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The Bailey-Rogers-Ramanujan group

D. Stanton

Abstract. A certain group of upper triangular 2 × 2 matrices is explicitly
defined via generators. Any element of this group has an associated multisum
identity of Rogers-Ramanujan type. Several infinite families of identities are
given as examples. Different expressions for an element in the generators can
yield distinct identities. An application to the Borwein polynomials is given.

1. Introduction. The Rogers-Ramanujan identities have many proofs [5].
One idea which has been fruitful [3], [16], [17] is the concept of a Bailey pair.
This technique allows for iteration to objects called Bailey chains [3], and results in
multisum generalizations of the Rogers-Ramanujan theorems to arbitrary modulus.
The purpose of this paper is to define a group of 2 × 2 rational matrices, which
contains the standard iteration of Bailey chains. Any element of this group has a
corresponding identity of Rogers-Ramanujan type, in fact there may be many such
identities.

We review Bailey pairs and give the relevant transformations for Bailey pairs
in §2. These transformations are written as 2× 2 matrices in §3, where the Bailey-
Rogers-Ramanujan group is defined in Definition 2. A Rogers-Ramanujan type
identity is given for an element of the group in Theorem 1 in §4. Examples of the
identities are given in §5 and §6, and an application to the Borwein polynomials is
given in §7.

We use standard notation for q-series found in [2], [12], and we shall also use
the Jacobi triple product identity

(1.1)
∞
∑

n=−∞

qn
2

xn = (q2,−qx,−q/x; q2)∞.

2. Bailey pairs. In this section we review Bailey pairs, and give the versions
of the transformations on pairs which are needed for the Bailey-Rogers-Ramanujan
group.

Recall [3] the definition of a Bailey pair.
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2 D. STANTON

Definition 1. A pair of sequences (αn(a, q), βn(a, q)) is called a Bailey pair
with parameters (a, q) if

βn(a, q) =
n
∑

r=0

αr(a, q)

(q; q)n−r(aq; q)n+r

for all n ≥ 0.

The first example of a Bailey pair, which will be used throughout this paper,
is the unit Bailey pair

(UBP) β(0)
n (a, q) =

{

1, if n = 0

0, if n > 0,
α(0)
n (a, q) =

(a; q)n
(q; q)n

(1− aq2n)

(1− a)
(−1)nq(

n

2).

Bailey’s lemma [3],[17] takes a Bailey pair (αn(a, q), βn(a, q)) and produces
another Bailey pair (α′

n(a, q), β
′
n(a, q)) with parameters (a, q). One limiting case of

Bailey’s lemma is denoted here by (S1)

(S1)

α′
r(a, q) = arqr

2

αr(a, q),

β′
n(a, q) =

n
∑

k=0

akqk
2

(q; q)n−k
βk(a, q).

If we start with (UBP), apply (S1) twice, we have

β(2)
n (a, q) =

n
∑

r=0

a2rq2r
2

α
(0)
r (a, q)

(q; q)n−r(aq; q)n+r

=
n
∑

s=0

asqs
2

(q; q)n−s(q; q)s
.(2.1)

The Rogers-Ramanujan identities modulo 5 occur if a = 1 and n → ∞ in (2.1).
Another limiting case of Bailey’s lemma is

(S2)

α′
r(a, q) = ar/2qr

2/2αr(a, q),

β′
n(a, q) =

n
∑

k=0

(−√
aq; q)k

(q; q)n−k(−
√
aq; q)n

ak/2qk
2/2βk(a, q).

It is clear from the action on αn(a, q) that applying (S2) twice is equivalent to
applying (S1) once.

Some other transformations of Bailey pairs which changed the base q were
given in [11]. The following three choices, denoted (D1), (D2), and (D3), all have
(α′

n(a, q), β
′
n(a, q)) as a Bailey pair with parameters (a, q).

(D1)

α′
r(a, q) = αr(a

2, q2),

β′
n(a, q) =

n
∑

k=0

(−aq; q)2k
(q2; q2)n−k

qn−kβk(a
2, q2),

(D2)

α′
r(a, q) = a−rq−r2αr(a

2, q2),

β′
n(a, q) =

n
∑

k=0

(−aq; q)2k
(q2; q2)n−k

qk
2+k−2kn−n(−1)n−ka−nβk(a

2, q2),
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and

(D3)

α′
r(a, q) = a−r/2q−r2/2αr(a

2, q2),

β′
n(a, q) =

n
∑

k=0

(−aq; q)2k(q
−1/2−ka−1/2, qk+3/2a1/2; q)n−k

(aq2k+1; q2)n−k(q2; q2)n−k

× q−(
k

2) (aq)−k/2βk(a
2, q2).

