MATH 523: Homework

A. Find the three-dimensional Fourier transform for the function $f=f(X), X \in \mathbb{R}^{3}$, given by

$$
f(X)=1 \text { if }|X| \leq R, \quad f=0 \text { otherwise. }
$$

Hint: evaluate the integral

$$
\iint_{|Y| \leq R} e^{-i X \cdot Y} d Y,
$$

using spherical coordinates (r, θ, φ) rotated so that the polar axis $\theta=0$ points in the direction of \vec{X}. Then you have $X \cdot Y=|X| r \cos \theta$, and $d Y=r^{2} \sin \theta d r d \theta d \varphi$.
B. Use A. to evaluate the surface integral

$$
\int_{|Y|=R} e^{-i X \cdot Y} d \sigma(Y)
$$

C. Let $\mathbb{S}^{n-1}=\left\{\omega \in \mathbb{R}^{n}: \mid \omega=1\right\}$ be the unit sphere centered at the origin. Prove that the function $u(X, t)=e^{i \sqrt{\lambda} t} \psi(x),(X, t) \in \mathbb{R}^{n+1}$, with $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ given by

$$
\psi(x)=\int_{\mathbb{S}^{n}-1} e^{i \sqrt{\lambda} x \cdot \omega} d \sigma(\omega), \quad \lambda>0, \quad X \in \mathbb{R}^{n},
$$

solves the wave equation $\Delta u-\partial_{t}^{2} u=0$ in \mathbb{R}^{n+1}.
Use B. to write explicit formula for the solution when $n=3$.

