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Abstract

In this lecture we will discuss mathematical aspects of the Navier-
Stokes equations. We will recall some of the important open problems
and mention a few recent results.

Consider a ball of radius R moving in an incompressible fluid of constant
density ρ at constant velocity U . We expect that a force F is needed to keep
the ball in motion (to overcome the “resistance of the medium”). The force
is usually called the drag force. What is the formula for the drag force? This
classical problem of Fluid Mechanics was considered already by Newton, who
derived the formula

F = c ρR2U2 , (1)

where c is a dimensionless constant. The formula (published in 1687) can be
found in Principia, Corollary 1 of Theorem 30, Book II. From the modern
point of view we can see that the formula is dictated by the dimensional
analysis: the given expression for F is the only possible expression with the
dimension of force which can be formed from the available data ρ, R, and U .

In 1752 d’Alembert published the well-known Essai d’une nouvelle théorie
de la résistance des fluides, where he reached the surprising conclusion that
in ideal fluids the drag force is

F = 0 . (2)
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This is known as d’Alembert’s paradox1.
In 1851 Stokes brought viscosity into the considerations, and derived that

for slowly moving objects one should have

F = 6πνρRU , (3)

where ν is the kinematic viscosity (which has dimension [Length]2/[Time])
of the fluid.

The mathematical description of the fluid motion we use today is the
same as the one used by Stokes, the Navier-Stokes equations:

ut + u∇u + 1
ρ
∇p− ν∆u = 0

div u = 0 ,
(4)

where u = (u1(x, t), u2(x, t), u3(x, t)) is the velocity of the fluid particle which
is at position x at time t, and p = p(x, t) is the pressure. For ν = 0 the system
(4) was derived in by Euler in 1757.

The natural boundary conditions for ν > 0 is that u = 0 at the boundaries
(in the local coordinates in which the boundary is at rest). For ν = 0 the
natural boundary condition is u(x, t) · n(x) = 0, where n(x) is the outward
unit normal to the boundary.

The formulae of Stokes and d’Alembert are well understood in the context
of PDE (4). For the Stokes formula one calculates (following Stokes) an
explicit solution of the linearized problem. For d’Alembert’s formula one
assumes ν = 0 and calculates that a steady-state solution of Euler’s equations
with the natural boundary conditions indeed leads to F = 0. (See, for
example, [16].)

The formula of Newton is much more intriguing from the PDE point of
view. Before we start its discussion, let us introduce an important dimen-
sionless parameter of the above flow around a ball. We define the Reynolds
number (introduced by Reynolds in 1880’s) by

Re =
RU

ν
. (5)

1The paradox has been well understood since the work of Prandtl in the early 1900s.
The source of the paradox is the “ideal fluid” assumption, which is not satisfied for the
usual fluids. Even very small internal friction in the fluid can have large effects when the
fluid interacts with rigid boundaries. This is not captured by the ideal fluid model. See
[23].
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Flows with the same Reynolds number are equivalent in the sense that
the non-trivial scaling symmetries of the Navier-Stokes equations

u(x, t), p(x, t) −→ λu(λx, λ2t), λ2p(λx, λ2t) (6)

can be used to map the situations with the same Reynolds number onto one
another2.

From experiments we know that Newton’s formula (1) is nearly correct
once the Reynolds number is large (Re ≥ 106 should be sufficient). From
the point of view of PDEs this is remarkable, since ν plays a prominent role
in the equation, and yet the force given by Newton’s formula is independent
of ν.

There is another remarkable classical experimental fact (discovered in the
early 1900s by Prandtl and Eiffel): in our experiment described above, there
is a certain Reynolds number Rec, typically in the range 105 − 106 (where
the c in Newton’s formula is not yet constant3), such that as we increase
the velocity, the drag force will suddenly noticeably decrease as the Reynolds
number crosses the critical value Rec. This phenomenon is known as the drag
crisis (see for example [16]), and (experimentally) it is related to a change of
the geometry of the flow.