The inverse versions of (D1)-(D3), denoted (E1)-(E3), follow from Theorem 2.2
of [11]. To avoid fractional powers we choose to write (E1)-(E3) in such a way that
(α′

n(a, q), β
′
n(a, q)) is a Bailey pair with parameters (a4, q4) in each of these three

cases.

(E1)

α′
r(a

4, q4) = αr(a
2, q2),

β′
n(a

4, q4) =
n
∑

k=0

(−1)n−kq2(n−k)2

(−a2q2; q2)2n(q4; q4)n−k
βk(a

2, q2),

(E2)

α′
r(a

4, q4) = a2rq2r
2

αr(a
2, q2),

β′
n(a

4, q4) =
n
∑

k=0

a2kq2k
2

(−a2q2; q2)2n(q4; q4)n−k
βk(a

2, q2),

(E3)

α′
r(a

4, q4) = arqr
2

αr(a
2, q2),

β′
n(a

4, q4) =
n
∑

k=0

(aq; q2)2n−k(−aq; q2)ka
kqk

2

(−a2q2; q2)2n(q4; q4)n−k(a2q2; q4)n
βk(a

2, q2).

For changing the base q to q3 we have one possibility and its inverse, denoted
(T1) and (T2). In (T1) (α′

n, β
′
n) has parameters (a3, q3), while in (T2) it has

parameters (a, q).

(T1)

α′
r(a

3, q3) =arqr
2

αr(a, q),

β′
n(a

3, q3) =
n
∑

k=0

(aq; q)3n−ka
kqk

2

(a3q3; q3)2n(q3; q3)n−k
βk(a, q),

(T2)

α′
r(a, q) =a−rq−r2αr(a

3, q3),

β′
n(a, q) =

n
∑

k=0

(aq2n+1; q−1)3k(a
3q3; q3)2(n−k)

(aq; q)2n(q3; q3)k

× (−1)kq3(
k

2)−n2

a−nβn−k(a
3, q3).

3. 2 × 2 matrices. In this section we realize the operations of §2 on Bailey
pairs as 2× 2 matrices. These are the generators of the Bailey-Rogers-Ramanujan
group in Definition 2.

We are concerned with iterating the transformations (S), (D), (E), and (T) of
§2. Our initial choice is always the unit Bailey pair (UBP) with a = 1. We shall
also assume that each iteration yields a Bailey pair with parameters (1, q). We have

α′
r(1, q) = qAr2α(0)

r (1, qB).
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for some rational numbers A and B. Thus we need only keep track A and B while
carrying out the iteration.

We encode a transformation

α′
r(1, q) = qAr2αr(1, q

B),

where (α′
n(1, q), β

′
n(1, q)) has parameters (1, q), by the 2× 2 matrix

[

1 A
0 B

]

.

We next check that matrix multiplication on the right does correspond to the
composition of transformations. If

α′′
r (1, q) = qCr2α′

r(1, q
D) = qCr2+ADr2αr(1, q

BD),

the corresponding matrix is
[

1 C +AD
0 BD

]

=

[

1 A
0 B

] [

1 C
0 D

]

.

With this notation we see that

(S1) =

[

1 1
0 1

]

, (S2) =

[

1 1/2
0 1

]

, (D1) =

[

1 0
0 2

]

, (D2) =

[

1 −1
0 2

]

,

(D3) =

[

1 −1/2
0 2

]

, (E1) =

[

1 0
0 1/2

]

, (E2) =

[

1 1/2
0 1/2

]

,

(E3) =

[

1 1/4
0 1/2

]

, (T1) =

[

1 1/3
0 1/3

]

, (T2) =

[

1 −1
0 3

]

.

Definition 2. The Bailey-Rogers-Ramanujan group is the subgroup of 2 × 2
upper triangular rational matrices generated by

{(S1), (S2), (D1), (D2), (D3), (E1), (E2), (E3), (T1), (T2)}.

Even though (S1), (E1), (E2), (E3) and (T2) are unnecessary as generators, it
will be convenient in the following sections to keep their designation as generators.

There are other relations amongst the generators, for example

(S1)(D1) = (D1)(S1), (E2)(D3) = (S2).

4. The Rogers-Ramanujan type identities. Let

g = w1w2 · · ·wk+1

be an element of the Bailey-Rogers-Ramanujan group, with each wi a generator
from Definition 2. Suppose that the corresponding Bailey pairs are

(α(0)
n , β(0)

n ), (α(1)
n , β(1)

n ), · · · , (α(k+1)
n , β(k+1)

n ).

