f. flats } W \text { of } M / e, W \\
W \\
\text { not a flat of } M}} T_{(M / e) \mid W}(0, y) T_{(M / e) / W}(x, 0) \tag{7}
\end{align*}
$$

$$
+\sum_{\substack{\text { i.f. flats } W \text { of } M-e, W \text { a flat of } M}} T_{(M-e) \mid W}(0, y) T_{(M-e) / W}(x, 0)+\sum_{\substack{\text { i.f. flats } W \text { of } M / e, W \text { a flat of } M}} T_{\left.(M / e)\right|_{W}}(0, y) T_{(M / e) / W}(x, 0)
$$

The terms W in the sums on the right-hand side of equation (7) biject with the terms V in the sums on the right-hand side of equation (6) as follows: in the first sum $W=V-e$, in the second sum $W=V / e$, in the third sum $W=V$ and in the fourth sum $W=V$. We leave it to the reader to check that this gives a bijection of the terms which shows the equality of the right-hand sides in (6) and (7). The only tricky point here is in the fourth sum, where one must note that not only are W, V equal as subsets of the ground sets of $M / e, M$ respectively, but also the flats W, V of $M / e, M$ are isomorphic as matroids, due to the fact that e is an isthmus of $V \cup\{e\}$.

Remark 4.

Lemma 1 can be used to prove other convolution identities. For example, if we define

$$
\rho(x, y, z, w)(M):=(\zeta(z, y) \circ \zeta(x, w))(M)
$$

then equation (3) implies

$$
\begin{aligned}
& T_{M}(x, y)=\rho(x-1, y-1,1,1)(M) \\
& T_{M}(0, y)=\rho(-1, y-1,1,1)(M) \\
& T_{M}(x, 0)=\rho(x-1,-1,1,1)(M)
\end{aligned}
$$

and Theorem 1 is the specialization $z=w=1$ of the more general identity

$$
\begin{aligned}
\rho(x-1, y-1, z, w) & =\zeta(z, y-1) \circ \zeta(x-1, w) \\
& =\zeta(z, y-1) \circ \zeta(-1,1) \circ \zeta(1,-1) \circ \zeta(x-1, w) \\
& =\rho(-1, y-1, z, 1) \circ \rho(x-1,-1,1, w)
\end{aligned}
$$

As another example, of the use of Lemma 1, one can start with equation (2) and multiply both sides by $\zeta(-1,-y)$. Using the notation $T(x, y)(M):=T_{M}(x, y)$, we obtain

$$
\zeta(-1,-y) \circ T(x+1, y+1)=\zeta(x, 1)
$$

which gives an apparently new recursion for the Tutte polynomial

$$
T_{M}(x, y)=(x-1)^{r(M)}-\sum_{\varnothing \neq A \subseteq M}(-1)^{r\left(\left.M\right|_{A}\right)}(1-y)^{r\left(\left.M\right|_{A} ^{*}\right)} T_{M / A}(x, y) .
$$

Remark 5.

The convolution product defined by equation (2) suggests a certain coalgebra (actually a Hopf algebra) naturally associated with matroids. Let A be a free K module with basis \mathbb{M} equal to the isomorphism classes of finite matroids $[M]$. The coproduct $\Delta: A \rightarrow A \otimes A$ is defined K-linearly by

$$
\Delta([M])=\sum_{A \subseteq M}\left[\left.M\right|_{A}\right] \otimes[M / A]
$$

and the product $\mu: A \otimes A \rightarrow A$ is defined K-linearly by

$$
\mu\left([M] \otimes\left[M^{\prime}\right]\right)=\left[M \oplus M^{\prime}\right] .
$$

Define a bigrading on A by setting the bidegree of $[M]$ to be $\left(r(M), r\left(M^{*}\right)\right)$. One can check that this makes A a co-associative, commutative, bigraded, connected, Hopf algebra over K, whose unit $\eta: K \rightarrow A$ is $\eta(1)=[\varnothing]$, and whose co-unit $\epsilon: A \rightarrow K$ is $\epsilon([M])=\delta_{M, \varnothing}$. If $\phi: A \rightarrow A$ is the involution $\phi([M])=\left[M^{*}\right]$ extended K-linearly to all of A, then one can check that the identity $\left.M^{*}\right|_{M-A} \cong(M / A)^{*}$ leads to the equation

$$
\Delta \circ \phi=(\phi \otimes \phi) \circ \Delta^{o p} .
$$

Therefore $\phi^{*}: A^{*} \rightarrow A^{*}$ is an algebra anti-automorphism. Note that ϕ also exchanges the bigrading in the sense that if a has bidegree (s, t) then $\phi(a)$ has bidegree (t, s).

Motivated by this, let A be any co-associative, bigraded, connected coalgebra over K with coproduct Δ and co-unit η, having a distinguished K-basis of bihomogeneous elements \mathbb{M}. Let o denote the product dual to Δ in the dual algebra A^{*}, and $\phi: A \rightarrow A$ be any involution which exchanges the bigrading and such that $\phi^{*}: A^{*} \rightarrow A^{*}$ is an anti-automorphism. Define $\zeta \in A^{*}$ by $\zeta(x, y)(M)=x^{s} y^{t}$ for all $M \in \mathbb{M}$ having bidegree (s, t). We can then define a Tutte functional $T(x, y) \in A^{*}$ by $T(x, y)=\zeta(1, y-1) \circ \zeta(x-1,1)$. One can then check that the familiar Tutte polynomial identity [1]

$$
T_{M^{*}}(x, y)=T_{M}(y, x)
$$

has the counterpart

$$
\phi^{*}(T(x, y))=T(y, x)
$$

which follows formally from the assumed properties of ϕ.
Furthermore, the proof of Lemma 1 actually shows the following in this context:

$$
\text { If } \zeta(1,1)^{-1}=\zeta(-1,-1) \text { then } \zeta(x, y)^{-1}=\zeta(-x,-y)^{-1}
$$

Consequently, if we impose the extra condition on A that $\zeta(1,1)^{-1}=\zeta(-1,-1)$, then the counterpart to Theorem 1

$$
T(x, y)=T(0, y) \circ T(x, 0)
$$

ensues as a formal consequence.
Acknowledgments. The authors thank Richard Stanley for suggesting the search for a Tutte polynomial analogue to equation (2.1) of [3].

References

1. T. Brylawski and J. G. Oxley, The Tutte polynomial and its applications, Matroid Applications (N. White, ed.), Cambridge Univ. Press, Cambridge, 1992.
2. H. Crapo, The Tutte polynomial, Aequationes Mathematicae 3 (1969), 211-229
3. W. Kook, V. Reiner, and D. Stanton, Combinatorial Laplacians of matroid complexes, preprint (1997).

School of Mathematics, University of Minnesota, Minneapolis, MN 55455.