Are the above examples of fluid behavior described by the Navier-Stokes
equations? The general belief is that this is indeed the case. However, strictly
speaking, we do not really know, since the behavior is known only from exper-
iments and not from computations or theoretical analyses of the equations.
It is perhaps worth remarking that since one cannot really do experiments
in two dimensions, we do not know if the two-dimensional Navier-Stokes
exhibits similar behavior at large Reynolds numbers.

One should mention the following non-trivial issue which comes up in
connection with the above problem of calculating the drag force. In our par-
ticular situation we want to solve the Navier-Stokes in the exterior domain
Ω = {x ∈ R3, |x| > R} with the boundary conditions u(x, t) = 0 at the
boundary ∂Ω = {|x| = R} and u(x, t) → U (where U is now considered
as a vector) as x → ∞. The Navier-Stokes equation (4) in Ω with these
boundary conditions has various solutions. For example, one can consider
axi-symmetric steady-state solutions. It can be proved that such solutions

2Here we of course have in mind flows defined in the exterior of balls.
3The graphs of the dependence of c on Re obtained in experiments can be found in

many Fluid Mechanics textbooks, see for example [16].

3



exist (this is essentially due to Leray). However, these solutions do not give
the right drag force for the large Reynolds numbers. For example, it is likely
(although it may not be known rigorously) that the drag force for these so-
lutions approaches zero as the viscosity ν approaches zero, in contrast with
what is observed in experiments. The reason is that the steady-state sym-
metric solutions are unstable, and the stable flows are neither symmetric nor
time-independent. This has to be taken into account in numerical simula-
tions. In reality the drag force F is a time average of the instantaneous force
F (t) =

∫
∂ Ω

[p(x, t)n(x)−2νe(x, t)n(x)] dx, where e(x, t) is the symmetric part
of ∇u(x, t) and n(x) is the unit normal.

Can the drag force be calculated numerically? With the best present-
day computers, we cannot reliably solve the equations for Reynolds numbers
exceeding 104. The reason is the appearance of various fine-scale structures,
which make it difficult to resolve the details of the solutions. How much
resolution is needed? There is a statistical-type theory of turbulence due
to Kolmogorov and Onsager (see, for example, [16]) which is not based on
the equations of motion, but rather on the assumption that certain statistics
of the observed vector fields are invariant under natural scalings4. In the
situation concerning the drag force, the assumed statistics implies that the
drag force is independent of the viscosity (for large Reynolds numbers). The
rough prediction from this theory is that the amount of computation needed
to calculate the drag force at Reynolds number Re by “brute force” (i. e. by
fully resolving the equations) is proportional to Re11/4. This rough prediction
is probably too optimistic5, but it is still worth noticing that if we believe it
and if we assume we could perhaps do Re = 104 today6, we need roughly 104

– fold increase in the computational power to calculate the air flow around
tennis balls at speeds common in the game. To resolve the air flow around
a car at realistic speeds (it can still be considered incompressible to a very
good approximation), we would need roughly a 108 – fold increase in the
computational power. Engineers of course need to calculate flows around
cars (and airplanes) today, and to achieve this it is necessary to give up the
hope of finding the full solution of the equations, and try instead to find some

4This is somewhat analogous to the situation in Statistical Mechanics where the laws
are not really justified from the equations of motion, but are taken as new postulates.

5Among other things, it does not take into account the subtleties concerning the bound-
ary layer.

6This would not be a calculation which could be done on a PC or a work station, we
have in mind a really big computer.
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approximations. The art of finding such approximations is a large research
area by itself, and there have been many partial successes. The main idea
is that we do not need to resolve the solution fully, and that it should be
possible to replace most of the unknown degrees of freedom by a suitable
statistics. The famous open problem of turbulence can be thought of as the
problem of finding a good algorithm which would do such a reduction to a
relatively small number of variables in a reliable way in the general situation.