Let the corresponding relations for wi+1 between β
(i)
n and β

(i+1)
n be expressed

as

β(i+1)
n =

n
∑

si=0

M (i)
n,siβ

(i)
si , 0 ≤ i ≤ k.
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We say that M (i) is the infinite lower triangular matrix corresponding to wi+1. For
example, if w1 = (S1), then

M
(0)
nk = qk

2

/(q; q)n−k.

Theorem 1. If w = w1w2 · · ·wk+1 is an element of the Bailey-Rogers- Ra-
manujan group, the corresponding finite Rogers-Ramanujan identity is given by

β(k+1)
n =

∑

n≥sk≥···≥s1≥0

M (k)
n,sk

· · ·M (1)
s2,s1M

(0)
s1,0

=

=
n
∑

r=0

α
(k+1)
r

(q; q)n+r(q; q)n−r
,

where M (i) is the infinite lower triangular matrix corresponding to wi+1.

Proof. The first equality is the expression for β
(k+1)
n as a (k + 1)-fold sum

over β
(0)
s . This sum reduces to a k-fold sum because of the (UBP) condition. The

right side expresses the fact that (α
(k+1)
n , β

(k+1)
n ) is a Bailey pair with parameters

(1, q). �

Next we consider the n → ∞ limit of Theorem 1. Let

w = w1w2 · · ·wk+1 =

[

1 A
0 B

]

.

The right-side of Theorem 1, using the (UBP) and the Jacobi triple product identity
(1.1), approaches

(4.1)
(q2A+B , qA+B , qA; q2A+B)∞

(q; q)2∞
.

The left-side will have a termwise limit if

lim
n→∞

M (k)
n,sk

= M (k)
∞,sk

exists. This is the case if wk+1 = (S1), (S2), (D3), (E2), (E3), or (T1). If
wk+1 = (D1) or (E1), we see that

lim
n→∞

M
(k)
n,n−sk

exists, so that the limit may be taken as long as

lim
n→∞

M
(k−1)
n−sk,sk−1

exists. It will exist if wk = (S1), (S2), (D3), (E2), (E3), or (T1), otherwise we
may need to replace sk−1 by n− sk−1 and continue.

We also see that wk = (D2) or (T2) will lead to interesting identities, even
though the termwise limit does not exist. Each term will be a Laurent series, yet
the sum has a limit with no negative powers of q as n → ∞. Several such examples
are given in §5.
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5. Single sum identities. In this section we record which single sum
Rogers-Ramanujan type identities appear from words of length 2 in Theorem 1.
In each case we have taken the n → ∞ limit in Theorem 1 and multiplied by the

infinite product occurring in M
(k)
∞,sk . Each of these identities has many multisum

generalizations by considering longer words, a few are given in §6.
Rogers-Ramanujan identity (Slater (18)):

(S1)(S1) =

[

1 2
0 1

]

,

∞
∑

s=0

qs
2

(q; q)s
=

(q5, q2, q3; q5)∞
(q; q)∞

.

Bailey’s mod 9 identity (Slater (42)):

(T1)(S1) =

[

1 4/3
0 1/3

]

,

∞
∑

s=0

q3s
2

(q; q)3s
(q3; q3)2s(q3; q3)s

=
(q9, q4, q5; q9)∞

(q3; q3)∞
.

Rogers’ mod 7 identity (Slater (33)):

(E2)(S1) =

[

1 3/2
0 1/2

]

,

∞
∑

s=0

q2s
2

(−q; q)2s(q2; q2)s
=

(q7, q4, q3; q7)∞
(q2; q2)∞

.

Rogers’ mod 5 identity, (Slater (19)):

(E1)(S1) =

[

1 1
0 1/2

]

,

∞
∑

s=0

(−1)sq3s
2

(−q; q)2s(q2; q2)s
=

(q5, q2, q3; q5)∞
(q2; q2)∞

.

Rogers’ mod 5 identity (Slater (20)):

(E2)(S2) =

[

1 1
0 1/2

]

,

∞
∑

s=0

qs
2

(q4; q4)s
=

(q5, q2, q3; q5)∞(−q; q2)∞
(q2; q2)∞

.

Slater’s identity (36):

(S1)(S2) =

[

1 3/2
0 1

]

,

∞
∑

s=0

(−q; q2)s
(q2; q2)s

qs
2

=
1

(q1, q4, q7; q8)∞
.

Slater’s identity (39):

(S2)(S1) =

[

1 3/2
0 1

]

,
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∞
∑

s=0

q2s
2

(q2; q2)s(−q; q2)s
=

(q8, q3, q5; q8)∞
(q2; q2)∞

.

Slater’s identity (53):

(E3)(S1) =

[

1 5/4
0 1/2

]

,

∞
∑

s=0

q4s
2

(q; q2)2s
(q4; q4)2s

=
(q12, q5, q7; q12)∞

(q4; q4)∞
.

mod 4 identity:

(D2)(S2) =

[

1 −1/2
0 2

]

,

∞
∑

s=0

(−q; q2)s
(q4; q4)s

(−1)s+1q(s−1)2 =
(q; q)∞
(q4; q4)∞

.

mod 6 identity:

(D3)(S1) =

[

1 1/2
0 2

]

,

∞
∑

s=0

(q−1; q2)s(q
3; q2)s

(q2; q2)2s
q2s

2

=
(q1, q5; q6)∞
(q2, q4; q6)∞

.

mod 8 identity:

(E3)(S2) =

[

1 3/4
0 1/2

]

,

∞
∑

s=0

(q; q2)2s(−q2; q4)s
(q4; q4)2s

q2s
2

=
(q3, q5; q8)∞
(q2, q6; q8)∞

.

mod 12 identity:

(D1)(S2) =

[

1 1/2
0 2

]

,

∞
∑

s=0

(−q; q2)s
(q4; q4)s

qs
2+2s =

(q6; q12)∞
(q3, q4, q8, q9; q12)∞

.

mod 12 identity:

(T1)(S2) =

[

1 5/6
0 1/3

]

,

∞
∑

s=0

(−q3; q6)s(q
2; q2)3s

(q6; q6)2s(q6; q6)s
q3s

2

=
(q12, q5, q7; q12)∞(−q3; q6)∞

(q6; q6)∞
.

mod 4 identity:

(D1)(T2) =

[

1 −1
0 6

]

,

lim
n→∞

n
∑

s=0

(q2n+1; q−1)3s(q
3; q6)n−s

(q3; q3)s
(−1)s+1q3(

s

2)−n2+3(n−s)+1 =
1

(q2; q4)∞
.

mod 2 identity:

(E3)(T2) =

[

1 −1/4
0 3/2

]

,

lim
n→∞

n
∑

s=0

(q8n+4; q−4)3s(q
3; q6)2(n−s)

(q12; q12)s
(−1)s+1q12(

s

2)−4n2+1 = (q; q2)∞.
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mod 10 identity:

(S1)(D3) =

[

1 3/2
0 2

]

,

lim
n→∞

n
∑

s=0

(−q2; q2)2s(q
−1−2s, q3+2s; q2)n−s

(q4s+2; q4)n−s(q4; q4)s(q4; q4)n−s
q−s2 =

(q10, q7, q3; q10)∞
(q2; q2)2∞

.

mod 7 identity:

(S1)(T2) =

[

1 2
0 3

]

,

lim
n→∞

n
∑

s=0

(q2n+1; q−1)3s(q
3; q3)2(n−s)

(q3; q3)s(q3; q3)n−s
(−1)sq3(

s

2)−n2

=
(q7, q2, q5; q7)∞

(q; q)∞
.

mod 8 identity:

(S2)(T2) =

[

1 1/2
0 3

]

,

lim
n→∞

n
∑

s=0

(q4n+2; q−2)3s(q
6; q6)2(n−s)(−1)sq6(

s

2)−2n2

(q6; q6)s(−q3; q6)n−s(q6; q6)n−s
=

(q8, q7, q1; q8)∞
(q2; q2)∞

.

mod 5 identity:

(E2)(T2) =

[

1 1/2
0 3/2

]

,

lim
n→∞

n
∑

s=0

(q4n+2; q−2)3s(q
6; q6)2(n−s)(−1)sq6(

s

2)−2n2

(q6; q6)s(−q3; q3)2(n−s)(q6; q6)n−s
=

(q5, q4, q1; q5)∞
(q2; q2)∞

.

mod 2 identity:

(D3)(T2) =

[

1 −5/2
0 6

]

,

lim
n→∞

n
∑

s=0

(q4n+2; q−2)3s(q
−3, q9; q6)n−s

(q6; q6)s
(−1)s+1q6(

s

2)−2n2+9 = (q; q2)2∞.

mod 2 identity:

(D3)(D3) =

[

1 −3/2
0 4

]