There is an additional problem one has to face. Namely, it is not known if
(in dimension three) the Navier-Stokes equations (4) admit a smooth solution
which would describe the flows encountered in the drag force problem. This
is known as the regularity problem. The simplest version of the problem is
the following: does the initial-value problem for the system (4) in R3×(0,∞)
with given initial data u(x, 0) = u0(x) have a smooth solution? The initial
datum u0 is assumed to be smooth and decay “sufficiently fast” to zero as
x →∞.

This problem should be easier than the problem of turbulence, but it is
still universally considered as a hard mathematical problem. In dimension
two it has been solved a long time ago (by Leray in domains without bound-
aries and by Ladyzhenskaya in domains with boundaries), see for example
[15]. By contrast, the problem of turbulence (as defined above) is open even
in dimension two.

The reason why the regularity problem in dimension three is hard (at least
for the present-day PDE techniques) can be understood as follows. There is
only a limited number of “general” tools available for the analysis of PDEs
and none of these techniques seem to be sufficient. No special mathematical
structure has been discovered in the equations, and therefore the present-day
theory has to treat them, to a large degree, as “the general case”. At the
same time, one does not expect regularity for all equations in this general
class.

The available techniques include:

- Linear estimates,

- Perturbation Analysis, see for example [17, 11, 13],

- Energy methods, see, for example, [17, 3],

5



- “Scalar techniques”, such as the maximum principle and other com-
parison principles, Harnack inequalities, De Giorgi, Nash-Moser, and
Krylov-Safonov estimates, etc.,

- re-scaling and blow-up techniques, classification of entire solutions, etc.,
as pioneered by De Giorgi for minimal surfaces.

As in other areas of PDEs, ideas which can be traced back to the work
of De Giorgi have played play an important role.

In the case of equation (4), we have a good understanding of the estimates
for the linear part of the equation (which is called the Stokes system). We
also have the energy identity

∫

R3

1

2
|u(x, t2)|2 dx +

∫ t2

t1

∫

R3

ν|∇u(x, t)|2 dxdt =

∫

R3

1

2
|u(x, t1)|2 dx , (7)

which gives us the control of the quantity on the left-hand side (“parabolic
energy”). We can now try to combine the energy estimate with the linear
estimates and check if we can handle the non-linear term as a perturbation.
This is possible in dimension two, but the energy estimate is too weak in
dimension three. Two is the borderline dimension for this argument. (Some-
times the term “critical” is used in such borderline situations.) In dimension
two we have in fact another quantity which plays to our advantage, the vor-
ticity ω = curl u. This is a scalar (we are in dimension two!) which satisfies

ωt + u∇ω = ν∆ω . (8)

For this equation we have the maximum principle, and in the absence of
boundaries it is easy to see that ω must be bounded. The boundedness of
ω is more than enough for regularity. From this point of view the situation
is “subcritical” – we have more than we need. However, the argument does
not apply near the boundaries, where no “subcritical” argument is known,
and one has to work with the energy estimate at the “critical” level.

In dimension three the situation is “super-critical” and all these argu-
ments break down. This can also be understood heuristically in the following
terms. The non-linear term in the equation can generate small length scales
from large length scales (or, in Fourier terms, large frequencies from low fre-
quencies). The linear part of the equation (which is dissipative) damps the
small length scales. In the subcritical case the damping is stronger than the
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transfer from the longer length scales, and therefore the solution will stay
in the realm of the finite length scale, which translates to regularity. In the
supercritical case the damping may be insufficient, unless there is some extra
mechanism which would slow down the transfer to the small scales. The
critical case is the borderline.

It is perhaps interesting to note that when the large length scales (or low
frequencies) become the focus, the situation is reversed. This happens for
example when we study the behavior at infinity of the steady-state solutions
of Navier-Stokes in exterior domains. The steady-state equations are subcrit-
ical in dimension two and three, and (local) regularity presents no problems.
On the other hand, the study the solutions near ∞ is in some sense the
study of the behavior at very large length scales (or low frequencies), and
the subcritical case becomes more difficult. In fact, in both dimension two
and three the exact behavior of the steady state solutions as x → ∞ repre-
sents a difficult open problem7, see for example [1, 10, 14]. The issues become
somewhat similar to the issues one has to face in the 3d time-dependent reg-
ularity problem, except that the problems are on the other end of the length
scale spectrum, and are most likely easier8. There seems to be some kind of
vague duality here.