,

lim
n→∞

n
∑

s=0

(−q2; q2)2s(q
−1−2s, q2s+3; q2)n−s(q

−2, q6; q4)s
(q4s+2; q4)n−s(q4; q4)n−s(q4; q4)2s

q−s2+4 =
(q; q2)2∞
(q2; q2)∞

.

mod 2 identity:

(D1)(D2) =

[

1 −1
0 4

]

,

lim
n→∞

n
∑

s=0

(−q; q)2s(−1)n−s+1qs
2+3s−2sn−n+1

(q2; q2)n−s(q4; q4)s
=

1

(q2; q2)∞
.

mod 2 identity:

(S1)(D2) =

[

1 1
0 2

]

,

lim
n→∞

n
∑

s=0

(−q; q)2s(−1)n−sqs
2+s−2sn−n

(q2; q2)n−s(q2; q2)s
=

(−q2; q2)∞
(q; q)∞

.
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mod 6 identity:

(D1)(D3) =

[

1 −1/2
0 4

]

,

lim
n→∞

n
∑

s=0

(−q2; q2)2s(q
−1−2s, q2s+3; q2)n−sq

−s2+4s+1

(q4s+2; q4)n−s(q4; q4)n−s(q8; q8)s
=

−(q6, q1, q5; q6)∞
(q2; q2)2∞

.

mod 6 identity:

(S2)(D3) =

[

1 1/2
0 2

]

,

lim
n→∞

n
∑

s=0

(−q2; q2)2s(q
−1−2s, q2s+3; q2)n−sq

−s2

(q4s+2; q4)n−s(q4; q4)n−s(q4; q4)s(−q2; q4)s
=

(q6, q1, q5; q6)∞
(q2; q2)2∞

.

mod 6 identity:

(T1)(D3) =

[

1 1/6
0 2/3

]

,

lim
n→∞

n
∑

s=0

(q−3−6s, q6s+9; q6)n−s(q
4, q8; q12)sq

−3s2

(q12s+6; q12)n−s(q12; q12)n−s(q6; q6)2s
=

(q1, q5; q6)∞
(q6; q6)∞

.

6. Multisum identities. In this section we give several specific examples of
multisum identities which correspond to group elements via Theorem 1.

Andrews-Gordon identities, (k ≥ 1): Since

(S1)k+1 =

[

1 k + 1
0 1

]

,

the result from (4.1) is

∑

s1≥s2≥···≥sk≥0

qs
2
1+···+s2k

(q; q)s1−s2(q; q)s2−s3 · · · (q; q)sk
=

(q2k+3, qk+2, qk+1; q2k+3)∞
(q; q)∞

.

Bressoud identities, (k ≥ 2): Choose

(D1)(S1)k−1 =

[

1 k − 1
0 2

]

,

the result from (4.1) is

∑

s1≥s2≥···≥sk−1≥0

qs
2
1+···+s2k−1+sk−1

(q; q)s1−s2(q; q)s2−s3 · · · (q; q)sk−2−sk−1
(q2; q2)sk−1

=
(q2k, qk−1, qk+1; q2k)∞

(q; q)∞
.

mod 2k + 2i identities, (k + i ≥ 2): Choose

(D1)k(S1)i =

[

1 i
0 2k

]

,
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∑

sk+i−1≥···≥s1≥s0=0

qs
2
k+i−1+···+s2k

∏k+i−2
j=k (q; q)sj+1−sj

k−1
∏

j=0

q2
j(sk−j−sk−j−1)(−q2

j

; q2
j

)2sk−j−1

(q2j+1 ; q2j+1)sk−j−sk−j−1

=
(q2

k+2i, q2
k+i, qi; q2

k+2i)∞
(q; q)∞

.

If k = 0 these are the Andrews-Gordon identities, while for k = 1 they are the
Bressoud identities. The i = 2 case was previously given in [11, Corollary 4.4].

mod i2k+1 + 1 identities, (k + i ≥ 2): Choose

(E1)k(S1)i =

[

1 i
0 2−k

]

,

∑

sk+i−1≥···≥s1≥s0=0

q2
k(s2k+i−1+···+s2k)

∏k+i−2
j=k (q2k ; q2k)sj+1−sj

k−1
∏

j=0

(−1)sj+1−sjq2
j(sj+1−sj)

2

(q2j+1 ; q2j+1)sj+1−sj (−q2j ; q2j )2sj+1

=
(qi2

k+1+1, qi2
k+1, qi2

k

; qi2
k+1+1)∞

(q2k ; q2k)∞
.

If k = 0 these are again the Andrews-Gordon identities, for k = i = 1 they are
Rogers’ identities for modulus 5.

mod (i+ 1)2k+1 − 1 identities, (k + i ≥ 2): Choose

(E2)k(S1)i =

[

1 1 + i− 2−k

0 2−k

]

,

∑

sk+i−1≥···≥s1≥s0=0

q2
k(s2k+i−1+···+s2k)

∏k+i−2
j=k (q2k ; q2k)sj+1−sj

k−1
∏

j=0

q2
js2j

(q2j+1 ; q2j+1)sj+1−sj (−q2j ; q2j )2sj+1

=
(q(i+1)2k+1−1, q(i+1)2k , q(i+1)2k−1; q(i+1)2k+1−1)∞

(q2k ; q2k)∞
.

If k = 0 these are again the Andrews-Gordon identities, for k = i = 1 they are
Rogers’ identities for modulus 7.

mod (2i+ 1)3k identities, (k + i ≥ 2): Choose

(T1)k(S1)i =

[

1 i+ (1− 3−i)/2
0 2k3−i

]

,

∑

sk+i−1≥···≥s1≥s0=0

q3
k(s2k+i−1+···+s2k)

∏k+i−2
j=k (q3k ; q3k)sj+1−sj

×
k−1
∏

j=0

(q3
j

; q3
j

)3sj+1−sjq
3js2j

(q3j+1 ; q3j+1)2sj+1
(q3j+1 ; q3j+1)sj+1−sj

=
(q(2i+1)3k , q(2i+1)3k/2−1/2, q(2i+1)3k/2+1/2; q(2i+1)3k)∞

(q3k ; q3k)∞
.

If k = i = 1 this is Bailey’s mod 9 identity.
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mod 3i + 2k − 1 identities (i ≥ 1, k ≥ 0): Choose

(D1)k(T1)i =

[

1 (1− 3−i)/2
0 2k3−i

]

,

∑

sk+i−1≥···≥s1≥s0=0

q3
i−1s2k+i−1

k+i−2
∏

j=k

q3
j−ks2j (q3

j−k

; q3
j−k

)3sj+1−sj

(q3j−k+1 ; q3j−k+1)2sj+1
(q3j−k+1 ; q3j−k+1)sj+1−sj

×
k−1
∏

j=0

q2
j(sk−j−sk−j−1)(−q2

j

; q2
j

)2sk−j−1

(q2j+1 ; q2j+1)sk−j−sk−j−1

=
(q3

i+2k−1, q2
k+(3i−1)/2, q(3

i−1)/2; q3
i+2k−1)∞

(q3i−1 ; q3i−1)∞
.

If k = i = 1, this is the special case of the q-binomial theorem, which says that
partitions of N into odd parts are equinumerous with partitions of N into distinct
parts.

We next give examples of mod 11 identities which are double sums. Any word
w = w1w2w3

w =

[

1 A
0 B

]

,

with (2A + B)/B = 11 will give such an identity. A Mathematica run finds all 16
such words. These 16 words give 6 distinct identities. We list these 6 identities
along with a representative word.

(S1)(T1)(S1) =

[

1 5/3
0 1/3

]

,

(6.1)
∑

s1,s2≥0

q3s
2
1+s22(q; q)3s1−s2

(q3; q3)2s1(q
3; q3)s1−s2(q; q)s2

=
(q5, q6, q11; q11)∞

(q3; q3)∞
,

(E2)(E1)(S1) =

[

1 5/4
0 1/4

]

,

(6.2)
∑

s1,s2≥0

q4s
2
1+2(s1−s2)

2

(−1)s1−s2

(−q2; q2)2s1(q
4; q4)s1−s2(−q; q)2s2(q

2; q2)s2
=

(q5, q6, q11; q11)∞
(q4; q4)∞

,

(E2)(E2)(S2) =

[

1 5/4
0 1/4

]

,

(6.3)
∑

s1,s2≥0

q2s
2
2+2s21(−q2; q4)s1

(−q2; q2)2s1(q
4; q4)s1−s2(−q; q)2s2(q

2; q2)s2
=

(q5, q6, q11; q11)∞
(q8; q8)∞(q2; q4)∞

,

(E2)(S1)(S1) =

[

1 5/2
0 1/2

]

,

(6.4)
∑

s1,s2≥0

q2s
2
2+2s21

(q2; q2)s1−s2(−q; q)2s2(q
2; q2)s2

=
(q5, q6, q11; q11)∞

(q2; q2)∞
,
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(E1)(E3)(S1) =

[

1 5/4
0 1/4

]