In the above approach one uses only the energy estimate, estimates for
the linear part, and some simple properties of the non-linear term, which are
satisfied for many other equations. It is expected that the class of equations
which share with Navier-Stokes the properties which have been used in the
regularity theory so far contains some equations which allow the singularity
formation in finite time from smooth data, see for example [21] and [22].

There has been some limited success with trying to find hidden scalar
quantities in the equations, and to use the rescalings together with suitable
blow-up procedures. Such techniques have been used for example to rule out
self-similar singularities [20, 25], certain type of axi-symmetric singularities
[4, 5, 12], and to prove unexpected regularity results in the (super-critical)
model case of the 5-dimensional steady-state Navier-Stokes [9, 28]. However,
for the general time-dependent solutions is 3d no such quantities are known.

There has been a lot of research on conditions which are sufficient for
regularity of solutions. After the well-known work of Leray, Prodi, Serrin

7The 2d problem is more difficult than the 3d problem in this case, as the 2d equation
is “more subcritical”.

8Nevertheless, still sufficiently hard to have remained open since the early papers of
Leray on the subject in 1930s. See [10].
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and Ladyzhenskaya (see, for example, [17, 24, 15, 27]) this program has been
further developed for example in [3, 6]. One interesting recent development
in this direction is the result that the boundedness of the spatial L3 - norm
||u(t)||3 = {∫

R3 |u(x, t)|3 dx}1/3 of the solution (independently of t) is suffi-
cient for regularity, see [8]. An interesting feature of the proof of the result is
a somewhat unexpected connection to the control theory of parabolic equa-
tions.

The L3 norm is special in that it is invariant under the scaling symmetry
of the equation. It has the same dimension as the kinematic viscosity, and
hence the quantity ||u(t)||3/ν is dimensionless. In some sense, this quantity
can play the role of the Reynolds number in the absence natural length-
scales9.

It should be mentioned that already in 1934 Leray proved that the 3d
Navier-Stokes equations always admit global weak solutions. These are so-
lutions which make sense even when singularities appear. It is known that
the set of possible singular points must be relatively small: its 1-dimensional
parabolic Hausdorff measure has to be zero, see [3].

The main drawback of the theory of the weak solutions is that it is un-
known whether they are unique10. This implies some difficulties for applica-
tions. For example, in the problem of the calculation of the drag force we
mentioned in the beginning, it would not be trivial to define what the drag
force is if the classes of solutions we deal with are not unique. Presumably
one would have to find a suitable invariant measure on the set of all possible
weak solutions and use some averaging process to define the drag force. It is
not clear to me whether this has been done.

As interesting as the above mentioned results may be, they are inadequate
for a real understanding the full 3d regularity problem. The key for the
understanding of the problem might be in Euler’s equation (the case ν = 0).
The regularity problem for Euler’s equation is also open in dimension three
(and the existence of global regular solutions is known in dimension two).
One remarkable feature of Euler’s equation is that the equation is completely
canonical, there are no free parameters. In some sense it is really a geometric

9The fluid occupying the whole space R3 is a good example.
10In fact, some mathematicians consider the problem of the uniqueness of the weak

solutions to be more important than the regularity problem.
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equation, and there is indeed a lot of beautiful geometry behind it, see for
example [2, 7, 19]. So far there has not been much success in combining
the PDE tools used for Navier-Stokes with the geometry which is behind
Euler. For example, one of the main non-trivial mathematical facts about
the solutions of Euler’s equation, the Kelvin-Helmholtz law (see e. g. [26]),
has not really found too much use in the regularity theory. It seems that
Analysis and Geometry need to be brought together in some new way to
make progress on these problems.
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