,

(6.5)
∑

s1,s2≥0

q2s
2
2+4s21(−1)s2(−q; q2)s2(q; q

2)2s1−s2

(−q2; q2)2s1(q
2; q4)s1(q

4; q4)s1−s2(−q; q)2s2(q
2; q2)s2

=
(q5, q6, q11; q11)∞

(q4; q4)∞
,

(E1)(T1)(S2) =

[

1 5/6
0 1/6

]

,

(6.6)
∑

s1,s2≥0

q3s
2
1+3s22(−1)s2(−q3; q6)s1(q

2; q2)3s1−s2

(q6; q6)2s1(q
6; q6)s1−s2(−q; q)2s2(q

2; q2)s2
=

(q5, q6, q11; q11)∞
(q12; q12)∞(q3; q6)∞

.

Note that the 2nd, 3rd, and 5th identities are distinct even though they corre-
spond to the same group element. Perhaps the easiest version of this is (S1)(S2) =
(S2)(S1), see §5.

These six identities, particularly (6.2) and (6.5), are reminiscent of, but not the
same as, Andrews’ mod 11 identities in [4], one of which is

∞
∑

n,j=0

(q; q)4n+2j(−1)jq4n
2+12nj+8j2+j

(q4; q4)n(q2; q2)j(q4; q4)2n+2j
=

(q5, q6, q11; q11)∞
(q4; q4)∞

.

Perhaps the most exotic double sum which appears corresponds to

(T1)(T1)(S1) =

[

1 13/9
0 1/9

]

,

∑

s1,s2≥0

q9s
2
2+3s21(q3; q3)3s2−s1(q; q)3s1

(q9; q9)2s2(q
9; q9)s2−s1(q

3; q3)2s1(q
3; q3)s1

=
(q13, q14, q27; q27)∞

(q9; q9)∞
.

There are 348 words w = w1w2w3w4 of length 4 with corresponding integer
values of 11B/(2A + B), these could lead to 202 possible triple sum identities
modulo multiples of 11.

7. Borwein polynomials. In this section we use the group element

(T1) =

[

1 1/3
0 1/3

]

to find alternative forms of the Borwein polynomials.
These polynomials were defined by Andrews [6] as

An(q) =
∞
∑

k=−∞

[

2n
n− 3k

]

q

(−1)kqk(9k−1)/2

Bn(q) =
∞
∑

k=−∞

[

2n
n− 3k − 1

]

q

(−1)kqk(9k+5)/2

Cn(q) =
∞
∑

k=−∞

[

2n
n− 3k + 1

]

q

(−1)kqk(9k−7)/2.
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A conjecture of P. Borwein is equivalent (see [6], [9], [15]) to the conjecture that
An(q), Bn(q), and Cn(q) have non-negative coefficients as polynomials in q. We
give in Theorem 2 an alternative form of these polynomials.

First we review some the hook difference polynomials, which may be defined
by [7]

DK,i(N,M ;α, β)(q) =
∞
∑

λ=−∞

qλ(Kλ+i)(α+β)−Kβλ

[

N +M
N −Kλ

]

q

−
∞
∑

λ=−∞

qλ(Kλ−i)(α+β)−Kβλ+βi

[

N +M
N −Kλ+ i

]

q

.(7.1)

Note that

D6,3(N,M ;α, β, q) =
∞
∑

k=−∞

[

N +M
N − 3k

]

q

(−1)kq3k
2(α+β)/2+3k(α−β)/2,

D6,3(N,M ;α, β, q) =D6,3(M,N ;β, α, q)

D6,3(N,M ;α, β, q) =qMND6,3(M,N ; 3 +M −N − α, 3−M +N − β, q−1)

so that

An(q) =D6,3(n, n; 4/3, 5/3, q) = D6,3(n, n; 5/3, 4/3, q),

Bn(q) =D6,3(n− 1, n+ 1; 7/3, 2/3, q) = D6,3(n+ 1, n− 1; 2/3, 7/3, q),

Cn(q) =D6,3(n+ 1, n− 1; 1/3, 8/3, q) = qn
2−1D6,3(n+ 1, n− 1; 2/3, 7/3, q−1).

It is known [7] that if α and β are positive integers satisfying

α+ β < K, −i+ β ≤ N −M ≤ K − i− α,

then the DK,i(N,M ;α, β)(q) has non-negative coefficients. The next proposition
realizes fractional values as an element of a Bailey pair.

Proposition 1. For (T1),
1. if βn = (q; q)−1

2nD6,3(n, n;α, β, q),

then β′
n = (q3; q3)−1

2nD6,3(n, n; 1 + α/3, 1 + β/3, q3),

2. if βn = (q; q)−1
2nD6,3(n− 1, n+ 1;α, β, q),

then β′
n = q(q3; q3)−1

2nD6,3(n− 1, n+ 1; (5 + α)/3, (1 + β)/3, q3).

Proof. If a = 1 in a Bailey pair, we have

βn(1, q) = (q; q)−1
2n

n
∑

k=0

[

2n
n− k

]

q

αk(1, q).

For part (1) choose

αk =











1 if k = 0,

(−1)Kq3K
2(α+β)/2(q3K(α−β)/2 + q−3K(α−β)/2), if k = 3K > 0,

0 otherwise.

so that βn(1, q) = (q; q)−1
2nD6,3(n, n;α, β, q). Applying (T1) we see that

β′
n = (q3; q3)−1

2nD6,3(n, n;α
′, β′, q3),
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where

3(α+ β)/2 + 9 = 9(α′ + β′)/2, 3(α− β)/2 = 9(α′ − β′)/2.

The solution is α′ = 1 + α/3, β′ = 1 + β/3.
For part (2), choose non-zero values

α3k+1 =(−1)kq3k
2(α+β)/2+3k(α−β)/2,

α3k−1 =(−1)kq3k
2(α+β)/2−3k(α−β)/2,

and apply (T1). �

Now we use the known values [13, Proposition 2]

D6,3(n, n; 1, 2, q) = (1 + qn)
(q3; q3)n−1

(q; q)n−1
,

D6,3(n+ 1, n− 1; 1, 2, q) = D6,3(n− 1, n+ 1; 2, 1, q) =
(q3; q3)n−1

(q; q)n−1
,

to obtain from Proposition 1 the following theorem.

Theorem 2. We have

An(q
3) =

(q; q)3n
(q3; q3)n

+
n
∑

k=1

(q; q)3n−3k

(q3; q3)n−k
qk

2

[

3n− k
2k

]

q

(q3; q3)k−1

(q; q)k−1
(1 + qk),

qBn(q
3) =

n
∑

k=1

(q; q)3n−3k

(q3; q3)n−k
qk

2

[

3n− k
2k

]

q

(q3; q3)k−1

(q; q)k−1
,

q2Cn(q
3) =

n
∑

k=1

(q; q)3n−3k

(q3; q3)n−k
qk

2+k

[

3n− k
2k

]

q

(q3; q3)k−1

(q; q)k−1
.

Finding the n → ∞ limits of Theorem 2 gives the mod 27 identities in Slater
[14]: (93), (91), and (90) respectively.

Unfortunately Theorem 2 does not establish positivity for the polynomials, but
new recurrences do follow from Theorem 2 using Axel Riese’s q-Zeil package. If
γn = qBn(q

3) or q2Cn(q
3) then we have

γn =− q−15(q8 + q6n + q4+3n)(q10 + q6n + q5+3n)γn−2

+ q−6(q6 + q9 + q6n + q6n+3 + q4+3n + q5+3n)γn−1

− q6n−7(1 + q + q2)(q; q)3n−6/(q
3; q3)n−2, n ≥ 2.

8. Remarks. One may ask where the second Rogers-Ramanujan identity
appears from the Bailey-Rogers-Ramanujan group. The group may be extended by
a simple transformation on Bailey pairs (see [11, Proposition 4.1]) which puts

β′
n(1, q) = qnβn(1, q).

The full Andrews-Gordon identities then appear. However once an element of type
(D), (E) or (T) is used in our word the base q has changed, and only certain linear
exponents may be inserted. These, in turn, allow special sets of excluded bases on
the product sides. An example of these choices is given in [11, Corollary 4.4].
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Some of the sums involving limn→∞ in §5 have striking finite forms. For ex-
ample, the finite sum factors to

(q, q5; q6)n
(q6; q6)2n

for (T1)(D3),

(q; q2)2n−1(1− q4n+1) for (E3)(T2),

(q; q2)n−3(q; q
2)n+3 for (D3)(T2),

(q; q2)n+2(q; q
2)n−2

(q2; q2)2n
for (D3)(D3),

1− q2n − q2n+1

(q2; q2)2n
for (D1)(D2).

Perhaps these elements of the group are particularly useful.
Another large set of infinite families of multisum Rogers-Ramanujan identities

has been given by Warnaar [15].
A combinatorial interpretation of the Rogers-Ramanujan identity which corre-

sponds to a general element of the Bailey-Rogers-Ramanujan group is not known.
Some preliminary work on the mod 2k + 2i identities for i = 2 has been done by
Bressoud [10].
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